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Abstract 46 

Drought- and heat-driven tree mortality, along with associated insect outbreaks, have 47 

been observed globally in recent decades and are expected to increase in future climates. Despite 48 

its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up 49 

to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where 50 

the effects of mortality are a function of the mortality attributes, such as spatial clustering and 51 

functional role of the trees killed, and ecosystem properties, such as productivity and diversity. 52 

We draw upon remote sensing data and ecosystem flux data to illustrate this framework and 53 

place climate-driven tree mortality in the context of other major disturbances. We find that 54 

emerging evidence suggests that climate-driven tree mortality impacts may be relatively small 55 

and recovery times are remarkably fast (~4 years for net ecosystem production). We review the 56 

key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem 57 

fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of 58 

variation needed for better monitoring and modeling of the impacts of tree mortality and provide 59 

a foundation for including climate-driven tree mortality in a disturbance framework.  60 

 61 
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Introduction 69 

Tree mortality is a critical demographic rate for determining forest dynamics and, 70 

consequently, ecosystem function and carbon cycling (Stephenson & van Mantgem, 2005). 71 

Mortality is the dominant driver of aboveground carbon turnover (Carvalhais et al., 2014). 72 

Furthermore, mortality has wide-ranging consequences for biodiversity, ecosystem structure and 73 

function, and ecosystem services provided by forests (Anderegg et al., 2013a). Yet the effects of 74 

mortality remain much less studied than causes of mortality (Anderegg et al., 2013a). Reducing 75 

this uncertainty requires more empirical data and long-term monitoring. Mortality is currently 76 

poorly monitored compared to forest growth and productivity because of its highly stochastic 77 

nature (Allen et al., 2010).  78 

Climate change is expected to alter tree mortality rates through stress on individual 79 

plants, biotic interactions among plants, attacks by pests and pathogens, and shifting disturbance 80 

regimes (Allen et al., 2010; Hicke et al., 2012). Long-term forest plots have detected increasing 81 

mortality rates associated with temperature and drought stress in tropical, temperate, and boreal 82 

forests (van Mantgem et al., 2009; Peng et al., 2011; Brienen et al., 2015). Gradual “press” 83 

effects of mortality are predicted to occur alongside episodic “pulse” mortality events triggered 84 

by climate extremes (Smith et al., 2009). Indeed, widespread “pulse” mortality events linked 85 

with drought and heat stress have already been widely documented in many regions in the past 86 

few decades (Allen et al., 2010; Phillips et al., 2010).  87 

The actual effects of tree mortality on ecosystem function and fluxes are still not well 88 

understood despite the recognized central role of tree mortality in forest ecosystem carbon 89 

cycling (Kurz et al., 2008). In this review, we draw upon the disturbance literature (e.g. Harmon 90 

et al., 2011; Edburg et al., 2012; Goetz et al., 2012) to place climate-driven tree mortality in a 91 
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disturbance context and outline a framework for assessing the effects of climate-driven mortality 92 

on ecosystem function and fluxes of carbon and water. This framework posits that the effects of 93 

mortality are a function of 1) mortality attributes, such as the patch size and functional role of 94 

trees killed, and 2) ecosystem properties, such as the system productivity and diversity. We use 95 

remote-sensing datasets and synthesize flux data from multiple disturbance types to illustrate this 96 

framework and propose cross-system hypotheses. 97 

We first summarize the extensive disturbance literature of how tree losses should affect 98 

ecosystem carbon and water fluxes. We next outline our framework for assessing the effects of 99 

climate-driven mortality on ecosystem function; we place particular focus on compensating 100 

mechanisms that could buffer the effect of climate-induced mortality on ecosystem fluxes. We 101 

then present hypotheses on how mortality attributes and ecosystem properties will influence the 102 

impact of mortality on fluxes. Next, we quantitatively synthesize the available flux literature to 103 

compare climate-induced tree mortality to other disturbances, such as fire and harvest. We 104 

conclude with research gaps and promising research avenues in modeling and monitoring of tree 105 

mortality.  106 

We focus primarily on climate-driven tree mortality, especially from drought, heat, and 107 

climate-influenced insect infestations, because these are globally important but poorly 108 

understood mortality events, although other global change drivers can induce mortality increases 109 

as well. Some aspects of the consequences of tree mortality from drought (Adams et al., 2010; 110 

Anderegg et al., 2013a) and insect outbreaks (Amiro et al., 2010; Edburg et al., 2012; Hicke et 111 

al., 2012) have been examined, but have been based primarily on a small number of individual 112 

cases or mortality events. Thus, our review is timely because it provides a cross-ecosystem 113 
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synthesis and perspective necessary for predicting when and where the functional impacts of tree 114 

mortality will be most severe, which is largely missing to date.  115 

 116 

How tree mortality affects ecosystem fluxes 117 

The general trajectory of the effects of tree mortality on forest ecosystem fluxes of carbon 118 

and water can be predicted from first principles and ecological theory (Harmon et al. 2011; 119 

Goetz et al. 2012; Fig 1). Drought-related forest mortality is a disturbance and can be described 120 

using classical disturbance theory (White & Pickett, 1985). As trees die, independent of the 121 

causal agent of mortality, leaf area in an ecosystem will temporarily decline. The corresponding 122 

decline of ecosystem photosynthesis leads to declines in gross primary productivity (GPP) over 123 

some time period (Fig 1a, #1). GPP recovers as surviving trees and understory vegetation 124 

produce more leaves (Anderegg et al., 2012) and enhance their light use efficiency (Gough et al., 125 

2013) to better take advantage of newly available light resources and as new trees regenerate into 126 

the ecosystem (Stuart-Haëntjens et al., 2015). Lower ecosystem-level leaf area and growth rates 127 

will tend to drive decreases in autotrophic respiration (Ra; Fig 1a, #2). Mortality also leads to a 128 

pulse input of leaf litter and coarse woody debris (Norton et al., 2015), and thus decomposition 129 

of this plant matter is expected to drive lagged increases in heterotrophic respiration (Rh; Fig 1a, 130 

#3). The direct effects of drought, however, will act to suppress Rh due to soil moisture 131 

limitations, which could counteract this litter decomposition pulse in the short term (Rowland et 132 

al., 2014). Finally, in ecosystems with slower turnover and decomposition rates – particularly 133 

colder and drier ecosystems – dead bole snags may remain standing for relatively long periods of 134 

time. When these snags fall to the ground their decomposition may be relatively fast (Harmon & 135 

Hua, 1991), and an additional pulse of Rh would be expected (Fig 1a, #4). Net ecosystem 136 
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productivity (NEP) should follow the trajectory outlined by GPP minus Ra and Rh, likely 137 

experiencing an initial decline, followed by a period of positive uptake and a gradual return to 138 

near equilibrium. Our framework assumes that the ecosystem is able to recover to near 139 

equilibrium conditions, as assumed by almost all dynamic vegetation models, where GPP is 140 

roughly in balance with R, such that NEP tends towards zero in the long-term (Odum, 1969). 141 

Some ecosystems may, however, transition to alternate stable states (i.e. non-forest) after certain 142 

types or magnitudes of climate-triggered mortality (Allen et al., 2010), which we do not discuss 143 

here.  144 

Changes in ecosystem water fluxes following mortality commence with declines in the 145 

sum of plant-level transpiration (Eplant) across the ecological community (Fig 1b, #1). In many 146 

cases of both drought and insect-induced mortality, the mortality agent itself will drive this 147 

decrease in transpiration even before leaf area losses are observed, for example through 148 

extensive xylem cavitation (Martı́nez-Vilalta et al., 2002; Anderegg et al., 2014) or through 149 

interruption of water transport by fungal pathogens associated with insects (Frank et al., 2014), 150 

both in trees that die and potentially in those that survive. Lower transpiration rates are predicted 151 

to drive increased run-off – both surface run-off and streamflow (Fig 1b, #2) (Adams et al., 152 

2012). Declines in transpiration should also lead to increases in soil moisture, which is widely 153 

supported by the timber harvest literature (Amiro et al., 2010), although the changes are complex 154 

throughout the soil profile (Miller et al., 2011). In ecosystems with lower leaf area indices, there 155 

also may be increases in soil evaporation rates (Esoil) due to increased radiation and temperature 156 

exposure on bare soils (Raz-Yaseef et al., 2010) (Fig 1b). If snags remain standing, a second 157 

pulse of increased run-off is possible as snagfall may allow further erosion and increased surface 158 

water transport (cf. Edburg et al. 2012) (Fig 1b, #3). Ecosystem evapotranspiration (ET) is the 159 
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sum of precipitation (assumed to be constant in our hypothetical example) minus run-off, 160 

groundwater infiltration (also assumed constant, although in reality this could change due to 161 

changes in canopy openness), and plant and soil water loss. ET is predicted to decline during and 162 

after the disturbance and then to gradually recover afterwards.  163 

 164 

Scaling mortality to fluxes across ecosystems 165 

The net effect of mortality on ecosystem fluxes is the integral of the trajectories in Fig 1 166 

over time. This highlights that two key characteristics will determine the magnitude of the 167 

impacts: 1) the magnitude of the initial “pulse” response and 2) the recovery rate of the 168 

ecosystem (Table 1). Both of these characteristics are likely to vary substantially across 169 

ecosystems and mortality events. The functional impacts of drought-related tree mortality are 170 

likely to differ from those of stand-clearing disturbances, such as fire or clearcut harvests, 171 

whereas stand-thinning disturbances such as thinning harvests, low-intensity fires, or storms may 172 

provide better analogues. There is growing evidence that thinning and defoliation may have 173 

relatively minor and short-lived effects on ecosystem fluxes (Amiro et al., 2010; Miller et al., 174 

2011; Nave et al., 2011; Dore et al., 2012; Gough et al., 2013; Templeton et al., 2015), in 175 

agreement with studies showing that ecosystem structure, such as canopy height and root 176 

biomass, may recover more slowly than ecosystem function, such as NEP, after disturbance 177 

(Beard et al., 2005). While the direct effects of drought on ecosystem physiology can be large 178 

(Ciais et al., 2005; Schwalm et al., 2012; Gatti et al., 2014), we hypothesize that the functional 179 

impacts of drought-related tree mortality itself may be relatively mild, at least in some 180 

ecosystems, as has been recently shown for climate-triggered mountain pine beetle infestations 181 

in North America (Rhoades et al., 2013; Biederman et al., 2014; Reed et al., 2014).  182 
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Several compensatory mechanisms explain why substantial tree mortality may not 183 

necessarily translate into major changes in ecosystem fluxes (Gough et al., 2013; Rhoades et al., 184 

2013; Reed et al., 2014) (Table 1). Firstly, moderate disturbances may increase canopy structural 185 

heterogeneity and diffuse light penetration, improving light use efficiency and also resulting in 186 

higher photosynthetic performance per unit leaf area (Gough et al., 2013; Frank et al., 2014). In 187 

addition, higher resource availability (both water and nutrients) per unit of leaf area normally 188 

results in higher photosynthetic and growth performance of remaining trees (Martínez-Vilalta et 189 

al., 2007; Dore et al., 2012). Third, changes in ecosystem water use efficiency (WUE) can 190 

modify the relative magnitude of changes in water and carbon fluxes after disturbance shown in 191 

Fig 1 (Mkhabela et al., 2009). Finally, leaf area index (LAI) may recover quickly due to the 192 

regrowth of vegetation following disturbance, including both remaining trees and new 193 

regeneration (Templeton et al., 2015). Many forests have a huge capacity to recover leaf area 194 

after disturbance if soil fertility is not negatively affected or even enhanced (Norton et al., 2015). 195 

This is particularly true if resprouting species are involved. For instance, LAI recovered 196 

completely in a coppiced Mediterranean holm oak forest within 6 years after removing ~80% of 197 

the forest basal area by thinning, despite the fact that the studied system was heavily water-198 

limited and that the strongest drought on record occurred two years after the thinning was 199 

performed (López et al., 2009).  200 

Using the compensatory mechanisms discussed above, we outline a framework to predict 201 

the changes in ecosystem fluxes within and across ecosystems after a pulse of mortality (Table 1, 202 

Fig 2). These scaling variables (Table 1) should be considered as hypotheses of the mechanistic 203 

effects of each variable when all other factors are roughly held constant (i.e. the slopes of a 204 

partial regression between the scaling variable and ecosystem flux, while accounting for other 205 
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variables). Quantifying mortality severity is the first crucial component needed to scale from the 206 

population to the ecosystem. While a population-level mortality rate (stems yr
-1 

ha
-1

) is the 207 

relevant metric to use in demographic studies aimed at predicting long-term community 208 

dynamics, we suggest that in most cases the amount of biomass or basal area (g or m
2 
yr

-1 
ha

-1
) 209 

killed is a more useful quantification of severity of mortality and more likely to be related to 210 

ecosystem-level functional consequences in the short- to mid-term. In this paper, we define 211 

mortality broadly, including the complete loss of aboveground biomass (absent death of 212 

meristem tissue), as this will affect ecosystem fluxes even if resprouting or clonal meristems do 213 

not die. It is self-evident that the amount of mortality matters for the magnitude of ecosystem 214 

response, but less clear about the timescales of ecosystem recovery, which may start to occur 215 

while the mortality event is ongoing. In addition, the functional form of the relationship between 216 

mortality severity and effects on ecosystem fluxes is largely unknown (Fig 2b). How mortality 217 

scales to affect fluxes could be linear, non-linear, or threshold-driven (Fig 2b, dashed lines) and 218 

will almost certainly depend on the ecosystem type and characteristics of mortality. Importantly, 219 

the factors promoting fast recovery after mortality do not necessarily coincide with those 220 

minimizing the initial effects. 221 

 222 

Mortality characteristics’ influence on ecosystem flux trajectories 223 

We predict that the patch size and the timing of mortality, as well as the size-classes and 224 

functional role of the trees killed will influence subsequent changes in ecosystem fluxes (Table 225 

1). Tree mortality has long been known to be unevenly distributed in space and time (Franklin et 226 

al., 1987). Some mortality drivers, particularly fire and windthrow, yield large patches of forest 227 

loss (Chambers et al., 2013). Other drivers, such as mortality from competition or gap dynamics, 228 
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are likely to yield more dispersed and random patterns of mortality (Espírito-Santo et al., 2014). 229 

We posit that the spatial clustering (patch size distribution) of tree mortality will play a central 230 

role in determining the effects on ecosystem fluxes (Table 1). All else being equal, large patches 231 

of forest loss should have larger and longer effects on ecosystem fluxes than the same amount of 232 

biomass lost from mortality in many more smaller patches. The theory underlying this essentially 233 

derives from the relative importance of patch edge perimeter versus patch area because more 234 

edges would be expected to facilitate both the utilization of newly available resources (water, 235 

light, etc.) by neighboring trees as well as dispersal and colonization into the disturbed area, 236 

leading to faster recovery of ecosystem fluxes (Franklin & Forman, 1987; Turner et al., 1997).  237 

The distribution of mortality patch sizes from disturbance has been quantified in some 238 

ecosystems, notably the Amazon rainforest. Medium and large-scale disturbances (>1 ha) in the 239 

Amazon roughly follow power-law relationships (Chambers et al., 2013; Espírito-Santo et al., 240 

2014) (Fig 3). The shape and slope of this relationship is crucial in determining the effects on 241 

ecosystem fluxes because the relationship describes the relative frequency of small versus large 242 

disturbances and thus their relative impact on regional carbon fluxes (Espírito-Santo et al., 243 

2014).  244 

We characterized the disturbance size and frequency for forest loss in a major temperate 245 

region where drought- and insect-induced tree mortality has been exceptionally prominent (Allen 246 

et al., 2010) from two datasets: 1) Landsat estimates of forest loss from 2000–2013 (Hansen et 247 

al., 2013)(which also includes fire-driven losses) across the intermountain west, USA, and 2) an 248 

individual widespread drought-driven tree mortality event of trembling aspen (Populus 249 

tremuloides) (Huang & Anderegg, 2012). We observe that drought-, insect-, and fire-driven 250 

forest loss across the intermountain western United States also appears to follow a power-law 251 
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relationship (Fig 3, dark green). Notably, however, the exponent of this relationship is α = -0.9, 252 

whereas the exponent in the Landsat-based analysis of the Amazon is α = -2.1 (Fig 3) (Espírito-253 

Santo et al., 2014). The less-steep exponent in this temperate region reveals that drought-, insect-254 

, and fire-induced mortality, which are the dominant causes of forest loss (Hicke et al., 2013), 255 

causes proportionally greater large disturbances than the disturbance distribution observed in the 256 

Amazon, where small-scale disturbances dominate (Fig 3). The inclusion of fire-driven forest 257 

losses could influence the slope of this power-law by increasing the relative proportion of large 258 

patch disturbances. However, the Amazon disturbance data is roughly comparable in that it also 259 

includes fires and windthrow disturbances. We also observed a power-law relationship in a 260 

specific drought-driven mortality event of trembling aspen (Populus tremuloides) in Colorado, 261 

USA, which has an exponent of α = -1.3 (Fig 3; blue line). Forests in this temperate region 262 

exhibit much higher frequency of large-scale disturbance than in the Amazon, which would favor 263 

larger effects of mortality on ecosystem fluxes (note that the absolute numbers of disturbances 264 

per hectare should not be compared between the Amazon and western US due to different bin 265 

widths) (Fig 3).  266 

The timing of the mortality event, particularly in relation to climatic conditions is also 267 

likely to be relevant for ecosystem recovery and fluxes. A clear difference between drought-268 

induced mortality and other disturbances, such as commercial thinning, is that stressful 269 

conditions are likely to prevail even after the mortality episode has come to an end, implying 270 

legacy effects (Breda et al., 2006; Anderegg et al., 2013b, 2015a). In principle, recovery should 271 

be faster if favorable climatic conditions, particularly with regards to water availability, occur 272 

shortly after the mortality event, as increased water availability for the remaining vegetation 273 

should promote the recovery of leaf area (Breda et al., 2006). This leads to the prediction that 274 
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mortality episodes occurring relatively late during the dry season are likely to involve shorter 275 

recovery times, provided that the rains return to normal levels at the beginning of the wet season. 276 

The functional role of the trees killed will also impact the response of ecosystem fluxes to 277 

a mortality event. Trees fill diverse functional roles and niches in forests, and thus a preferential 278 

mortality of some species, which is common in drought- and insect-induced tree mortality (da 279 

Costa et al., 2010; Phillips et al., 2010; Anderegg et al., 2013a), may have important 280 

consequences. Mortality of trees that fill functionally unique roles – for example in rooting 281 

distribution, nitrogen fixation, flammability, a given successional status, or hydraulic 282 

redistribution – should have larger effects on ecosystem fluxes. In general, we expect faster 283 

recovery times if species with traits favoring regeneration after disturbance (e.g., resprouting) are 284 

affected, as has been widely established for wildfires (Pausas et al., 2009). Which other axes of 285 

species’ niches matter, however, is likely to vary from system to system and depend on the 286 

relative importance of different abiotic constraints of the ecosystem.  287 

Finally, the size class of trees affected by mortality is likely to be critical in evaluating 288 

the ecosystem effects. Large trees play critical roles in many ecosystems and store 289 

disproportionately large amounts of carbon (Slik et al., 2013; Stephenson et al., 2014) and, 290 

obviously, they take longer to be replaced. Larger trees are also likely more susceptible to 291 

drought stress, probably because disproportionally larger evaporation demands relative to their 292 

larger uptake potential, leading to higher tension in water conducting systems (Merlin et al., 293 

2015). We thus hypothesize that mortality of larger trees is not only more likely under drought 294 

stress but will also generally translate to larger effects on ecosystem fluxes. Consistent with this 295 

prediction, simulations of the impacts of insect-driven mortality of Pinus contorta, which 296 

recently affected more than 20 million ha of forests in North America, revealed that the 297 
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distribution of diameter size classes living and killed had the largest impact on simulated carbon 298 

fluxes (Pfeifer et al., 2011). Critically, both plot networks and drought experiments have 299 

indicated that drought-induced mortality is likely to preferentially affect large trees in tropical 300 

forests (Nepstad et al., 2007; da Costa et al., 2010; Phillips et al., 2010) and elsewhere (Merlin et 301 

al., 2015), which may induce larger ecosystem effects than if mortality were random. Scaling 302 

from the individual tree to ecosystem level responses is, however, far from trivial, implying that 303 

the association between larger trees being affected and higher overall functional impacts may not 304 

be universal.  305 

 306 

Ecosystem properties’ influence on ecosystem flux responses  307 

We hypothesize that properties of different ecosystem and biomes, particularly 308 

productivity/turnover time and tree species diversity, will strongly affect ecosystem flux 309 

trajectories after mortality. Ecosystems that exhibit higher productivity and faster turnover times 310 

should, all else being equal, recover more quickly. Aboveground plant carbon turnover times 311 

vary substantially across ecosystems and are generally faster in tropical ecosystems (Galbraith et 312 

al., 2013), where inputs from gross primary productivity tend to be higher (Carvalhais et al., 313 

2014). The speed of regrowth and regeneration is generally thought to be much slower in cold-314 

limited and water-limited ecosystems, correlating with growth rate differences (Reich, 2014). 315 

The degree of “competitor release” triggered by tree mortality and the growth rates of these 316 

competitors should greatly influence ecosystem recovery from mortality. For example, thinning 317 

and the related reduction in competition for light and water increased growth of the remaining 318 

trees in xeric pine stands for up to three decades after the treatment, with higher and longer 319 

lasting effects in higher thinning intensities (Giuggiola et al., 2013). Thus, structural and 320 
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compositional changes that occur following mortality will have important impacts on the long-321 

term trajectories of ecosystem fluxes.  322 

Finally, higher functional diversity in an ecosystem and associated higher niche 323 

redundancy should lead to faster recovery times and more muted ecosystem consequences. In 324 

particular, we hypothesize that functional diversity specifically pertaining to drought tolerance 325 

and recovery strategies should be one of the most important components of diversity. Theoretical 326 

and empirical work has shown that biodiversity is crucial in helping systems reorganize and 327 

return to a pre-disturbance state (Folke et al., 2004). For example, the occurrence of isohydric 328 

and anisophydric species or the mix between both has been found a key property to drought 329 

vulnerability (Roman et al., 2015). A prominent mechanism underlying the role of biodiversity is 330 

termed the “insurance value of biodiversity,” describing the observation that the presence in a 331 

community of a diverse set of species allows for higher likelihoods that some species will be able 332 

to a) tolerate a given disturbance and b) utilize available resources post-disturbance to regrow 333 

quickly (Morin et al., 2014).  334 

 335 

Recovery times of climate-induced tree mortality compared to other disturbances 336 

It has only been quite recently that severe drought and drought-induced tree mortality has 337 

been widely considered in the disturbance literature. In order to locate climate-driven tree 338 

mortality (drought-triggered and insect-triggered where insect-driven mortality is related to 339 

climate) in context with other disturbances, we performed a literature review to identify studies 340 

where: 1) mortality of trees occurred and was quantified and 2) the recovery of ecosystem fluxes 341 

of carbon or water after disturbances were measured (Supplemental Material). We located 37 342 

studies that met these criteria and spanned disturbances of drought, insects, windthrow, fire, and 343 
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timber harvest. We present results from 21 studies that included the most widely-reported and 344 

relevant carbon flux – Net Ecosystem Productivity (NEP), but similar results were obtained if 345 

other ecosystem fluxes were considered (Table S1). We classified disturbances as insect/drought-346 

driven, low severity fire/harvest, and high severity (i.e. stand clearing) fire/harvest.  347 

We found that recovery times differed across these disturbance classes (ANOVA; 348 

F=7.13, p=0.004), with the main difference being significantly slower recovery times in high 349 

severity fire/harvest (Tukey HSD high severity-low severity: p=0.007; Tukey HSD high 350 

severity-insect/drought: p=0.04). Recovery time to where NEP first reached pre-disturbance or 351 

control values for insect- and drought-driven tree mortality was relatively short, around 4 years 352 

on average (Fig 4). This was comparable to low severity fire or harvest, also around 4 years, but 353 

much faster than high severity fire or harvest, which was around 26 years (Fig 4). Strikingly, 354 

these recovery times occurred despite relatively high levels (~60-90% of stems) of tree mortality 355 

driven by insects and drought (Table S1). Our sample of studies is likely biased – due to data 356 

availability – towards temperate and coniferous forests (Table S1), which has several 357 

implications. Such forests might be expected to fall along the slower end of recovery rates and 358 

tend to have relatively lower productivity. Thus, the impacts of mortality could be of a larger 359 

magnitude in more mesic, broad-leaved forests, but we would generally predict recovery times to 360 

be faster in those systems.  361 

Considering carbon fluxes in light of Fig. 1, declines in GPP were broadly observed 362 

during and following drought-induced and insect-induced tree mortality in multiple conifer-363 

dominated ecosystems in North America, ranging from arid woodlands (Krofcheck et al., 2014) 364 

to montane pine forests (Brown et al., 2012; Moore et al., 2013) to high elevation forests (Frank 365 

et al., 2014). In the tropics, NPP was observed to recover within about 1 year after drought-366 
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driven tree mortality (Brando et al., 2008). Flux tower studies in Pinus contorta dominated 367 

forests, which have experienced the largest insect-triggered mortality events ever documented, 368 

found that total ecosystem respiration (sum of Ra and Rh) declined in parallel with GPP and thus 369 

found little net change in NEP (Moore et al., 2013) or recovery of the ecosystem to a net sink 370 

within 2-4 years post-outbreak (Brown et al., 2012). In this case, the limitations of inputs from 371 

GPP to Ra appeared to lead to falling total respiration (Moore et al., 2013). Despite extremely 372 

high mortality rates, 60-90% of trees killed at these sites, and relatively low diversity in the plant 373 

community, the studies observed that remaining vegetation and regrowth caused GPP and thus 374 

NEP to recover relatively rapidly at an ecosystem scale (Brown et al., 2010, 2012). However, 375 

recent evidence has highlighted large differences between eddy flux estimates and direct 376 

chamber measurements of respiration in insect-attacked forests, indicating uncertainty in 377 

ecosystem respiration and thus NEP quantification (Speckman et al., 2014). In addition, large 378 

amounts of trees in these ecosystems are still standing and thus the short timescale of most 379 

studies (most are <6 years post-disturbance) may not capture a second peak or extended period 380 

of respiration after tree fall (Fig 1; cf. Edburg et al., 2012).  381 

Examining water fluxes following mortality, declines in transpiration and increases in 382 

soil moisture have been observed following extensive insect-driven tree mortality (Biederman et 383 

al., 2014; Frank et al., 2014). In most cases, increases in run-off are observed following drought- 384 

and insect-driven tree mortality (Adams et al., 2012), however in some systems increases in soil 385 

evaporation and snow sublimation appear to outweigh the declines in transpiration, leading to 386 

muted or even declines in run-off and streamflow (Guardiola-Claramonte et al., 2011; 387 

Biederman et al., 2014). The average recovery time of run-off and water yield from harvest and 388 

fire disturbances was 5.4 years (range 2-16 years) (Table S1), and while no studies to our 389 
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knowledge have quantified recovery of run-off after drought-induced mortality, the relatively 390 

fast NEP recovery times we observed suggest that the recovery times from these other 391 

disturbances are a reasonable approximation.  392 

 393 

Research gaps in mortality-flux data and current ecosystem models 394 

Models provide useful frameworks for performing scaling and testing scaling hypotheses, 395 

as they include some representation of the biotic and abiotic effects on tree physiology, 396 

demography, and forest fluxes (Table 2). How models simulate drought-induced mortality is one 397 

of the largest areas of uncertainty and while this is either absent (e.g. constant mortality rate 398 

independent of climate) or relatively simplistic (e.g. mortality increases outside an arbitrary 399 

climate envelope) in most current models (McDowell et al., 2011), this is an active area of 400 

research (Fisher et al., 2010; Anderegg et al., 2015b; Mackay et al., 2015). In particular, 401 

simulation of canopy structure, such as whether trees or cohorts of trees are simulated, and of 402 

plant physiology are critical elements that determine how and if models can simulate drought-403 

induced mortality and its effects (McDowell et al., 2013).  404 

Currently a variety of vegetation models exist which employ different representations of 405 

canopy structure and ecosystem physiology in order to simulate ecosystem scale responses, some 406 

of which we summarize in Table 2. In relation to canopy structure most commonly used 407 

vegetation models vary from being a simple "big leaf" model, within which the canopy is 408 

represented by a single canopy layer (e.g. IBIS, SIB), to multi canopy-layer models (e.g. SPA 409 

JULES, CLM, ORCHIDAE), to models which dynamically simulate canopy gaps (e.g. ED, 410 

PPA). The representation of water stress and its interaction with canopy structure in models is 411 

arguably one of the most important determinants of variation in how ecosystem models simulate 412 
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reaction and response to climate-induced mortality events (Powell et al., 2013; Rowland et al., 413 

2015). In many models water stress is simplified to the impact of a soil water stress factor (Table 414 

2), which is used to down-regulate stomatal conductance and/or photosynthesis in stressed 415 

conditions, alongside the direct effects of changes in VPD on stomatal conductance (e.g., 416 

JULES, CLM, ED). Other vegetation models take a more process-based approach, for example 417 

simulating a connection between leaf and soil water potential in which stomatal conductance is 418 

maximized without allowing leaf water potential to fall below a critical threshold (SPA); or 419 

simulating the hydraulic pathway from soil to leaf, with multiple resistances (Sperry et al., 1998) 420 

(Table 2). Variability in both canopy structure and water relations within models will alter both 421 

the initial pulse response to a morality event, as well as the feedbacks which control the recovery 422 

time, such as gaps allowing increased availability of light (Table 2).  423 

Considering the elements of mortality that most impact fluxes (Fig 2), some of the critical 424 

processes needed to capture ecosystem flux dynamics after mortality are currently present in 425 

ecosystem models (Table 2), but other key processes are not well-represented. No large-scale 426 

ecosystem models to our knowledge can currently represent spatial clustering of mortality 427 

(Fisher et al., 2010), although gap models, such as ED, can go some way towards representing 428 

mortality patterns through a statistical representation of the spatial distribution of trees of 429 

differing canopy heights. Large-scale gradients in productivity are well-represented in most 430 

models, however currently none of the models represented in Table 2 sufficiently represent 431 

functional diversity in a forest and therefore full diversity of variation in drought-response and 432 

post-disturbance regeneration strategies between plant functional types (Fisher et al., 2010; 433 

Powell et al., 2013; Anderegg, 2014). Individual stem or cohort-based models (e.g. ED, PPA) 434 

may be able to represent functional diversity more effectively through using a continuum of trait 435 
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variation (Fyllas et al., 2014), rather than through 1 or 2 discrete types of tree or plant, with the 436 

trade-off that increased representation of diversity is computationally challenging at regional to 437 

global scales.  438 

Considering the key compensating mechanisms that would buffer flux responses, we 439 

highlighted above the key roles of changes in photosynthetic performance of surviving trees, 440 

increased resource availability, and changes in allocation to allow rapid recovery of LAI. Similar 441 

to the challenge of simulating the full functional diversity of forests, most models in Table 2 442 

have fixed photosynthetic traits, which would result in slower recovery of carbon uptake. 443 

Dynamic LAI is generally incorporated into most vegetation models (Table 2), albeit with large 444 

inter-model variability in absolute values and dynamic changes (Rowland et al., 2015). However, 445 

many models have constant carbon allocation to different tissues, which is potentially a major 446 

limitation in simulating recovery of radial growth after drought (Anderegg et al., 2015a). Finally, 447 

in relation to recovery to mortality many of these mechanisms remain relatively untested against 448 

observational data, and we suggest that the development of datasets and frameworks for 449 

calibrating models to simulate such processes may be necessary.  450 

Two major techniques provide most of the observational evidence examining changes in 451 

ecosystem fluxes in carbon and water following tree mortality. First, several studies have used 452 

spatial gradients in mortality severity across regions and/or across different times since mortality 453 

(i.e. chronosequences) (Hansen et al., 2015). These studies allow examination of ecosystem 454 

stocks and fluxes well after mortality occurred and also integrate large spatial scales, such as 455 

watersheds. However, the extent to which mortality also covaried with other ecosystem attributes 456 

that would affect subsequent fluxes, such as soil type or stand density, is largely unknown and a 457 

potentially major confounding factor. The second technique involves the continuous 458 
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measurement of ecosystem fluxes where mortality is occurring, using for instance eddy 459 

covariance methods or streamflow gauges. These studies are more direct, but relatively rare 460 

(Table S1). While some of this rarity is due to relatively few flux towers that can be 461 

opportunistically placed in regions experiencing a pulse of drought- or insect-induced mortality 462 

(Brown et al., 2012), another major impediment is that many flux studies often do not report 463 

mortality rates within the flux tower footprint, even when it has occurred (Ciais et al., 2005). 464 

Both reporting of mortality rates within existing flux towers and additional studies placing flux 465 

towers in ongoing disturbance to monitor recovery are greatly needed.  466 

 467 

Conclusion 468 

We find here that mortality attributes and ecosystem properties interact to determine the 469 

effect of climate-driven tree mortality on ecosystem fluxes. The magnitude of the initial impact 470 

(e.g. drought) has been much better quantified than recovery dynamics, but both are critical in 471 

determining ecosystem-level consequences. We argue that the functional effects of drought-472 

driven tree mortality are comparable to those of other, non stand-replacing disturbances and 473 

should be put in the same theoretical framework, but it is unique in that it co-occurs with a direct 474 

stress on ecosystems that can have large impacts on fluxes. Emerging evidence suggests that the 475 

effect of tree mortality itself (not the inciting drought) on ecosystem fluxes may be smaller and 476 

recovery times may be faster than previously thought, suggesting that compensating mechanisms 477 

are very strong.  478 

 479 

 480 

 481 
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Tables 726 

Table 1. Hypothesized mortality characteristics (A) and ecosystem properties (B) that affect the 727 

scaling of tree mortality (% basal area killed is assumed to be fixed) into ecosystem fluxes.  728 

Variable Smaller and less 

durable effects 

expected whenever … 

Compensatory 

mechanism involved 

Examples from the 

literature 

(A) Mortality characteristics 

Size distribution and 

spatial clustering 

Mortality occurs in 

relatively small clusters  

Easier utilization of 

newly available 

resources, enhanced 

gap colonization and 

recovery of canopy 

cover 

Turner et al. (1997) 

Timing (in relation to 

climate) 

Mortality is followed by 

a relatively favorable 

period, particularly with 

regards to water 

availability 

Increased resource 

availability and faster 

recovery of leaf area 

Bréda et al. (2006) 

Size-class of trees 

killed 

Mortality affects 

preferentially small trees 

Increased resource 

availability for the 

remaining trees 

Pfeifer et al. (2011) 

Functional role of 

trees killed 

Mortality affects species 

with redundant (as 

opposed to unique) 

functional roles or with 

a high capacity to 

regrow after canopy loss 

(e.g., resprouting 

species) 

Niche 

overlap/redundancy 

and complementarity; 

ability to use newly 

available resources 

Roman et al. (2015) 

Matheny et al. (2014) 

(B) Ecosystem properties 

Turnover time 

(productivity) 

Productivity is high Faster dynamics; 

higher capacity to 

build up biomass after 

disturbance 

Brando et al. (2008)  

Diversity Diversity is high, 

particularly concerning 

drought-response 

functional diversity 

Insurance effect Morin et al. (2014) 

 729 

 730 
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Table 2. Key responses/mechanisms that will influence the effects of mortality on ecosystem 731 

fluxes and how they are simulated in some current examples of widely-used ecosystem models 732 

(not an exhaustive list of models that include these processes). Abbreviations match those of Fig. 733 

1.  734 

Flux Response Model function Example models 
GPP 1) Competition for light Dynamic LAI SPA, CLM, ED, JULES, ORCHIDAE 

Canopy layers SPA, CLM, ED, JULES, ORCHIDAE 

Different PFTs  CLM, ED 

Simulation of gap development (i.e. 

succession) ED 

Senescence ORCHIDAE 

2) Competition for water Representation of rooting profile SPA, CLM, ED, JULES, ORCHIDAE 

Different rooting profiles for different size 

classes (not PFTs)  ED 

Dynamic root water uptake SPA 

Senesence ORCHIDAE 

3) Impact of water stress 

on stomatal conductance 

and gross primary 

productivity 

Water Stress Factor ED, CLM, JULES, ORCHIDAE 

Minimum leaf water potential SPA 

Water potential and hydraulic pathway 

simulated Sperry model 

Rh 1) Impact of temperature Temperature response function SPA, CLM, ED, JULES, ORCHIDAE 

2) Impact of moisture Moisture response function Many models 

3) Impact of 

Decomposers 
Separate microbial model / decomposition 

model   

Ra 1) Impact of temperature Temperature response function SPA, CLM, ED, JULES, ORCHIDAE 

2) Impact of moisture Moisture response function JULES 

3) Impact of GPP on Ra Ra fixed fraction of GPP SPA 

Ra a function of GPP + temp SPA, CLM, ED, JULES 

Ra a function of GPP + temp + water 

stress   

Ra modelled independently   

ΔSWC 1) Changes in 

Evapotranspiration 
Representation of rooting profile SPA, CLM, ED, JULES, ORCHIDAE 

Different rooting profiles for PFTs 

 Soil hydraulic properties SPA, CLM, ED, JULES, ORCHIDAE 

Esoil   Simulation of canopy gaps ED 

Eplant   Representation of plant surface area SPA, CLM, ED, JULES, ORCHIDAE 

Representation of plant height / surface 

roughness SPA, CLM, ED, JULES, ORCHIDAE 

Runoff   Simulation of runoff CLM, ED, JULES, ORCHIDAE 

 735 
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Figure Legends 736 

Figure 1: Expected changes in ecosystem fluxes of carbon (a) and water (b) during and following 737 

a tree mortality event (after Harmon et al. 2011; Edburg et al. 2012). A dashed line 738 

indicates the beginning of the mortality event. Carbon fluxes include a decline in gross 739 

primary productivity (GPP) driven mostly by reductions in leaf area index (1), a decline 740 

in autotrophic respiration (Ra) due mostly to reductions in leaf area and growth rates (2), 741 

an increase in heterotrophic respiration (Rh) driven mostly by decomposition of dead 742 

leaves and roots (3), a decrease in net ecosystem productivity (NEP), and in some 743 

systems a second pulse of heterotrophic respiration driven mostly by decomposition of 744 

fallen stems and snags (4). Water fluxes include a decline in plant transpiration (Eplant) 745 

driven mostly by reductions in leaf area (1), increases in run-off, including both run-off 746 

and streamflow (2), and in some systems a potential secondary increase in run-off due to 747 

increased surface water movement after snag fall (3).  748 

Figure 2: Cross ecosystem-scaling of the effect of mortality on fluxes. (a) Flux (e.g. GPP, NEP, 749 

ET) deviation from a baseline over time as a function of mortality severity (dashed versus 750 

solid) and the ecosystem and mortality attribute scaling variables (green and blue). (b) 751 

Integrated impact on ecosystem flux as a function of ecosystem and mortality attribute 752 

scaling variables (polygon) (e.g. Table 1); white lines represent hypothetical linear and 753 

non-linear scaling.  754 

Figure 3: Mortality frequency versus area affected (events per bin width per hectare per year) in 755 

the Amazon basin (light green; data from from Espirito-Santo et al. 2014 from lidar for 756 

the upper line and satellite remote sensing for the lower line), intermountain western 757 

United States (dark green), which has been affected by large-scale drought- and insect-758 
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induced tree mortality, and a drought-driven widespread mortality event (blue) of 759 

trembling aspen (Populus tremuloides) in Colorado, USA. Red lines are best fit 760 

regressions for a power law relationship.  761 

Figure 4: Observed recovery time in years of net ecosystem productivity (NEP) after disturbance 762 

from insect/drought-driven mortality, low severity fire or harvest, and high severity (i.e. 763 

stand- clearing) fire or harvest. Letters indicate statistically significant differences (Tukey 764 

HSD p<0.05). Numbers beneath indicate the number of studies and number of sites (in 765 

parentheses).  766 
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Figures 780 

Figure 1 781 
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Figure 2 795 
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Figure 3 810 
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Figure 4 819 
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