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Abstract: When trains pass through damaged switch rails, rail head damage will change wheel–rail
contact states from rolling frictions to unsteady contacts, which will result in impact vibrations
and threaten structural safeties. In addition, under approaching and moving away rolling contact
excitations and complex wheel–rail contacts, the non-stationary vibrations make it difficult to extract
and analyze impact vibrations. In view of the above problems, this paper proposes a variational-
mode-decomposition (VMD)-spectral-subtraction (SS)-based impact vibration extraction method.
Firstly, the time domain feature analysis method is applied to calculate the time moments that the
wheels pass joints, and to correct vehicle velocities. This can help estimate and confine impact
vibration distribution ranges. Then, the stationary intrinsic mode function (IMF) components of the
impact vibration are decomposed and analyzed with the VMD method. Finally, impact vibrations are
further filtered with the SS method. For rail head damage with different dimensions, under different
velocity experiments, the frequency and amplitude features of the impact vibrations are analyzed.
Experimental results show that, in low-velocity scenarios, the proposed VMD–SS–based method can
extract impact vibrations, the frequency features are mainly concentrated in 3500–5000 Hz, and the
frequency and peak-to-peak features increase with the increase in excitation velocities.

Keywords: impact vibration analysis; VMD; SS; velocity effect; wheel—rail contact

1. Introduction

Switch rails enable trains to change tracks, which affect the smooth and safe operation
of train systems and therefore play an important role in railway infrastructures [1,2]. The
braking and starting behaviors of trains when passing switch rails and complex wheel–
rail contacts will lead to large contact stress. When the contact stress exceeds the switch
rail yield strength, fatigue cracks or spalling will occur at rail heads [3]. The existence
of damage will affect wheel–rail contact states from rolling friction to unsteady contact,
and corresponding impact vibrations will occur [4]. The features of impact vibration
can be several times those of conventional rolling friction, and are accompanied by large
impact accelerations [5]. These pose serious threats to the structural integrities of rails and
wheelsets. Therefore, monitoring and analyzing impact vibrations is of great significance
to ensure the safe operation of trains in switch rail areas.

At present, there are mainly three types of techniques for rail vibration analysis:
time-domain-, frequency-domain- and time–frequency-domain-based techniques. (1) Time
domain analysis technology is mainly divided into two types: the structural modal feature
extraction and the damage feature extraction. Among them, the structural modal feature
extraction technology mainly includes an eigensystem realization algorithm, a natural
excitation technique and an auto-regressive and moving average model [6–8]. Based on
the above methods, references [6–8] realized dynamic parameter extractions and analysis
for damaged rails. However, the eigensystem realization algorithm has low interference
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immunities, as the natural excitation technique needs large calculation amounts. In addition,
when system orders cannot be determined, they may identify false modes. The auto-
regressive and moving average model requires vibration signals to be stable, which cannot
be met in practical conditions. Meanwhile, the above methods are not sensitive to local
damage. Therefore, some researchers propose to use damage feature extraction technology
to detect damage [9,10], e.g., the peak-to-peak value, kurtosis and margin. These features
are derived from the original vibrations and contain complete structural state information.
However, the time-domain feature extraction technique requires a high signal-to-noise ratio
of vibrations. This also cannot be met in practical conditions. (2) Frequency domain analysis
technology mainly includes [9] a Fourier transform and frequency spectrum analysis, which
have been proved to be effective in rail geometric irregularity [11] and rail fastener state
analysis [12] applications. However, the signal used for frequency domain analysis also
needs to have high signal-to-noise ratios. Meanwhile, this method is used to analyze
the entire vibration data segment and cannot analyze the local frequency component
changes caused by damage. (3) The time–frequency domain analysis technology mainly
includes [13,14] the wavelet transform and Hilbert–Huang transform. The influence of
wheelset creep [15] and wheel flatness [16] based on rail vibrations has been successfully
studied. However, the wavelet transform is more suitable for linear problems, and the
Hilbert–Huang transform is prone to modal aliasing [17].

In sum, the above three type technologies have challenges for non-stationary signal
processing and are insensitive to local damage [18,19], which will affect the accuracy of
the extraction and analysis for impact vibrations. To solve these problems, researchers
have proposed a signal stabilization processing method: Li [20] applied a combination of
empirical mode decomposition (EMD) and the state probability method to predict track
irregularity states with different wavelengths; Wang [21] integrated ensemble empirical
mode decomposition (EEMD) and constrained independent component analysis to realize
rail-damage-induced signal extractions; Du [22] proposed a detecting mechanism of local
mean decomposition (LMD) energy, a moment-directed acyclic graph support vector ma-
chine for train-wheelset-bearing diagnoses. However, when using EMD, EEMD and LMD
for non-stationary impact vibration processing, there still exist problems of modal aliasing,
the end effect and the inability to separate components with similar center frequencies [23].

VMD is a new signal stabilization processing and decomposition method. Compared
with EMD, EEMD and LMD, VMD converts signal decomposition into non-recursive and
modal variation, which shows better robustness. In terms of modal decomposition, VMD
can identify signal components with similar frequencies. Therefore, VMD has received
extensive attention in rail vibration processing applications. Zhang [24] takes an envelope
entropy of decomposed vibration signals by VMD as an index to detect wavelengths and
positions of rail corrugation damage. Chen [25] studies the influence of train velocity on
rail high frequency vibrations through VMD and a marginal spectrum. However, there
is no research on applying VMD to extract and to further analyze impact vibrations for
switch rails. In addition, the stabilization-processed signals may still contain stationary
noises, which will cause defect-related signals to be masked. Iglesias-Martínez [26] and
Balaji [27] have verified that SS is helpful in noise reductions and further signal extrac-
tions. Considering the above, the SS method can be a candidate method to further extract
impact vibrations. In this paper, a VMD-SS signal processing method is proposed to extract
and analyze damage-induced impact vibrations. Firstly, the moment when the wheelset
passes rail joints is determined through the time domain analysis method. This helps
determine the distribution range of the impact vibrations in the time domain. Secondly, a
stable IMF component containing impact vibration is obtained through VMD. Then, the
impact vibration component is extracted through filtering stable noise with SS. Based on the
wavelet time–frequency analysis method, the effects of velocities and damage dimensions
on impact vibration features are analyzed under different velocity experiments.
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The remainder of this paper is organized as follows: Section 2 gives a detailed intro-
duction to the proposed method. Section 3 describes the experimental study results. After
a discussion in Section 4, the conclusion and future works are considered in Section 5.

2. Extracting and Analyzing Methods for Impact Vibration Signals

This section describes the signal processing procedure of the proposed method.
Figure 1 shows the overall diagram; it mainly includes three steps: (1) determining the
passing time: extracting and analyzing the peak-to-peak features of the raw vibrations
in the time domain and determining the time moment when the vehicle passes the joint;
(2) impact vibration extraction: optimizing the VMD decomposition layer number through
the center frequency selection and then removing stationary noise through SS to extract
impact vibrations; (3) extracting features: extracting impact vibration features through the
wavelet time–frequency analysis method. Among the three steps, step 1 will be introduced
in Section 3.1 and the details concerning the processing and calculating for step 2–3 will be
introduced in Sections 2.1 and 2.2.
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2.1. Impact Vibration Signal Extraction Method

This step mainly includes VMD and SS. The processing flow of VMD is as follows:
(1) setting the initial decomposition layer number K, the penalty factor α and bandwidth
parameter τ to the default parameters of 2, 200 and 0, respectively; (2) calculating center
frequencies for each IMF layer, and comparing whether each of the two layer center
frequencies are too close or too far. If it does not meet the above requirements, switch to
step (3); otherwise switch to step (4); (3) K = K + 1, switch to step (2); (4) selecting an
impact-sensitive IMF component through signal analysis. The detailed principles and more
introductions of VMD are [28]:

VMD searches for the optimal solution of the variational model iteratively, so as to
determine the center frequency and bandwidth of each decomposed IMF component. This
can realize adaptive sparse signal decompositions. The bandwidth of the decomposed
mode’s center frequency is constantly updated to seek a minimum mode function uk(t)
during the decomposition process, so that the sum of each IMF component is equal to
the input signal. The main sub steps [26] are: (1) obtaining the unilateral spectrum of
each component; (2) adjusting the frequency spectrum of the IMF component to baseband
through introducing an exponential function; (3) establishing the optimal variational model.
Then, the optimal solution is obtained through the variational model, and the raw input
signal is decomposed into finite IMF components.

After decomposing and extracting the IMF components from the impact vibration,
the next step is to use the SS method [29] to subtract the noise power spectrum from the
extracted IMF component power spectrum to obtain the impact vibrations. Suppose y(n)
is an IMF component that contains both noise and impact vibration, s(n) is the impact
vibration part and d(n) is the noise part. Then, the relationship among the three parts can
be expressed as:

y(n) = s(n) + d(n), 0 ≤ n ≤ N − 1 (1)

where n is the number of data points and N is the frame length.
Taking the Fourier transform for both sides of Equation (1) and calculating the corre-

sponding short time power spectra, they are named Y(ω), S(ω) and D(ω), respectively.
Then, for the short-term stationary process of an IMF component:

|S(ω)|2 = |Y(ω)|2 − λd(ω) (2)

where λd(ω) is the statistical mean of |D(ω)|2 in silent sections. Here, we applied the
common method of setting the first five frames as an interval of silence and set the average
of the spectra to that of the noise spectrum [30].

Therefore, the final extracted impact vibration can be expressed as:

Ŝ(ω) =
[
|Y(ω)|2 − E

(
|Y(ω)|2

)]1/2

=
[
|Y(ω)|2 − λd(ω)

]1/2
(3)

2.2. Feature Analysis of Impact Vibration

After extracting impact vibration through VMD and SS, the next step is to extract and
analyze the features with the wavelet transform. The discrete wavelet transform has the
advantages of small calculations and a fast analysis. Therefore, it is suitable and is used
to extract the frequency feature of impact vibrations in this section. The main process of
wavelet transform can be expressed as [31]:

The continuous wavelet transform of a specified signal f (t) can be defined as:

W f
ψ(a, b) =

1√
a

∫ +∞

−∞
f (t)ψ∗(t)dt (4)
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where ψa,b(t) = ψ((t− b)/a)/
√

a, ψ∗(t) is the mother wavelet function, a is the scale
parameter and b is the translation parameter. For the parameters of the discrete set, a = 2−j,
b = 2−jk, j, k ∈ Z, the wavelet basis is:

ψj,k(t) = 2j/2ψ
(

2jt− k
)

(5)

Therefore, the discrete wavelet transform of a specified signal f (t) can be defined as:

wt(j, k) =
〈

f (t), ψj,k(t)
〉
= 2j/2

∫ +∞

−∞
f (t)ψ∗

(
2jt− k

)
dt (6)

where 〈·〉 is the inner product, expressed as
〈

f (t), ψj,k(t)
〉
=
∫

f (t)ψ∗j,k(t)dt.
Before verifying the proposed signal processing method, it is necessary to analyze

the energy distribution principle of the impact vibration to optimize the sensor array
arrangement. This can improve the detectability of impact vibration signals.

2.3. Optimizing Sensor Arrangements

In this section, the finite element analysis software ANSYS 18.0 (Ansys, Inc., Nantong,
China)is used to optimize the sensor array arrangement from the perspective of simulating
the vibration energy distribution principle under impact excitations at a switch rail head.
As shown in Figure 2, a three-dimensional finite element switch rail model is established
through the three-dimensional solid structural unit SOLID187. The switch rail model is
CHN60AT, and the model length is two meters. The corresponding material parameters
are shown in Table 1. To help observe the energy distribution principle and to reduce
reflections, the excitation is selected at the center part of the switch rail head, which is
shown as the red arrow in Figure 2a. Zhai [5] determined that the frequency band of the
impact vibration can be several times the normal load induced vibration, and the instant
contact state between the damage and wheelsets is similar to an impact excitation source.
In addition, Zhai [32,33] also investigated the dynamic performance of rails under track
irregularity scenarios, and the results showed that the vibration frequencies are mainly
concentrated in less than 200 Hz. This ensures that the track irregularity will not influence
the impact vibrations. Therefore, in this section, a half-cycle sinusoidal signal with a center
frequency of 3 kHz is selected to simulate an impact excitation:

f (t) =

{
0.1 sin

( 2π
T·t
)

0 ≤ t ≤ T
2

0 t > T
2

(7)

where T is the period of the 3 kHz sine function.
The simulation is completed on the workstation with the main parameters of Inter (R)

Core (TM) i9-9900, 64 GB memory and 64-bit Windows 10 Professional operating system.
The simulation results are sampled at a time interval of 10 µs to obtain vibration energy
distribution cloud maps, and the time length of the simulation is 1 ms. The cloud maps
are illustrated in Figure 2b,c. It can be observed that the vibration energies generated by
the impact excitation from the switch rail head are distributed at the rail head, web and
base. In addition, when the vibration energy propagates to the rail base, it will continue to
propagate along the rail base to both sides of the model. Considering that the sensors cannot
be arranged at the rail head when the switch rail is in service, arranging the sensor array at
the rail base will be helpful for impact vibration acquisition and structural state monitoring.
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Table 1. The material parameters of simulation model.

Young’s Modulus/GPA Poisson’s Ratio Density/kg/m3

206 0.3 7850

3. Experimental Study and Results

The experimental research in this section was conducted on an in-service switch rail
section. A rail inspection vehicle was taken as the excitation, and the passing time, impact
vibration extraction and feature analysis were studied, respectively.

3.1. Experiment Scheme and System

The experimental study was conducted at Gemac Engineering Machinery Co., Ltd.,
which is located in Xiangyang City, China. The monitoring object was the head damage
of the switch rails in the test rail line. The vehicle was jointly developed by the China
Academy of Railway Sciences and Gemac Engineering Machinery Co., Ltd. When the
inspection vehicle passes the rail damage, the wheel–rail contact states change to unsteady
contacts and corresponding impact vibrations are generated [5]. To ensure safety, it should
be noted that the velocities in the factory were limited to less than 20 km/h.

The figure and parameters of the vehicle are shown in Figure 3a,b. The vehicle
included two locomotives, and the distance between the two locomotives was 4.46 m.
The weight of each locomotive was 67 t. Each locomotive included two bogies, and the
distance between the two pair of wheelsets in a bogie was 2.6 m, and the distance between
the front and the back bogies was 9.4 m. The above distance parameters were used to
determine the vehicle velocity and to locate the time when the wheelset passed the joint in
the subsequent chapters.
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The experimental scheme of this section is shown in Figure 4a,b. The dimension of
the detected damage at the switch rail head was about 2.5 cm × 2 cm. The damage was
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2.5 m away from the joint, and there was no other obvious damage between the detected
damage and the joint in the wheel–rail contact areas. This helped avoid the misjudgment
of the impact vibrations caused by other damage. To ensure repeatability, two PZT sensors,
which were named sensor 1 and sensor 2, were installed at a 30 cm interval in the vertical
direction of the switch rail base. In the experiments, the vehicle passed through the switch
rail damage and the joint with different velocities. The preseted velocities were 12 km/h,
14 km/h, 16 km/h, 18 km/h and 20 km/h, respectively.
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Figure 5a,b shows the diagram and figure of the experimental system. The system was
mainly composed of sensors, a conditioning module, a signal acquisition module and a PC.
The professional acquisition device ART USB8514B was selected as the acquisition device
in this system, which can realize four-channel synchronous sampling with 40 MSa/s. The
sensor model was DS-1201 produced by TE Company; the length, width and height were
all 8.9 mm, which made it easy to integrate with the switch rail base. The conditioning
module was from the switch rail monitoring system developed by our group [31]. The
sampling frequency was set to 10 kHz and the sampling time was 10 s.
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From the above results, it can be found that the calculated distances under the pre-
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3.2. Determining Passing Time and Correcting Velocity

Taking the vibrations of the vehicle passing through the damage and nearby areas at
16 km/h (about 4.44 m/s) as an example, the time domain signals are shown in Figure 6.
As shown in this figure, the signal-to-noise ratio of the original signals was low; hence, it
was difficult to identify and extract the damage-induced impact vibration directly. Based
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on Zhai’s research [3] that rail joints can cause strong wheel–rail contacts and that the
corresponding vibration index can be several times that of the conventional wheel-rail
force, this section takes the point of view of seeking when wheelsets pass through the rail
joint, taking this time moment as a benchmark and analyzing the vibrations around this
time to assist with the damage-induced impact vibration extractions.
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As shown in Figure 6, eight distinct pulses with large amplitudes, which were named
W1–W8, respectively, could be observed from raw vibration signals. To determine the
distances between each of the two adjacent pulses, the appearance time parameters of
W1–W8 were firstly extracted. Then, based on the preseted 16 km/h velocity, the distances
between each two adjacent pulses can be calculated:

dW12 = (0.8186 s− 0.2708 s)× 4.44 m/s ≈ 2.43 m
dW23 = (2.808 s− 0.8186 s)× 4.44 m/s ≈ 8.83 m
dW34 = (3.352 s− 2.808 s)× 4.44 m/s ≈ 2.4 m
dW45 = (4.287 s− 3.352 s)× 4.44 m/s ≈ 4.15 m
dW56 = (4.839 s− 4.287 s)× 4.44 m/s ≈ 2.45 m
dW67 = (6.816 s− 4.839 s)× 4.44 m/s ≈ 8.78 m
dW78 = (7.348 s− 6.806 s)× 4.44 m/s ≈ 2.41 m

(8)

From the above results, it can be found that the calculated distances under the pre-
seted velocity were approximately equal to the distances between each of the two ad-
jacent wheelsets in Figure 3b. In addition, there were only eight distinct impulses in
the time domain signal when the vehicle passed through the monitoring area. There-
fore, it can be assumed that the eight pulses in Figure 6 were caused by the wheel–
rail impact when the eight wheelsets passed through the joint. To verify this assump-
tion, the corrected velocity was calculated with the time difference between W1 and W2:
v = 2.6 m ÷ 0.5478 s ≈ 4.75 m/s = 17.1 km/h. Then, the distances of dW23-dW78 were
recalculated and are illustrated in Table 2. Then, they were compared with the distances in
Figure 3b. It can be observed from this table that the calculated distances were basically
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consistent with the actual distances with small errors, which verifies that the eight pulses
were caused by the wheel–rail impacts when the vehicle passed the joint.

Table 2. The calculation results of wave peaks spacing after velocity correction.

dW23 /m dW34 /m dW45 /m dW56 /m dW67 /m dW78 /m

Calculated value 9.44 2.58 4.44 2.62 9.39 2.57
Actual value 9.4 2.6 4.46 2.6 9.4 2.6

Error 0.43% 0.77% 0.45% 0.77% 0.1% 1.1%

3.3. Impact Vibration Extraction

In the previous section, the calculated passing time was helpful to determine the
impact vibration signal distribution area caused by damage. However, it still can be seen
in Figure 6 that the signal-to-noise ratio was low and there were still many other small
impulses. These will affect the impact vibration extraction. Therefore, the raw vibration
signal needs to be processed by the proposed VMD-SS to help identify and extract the
damage-induced impact vibrations. Taking the raw vibration signals of the preseted
16 km/h experiment of sensor 1 as an example, the vibration signal was decomposed
through VMD firstly. Before VMD, it was necessary to optimize the IMF component number.
Based on the central frequency estimation [28], the default penalty factor, the accuracy and
the IMF component numbers were set as 2000, 10 × 10−6 and 2–5, respectively. The central
frequencies of the different IMF component numbers were calculated and are shown in
Table 3. As seen in this table, when the number was two and three, the central frequency
difference between the two IMFs was large, which was due to the under decomposition;
when the number was five, the center frequencies of IMF3 and IMF4 were close, which was
due to the over decomposition. Therefore, the IMF component number was selected as
four in this section.

Table 3. The central frequencies of different IMF orders.

IMF Component Number
Central Frequency of Modal Component/Hz

IMF1 IMF2 IMF3 IMF4 IMF5

2 33 1229
3 33 1229 2900
4 33 1229 2900 3655
5 33 1229 2611 2900 3655

Figure 7 shows the decomposed results for the preseted 16 km/h experiment after
VMD. It was observed that several short-time impulses with small amplitudes appeared
at the left sides of W3, W5 and W7 in IMF4, which are marked with red dotted lines. The
possible physical meaning is that the impact vibrations were generated at a certain distance
from the left side of the joint before the third, fifth and seventh wheelsets passed the switch
rail area. This is consistent with the fact that the target damage in Figure 4b was located on
the left side of the joint. However, the amplitudes of the three candidate impulses were
almost equivalent to those of the background noise. To further extract the candidate impact
vibrations, the SS method was applied to denoise the IMF4 component in this section.
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Figure 7. Vibration response of measuring point 1 under 17.1 km/h excitation.

Figure 8a shows the raw vibrations, the IMF4 component and further results processed
through the SS of the preseted 16 km/h experiment of sensor 1. Compared with the VMD
results, three impulses with small amplitudes can be easily identified from the VMD-SS
method, which are marked with red dotted lines. To analyze the three small impulses, they
were defined as I3, I5 and I7, respectively. Then, the distances between I3-W3, I5-W5 and
I7-W7 were calculated with the corrected velocity of 17.1 km/h. The calculated results are
shown in the fifth row of Table 4. It can be observed that the distance between the small
impulses and the joint was basically consistent with the 2.5 m in Figure 4b. Therefore, we
assume that the small impulses were caused by the damage-induced impact vibrations.
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Figure 8. Sensor results of different velocity impact vibrations. Sensor 1: (a) 16 km/h, (b) 12 km/h,
(c) 14 km/h, (d) 18 km/h, (e) 20 km/h; Sensor 2: (f) 16 km/h, (g) 12 km/h, (h) 14 km/h, (i) 18 km/h,
(j) 20 km/h.

Table 4. The calculated results of impact vibrations.

Preseted Velocity
/km/h

Wave
Crest

Measuring Point 1 Measuring Point 2

I3 I5 I7 I3 I5 I7

12
Calculated value 2.49 m 2.62 m 2.47 m 2.55 m 2.65 m 2.48 m

Error 0.4% 4.8% 1.1% 2% 6% 0.8%

14
Calculated value 2.53 m 2.68 m 2.5 m 2.56 2.68 2.5

Error 1.2% 7.2% 0% 2.4% 7.2% 0%

16
Calculated value 2.55 2.69 2.52 2.49 2.64 2.49

Error 2% 7.6% 0.8% 0.4% 5.6% 0.4%

18
Calculated value 2.56 2.71 2.57 2.55 2.7 2.56

Error 2.4% 8.4% 2.8% 2% 8% 2.4%

20
Calculated value 2.58 2.7 2.56 2.55 2.65 2.53

Error 3.2% 8% 2.4% 2% 6% 1.2%

To test the repeatability of the results, for the preseted 16 km/h experiment data from
sensor 2, and the preseted 12 km/h, 14 km/h, 18 km/h and 20 km/h experiment data
from sensor 1–2, the VMD-SS was taken to try to extract impact vibrations. The processing
results are shown in Figure 8b–j and Table 4. It should be noted that the corrected velocities
of 12 km/h, 14 km/h, 18 km/h and 20 km/h were 13.2 km/h, 14.9 km/h, 18.9 km/h
and 21.3 km/h, respectively. As shown in this table, three small impulses can be easily
observed at the left sides of the joint, and the distances from the joint were also about
2.5 m, which was the location of the target damage. Therefore, the proposed method can
realize damage-induced impact vibration extractions. However, it cannot be ignored that
the proposed method does not realize the impact vibration extraction from W4, W6 and W8.
One possible reason for these phenomena is that the distance between each two adjacent
wheelsets in a bogie is close to 2.5 m. This leads to the damage-induced impact vibrations
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with small amplitudes being masked by the joint induced impact vibration with large
amplitudes from W3, W5 and W7. The other possible reason for these phenomena is the
wheel–rail contact states. Under different velocities of the track inspection vehicle, it is
impossible to ensure that all wheels have good contact states at the damage and to generate
corresponding impact vibrations.

4. Influences of Damage Dimensions and Velocities

Considering that in actual scenarios, both damage dimensions and vehicle velocities
are varying, it is necessary to analyze the impact vibration features for different damage
dimensions under different velocities. In this section, two other head damages are selected
to conduct the above analysis, whose locations and dimensions are illustrated in Figure 9a,b.
In Figure 9, the damage 1 was 0.82 m away from a left joint, whose dimensions were about
3 cm × 1.5 cm; the damage 2 was 3.4 m away from the left joint, whose dimensions were
about 1 cm × 1 cm. The vehicle still passed the damage and nearby joint from left to right
with preseted velocities of 12 km/h, 14 km/h, 16 km/h, 18 km/h and 20 km/h, respectively.
The sampling frequency was still set at 10 kHz and the sampling time was 10 s.
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Figure 9. The other damage and location parameters: (a) damage 1 and location; (b) damage 2
and location.

After collecting the experiment signals, the actual velocities were firstly corrected.
Specifically, for damage 1 experiments, the corrected velocities were 12.5 km/h, 13.4 km/h,
15.9 km/h, 16.3 km/h and 20.2 km/h, respectively; for damage 2 experiments, the corrected
velocities were 11.5 km/h, 13.7 km/h, 15.9 km/h, 18.9 km/h and 21.2 km/h, respectively.
Then, the same signal processing method was applied to the data; the corresponding results
are shown in Figure 10a–d. As shown in these figures, for damage 1–2, the proposed
method can still extract damage-induced small impulses. To further analyze the impact of
damage dimensions and velocities on impact vibrations, the frequency and peak-to-peak
value features were extracted from the three monitored damage experiments. Among them,
the frequency features were extracted through wavelet time–frequency analysis. Figure 11
provides an example of extracted frequency features for damage 1 under the preseted
12 km/h experiment with sensor 1 data. The peak-to-peak features were extracted with the
time-domain feature extraction method.
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Figure 11. Wavelet analysis examples for impact vibration of sensor 1 under a 12 km/h velocity. 
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Using the above methods, the extracted frequencies and peak-to-peak values are
shown in Figure 12a–f. As shown in these figures, for each experiment, the proposed
method can identify several damage-induced results. For the convenience of comparison,
the mean values of the frequencies and peak-to-peak values are calculated and fitted, in
which the sensor 1 results are characterized with red dotted curves, and the sensor 2 results
are characterized with blue solid curves.
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Figure 12. Frequency and amplitude features from different damage: (a,d) damage 2.5 cm × 2 cm;
(b,e), damage 3 cm × 1.5 cm; (c,f) damage 1 cm × 1 cm.

It can be observed from the frequency curves that the impact vibration frequencies
were mainly concentrated in the band of 3500–5000 Hz, and the frequency increased
with the vehicle velocity increase. However, it should not be ignored that the monotonic
increasing trend of the frequency distribution in Figure 12c was more unstable than those
in Figure 12a,b. The possible reason for these phenomena is that the damage dimension
of Figure 12c was the smallest of the three damages, meaning the corresponding impact
vibration amplitudes may have been the weakest. Therefore, the extracted features were
most vulnerable to the complex wheel–rail relationships in switch rail areas and noise.
For the peak-to-peak value features, it can be observed from the curves that the values
also increased with the vehicle velocity increase. However, by comparing the identified
damage features for different dimensions, it can be found that there was no obvious linear
relationship between the damage dimensions and peak-to-peak values. The distribution
range of the values also had no significant regularity. Specifically, the peak-to-peak values
of 2.5 cm × 2 cm damage were distributed at about 0.5–1.5 V; the peak-to-peak values of
3 cm × 1.5 cm damage were distributed at about 0.5–4.5 V; and the peak-to-peak values
of 1 cm × 1 cm damage were distributed at about 0.5–8 V. The possible reasons for these
phenomena are: (1) the varying wheel–rail contact states in different switch rail areas and
the coupling states between sensors and rail bases were different, which led to the change
in the impact vibration amplitudes; (2) there was still noise in the processed signals in
Figures 8 and 10, which would affect the accuracy of the feature extractions.
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5. Conclusions

In this paper, a damage-induced switch rail impact vibration extraction method is
proposed based on VMD-SS. It is aimed at the challenge that the nonstationary vibration
signals in switch rail areas make it difficult to characterize damage and structural states. In
a practical switch rail line, with the help of a track inspection car, the proposed method
was verified with different damage dimensions under different velocities.

The result showed that under the scenario of less than 20 km/h, (1) the proposed
signal processing method based on VMD-SS can realize impact vibration extractions; (2) the
impact vibration frequencies are mainly concentrated in the band of 3500–5000 Hz, and the
frequency increases with the vehicle velocity increase; and (3) the impact vibration peak-to-
peak values also increase with the vehicle velocity increase. However, there are no obvious
linear relationships between the damage dimensions and peak-to-peak values. This may be
due to the wheel–rail contact states, the sensor coupling and the low signal-to-noise ratio.

The next work will consider the modeling of adding wheel–rail rolling contacts,
involve experiments with higher velocities and further verify the proposed method. We
will also improve the signal-to-noise ratio of the extracted impact vibrations.
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