
J
H
E
P
0
1
(
2
0
2
3
)
0
6
6

Published for SISSA by Springer

Received: September 5, 2022
Accepted: December 25, 2022
Published: January 13, 2023

Wheeler-DeWitt states of the AdS-Schwarzschild
interior

Sean A. Hartnoll
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

E-mail: sah40@cam.ac.uk

Abstract: We solve the Wheeler-DeWitt equation for the planar AdS-Schwarzschild
interior in a minisuperspace approximation involving the volume and spatial anisotropy of
the interior. A Gaussian wavepacket is constructed that is peaked on the classical interior
solution. Simple observables are computed using this wavepacket, demonstrating the freedom
to a choose a relational notion of ‘clock’ in the interior and characterizing the approach
to the spacelike singularity. The Wheeler-DeWitt equation may be extended out through
the horizon, where it describes the holographic renormalization group flow of the black
hole exterior. This amounts to the Hamilton-Jacobi evolution of the metric component gtt
from positive interior values to negative exterior values. The interior Gaussian wavepacket
is shown to evolve into the Lorentizan partition function of the boundary conformal field
theory over a microcanonical energy window.

Keywords: AdS-CFT Correspondence, Black Holes, Spacetime Singularities

ArXiv ePrint: 2208.04348

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)066

mailto:sah40@cam.ac.uk
https://arxiv.org/abs/2208.04348
https://doi.org/10.1007/JHEP01(2023)066


J
H
E
P
0
1
(
2
0
2
3
)
0
6
6

Contents

1 Introduction 1

2 AdS-Schwarzchild from the Hamilton-Jacobi equation 4

3 Wheeler-DeWitt states of the interior 5
3.1 Solutions and wavepackets 5
3.2 Clocks and measures 8
3.3 Expectation values for the anisotropy clock 10
3.4 Expectation values for the volume clock 12
3.5 York time 13
3.6 Metric component clocks 15

4 The exterior and holographic renormalization 16

5 Behavior near the singularity 20

6 Discussion 21

1 Introduction

The boundary of an asymptotically AdS spacetime has a well-defined time coordinate t.
This time coordinate can be extended into the bulk. However, events in the bulk are
redshifted relative to the boundary by a factor of the bulk metric gtt. This redshift typically
increases monotonically with spatial distance from the asymptotic boundary [1]. Thus,
events that occur deeper in the bulk describe lower energy processes in the dual quantum
field theory [2]. The classical bulk equations of motion determine how bulk fields evolve with
distance from the boundary, and this is called the holographic renormalization group [3].

At a horizon gtt → 0, and therefore events at the horizon are infinitely redshifted with
respect to the boundary. These describe the far infrared of the renormalization group.
From the usual perspective of field theory renormalization, there is nothing left to integrate
out and nowhere further to go. However, the bulk spacetime does not terminate at the
horizon. It has recently been emphasized that in the bulk it is natural to continue the
holographic renormalization group flow through the horizon into the black hole interior [4].
In the interior this flow develops in time rather than space and extends all the way to the
black hole singularity. The flow therefore can be thought of as a map from AdS boundary
sources to scaling exponents near the interior cosmological singularity [4]. This connection
has been further elaborated in e.g. [5–13].
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One may hope that the AdS boundary perspective might shed light on the nature of the
black hole interior and on the singularity in particular. This is not necessarily the same as
asking how the interior is encoded in the boundary. The difficulty with encoding the interior
in the boundary is, of course, that the interior is causally disconnected from the boundary.
Formally, this means that the interior time dependence corresponds to complex boundary
energies that are accessed via analytic continuation [14–17]. A different perspective is to
ask how the interior is prepared by the exterior. At a classical level this just amounts to
solving the equations of motion with sources at the boundary [4]. In this paper we will ask
how the (semiclassical) quantum state of the interior is prepared by the AdS boundary.

The present paper is partially inspired by recent works [18, 19] that considered the
Wheeler-DeWitt equation close to Kasner singularities of the kind that arise inside black
holes. Historically, the vast majority of work on the Wheeler-DeWitt equation has been
concerned with quantum cosmology and with fraught interpretational issues such as what
it would mean to ‘predict’ the state of the universe. See for example [20]. The interior of
a black hole, in contrast, is prepared by its classical exterior. For a given exterior there
should be, ultimately, no ambiguity regarding the state of the interior. This would seem to
be, then, a promising setting in which to make sense of the Wheeler-DeWitt equation. The
state of the interior may then be used to address important questions such as the quantum
fate of classical spacelike singularities.

‘Eternal’ black holes in asymptotically AdS spacetimes [21] provide an especially well-
grounded starting point for exploration of the interior. Furthermore, planar AdS black holes
offer a simple metric ansatz that explicitly incorporates both the asymptotically AdS scaling
as well as near-singularity Kasner scaling [4]. In this work we will discuss the Wheeler-
DeWitt state of the planar AdS-Schwarzschild black hole interior within a mini-superspace
approximation involving two metric functions: the scale factor and anisotropy of flat spatial
slices at constant interior time.

Previous works have discussed the Wheeler-DeWitt equation in the context of asymp-
totically AdS black holes. Figure 1 illustrates the relation between those works and what
we will do. Important insights into black holes have been obtained by using the asymptotic
boundary time to study the bulk as a conventional quantum mechanical system [16, 22, 23].
In particular, the bulk gravitational phase space can be obtained from the phase space of the
boundary field theory [24]. The boundary state at a given fixed boundary time t is thereby
associated to a region of the bulk called the ‘Wheeler-DeWitt patch’ in [25, 26]. From this
perspective the state of the interior of the eternal black hole is obtained as the t → ∞
limit of the thermofield double state of the boundary theory [27]. See figure 1, left. This
interior state should be the same as the state we will be discussing. As we have described
in the first paragraphs above, the boundary ‘clock’ has run out of time at this point. For
this reason we view the interior state as ‘timeless’ in the sense of being a cosmological
solution to the Wheeler-DeWitt equation. To remain within a cosmological-like framework
— with Hamilton-Jacobi theory as the unifying mathematical description — we will relate
the interior state to the holographic renormalization group flow of dual field theory, rather
than its time dependence. See figure 1, right. These two perspectives are likely related,
possibly through recently discussed T 2 deformations of the boundary theory [28, 29].
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Figure 1. Two approaches to the black hole interior. Left: as boundary time t becomes large, the
‘Wheeler-DeWitt patch’, shown as a shaded region, coincides with the interior. Right: Hamilton-
Jacobi evolution along bulk radial slices can be parametrized, for example, by gtt which changes sign
at the horizon. This evolution corresponds to holographic renormalization in the exterior and the
Wheeler-DeWitt state in the interior. The arrows show the holographic renormalization preparing a
state in the future interior, as opposed to the past. We discuss this ambiguity later.

This paper makes two technical points. The first is to solve the minisuperspace Wheeler-
DeWitt equation in the interior. The general solution is found in section 3, and it is shown
how classical interior physics is recovered by building a Gaussian wavepacket. The Wheeler-
DeWitt wavefunction contains no time parameter but instead expresses correlations between
geometric observables on spatial slices. We illustrate the use of several different choices of a
relational ‘clock’ with respect to which other observables may be computed: the volume of
interior slices, their anisotropy, their extrinsic curvature, and their metric components gtt
and gxx. Using these clocks, we describe the approach to the singularity in section 5.

These first results, regarding the behavior of the interior wavepacket, are independent of
the exterior of the black hole. The second technical point we make, in section 4, is that the
interior wavefunction is nothing other than the asymptotic (exterior) boundary Lorentzian
partition function, extended to positive values of gtt. This partition function is originally a
function of negative gtt, corresponding to the Lorentzian metric of the asymptotic boundary.
In the minisuperspace we consider, however, the extension to positive gtt is simple; the
basic quantity, the Hamilton-Jacobi function given in (3.56) below, is linear in gtt! One can
think of the entire object as a single wavefunction labelled by a clock gtt that runs from
−∞ at the AdS boundary to +∞ at the singularity, passing through zero at the horizon.
This is illustrated in figure 1, right. The freedom to build wavepackets translates into
different energy weightings of the boundary partition function. In particular, the Gaussian
wavepacket corresponds to the partition function of a band of energies.

It is hoped that the framework in this paper can be used to provide both a solid
conceptual grounding for quantum cosmological Wheeler-DeWitt equations and an approach
towards understanding the quantum resolution of spacelike singularities in gravity. Future
directions are discussed in section 6.
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2 AdS-Schwarzchild from the Hamilton-Jacobi equation

We will be concerned with pure, four dimensional gravity with a negative cosmological
constant. The action, including the Gibbons-Hawking boundary term, is

Sact =
∫
d4x
√
−g (R+ 6) + 2

∫
d3x
√
hK . (2.1)

The subscript on Sact is to differentiate the action from the Hamilton-Jacobi function that
will be appearing shortly. Our first task will be to recover the well-known planar AdS-
Schwarzschild solution to this theory from an approach that will generalize to semi-classical
quantum states. We will restrict to metrics within the ‘minisuperspace’ ansatz

ds2 = −N2dr2 + v2/3
(
e4k/3dt2 + e−2k/3

[
dx2 + dy2

])
, (2.2)

where k, v,N are functions of r. We are interested, to start with, in the black hole interior,
where r is the time coordinate. The function v is the spatial scale factor, which we will
think of as the volume. The function k determines the relative stretching of gtt relative to
gxx (= gyy within our ansatz, retaining boundary rotational invariance), while keeping the
spatial volume fixed. That is to say, it is a measure of anisotropy. This parametrization will
turn out to be useful, as the Hamilton-Jacobi function and associated wave equations will
be especially simple to work with. As we recall in section 6, generic black hole interiors are
known to evolve into highly inhomogeneous spacetimes that are well beyond the anstaz (2.2).
Nonetheless, minisuperspace is a useful starting point from which to approach conceptual
aspects of the problem.

On the ansatz (2.2) the Lagrangian density becomes

L = 6Nv + 2
3
v2(∂rk)2 − (∂rv)2

Nv
. (2.3)

From this Lagrangian we may go to a Hamiltonian description. As expected, N is a
Lagrangian multiplier that imposes the Hamiltonian constraint:

− π2
k + v2π2

v + 16v2 = 0 . (2.4)

Here πk and πv are the conjugate momenta to k and v.
The Hamilton-Jacobi equation is obtained by setting πk = ∂kS and πv = ∂vS, so that

− (∂kS)2 + v2(∂vS)2 + 16v2 = 0 . (2.5)

It is sufficient to find a solution to this equation that has a single constant of integration,
in addition to the constant giving an overall shift in S (this shift trivially drops out of the
equation, and we will not consider it). One such solution is seen to be

S(v, k; ko) = 4v sinh [k + ko] , (2.6)

where ko is the desired constant of integration. As usual in Hamilton-Jacobi theory, the
general solution to the equations of motion for the Lagrangian (2.3) is now obtained by

– 4 –
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setting the derivative of S with respect to the constant of integration ko equal to a further
constant, which we denote εo:

∂koS = εo . (2.7)

The solution to this last equation, using (2.6), is

v = εo
4 sech [k + ko] . (2.8)

We may now verify that with (2.8) we have re-discovered the standard planar AdS-
Schwarzschild black hole solution. To obtain the solution in a more recognizable form we
may introduce a coordinate z such that

e2(k+ko) = εoe
ko

2 z3 − 1 . (2.9)

Using this expression together with (2.8) and the equation of motion for N that follows
from (2.3), namely N2dr2 = (v2dk2 − dv2)/(9v2), then the metric (2.2) becomes

ds2 = 1
z2

(
−f(z)e−2kodt2 + dz2

f(z) + dx2 + dy2
)
, f(z) = 1− εoe

ko

2 z3 . (2.10)

Note that f(z) < 0 in the interior. The solution (2.10) is immediately recognized as the
planar AdS-Schwarzschild geometry. This form of the solution is also valid in the black hole
exterior, where f(z) > 0 and t becomes the timelike direction. In section 4 below we will
see that εo is the energy density of the black hole solution as defined at the AdS boundary.

In the interior we can note that, according to (2.8), the anisotropy k goes from −∞
at the horizon to +∞ at the singularity. The spatial volume v starts from 0 at the
horizon, expands to εo/4 and then contracts back to 0 at the singularity. The classical
solution as given in (2.8) is relational, it expresses one geometric property of time slices in
terms of another, with no reference to any coordinate on the spacetime. This feature of
Hamilton-Jacobi theory will be shared by the Wheeler-DeWitt wavefunction.

3 Wheeler-DeWitt states of the interior

3.1 Solutions and wavepackets

We can now perform a semiclassical quantization of the minisuperspace introduced above.
To start with we discuss the interior; the relationship to the exterior will be discussed in
section 4 below. The Wheeler-DeWitt state of the interior is obtained by promoting the
momenta in the Hamiltonian constraint (2.4) to operators with the usual commutation
relations. This gives a differential equation for the wavefunction Ψ(v, k):

∂2
kΨ− v∂v (v∂vΨ) + 16v2Ψ = 0 . (3.1)

There is a well-known ordering ambiguity in this equation. The ordering does not affect the
leading behavior in the classical limit, but does affect the leading quantum correction. We
have adopted the prescription in which the differential operator that appears in the equation

– 5 –
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is the Laplacian (of the inverse DeWitt metric, see section 3.6 below) on superspace. A
possible further term due to conformal coupling to the superspace scalar curvature vanishes
in our case of a two dimensional minisuperspace [20, 30]. Note, furthermore, that the
constant r slices in (2.2) are flat, with vanishing curvature.

Equation (3.1) can be solved by Fourier transforming in k. This is a first instance
where the choice of k, v coordinates is helpful, as they have separated the equation. The
Fourier modes, with label ε, are given by modified Bessel functions eiεkI±iε(4v). The same
Bessel function solutions have recently arisen in the Wheeler-DeWitt equation for the flat
space Schwarzschild interior [31, 32] and also in Jackiw-Teitelboim gravity [33, 34]. In these
latter papers the slices of the bulk geometry extend to the exterior boundary and thereby
inherit a preferred time. In our minisuperspace context, the Wheeler-DeWitt equation
should not be taken seriously beyond the semiclassical regime and it will be more useful to
consider the semiclassical limit of these solutions. These are obtained using conventional
one dimensional WKB methods as

Ψ±(v, k) =
∫
dε

2πα±(ε)ψ±(v, k; ε) . (3.2)

The functions α±(ε) are arbitrary and, in the oscillating regime 4v < ε, the modes

ψ±(v, k; ε) = eiεk

(ε2 − 16v2)1/4 exp
{
±i
[√

ε2 − 16v2 − ε tanh−1
√
ε2 − 16v2

ε
− π

4

]}
. (3.3)

To connect with standard WKB formulae note that the term in square brackets in (3.3) is∫ dv
v

√
ε2 − 16v2. It is natural here to introduce V = log v, so that the measure dv/v = dV .

From this point of view, each ε mode describes a particle with energy ε2 in an exponential
potential 16e2V . Scattering in an exponential potential is familiar from Liouville theory [35],
where the modified Bessel functions mentioned above are again the exact solutions. A given
ψ±(v, k; ε) state has oscillatory behavior over the range of volumes v ≤ ε/4 that occur in
the classical interior of a black hole with asymptotic AdS energy density ε.

The modes (3.3) are completely delocalized in the k direction. This state, therefore,
does not capture the classical evolution (2.8) of the interior towards the singularity as
k →∞. That is to say, the classical evolution is localized in both k and v, and indeed also in
the conjugate momenta πk and πv, while these states are not. To construct such a classical
state we need to form wavepackets out of the ψ±(v, k; ε) modes, by choosing appropriate
functions α±(ε) in (3.2). This is familiar from standard quantum mechanics, and has also
been widely discussed in quantum cosmology, see e.g. [36] and references therein. The
natural wavepacket to build is a Gaussian superposition of WKB modes peaked around
some energy εo with width ∆:

Ψ±,∆,εo,ko(v, k) = c

∫
dε

2πe
ikoεe−(ε−εo)2/(2∆2)ψ±(v, k; ε) . (3.4)

Here the normalization constant c2 = 2
√
π/∆. Norms will be discussed shortly.

To start to uncover the physics of the state (3.4), it is helpful to connect to the classical
discussion in the previous section. To do this most explicitly, we can represent (3.4) in a
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different way. We first note that, in generality, the states (3.2) can be expressed in a Fourier
transformed basis. Fourier transforming α±(ε) in (3.2) and then performing the ε integral
by stationary phase leads to

Ψ±(v, k) =
∫
dk̄

2πβ±(k̄)φ±(v, k; k̄) . (3.5)

Here β± is the inverse Fourier transform of α± and the modes

φ±(v, k; k̄) = e±iS(v,k;k̄) , (3.6)

where S(v, k; k̄) = 4v sinh(k + k̄) is the solution to the classical Hamilton-Jacobi equation
found previously in (2.6). The quadratic fluctuations of ε about the stationary phase point
cancel the functional dependence on v in the prefactor of the WKB modes (3.3). There is
correspondingly no nontrivial prefactor in (3.6). In fact, (3.6) are exact solutions to the
Wheeler-DeWitt equation (3.1). The representation (3.5) of the general solution in terms of
elementary functions is especially easy to work with. The exact modes (3.5) are related to
the Bessel function modes mentioned previously by Fourier transformation. For example∫ ∞

−∞
e4iv sinh ke−iεkdk = iπeπε/2

sinh(πε) [Iiε(4v)− I−iε(4v)] = 2eπε/2Kiε(4v) . (3.7)

It is noteworthy here that the + sign mode in the decomposition (3.5) Fourier transforms
into a sum of + and − sign modes in the decomposition (3.2). The sum of modes in (3.7)
is natural in conventional quantum mechanics, describing an incoming beam that reflects
off the potential in (3.1). However, below we will see that this is not necessarily the case
in the Wheeler-DeWitt equation due to the need to obtain positive probabilities from a
second order equation. The choice of modes will depend upon the choice of ‘clock’.

For the Gaussian wavepacket (3.4) we have that the function in (3.5) is

β±,∆,εo,ko(k̄) = c̄ e−iεo(k̄−ko)e−(k̄−ko)2∆2/2 . (3.8)

Here c̄2 = 2π1/2∆. Using this form in (3.5) describes a Gaussian spread in k̄ of width
1/∆ about the value ko. If this spread is small, then the k̄ integral in (3.5) is seen to be
dominated by the stationary phase point ±∂k̄S = εo. This is precisely the classical solution
as given in (2.7) and discussed at length in the previous section (we will comment shortly
on the meaning of the two different signs). Thus we find that, as expected, the wavepacket
describes a solution that is strongly supported on the classical interior evolution. This fact
will be established in detail in the following few subsections, where we will also characterize
the quantum variance about the classical solution introduced by the Gaussian smearing. As
is usual in quantum mechanics, if the wavepacket is too narrow in any given representation,
the variance of the conjugate momentum will become large. To keep the quantum variance
of all simple observables small compared to their classical expectation values requires both
the wavepacket (3.8) and its Fourier transform (3.4) to be narrow. Specifically, we require

εo � ∆� 1 . (3.9)

This is only possible in the semiclassical regime εo � 1. The value of ko is not constrained.
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3.2 Clocks and measures

Before discussing the wavefunction (3.4) further, we should say a few words about the choice
of± sign. Flipping the sign in the exponent of the wavefunction flips the expectation values of
momentum operators, that act as derivatives. The two different signs are therefore naturally
associated to the oppositely evolving future and past black hole interiors, respectively. In a
quantum cosmological context this is commonly discussed in terms of an expanding and a
contracting universe. However, as we will recall shortly, using the canonical conserved inner
product given by the Wheeler-DeWitt equation only one set of these modes, with a fixed
sign, admits a positive definite norm. This suggests that only one of the interiors may be
described at a time within a conventional probabilistic interpretation of quantum mechanics.
In the semiclassical regime this fact is not of practical importance because superpositions
of two states moving in different directions will decohere into distinct branches of the
wavefunction. Decoherence has been widely discussed in the context of quantum cosmology,
e.g. [37, 38]. Equivalently, a wavefunction with support on both branches may be said to
exhibit spontaneous breaking of time reversal invariance [29, 39]. All told, to discuss the
physics as the singularity is approached in the future interior, for example, it is physically
sensible to focus on a state with a given sign, such as the wavepacket Ψ+,∆,εo,ko(v, k).

We are considering the Wheeler-DeWitt equation as a ‘timeless’ description of the black
hole interior, as discussed in the introduction above. A choice of slicing of the interior,
however, gives a relational notion of time. That is to say, one picks a given coordinate
on superspace to act as the clock and one interprets the Wheeler-DeWitt wavefunction
as giving probabilities conditioned on the value of the clock. For this framework to make
sense it is essential that probabilities are conserved under the relational time evolution.
The Wheeler-DeWitt equation ensures this [40], as we now describe.

To start with, we consider the geometric quantities k and v as possible clocks. These
turn out to be technically convenient for evaluating expectation values. We will go on
to consider several further possible clocks, each of which brings its own advantages and
subtleties. If we choose k as the clock then the conserved norm is

|Ψ|2k = −i2

∫
dv

v
(Ψ∗∂kΨ−Ψ∂kΨ∗) . (3.10)

Using the Wheeler-DeWitt equation (3.1) it is immediately seen that ∂k(|Ψ|2k) = 0, so
long as the wavefunction decays at large and small v with k fixed. This establishes that
the norm is conserved under evolution in k. The volume v is constrained to be positive.
This makes it natural, as mentioned previously, to work in terms of the unconstrained
coordinate V = log v. However, it will be technically more convenient to take v to run from
−∞ to +∞ in (3.10), even though physical volumes are positive. This is because many
integrals then become simple Fourier transforms. The extension of the integral to v < 0 is
harmless so long as quantities are subsequently computed in states that vanish at negative
v. The Gaussian wavepackets that we will be considering have exponentially small tails at
negative v, and therefore the error made by integrating over negative v is negligible in the
semiclassical limit. The norm (3.10) is then most easily evaluated on a general state in the
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representation (3.5), to obtain

|Ψ±|2k = ±
∫
dk̄

2π |β±(k̄)|2 . (3.11)

As advertised above, this norm is positive definite and gives a good notion of probability
on the states with a + sign. In particular, |β+(k̄)|2 can be interpreted as the probability
that the interior universe is following a classical trajectory with anisotropy offset k̄. The
norm (3.11) is explicitly independent of k and therefore manifestly conserved.

If we instead chose v as the clock then the conserved norm is now

|Ψ|2v = −i2

∫
dk (Ψ∗v∂vΨ−Ψv∂vΨ∗) . (3.12)

Again using the Wheeler-DeWitt equation (3.1) we have that ∂v(|Ψ|2v) = 0, assuming that
the wavefunction decays at large |k| with v fixed. The norm is therefore conserved under
evolution in v. With this norm it is more convenient to use the decomposition (3.2) of a
general state, leading to

|Ψ±|2v = ±
∫
dε

2π |α±(ε)|2 . (3.13)

As previously, this norm is positive definite and gives a good notion of probability on the
states with a + sign. Thus |α+(ε)|2 can be interpreted as the probability that the interior
universe is following a classical trajectory with ‘energy’ ε.

There is a subtle and important point in going from (3.12) to (3.13). As we noted
above, the classical interior solution reaches a maximal volume of v = 4ε. The volume is not
single-valued in the interior, vanishing both towards the horizon and towards the singularity.
In standard quantum mechanics, prior to building wavepackets, the WKB version of this
evolution would be an incoming wave that bounces off the potential barrier at v = 4ε,
leading to a reflected wave going in the opposite direction. The resulting wavefunction
would decay exponentially in the classical disallowed region v > 4ε. This is indeed precisely
what happens with the modes (3.5) that we used above in obtaining the norm (3.11) for
the k clock. As we saw in (3.7), the positive probability modes under that norm contain
waves going in both directions and decay in the classically disallowed region. So far so good.
However, things work out in a less familiar way in the v clock, as we now explain.

The norm (3.12) for the v clock is the flux in the v direction. The subspace of states
on which this is positive have an incoming wave with no reflected wave. Thus, reflection
is not allowed under this norm. We wrote down the oscillating modes in (3.3). By the
usual WKB matching procedure, these modes will necessarily contain a (complex) sum of
exponentially growing and decaying terms in the disallowed region. While this behavior
would not be normalizable under the usual quantum mechanical norm, these states are
normalizable with respect to (3.12): the exponentially growing and decaying terms multiply
each other in such a way that the classically disallowed region gives the same contribution
to (3.13) as the oscillating region. Thus, in particular, the integral over ε in (3.13) runs over
all values, unconstrained by v. Consequently, the norm (3.13) is explicitly independent of v
and therefore manifestly conserved. One may be concerned that the classically disallowed
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region contributes to the norm. However, we will see below that semiclassical expectation
values are nonetheless dominated by contributions from the classical allowed region.

Now, in fact, because α+ and β+ are Fourier transforms of each other we have

|Ψ+|2v = |Ψ+|2k . (3.14)

The two clocks lead to the same norm. Expectation values will not be identical, however.
This is clear because with one choice of clock expectation values are computed given a
precise value of k while for the other clock a precise value of v is given.

In the following few sections we illustrate the computation of expectation values with
several simple examples. One objective here is to gain some confidence in the consistency of
the answers obtained using various different clocks. We will also comment on a few subtle
points as we go along. The first step is to express expectation values involving k, v, πk, πv
in terms of the α and β coefficients. As we have just seen, these coefficients determine
the probability of finding the interior in different classical states. The expectation values
we will compute can be expressed as functions averaged over these probabilities. In the
remainder we only consider states with the + sign and hence will drop the + label.

3.3 Expectation values for the anisotropy clock

In this section k is taken as the clock. We may now use the k-norm (3.10) to calculate the
expectation values of observables conditioned upon the given value of k. For example, the
expectation value of the volume is evaluated to be

〈v〉k = i

2

∫
dk̄

2π
β∗(k̄)β′(k̄)− β∗′(k̄)β(k̄)

4 cosh(k + k̄)
. (3.15)

Using the Gaussian wavepacket (3.8) we can expect that the integral will be dominated by
values of k̄ within a range 1/∆ of ko. Expanding in ∆� 1 we indeed obtain

〈v〉k;∆,εo,ko = εo
4 sech(k + ko) +O

(
1/∆2

)
. (3.16)

The leading term here is precisely the classical solution (2.8). When ∆� 1 the expectation
value is strongly localized on the classical solution and corrections to the volume are small,
uniformly in k. All 1/∆ corrections below are also uniformly bounded in k. However, there
is also a quantum variance to the volume. This is obtained from

〈v2〉k =
∫
dk̄

2π
|β′(k̄)|2 − 1

4∂
2
k̄
(|β(k̄)|2)

16 cosh2(k + k̄)
. (3.17)

As we explained around (3.9) above, keeping the variance small on the Gaussian wavepacket
requires εo � ∆� 1. Evaluating (3.17) in this regime we obtain the variance

var(v)k
〈v〉2k

∣∣∣∣∣
∆,εo,ko

= 〈v
2〉k − 〈v〉2k
〈v〉2k

∣∣∣∣∣
∆,εo,ko

= ∆2

2ε2
o

+O
(
1/∆2

)
. (3.18)

The variance is seen to be uniformly small compared to the expectation value in this regime.
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We can also look at the momentum conjugate to the volume: πv = −i∂v. There is
an ordering ambiguity with the computation of the expectation value. The most natural
prescription, that gives a real answer, is

〈πv〉k = −1
2

∫
dv

(
Ψ∗∂v

[
∂kΨ
v

]
− [∂vΨ] ∂kΨ

∗

v

)
(3.19)

=
∫
dk̄

2π |β(k̄)|24 sinh(k + k̄) . (3.20)

Using the wavepacket (3.8), we obtain

〈πv〉k;∆,εo,ko = 4 sinh(k + ko) +O
(
1/∆2

)
. (3.21)

The leading term is again the classical solution: from (2.6) πv = ∂S/∂v = 4 sinh[k + ko].
For ∆� 1 the corrections are again uniformly small. The variance is obtained using

〈π2
v〉k =

∫
dk̄

2π |β(k̄)|216 sinh2(k + k̄) . (3.22)

On the Gaussian wavepacket it is found that (〈π2
v〉k − 〈πv〉2k)/〈πv〉2k ∼ 1/∆2, so that ∆� 1

is a sufficient condition for this momentum to be classical.
Using the k clock, the value of k itself is known precisely by assumption. The momentum

πk = −i∂k generates ‘time translations’ for this clock and is therefore analogous to the
Hamiltonian. The expectation value

〈πk〉k = −1
2

∫
dv

v

(
Ψ∗∂2

kΨ− ∂kΨ∗∂kΨ
)

(3.23)

= 1
2

∫
dv

v

(
|∂kΨ|2 + v2|∂vΨ|2 + 16v2|Ψ|2

)
(3.24)

= i

2

∫
dk̄

2π
[
β∗(k̄)β′(k̄)− β∗′(k̄)β(k̄)

]
. (3.25)

To obtain the second line we used the Wheeler-DeWitt equation (3.1). For the Gaussian
wavepacket we obtain

〈πk〉k;∆,εo,ko = εo . (3.26)

There are no 1/∆ corrections to this expression. Thus we see that εo has a double life as an
energy. It is the energy of the asymptotically AdS black hole and is also the energy of the
interior Wheeler-DeWitt state with respect to time evolution by k. We will see later that
the constant ko, conjugate to εo in (2.7), correspondingly has a double life as a boundary
as well as an interior time. The expectation value (3.26) of the energy is time-independent,
as it should be because the Wheeler-DeWitt equation (3.1) is invariant under shifts in
k. Using (3.26) together with (3.16) gives, to leading order at large ∆ on the Gaussian
wavepacket, 〈πk〉k = 4〈v〉k cosh(k + ko). This is in agreement with the classical relation
following from (2.6) and πk = ∂kS. The variance of the energy is also time-independent, as
can be seen from

〈π2
k〉k =

∫
dk̄

2π |β
′(k̄)|2 . (3.27)

For the Gaussian wavepacket this gives 〈π2
k〉k = 〈πk〉2k + 1

2∆2. This quantum variance is
small when εo � ∆.
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3.4 Expectation values for the volume clock

We may now consider k and πk using the v clock. For the momentum one finds

〈πk〉v =
∫
dε

2π |α(ε)|2ε . (3.28)

This is manifestly equal to the expression (3.25) computed in the other norm, using the fact
that α and β are related by a Fourier transform. Similarly 〈π2

k〉v = 〈π2
k〉k. This momentum

is the same, and conserved, in both norms.
For k itself we find, working within the semiclassical WKB approximation,

〈k〉v =
∫
dε

2π

(
i

2
[
α∗(ε)α′(ε)− α∗′(ε)α(ε)

]
+ |α(ε)|2 tanh−1

√
ε2 − 16v2

ε

)
. (3.29)

Evaluated on the Gaussian wavepacket, now using (3.4) and expanding in ∆/εo � 1,

〈k〉v;∆,εo,ko = −ko + sech−1 4v
εo
− ∆2

ε2
o

1
4[1− (4v/εo)2]3/2

+ · · · . (3.30)

The first two terms on the right hand side reproduce the classical solution (2.8). Here we
re-expressed tanh−1 in terms of sech−1. The expansion in ∆/εo breaks down close to the
turning point at v = εo/4, which is the maximal volume slice. This occurs because, as usual,
the WKB approximation breaks down at turning points. A sensible answer can be obtained
using the full modes written in terms of modified Bessel functions. Deep in the non-classical
regime of small v one can again use the WKB expression continued to the exponential rather
than oscillatory region. This amounts to asking for the expectation value of k conditioned
upon the value of v being classically unallowed. This is not an especially natural question to
ask, but recall from the discussion below (3.13) that the exponential region does contribute
to the norm of the state. However, perhaps satisfyingly, one finds that the second term
in (3.29) vanishes to leading WKB order in this regime, so that 〈k〉v = −ko for v > εo/4.
There is no volume dependence in the classically forbidden regime, consistent with the
simplest continuation of (3.30) to small v, in which 〈k〉 gets stuck at −ko.

The value of v itself is specified as the ‘time’. The momentum πv is the ‘Hamiltonian’
for the v clock. Because the Wheeler-DeWitt equation depends explicitly on v we may
expect this Hamiltonian to be time dependent. The expectation value

〈πv〉v = −1
2

∫
dk (Ψ∗∂v(v∂vΨ))− ∂vΨv∂vΨ∗) (3.31)

= 1
2

∫
dk

v

(
|∂kΨ|2 + v2|∂vΨ|2 − 16v2|Ψ|2

)
(3.32)

=
∫
dε

2π |α(ε)|2
√
ε2/v2 − 16 . (3.33)

On the Gaussian wavepacket

〈πv〉v;∆,εo,ko =
√
ε2
o/v

2 − 16− ∆2

ε2
o

4v
[1− (4v/εo)2]3/2

+ · · · . (3.34)
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The leading behavior is consistent with the classical solution, using πv = 4 sinh(k + ko) as
well as the solution (2.8). The expansion in ∆/εo again breaks down close to the turning
point, similarly to the discussion in the previous paragraph. Again using the exponential
form of the wavefunctions beyond the turning point, the Hamiltonian is seen to vanish in the
classically disallowed region — extending (3.34) continuously — which is perhaps intuitive.

3.5 York time

As we have seen, the spatial slice volume v is an awkward quantity to work with. It should
be constrained to be positive and is not single-valued in the classical interior. It has long
been recognized that a nicer choice of ‘time’ on superspace is the trace K of the extrinsic
curvature of the spatial slices [41]. The trace of the extrinsic curvature is proportional to
the momentum conjugate to volume, and we will work in terms of

κ ≡ πv
4 . (3.35)

The factor of 4 leads to cleaner expressions below. We will see that the wavepackets we are
considering become especially simple when represented as a function of κ.

We may directly write down the Wheeler-DeWitt equation in volume ‘momentum space’.
Recall that the Wheeler-DeWitt equation (3.1) arose from quantising the Hamiltonian
constraint in a position basis for a wavefunction Ψ(v, k). However, we could also have
written down this equation in a momentum basis for the volume, leading to an equation for
Ψ̂(κ, k):

∂2
kΨ̂− ∂κ

[
κ∂κ

(
κΨ̂
)]
− ∂2

κΨ̂ = 0 . (3.36)

This equation is equivalent to

∂2
kΨ̂− 1√

1 + κ2
d2

d(sinh−1 κ)2

(√
1 + κ2Ψ̂

)
= 0 , (3.37)

which is just a one-dimensional wave equation. We can immediately write down the general
solution in terms of left- and right-moving modes:

Ψ̂±(κ, k) =
F±

(
k ∓ sinh−1 κ

)
√

1 + κ2
. (3.38)

Here the F± are any function.
We may alternatively obtain the general solution (3.38) by Fourier transforming the

‘position space’ modes (3.6):

φ̂±(κ, k; ko) = 2
π

∫
dve−i4κvφ±(v, k; ko) = δ (κ∓ sinh[k + ko]) . (3.39)

As remarked upon above, we have integrated the volume v from −∞ to +∞. Using the
modes (3.39) in the Fourier transform of the general solution (3.5) recovers the left- and
right-moving expression (3.38), with F±(x) = β±(−x). In particular, this means that the
Gaussian wavepacket coefficients (3.8) lead to the full wavefunction

Ψ̂±,∆,εo,ko(κ, k) = c̄√
1 + κ2

eiεo(k+ko∓sinh−1 κ)e−(k+ko∓sinh−1 κ)2∆2/2 . (3.40)
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Recall that c̄ was a normalization constant. Choosing the Ψ̂+ solution, the wavefunc-
tion (3.40) explicitly represents a wavepacket peaked on the classical solutions κ = 1

4πv =
1
4∂S/∂v = sinh[k + ko], with no integrals remaining. This representation is therefore easy
to use in computations of expectation values, as we now demonstrate. In the future interior,
the momentum κ increases monotonically from −∞ at the horizon to +∞ at the singularity,
passing through zero at the maximal volume slice when k = −ko.

The conserved norm in this description requires a moment’s thought. The most obvious
conserved quantity following from (3.37) that distinguishes between right- and left-moving
modes is the momentum of the wave. However, using this quantity would lead to a norm
involving derivatives of the function F . In contrast, the norm we discussed previously
in (3.11) is given, using the aforementioned fact that F (x) = β(−x), by

|Ψ̂+|2κ =
∫
dk

2π |F+(k)|2 . (3.41)

This expression is manifestly independent κ and hence conserved. We can equivalently
write (3.41) as

|Ψ̂+|2κ =
∫
dk

2π (1 + κ2)|Ψ̂+(κ, k)|2 . (3.42)

This is the form we will use for calculating expectation values. It should be noted that
the norm we have constructed here is only defined on right-moving solutions to the wave
equation. Therefore, these need to be selected a priori as the physical states. Previously we
wrote down a norm that was conserved on all states but only positive on the physical ones.

The following expectation values are now immediate on the wavepacket (3.40)

〈k〉κ;∆,εo,ko = −ko + sinh−1 κ , 〈πk〉κ;∆,εo,ko = εo . (3.43)

The expectation value of k is seen to precisely obey the classical equation of motion without
any corrections (in contrast to e.g. (3.30) in the volume norm). The expectation value of
πk is again conserved and equal to the value obtained with the other norms. The variances
are also simple and given exactly by

var(k)κ;∆,εo,ko = 1
2∆2 , var(πk)κ;∆,εo,ko = ∆2

2 . (3.44)

Finally the ‘Hamiltonian’ for the κ clock, which from (3.35) is just the negative of volume
πκ = −4v, has expectation value

〈πκ〉κ;∆,εo,ko = −i
∫
dk

2π
√

1 + κ2Ψ̂∗+,∆,εo,ko
(κ, k)∂κ

(√
1 + κ2Ψ̂+,∆,εo,ko(κ, k)

)
(3.45)

= −εo√
1 + κ2

. (3.46)

The Wheeler-DeWitt equation (3.37) depends explicitly on κ and hence the Hamiltonian
πκ is time-dependent. Equation (3.46) recovers the classical relation between the volume
and extrinsic curvature — see the discussion below (3.34).
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3.6 Metric component clocks

Even within the two dimensional minisuperspace that is being considered, there are many
other possible clocks involving combinations of v (or κ) and k. We have focused on v and k
in the above partly because the calculations are fairly straightforward. In this section we
will consider a further natural choice of coordinates, the metric components

gtt = v2/3e4k/3 , gxx = v2/3e−2k/3 . (3.47)

These coordinates will be useful shortly when we consider the extension to the exterior in
section 4, which will amount to allowing gtt to be negative.

One general aspect that may be important, especially once higher dimensional minisu-
perspaces are considered, is the sign of the ‘time’ direction with respect to the DeWitt metric
on superspace [20]. This metric determines the derivative structure of the Wheeler-DeWitt
equation. For our two dimensional minisuperspace the DeWitt metric G is, with the action
normalised as in (2.1),

Gabπ
aπb = 3

8

(
π2
k

v
− vπ2

v

)
. (3.48)

The volume direction is timelike, perhaps more intuitively associated to a clock, while the
anisotropy direction is spacelike. In terms of the metric components (3.47) the DeWitt
metric becomes

Gabπ
aπb = √gtt

(
gtt

2gxx
(πtt)2 − πttπxx

)
. (3.49)

And the Wheeler-DeWitt equation is, again with the canonical choice of operator ordering
in which the differential operator that appears is the Laplacian of the inverse DeWitt metric,

∂

∂gtt

(
gtt

2gxx
∂Ψ
∂gtt

− ∂Ψ
∂gxx

)
+ 6gxxΨ = 0 . (3.50)

The general solution to this equation can be written as

Ψ±[gtt, gxx] =
∫
dk̄

2πβ±(k̄) exp
[
±2i√gxx

(
ek̄gtt − e−k̄gxx

)]
. (3.51)

The expression (3.51) is, of course, exactly the same as (3.5), now given in terms of the
metric components instead of v and k.

It will be useful to consider gtt as the relational time coordinate. Note that gtt
is a spacelike direction under the inverse DeWitt metric. Within our two dimensional
minisuperspace there is no intrinsic difference between spacelike and timelike directions.
Further work is needed to establish whether spacelike ‘clocks’ are admissible more generally.
The conserved norm associated to the gtt clock from (3.50) is

|Ψ|2gtt
= −i2

∫
dgxx

[
Ψ∗
(
gtt
gxx

∂

∂gtt
− ∂

∂gxx

)
Ψ−Ψ

(
gtt
gxx

∂

∂gtt
− ∂

∂gxx

)
Ψ∗
]
. (3.52)

This norm can be verified to vanish under ∂/∂gtt, assuming suitable vanishing of the
wavefunction at large gxx. On states of the form (3.51) the norm becomes the same as (3.11)
previously:

|Ψ+|2gtt
=
∫
dk̄

2π |β+(k̄)|2 . (3.53)
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We may also calculate, for example, the expectation value of the corresponding ‘Hamiltonian’

〈πgtt〉gtt = −1
2

∫
dgxx

[
Ψ∗ ∂

∂gtt

(
gtt
gxx

∂

∂gtt
− ∂

∂gxx

)
Ψ− ∂Ψ

∂gtt

(
gtt
gxx

∂

∂gtt
− ∂

∂gxx

)
Ψ∗
]

(3.54)

=
∫
dgxx

[
gtt

2gxx

∣∣∣∣ ∂Ψ
∂gtt

∣∣∣∣2+6gxx|Ψ|2
]
. (3.55)

These integrals are not as easy to evaluate at those in the k and v basis, performed above.
However, at leading order on the Gaussian wavepacket the expectation values will obey the
classical equations of motion. The Hamilton-Jacobi function is the exponent in (3.51)

S(gtt, gxx; ko) = 2√gxx
(
ekogtt − e−kogxx

)
. (3.56)

And therefore classically
πgtt = 2eko

√
gxx , (3.57)

where gxx is classically related to gtt via

εo = ∂koS = 2√gxx
(
ekogtt + e−kogxx

)
. (3.58)

We will discuss the quantum variance about this relation in section 5 below.
The gxx clock is a little more subtle because constant gxx slices are null under the

inverse DeWitt metric. However, the conserved norm may still be defined via a limiting
sequence of spacelike slices. One obtains the conserved norm

|Ψ|2gxx
= −i2

∫
dgtt

(
Ψ∗ ∂Ψ

∂gtt
−Ψ∂Ψ∗

∂gtt

)
. (3.59)

It is easily verified that this vanishes under ∂/∂gxx, as always with assumptions about falloff
at large gtt. On states of the form (3.51), this norm is equal to the previous expression (3.53).

4 The exterior and holographic renormalization

The solution (3.56) to the classical Hamilton-Jacobi equation is valid inside or outside of
the horizon. The two regions are distinguished by the sign of gtt. In the exterior, the
Hamilton-Jacobi equation is related to a radial, rather than timelike, slicing of spacetime.
It has long been appreciated that in a holographic context, the function S controls the
holographic renormalization group flow [42–44]. The arguments of S are couplings of the
dual quantum field theory and the momenta conjugate to these arguments are field theory
expectation values of the corresponding dual operators.

Concretely, the basic holographic relation gives the quantum field theory (QFT)
Lorentzian partition function as

ZQFT[γ] =
∫
DgeiSact[g]+iSct[γ] , (4.1)

where the path integral over bulk metrics g is restricted to those that are asymptotically
AdS with conformal boundary metric γ. Note that within our minisuperspace we will have
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γtt = gtt, γxx = γyy = gxx, all constant in the boundary directions. There is no need to
explicitly remove a conformal factor from the metric, as is often done. With gtt as the
‘clock’, the conformal boundary is at gtt → −∞, and conformal invariance will automatically
constrain observables in this limit. However, we need not take gtt all the way to infinity.
Instead, we are interested in the holographic renormalization group flow that evolves as a
function of gtt. In (4.1) we have included a boundary counterterm action [45, 46]

Sct = 4
∫
d3x
√
−γ = 4

√
−gttgxx . (4.2)

The boundary metric is flat and hence no boundary curvature term is needed. We have
normalized the volume of the boundary coordinates by setting

∫
d3x = 1. In fact, we

had implicitly already done this in our discussion of the Wheeler-DeWitt wavefunction
above, where this normalization factor would otherwise appear in the conjugate momenta.
Keeping the range of the boundary coordinates fixed is important for gtt and gxx to have
an unambiguous meaning.

It will be instructive to quickly recast a standard holographic calculation in the Hamilton-
Jacobi language. At leading order in the classical limit, the partition function (4.1) is
evaluated on the classical solution that tends to the boundary data γ. The action Sact as a
function of boundary data is precisely the Hamilton-Jacobi function (3.56). Thus we obtain
in the classical limit, including the counterterms in (4.1),

logZQFT[gtt, gxx; ko] = −2ie−ko
√
gxx

(
eko
√
−gtt −

√
gxx
)2

. (4.3)

Note that the partition function depends on the parameter ko of the classical solution,
in addition to the boundary data. We will see shortly that this will allow the partition
function to be computed in different ensembles. The energy density of the dual field theory
is given by the momentum conjugate to gtt,

√
−γ〈T tt〉QFT = −2iγtt

∂ logZQFT
∂γtt

= 4
√
−gttgxx

(√
gxx − eko

√
−gtt

)
. (4.4)

We would like to evaluate this expectation value in the conformal field theory (CFT) limit
gtt → −∞, wherein the boundary is taken to infinity. To do this, we may use the classical
relation between gxx and gtt given in (3.58). In addition to ko, this classical relation
introduces a further independent constant εo. At this point the value of εo is arbitrary; we
will see shortly how it is determined from a given distribution of values of ko. As gtt → −∞
we have from (3.58) that

gxx = −e2kogtt + εo
2
√
−gtt

+ · · · . (4.5)

The leading near-boundary behavior gxx ∼ gtt is controlled by the asymptotic CFT scaling.
Using (4.5) in (4.4) we obtain

lim
gtt→−∞

√
−γ〈T tt〉QFT = εo . (4.6)

Thus we recover the fact that εo is the energy density of the black hole, as seen from the
exterior boundary at infinity.
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Another useful way to understand (4.6) is to note that the partition function (4.3) is
invariant under

logZQFT[gtte−4k̄/3, gxxe
2k̄/3; ko + k̄] = logZQFT[gtt, gxx; ko] . (4.7)

This invariance can be seen explicitly in (4.3) but follows more generally from the defini-
tions (3.47) and the shift symmetry in k. Recall that ε was first introduced in (2.7) as the
conjugate variable to ko. Differentiating (4.7) with respect to k̄ and then setting k̄ = 0
therefore gives

〈ε〉QFT = −i∂ logZQFT
∂ko

= −2i
3

(
2gtt

∂ logZQFT
∂gtt

− gxx
∂ logZQFT

∂gxx

)
(4.8)

= 2
√
−γ
3

(
〈T tt〉QFT − 〈T xx〉QFT

)
. (4.9)

In the final equality we used the fact that ∂ logZQFT/∂gxx is two times 〈T xx〉QFT, because
in computing logZQFT we set gxx = gyy while these must be kept distinct when taking
the derivatives to obtain 〈T xx〉QFT. In the CFT limit of gtt → −∞ we may then use the
vanishing of the trace of the energy-momentum tensor: 〈T tt〉QFT + 2〈T xx〉QFT = 0 (our
background is flat, there is no anomaly). Using this relation we recover (4.6) from the final
line of (4.9).

From (4.8) and (4.9) we learn that while ko is not boundary time in general, because it
generates a transformation of both space and time, it is equivalent to time in the CFT limit
where the boundary is taken to infinity. In particular, we can write the partition function
of the asymptotic boundary theory as

ZQFT[gtt, gxx; ko] = Tr
(
eikoHQFT[gtt,gxx]

)
. (4.10)

Here HQFT[gtt, gxx] is the dual field theory Hamiltonian in a given background metric gtt
and gxx (both of which are constant within our minisuperspace). This relation will be useful
shortly. Away from the CFT limit one should replace the Hamiltonian in (4.10) with the
combination of T tt and T xx appearing in (4.9).

Beyond the classical limit the partition function (4.1), with the boundary counterterms
subtracted out, obeys the same Wheeler-DeWitt equation that we have been discussing
throughout. This follows from the usual connection between path integrals and wavefunctions
(e.g. [47]). We do not usually think of the boundary partition function as a state because the
slicing in the bulk is radial rather than in time. However, if we consider gtt as a clock then
formally the boundary partition function will arise as the gtt → −∞ limit of the interior
wavefunction Ψ[gtt, gxx]. Alternatively, we may think of the boundary partition function as
setting boundary conditions on the interior wavefunction. This relation is shown in figure 1.
There may be fruitful connections here to discussions of T 2 deformations of the boundary
theory, e.g. [48, 49]. The objective of those works is to identify field-theoretic deformations
that correspond to moving the partition function into the bulk.

Within the minisuperspace approximation, we may therefore represent the semiclassical
partition function as

ZQFT[gtt, gxx;β] = e4i
√
−gttgxxΨ+[gtt, gxx;β] , (4.11)
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where Ψ+ is the general solution already given in (3.51). This solution depends on an
arbitrary function β+(k̄). What is the boundary interpretation of this function? We have
seen in (4.10) that k̄ generates boundary time translations. Therefore from (4.11) and the
wavefunction (3.5)

ZQFT[gtt, gxx;β] =
∫
dk̄

2πβ+(k̄)Tr
(
eik̄HQFT[gtt,gxx]

)
. (4.12)

In particular, consider the Gaussian wavepacket (3.8). This leads to

ZQFT[gtt, gxx; ko, εo,∆] = c̄

∫
dk̄

2πe
−iεo(k̄−ko)e−(k̄−ko)2∆2/2Tr

(
eik̄HQFT[gtt,gxx]

)
(4.13)

= c√
2π

Tr
[
e−(HQFT[gtt,gxx]−εo)2/(2∆2)eikoHQFT[gtt,gxx]

]
. (4.14)

The final expression (4.14) is the partition function of a microcanonical energy window.
We may verify (4.14) explicitly in the leading order semiclassical limit. We start from

the wavefunction in (4.11) with the Gaussian weighting from (3.8), Fourier transform the
Gaussian and then perform the k̄ integral by stationary phase. Finally, considering the
near-boundary CFT limit gtt → −∞ leads to

lim
gtt→−∞

ZQFT[gtt,gxx;ko,εo,∆]∼
∫
dε exp

{
−(ε−εo)2

2∆2 +iε log e
ko
√
−gtt√
gxx

+ iε2

8gxx
√
−gtt

}
.

(4.15)
Here ∼ means to leading classical order without keeping track of the prefactor. We can
note that the ε2 in the final term is the correct scaling for the density of states in the dual
2+1 dimensional conformal field theory. The second term comes from the smearing of the
‘time’ k̄ about the mean value ko. This effect has also changed the sign of the final term.

Equations (4.11) and (4.14) show how an interior Wheeler-DeWitt wavefunction is
directly encoded in a boundary partition function. The boundary field theory limit is
gtt → −∞, while the near-singularity regime is gtt → +∞. We can note that the underlying
Hamilton-Jacobi function (3.56) is a linear function of gtt, so that the two limits are
connected in a straightforward way. Nonetheless, the limits reveal different physics. We
saw the near-boundary CFT scaling emerge in (4.5). In contrast, as gtt → +∞ we have
from the classical solution (3.58) that

gxx = ε2
oe
−2ko

4g2
tt

+ · · · , (4.16)

showing the near-singularity collapse of two space directions. The scaling here is controlled
by the interior Kasner exponent [4].

One may hope that this connection between the interior and the boundary will provide
a firm foundation for understanding the physics of ‘timeless’ cosmological Wheeler-DeWitt
states. Conversely, this connection shows how basic boundary observables can contain
signatures of the interior, including the spacelike singularity. We now elaborate on this point.

– 19 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
6

5 Behavior near the singularity

Spacelike singularities result in the ‘end of time’ and therefore raise challenging interpreta-
tional questions. One might think that the end of time is best understood in a framework
in which there is no time to begin with, such as the Wheeler-DeWitt equation. Once time
is understood relationally, the end of time is simply a limit to the relations that can exist.

The computations of expectation values performed in earlier sections, with various
different notions of relational time, did not show any breakdown of minisuperspace classicality
as the singularity was approached. In particular, the quantum variance associated with the
wavepacket remained small as the singularity was approached. To further emphasize this
point we can consider the expectation value of a diverging curvature. The Weyl curvature
squared may be expressed within our minisuperspace as

WabcdW
abcd = 3π2

k

16v4 (πk + vπv)2 . (5.1)

To obtain this expression we have eliminated a time derivative of a momentum using the
Hamiltonian equations of motion ∂rπk = −∂kH = 0. Here H is the Hamiltonian following
from (2.3). This step is necessary because the spacetime coordinate r does not appear in
the timeless quantum theory. In any event, the elimination is especially simple in this case
because, as we have already noted above, πk is conserved.

We may compute the expectation value and variance of (5.1) using, for example, the
anisotropy time of section 3.3. Volume time is not convenient because the volume tends to
zero at both the singularity and the horizon. York time is also inconvenient here because
of the factor of 1/v4 in (5.1), which is an inverse factor of the York momentum. The
expectation value (in the limit (3.9)) is the classical behavior〈

3π2
k

16v4 (πk + vπv)2
〉
k;∆,εo,ko

= 12
(
1 + e2(ko+k)

)2
. (5.2)

As expected the curvature diverges at the singularity where k → +∞ but is regular at the
horizon where k → −∞. The variance is somewhat tedious to compute but is given, to
leading order in the limit (3.9), by

var
[

3π2
k

16v4 (πk + vπv)2
]
k;∆,εo,ko

= 1152
∆2 e4(ko+k)

(
1 + e2(ko+k)

)2
. (5.3)

In this computation we chose the manifestly Hermitian operator ordering 1
2(vπv + πvv) for

the vπv term. Thus we see that, consistently with all of our earlier results, the variance
remains uniformly small compared to the square of the expectation value when ∆� 1.

As a final example, we can consider the variance in gxx as this spatial direction collapses
towards the singularity. With gtt as the clock, the classical behavior towards the singularity
has already been given in (4.16). Using the expressions in section 3.6 the variance is found
to be, as gtt → +∞,

var [gxx]gtt;∆,εo,ko
= 2∆2

ε2
o

〈gxx〉2gtt;∆,εo,ko
. (5.4)
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The variance is therefore again uniformly small compared to the expectation value in the
limit (3.9). Minisuperspace quantum fluctuations do not keep this dimension from collapsing
towards the singularity.

We wish to emphasize two related points from the discussion above. The first is that
the Gaussian wavepacket is able to probe the singularity. We do not find the phenomenon,
reported in [18, 19], of the wavefunction vanishing towards the singularity. This is promising
from the point of view of identifying signatures of the singularity in the boundary partition
functions discussed in section 4. Secondly, the quantum uncertainty due to the wavepacket
is not enough to ‘resolve’ the singularity, at least within the minisuperspace description. As
we have mentioned at the start of this section, within a timeless quantum state there is not
necessarily anything pathological about the end of time. However, it is possible that the
spread of the wavepacket will play a more prominent role once inhomogeneous fluctuations
are incorporated. Furthermore, as commented in section 6 below, it would be natural for
microscopic degrees of freedom — beyond the semiclassical metric — to become relevant in
the wavefunction as the singularity is approached.

6 Discussion

This work has been an exploration of the Wheeler-DeWitt equation in black hole interiors.
We have limited ourselves to a minisuperspace description of one of the best-understood of
all black holes — planar AdS-Schwarzschild. The simplicity of the description, including an
explicit solution to the Wheeler-DeWitt equation, has allowed us to focus on conceptual
issues such as the emergence of relational notions of time and the connection between the
interior and the exterior. However, to properly confront questions regarding the black hole
singularity it will be essential to go beyond minisuperspace.

It is helpful to contrast the situation here with the Wheeler-DeWitt equation as it arises
in de Sitter space in e.g. [47, 50–52]. A large volume, classical and homogeneous universe is
a reasonable starting point for understanding the late time wavefunction of de Sitter space.
However, the approach to interior singularities is expected to be highly inhomogeneous [53].
Because homogeneous interiors, such as the ones we have been considering, are unstable
towards developing inhomogeneities, they likely do not define a useful background geometry
on top of which to construct a holographic correspondence for late interior times. However,
it may be interesting to incorporate quantum effects as inhomogeneities become important
in the interior by solving the fully inhomogeneous Wheeler-DeWitt equation. Furthermore,
as curvatures grow towards the singularity microscopic ‘stringy’ degrees of freedom can be
expected to become relevant. One way to characterize the resolution of spacelike singularities
would be to write down a Wheeler-DeWitt wavefunction in a fully microscopic theory. It
may be interesting to revisit ideas involving tachyon condensation or matrix degrees of
freedom near cosmological singularities — see [54] for an overview with references — from
a ‘timeless’ wavefunction perspective.

Even within the simplified minisuperspace description there remain interesting issues to
explore. In particular, Cauchy horizons raise additional conceptual challenges because the
interior is no longer contained within a single causal patch. One manifestation of this fact
is that the gtt relational clock is no longer single-valued in the interior because it vanishes
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at both the outer and inner horizons. On the other hand, it may be that the causal patch
between the two horizons corresponds to a self-contained timeless Wheeler-DeWitt state.
From this perspective, Cauchy horizons may not be a problem that needs to be solved. To
examine these questions, it may be interesting to study minisuperspace Wheeler-DeWitt
states in Einstein-Maxwell interiors and in other simple holographic models with and
without classical Cauchy horizons [5, 6].

One theme of this work has been that the Hamilton-Jacobi formulation of dynamics is
especially well-suited to extension through horizons. While the boundary time coordinate
becomes complex in the black hole interior, cf. [14–17], the Hamilton-Jacobi formulation
makes no reference to time, or any other coordinate, but instead expresses relations between
physical variables. These variables, such as gtt, can be relationally evolved through the
horizon without difficulty — at least in the minisuperspace description that we have
considered. This may suggest a way to search for interior dynamics in the dual field theory.
Instead of analytically continuing Green’s functions of time or energy, one should compute
suitable energy window Lorentzian partition functions of the field theory and consider their
behavior at positive values of gtt. If this works, then large N field theories may contain
within themselves, fairly explicitly, the rich inhomogeneous dynamics of black hole interiors
and the resolution of interior singularities.

Another theme we have emphasized is that the exterior provides a well-defined anchor for
interior Wheeler-DeWitt wavefunctions. This can be contrasted with controversies regarding
the appropriate boundary conditions in quantum cosmology. Different boundary partition
functions prepare different interior wavefunctions via e.g. (4.11). It may be interesting to ask
how the interior wavefunction contains physics such as the black hole butterfly effect [55],
that arises when the exterior involves sources on both sides of the thermofield double.

It is interesting that quantities closely related to boundary time and energy — ko
and εo — appeared as constants of integration in the Hamilton-Jacobi description, and
correspondingly as parameters in the Wheeler-DeWitt wavepackets that we constructed.
In the quantum mechanical description these parameters need not necessarily be real. In
particular, it may be interesting to consider imaginary ko as this will be related to a
canonical, fixed temperature, boundary partition function via (4.10).

Finally, we have recalled how relational clocks are useful because the structure of the
Wheeler-DeWitt equation ensures the existence of an associated conserved probability. We
then recalled how positivity of probabilities requires the Hilbert space to be built out of
‘half’ the modes, analogous to the positive energy modes in quantum field theory. If modes
of opposite sign are respectively associated to the future and past interiors of the black
hole then this may seem to preclude the possibility of a ‘bounce’ in which a classical future
interior connects to a classical past interior through a quantum mechanical regime. Such
bounces have been widely discussed in ‘loop quantum cosmology’, recently reviewed in [56].
It may be interesting to determine precisely what kinds of quantum bounces are possible
within sign-constrained superspace. Furthermore, related to these points, while we have
taken the Klein-Gordon-like norm of the Wheeler-DeWitt equation seriously, and built
first-quantized theories around that, it may be possible to consider a more second-quantized
formalism that would allow phenomena such as pair production of interior universes.
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