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When Are Deliveries Profitable?

Considering Order Value and Transport Capacity in Demand
Fulfillment for Last-Mile Deliveries in Metropolitan Areas

The authors suggest a way of making attended last-mile deliveries in metropolitan areas
more profitable by considering a given transport capacity and the expected value of orders.
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1 Introduction

The ongoing boom of online retailing
has led to an ever-growing number of
last-mile deliveries. In the United States,
for example, online retailing has been

the fastest growing retail sector with an
overall growth of about 15 % in recent
years (US Census Bureau 2012). While
last-mile deliveries are one of the most
important sections of the supply chain,
they are also regarded as very expensive
and inefficient (Gevaers et al. 2010). At-
tended home deliveries pose a particu-
lar challenge, as consumers need to be
at home to physically and legally receive
their delivery. For attended home deliv-
eries, e-commerce businesses and con-
sumers have to mutually agree on deliv-
ery time windows to avoid costly failures
of deliveries.

Since profit margins for e-commerce
businesses are often low and consumer
expectations regarding service quality
and reliability of deliveries are high
(Allen et al. 2007), the delivery of small
shipments requires careful planning. The
economic challenges these businesses
face have been underlined by the fail-
ures of the online grocery stores Webvan
(bankruptcy in 2001) and Publix Direct
(shut down in 2003). Nevertheless, Ama-
zon, eBay, and Walmart have recently
begun to offer same day delivery for a
flat fee starting as low as $5 (Wirthman
2013). Also groceries can be ordered on-
line: Peapod, for example, serves major
cities in the U.S., while grocery stores like
REWE in Germany or Tesco in the United
Kingdom are experimenting with online
ordering services and varying pricing of
deliveries. Peapod offers attended home
deliveries for more than 10,000 products,
including fresh groceries, such as cheeses
and milk; delivery fees range from $6.95
to $9.95.

Intuitively, the short-term profitabil-
ity of e-commerce businesses delivering
small shipments can be improved in two
ways. On the one hand, efficient vehi-
cle routing and optimal usage of trans-
port capacities, combined with adequate

shipping charges, can minimize deliv-
ery costs. However, there are clear lim-
its to consumer acceptance of shipping
charges. Businesses often need to subsi-
dize deliveries, since tight time windows
increase costs of vehicle routing. Further-
more, costs of vehicle routing are usually
only roughly anticipated in the moment
of order acceptance. On the other hand,
order acceptance techniques that prefer
profitable delivery requests and take ex-
pected costs of delivery into account can
maximize revenue from order value. We
refer to the combination of cost minimal
routing with value-based order accep-
tance techniques as value-based demand
fulfillment.

While classical demand fulfillment
aims to maximize the number of orders
or the expected order value, vehicle rout-
ing is about minimizing delivery costs.
As shown in the following literature re-
view, existing approaches to demand ful-
fillment often neglect the expected de-
mand, the order value, or the expected
costs of delivery. In this contribution, our
research objective is to provide a more in-
tegrated approach, interweaving the con-
cepts of demand fulfillment and vehi-
cle routing. When transport capacities
are limited, value-based demand fulfill-
ment may help maximize revenues by
offering desirable time windows only to
consumers with highly profitable orders.
Note that in future work, the definition
of “highly profitable” may be extended to
include customer long-term value in the
sense of customer relationship manage-
ment. Here, we concentrate on the short-
term value of individual orders, ignoring
the potential impact of a rejected order
on customer value.

In this paper, we consider the follow-
ing two research questions: How could
an iterative solution approach, enabling
value-based demand fulfillment, be de-
signed? And: What would be its poten-
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tial effect on costs and revenues? The ob-
jective of the iterative solution approach
is to maximize the expected value of or-
ders, while considering given transport
capacities that limit costs of transporta-
tion. To this end, based on historical or-
der data, we derive a set of expected de-
livery requests that we would be able to
accommodate with a given fleet. As a re-
sult, we have the number and the location
of time slots that would allow for efficient
delivery tours. Using revenue manage-
ment techniques, order acceptance con-
trols then assign or reject actual requests
to these “reserved” time slots, maximiz-
ing the overall value of orders. When or-
der acceptance is finished, actual deliv-
ery tours are planned for the set of ac-
cepted requests, minimizing total costs of
transportation.

Our solution approach supports e-
commerce businesses (1) in reserving
transport capacities for specific deliv-
ery areas and time windows with a
high expected order value (demand fore-
cast), (2) in the booking of delivery
time slots, i.e., deciding to accept or
reject delivery requests posed by con-
sumers (fulfillment controls), and (3) in
the computation of cost-minimal deliv-
ery tours (vehicle routing). To this end,
we combine concepts of revenue manage-
ment – maximizing the expected overall
revenue earned from orders – with tech-
niques of time-dependent vehicle rout-
ing – ensuring the feasibility of delivery
tours and minimizing costs of delivery in
metropolitan areas.

Order forecasting is based on concepts
from demand management as summa-
rized by Talluri and Van Ryzin (2004).
Demand forecasts are aligned with trans-
port capacities, taking expected travel
times into account. Order acceptance
is employed first for capacity planning
based on acceptance mechanisms known
from vehicle routing and home deliv-
ery (Ehmke and Campbell 2014), con-
sidering varying transport capacity in
metropolitan areas due to rush-hour
phenomena. This is complemented by
the application of the Estimated Marginal
Seat Revenue heuristic (EMSR; Belobaba
1987) to select for valuable orders. The
iterative solution approach is demon-
strated based on order data for a ficti-
tious delivery service in the metropolitan
area of Stuttgart, Germany. A computa-
tional study investigates the potential of
value-based demand fulfillment using a
simulation model of consumer demand.

The following section provides a brief
literature review on concepts of demand
fulfillment and vehicle routing. Section 3
outlines our value-based demand fulfill-
ment approach. Subsequently, we present
a simulation study, illustrating the po-
tential and limitations of our approach
(Sect. 4). The paper concludes with an
outlook pointing out further possibili-
ties of interweaving revenue management
and vehicle routing.

2 Literature Review

The fulfillment process for consumer di-
rect businesses can be structured into the
phases (1) order capture and promise,
(2) order sourcing and assembly, and
(3) order delivery (Campbell and Savels-
bergh 2005). The corresponding plan-
ning problems have different objectives
and are often handled distinctly and se-
quentially. For Phase 1, the number of
orders is maximized, and for Phase 3,
costs of delivery are minimized given a
fixed set of orders and transport capac-
ities. A more integrated approach may
help reducing inefficiencies arising from
insufficient alignment between the dis-
tinct planning problems by considering
limited transport capacities as early as in
Phase 1. For instance, from an integrated
perspective, in order to efficiently employ
fixed transport capacities, we would ac-
cept a low-value order only if the like-
lihood of a high-value order’s arrival is
rather low.

In the following literature review, we
briefly elaborate on existing solution ap-
proaches for Phase 1 (Sect. 2.1) and
Phase 3 (Sect. 2.2). To this end, we have
focused on established review papers,
books, and well-cited standard papers for
the particular areas, as well as on most re-
lated recent work in the areas of revenue
management and vehicle routing. Order
sourcing (Phase 2) is not within the scope
of this paper and therefore not discussed
further.

2.1 Order Capture and Promise

Sophisticated order capture and promise
requires appropriate forecasts of demand
and techniques that distinguish valuable
orders from less valuable orders. Stadtler
(2005) differentiates demand planning
and demand fulfillment. Demand plan-
ning is defined as the process of forecast-
ing demand; demand fulfillment is de-
scribed as order promising and due date

setting. In the context of this paper, we
implement demand fulfillment by con-
trolling the availability of delivery time
slots per delivery area depending on or-
der value. We base this decision on de-
mand planning by forecasting delivery
requests and order values according to
particular delivery areas and time slots.

Demand forecasting is a task of sup-
ply chain management in general as well
as revenue management in particular. For
attended last-mile deliveries, the length,
the number, and the potential overlap
of time windows are determined based
on demand forecasts (“time window de-
sign”). Agatz et al. (2011) present an
approach that anticipates transportation
costs in time window design. Given ser-
vice requirements and average weekly de-
mands for each zip code area of a de-
livery region, time windows for each zip
code area are determined, minimizing
the expected costs of delivery. Other pa-
pers investigate the impact of time win-
dow design on resulting costs of deliv-
ery and customer satisfaction. Punakivi
and Saranen (2001) report that com-
pletely flexible, unattended delivery ser-
vices may reduce costs by up to 1/3 rela-
tive to attended deliveries with two-hour
time windows. Campbell and Savels-
bergh (2005) find that the expansion of
one-hour time windows to two hours in-
creases profits by more than 6 %. Ehmke
and Campbell (2014) investigate different
designs of time windows in a metropoli-
tan setting, highlighting that shorter time
windows are much more difficult to
handle in terms of costs and reliability.

Demand forecasts and/or time window
design are usually assumed as given when
it comes to order promise. In this pa-
per, however, we assume that only the
length and the structure of time win-
dows has already been fixed. In contrast
to the above approaches, we forecast the
expected number and value of orders for
each delivery time window and area by
static demand models using exponential
smoothing as explained, for instance, by
Talluri and Van Ryzin (2004). This allows
for a more detailed alignment with the
order promise and order delivery phases.

Building on demand forecasts, de-
mand fulfillment is about deciding in
advance which delivery requests to ful-
fill, given already accepted and still ex-
pected delivery requests. Existing litera-
ture differs in the extent to which de-
mand forecasts are taken into account.
Work in the area of vehicle routing refers
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to “acceptance mechanisms”, which de-
cide on when to open and when to
close delivery time slots while consider-
ing limited transport capacities. Camp-
bell and Savelsbergh (2005) introduce
several acceptance mechanisms that de-
termine whether a delivery request can
be feasibly accommodated in any of the
predefined delivery time slots. The SLOT
mechanism accepts requests in a first-
come-first-serve manner, as long as a
given number of deliveries for a partic-
ular area and time slot is not exceeded.
The more sophisticated DYN mechanism
actually schedules delivery tours when
checking the feasibility of a new delivery
request with respect to already accepted
requests. Ehmke and Campbell (2014)
extend the SLOT and DYN mechanisms
for congested metropolitan areas by in-
cluding detailed information on expected
congestion in rush-hour time windows.

While the sources cited above consider
expected transportation costs in detail,
they often ignore the value of orders and
the expected value of future orders and
their role in maximizing overall revenues.
This is the main objective of revenue
management, which describes the idea of
maximizing revenue by selling units of
the same product at different prices to
different consumers. The aim is to both
fully exploit consumers’ willingness-to-
pay and to sell leftover capacity at a dis-
count. Talluri and Van Ryzin (2004) offer
a thorough introduction to mathemati-
cal methods in this field. As conditions
for the applicability of revenue manage-
ment in addition to distinguishable de-
mand segments, inflexible capacity and a
fixed expiry date are frequently cited. As-
suming that the number of delivery vehi-
cles is limited, the condition of inflexible
capacity also applies to attended deliver-
ies. Also, the delivery slot at a particular
time of day loses its value when this time
has passed.

From a revenue management perspec-
tive, there are a vast number of tech-
niques that support decisions on or-
der acceptance to support “profitable-
to-promise demand fulfillment” (Hahn
and Kuhn 2012). The probably most
well-known heuristic for revenue opti-
mization is EMSR introduced by Belob-
aba (1987), which extends Littlewood’s
Rule (Littlewood 1972). Based on de-
mand forecasts, EMSR assigns a number
of units to sell to specific “fare classes”.
Each class indicates a different fare at
which units reserved for this class can be

sold. If orders are expected for units of-
fered at a high fare, capacity is reserved
by assigning it to the corresponding fare
class. The idea of reserving capacity for
late, valuable delivery requests follows an
assumption frequently phrased in rev-
enue management literature, namely that
requests can be segmented by request
time and that high-value requests ar-
rive after low-value requests. While much
more complex approaches have been de-
veloped since, EMSR is still widely used
in the industry due to its simplicity and
robust results (Talluri and Van Ryzin
2004). We use EMSR to decide which de-
livery time slots to offer to which con-
sumers. Instead of using fare classes, we
sort customers according to their order
value.

A few approaches implement the idea
of integrated demand fulfillment and rev-
enue management. The most similar to
ours is the work by Yang et al. (2012),
who formulate a combination of de-
mand fulfillment and revenue manage-
ment with regard to e-commerce deliv-
eries. The authors propose to realize de-
mand planning through a multinomial
logit model of choice and to control ful-
fillment via dynamic pricing of trans-
port charges. However, while that study
focuses on appropriate pricing of deliv-
ery, we concentrate on the decision of
which requests to accept based on or-
der value. Another more general exam-
ple is the work by Quante et al. (2009),
who summarize and compare models
and planning systems applicable for in-
tegrated demand fulfillment and revenue
management. In contrast, our contribu-
tion demonstrates the transfer of stan-
dard revenue management techniques
to the context of a specific application,
namely attended delivery services, and
the investigation of its potential.

Considering the works citing Quante
et al. (2009) up to this point, a focus
on made-to-order manufacturing and
other application areas of classical rev-
enue management becomes evident. So
far, little consideration is given to the
combination of order acceptance, max-
imizing revenue from order values, and
cost-efficient vehicle routing.

2.2 Order Delivery

The last phase of the fulfillment pro-
cess of consumer direct businesses is to
schedule and deliver orders. The cost-
efficient allocation of orders to deliv-
ery vehicles, as well as the optimal se-
quencing of orders, is achieved through

vehicle routing and scheduling pro-
cedures. The corresponding optimiza-
tion problem is known as the vehi-
cle routing problem with time windows
(VRPTW). The VRPTW aims at de-
termining the distance(cost)-minimum
tour plan, where (1) every tour departs
and terminates at a central depot, (2) ev-
ery consumer is visited exactly once by
one vehicle, and (3) every consumer is
serviced within the delivery time win-
dow. In this paper, we assume that deliv-
ery time windows are “hard”, i.e., we do
not allow the violation of delivery time
windows. In other words, order promises
are scheduled straightforwardly. If a ve-
hicle arrives early at a consumer, deliv-
ery needs to wait until the time window
opens.

Due to its wide applicability in trans-
portation and logistics and its com-
putational complexity, the VRPTW has
been extensively studied in the last 25
years. Baldacci et al. (2012) have re-
cently reviewed exact optimization ap-
proaches and model formulations. Es-
pecially heuristic and metaheuristic ap-
proaches have been investigated inten-
sively, as the VRPTW is NP-hard and ex-
act solution approaches may take very
much computational time for instances
of realistic problem size. Heuristics usu-
ally aim at minimizing the number of ve-
hicles as a primary objective and mini-
mizing distances or travel times as a sec-
ondary objective. Bräysy and Gendreau
(2005a) review route construction and
local search algorithms. Bräysy and Gen-
dreau (2005b) summarize metaheuristic
solution approaches.

For routing and scheduling in
metropolitan areas, the standard VRPTW
needs to include time-varying informa-
tion on typical congestion in terms of
time-of-day dependent travel times. Kok
et al. (2012) investigate the impact of
time-dependent travel times on the re-
liability of tour plans. Since more accu-
rate travel time information has become
available, there has been an increasing
number of papers that include time-
dependent travel times. Fleischmann
et al. (2004), Hashimoto et al. (2008),
and Figliozzi (2009) implement adapted
local search heuristics to solve the time-
dependent VRPTW. Haghani and Jung
(2005) present a genetic algorithm, Do-
nati et al. (2008) refer to ant colonies,
and Ichoua et al. (2003) as well as Maden
et al. (2010) develop solution frameworks
based on tabu search metaheuristics. In
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Fig. 1 Process combining routing and fulfillment controls over two delivery days

this paper, we refer to the latter in the ex-
tended version by Ehmke et al. (2012a),
who deploy the framework with large
amounts of taxi speed data for routing in
metropolitan areas.

3 An Iterative Solution Approach
for Value-Based Demand
Fulfillment

The idea of valued-based demand fulfill-
ment is to maximize revenues while con-
sidering limited transport capacities by
improving the phase of order capture and
promise. To this end, we iteratively align
forecasts of order locations and order val-
ues with expected transportation costs
by reserving transport capacities where
valuable and efficient. Within the scope
of order promise, order acceptance con-
siders the value of actual orders as well as
reserved transport capacities.

In the following subsection, we de-
scribe the proposed process of combin-
ing demand forecasting and vehicle rout-
ing for value-based demand fulfillment.
Subsequently, the three major planning
components demand forecasting, vehicle
routing, and fulfillment control planning
are presented in detail.

3.1 Overview of the Iterative Solution
Approach

Our demand fulfillment model assumes
that a given metropolitan area is orga-
nized into distinct delivery areas. We of-
fer multiple, fixed time windows for de-
livery and flexibly control the availability
of delivery time slots depending on order
value. Historical order data is available
for each combination of time slot and de-
livery area. Furthermore, we operate with
a fixed transport capacity determined by
a given fleet size.

Based on these assumptions, we sub-
stantiate value-based demand fulfillment

as illustrated in Fig. 1. Our solution ap-
proach follows the standard fulfillment
process for consumer direct processes, as
discussed in Sect. 2. We regard the use of
a standard model as beneficial for future
research and discussion. The solution ap-
proach iteratively interweaves planning
activities of order forecasting and man-
agement (steps 1, 3, 4) with transport
planning (steps 2 and 5):
• Order capture: (1) Using historical or-

der data, we forecast the number of de-
livery requests for each combination of
value, time slot, and delivery area. (2)
These expected delivery requests serve
as input for an initial routing, which
accepts all the requests that can be ac-
commodated with the given transport
capacity. As a result, we have identified
the subset of fictitious requests that we
would be able to maintain in terms of
the number of requests for each com-
bination of time slot and delivery area
(“reserved time windows”).

• Order promise: (3) Using EMSR, we
compute fulfillment controls that as-
sign a certain number of possible de-
liveries resulting from step (2) to ex-
pected requests of a certain value, max-
imizing the overall expected value of
accepted requests. (4) Based on the ca-
pacities calculated in step (2) and ful-
fillment controls resulting from step
(3), actual delivery requests are ac-
cepted or rejected, considering the
availability of reserved time slots as
well as the occurrence and value of still
expected requests. As a result, we have
the actual, final set of accepted requests
(and their time windows).

• Order delivery: (5) Given the final
set of accepted requests, we final-
ize routing. Deliveries are scheduled
and sequenced in a cost-minimal way,
considering the given time windows.
(6) The final step is the physical deliv-
ery of orders.

Assuming independent planning for sep-
arate delivery days, this process can be
repeated for each day. New information
collected in the process is used to update
the demand forecast and the travel times
for future planning. Note that only step
(4) needs to be executed online when the
consumer is posing a request, while the
other steps can be conducted offline in
advance and thus allow for more complex
solution approaches.

3.2 Demand Forecast (Step 1)

Step 1 is about forecasting demand based
on historical order data. Only given an es-
timate of future demand, fulfillment con-
trols can be computed in a way that max-
imizes expected revenue. For this pur-
pose, the number of delivery requests ex-
pected for differentiable value segments
has to be forecasted. In this section, we
first present the consumer model used
for the analysis documented in this paper.
We then explain the proposed segmenta-
tion of demand based on expected order
value according to discrete value buck-
ets. Finally, we devote some remarks to
the problem of censored demand obser-
vations. To merely demonstrate the po-
tential of our approach, the concept of
forecasting is demonstrated here using a
simple generic method. The development
of more sophisticated models and statis-
tical methods for this particular purpose
is a possible direction of future research.

The complexity of demand forecasting
largely depends on the complexity of the
assumed demand model. For instance,
the multinomial logit model proposed by
Yang et al. (2012) allows for the consider-
ation of customers choosing dynamically
between given alternatives. Such a model
calls for the estimation of more param-
eters than one that assumes consumers
to behave statically, requesting one op-
tion and aborting the request if the de-
sired option is not available. To merely
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demonstrate the potential of value-based
demand fulfillment, we take a static view
of consumers in this paper.

In our model, delivery requests rb,d,s
arrive for an order in a value bucket b
to a delivery area d and for a particular
time slot s. Request acceptance depends
on a control variable ab,d,s. If the desired
combination is not available (ab,d,s = 0),
the request is not accepted and the con-
sumer will abort the order. When the re-
quest has been accepted, the order and
its value are fixed – there are no can-
cellations. The number of accepted or-
ders for one combination is denoted as
ob,d,s. This model suffices to illustrate the
potential of value-based demand fulfill-
ment; it may be improved and extended
by further research as pointed out in the
final section.

As a straightforward approach to de-
mand forecasting, we propose to gener-
ate a set of discrete value buckets b, based
on an analysis of the value of past or-
ders. The number of defined buckets di-
rectly affects the level of detail with which
demand fulfillment can be controlled.
However, if the range of value is parti-
tioned too finely, the problem of small
numbers arises, as only few observations
are available per bucket. The availability
of time slots as decided in step (3) will
depend on the bucket an order value falls
into.

Given a parameter B describing the
number of desired value buckets, the
lower and upper bound of each value
bucket b, Lb and Ub, can be defined as fol-
lows given a set of observed order values
v(oi):

Lb = (
max

(
v(oi)

)
/B

) × (b − 1),

Ub = (
max

(
v(oi)

)
/B

) × b.

The result is a set of value buckets ranked
by increasing value from b = 1 to B. An
order oi is assigned to value bucket b if
Lb < v(oi) ≤ Ub.

When past orders have been recorded
according to value bucket, delivery area,
and time slot, future orders can be fore-
casted using any time series approach.
As our model does not consider seasonal
patterns or events of any kind, a simple
exponential smoothing technique can be
applied. The use of such techniques for
revenue management demand forecasts
is extensively explained in Cleophas et al.
(2009). It entails calculating an updated
forecast f ′

b,d,s by combining the old fore-

cast fb,d,s with estimated requests r′
b,d,s

using a smoothing parameter α with 0 ≤
α ≤ 1:

f ′
b,d,s = (1 − α) × fb,d,s + α × r′

b,d,s.

However, note that as in classical rev-
enue management, the problem of cen-
sored demand arises: Some requests may
be aborted if the offered time slots do
not fit the consumers’ requirements. If
the desired time slot had been available,
these aborted requests would have been
realized as orders in this time slot. Given
that it was not available, the demand
could not be observed, i.e., historical
observations are censored.

To compensate for this phenomenon,
a so-called unconstraining routine is
needed, preparing the historical observa-
tions before they can be used to fore-
cast expected demand. The static model
of demand described here makes uncon-
straining comparatively easy: If theoreti-
cal acceptance exceeded the accepted or-
ders, we assume that the demand corre-
sponded to orders.

ab,d,s > ob,d,s → r′
b,d,s := ob,d,s.

If the acceptance limit was fully utilized,
a compensation for censored demand can
be calculated using the mean imputation
method as described by Zeni (2001). This
method refers to the mean of historically
observed orders ôb,d,s as a lower-bound
estimate of uncensored demand:

ab,d,s = ob,d,s

→ r′
b,d,s := max(ôb,d,s, ob,d,s).

Note that a case in which accepted orders
exceeded acceptance limits is not feasible.

3.3 Routing for Capacity Control and
Final Routing (Step 2 & 5)

Vehicle routing procedures are used
within steps 2 and 5. For step 2, they are
utilized to decide whether to accept or re-
ject fictitious requests in delivery tours
for a given fleet. This is a simple way
to ensure that transportation capacity is
“reserved” where and when valuable re-
quests are expected. For step 5, the final
routing of actual requests is conducted,
and vehicle routing procedures provide
cost-minimum delivery tours.

To project when and where to re-
serve transport capacities in step 2, we
use the DYN algorithm as proposed by
Ehmke and Campbell (2014). As men-
tioned above, DYN is an “acceptance al-
gorithm” aiming to maximize the num-
ber of orders that a logistics service

provider can accommodate while consid-
ering a given number of delivery vehi-
cles. DYN works as follows. The input is a
temporally ranked or value-ranked set of
forecasted requests, which contain infor-
mation on the expected delivery time slot
s and delivery area d. Forecasted requests
are processed in a sequential manner ac-
cording to their ranking. Based on the set
of acceptable orders A and the current
delivery request rb,d,s, a solution of the re-
sulting time-dependent VRPTW is com-
puted and checked for feasibility with
respect to the given time windows and
number of vehicles. If there is a feasible
solution, i.e., if all time windows and the
number of vehicles are satisfied, rb,d,s is
considered as acceptable and added to A.
As a result, A contains the set of accept-
able (forecasted) requests that can be ac-
commodated with given transport capac-
ities. For further processing, we count the
number of acceptable requests per time
slot and delivery area and interpret them
as reserved transport capacities cd,s.

The DYN mechanism can be im-
plemented with any (time-dependent)
VRPTW heuristic. To reflect the im-
pact of varying traffic conditions in
metropolitan areas, we use the time-
dependent routing framework proposed
by Maden et al. (2010) in a variant with
real travel time data by Ehmke et al.
(2012a). Whenever a new request rb,d,s is
posed, requests of set A and the new re-
quest are assigned to vehicles minimiz-
ing (1) the number of required vehicles
and (2) overall travel times, considering
time window restrictions. In particular,
the parallel insertion heuristic by Potvin
and Rousseau (1993) produces an initial
solution. Standard metaheuristic opera-
tors as proposed by Maden et al. (2010)
improve the initial solution until a given
run time limit is reached. If the result-
ing solution satisfies the given number
of vehicles, rb,d,s is accepted and added
to A. This is repeated until all delivery
requests have been processed. Note that
DYN is usually an online problem that
needs to be solved quickly. However, de-
mand forecasts and transport capacities
can be aligned offline in our setting.

We also use the above VRPTW frame-
work to conduct the final routing in step
(5), which schedules the actual set of
orders that have been accepted by the
EMSR heuristic in step (3). The objec-
tives are the same as above. However, we
ignore the given number of vehicles in the
final routing, since we eventually need
to fulfill all delivery requests that have

Business & Information Systems Engineering 3|2014 157



BISE – RESEARCH PAPER

been accepted in step (3), because we are
committed to them in any case.

3.4 Computing Fulfillment Controls and
Order Acceptance (Step 3 & 4)

Using the demand forecast fb,d,s (step 1)
and transport capacities cd,s (step 2) as
input, acceptance controls ab,d,s can be
calculated for each combination of value
bucket b, delivery area d, and time slot
s using a deterministic version of the
EMSR heuristic described by Belobaba
(1987). In applying EMSR to the context
of this paper, we substitute the concept of
fare classes for one of the value buckets.
Following this concept, the acceptance of
a delivery request depends on the accep-
tance limit assigned to the value bucket
the order falls into.

For example, let there exist two value
buckets including orders from 0 to 99 €
vs. 100 € and above. Only for the more
valuable bucket requests are acceptable
according to plan. This means that a con-
sumer with an order value of 100 € or
above is offered the desired time slot,
while a consumer with an order value of
only 75 € cannot have his or her order
delivered at the desired time slot.

The maximum number of orders to
be accepted is calculated starting with
the lowest value bucket b = 1. The de-
mand expected for each bucket, r′

b,d,s,
is compared to the demand expected
for all more valuable buckets com-
bined,

∑B
i=b+1(r′

i,d,s). As transport ca-
pacity is limited, delivery requests from
this bucket are only accepted if there
is capacity left after the expected de-
mand for more valuable buckets has been
subtracted. The expected leftover capac-
ity accordingly indicates the maximum
number of orders to accept; the resulting
limits are the acceptance controls:

ab,d,s := cd,s −
B∑

i=b+1

(
r′

i,d,s

)
.

Order acceptance is realized using serial
nesting as described in Vinod (2006).
This means that the condition for accept-
ing an additional delivery request is that
the new number of orders from this value
bucket and all lower buckets does not ex-
ceed the computed limit. This condition
can be formalized as follows:

b∑

i=1

(oi,d,s) + 1 ≤ ab,d,s.

4 Computational Study

The computational study documented in
this section illustrates the potential of
our integrated solution approach. After
detailing the simulation model, we de-
scribe the results for three sets of exper-
iments. First, we compute benchmarks
for the success of vehicle routing and
demand fulfillment, demonstrating that
even for simple models and methods,
order revenue can be significantly im-
proved. As these first experiments rely
on an unattainably accurate forecast, we
go on to show the sensitivity of perfor-
mance with regard to forecast accuracy.
Finally, the third set of experiments illus-
trates the impact of demand composition
on the potential of value-based demand
fulfillment.

4.1 Simulation Model

The implemented simulation follows
the discrete, event-based, stochastic
paradigm. Each simulation run includes
the following steps: After the offline cal-
culation of capacity and availability, de-
livery requests are processed as individual
events and are turned into orders upon
acceptance. After all request events have
been processed, the final vehicle rout-
ing is conducted. In the next simulation
run, the same steps are iterated given
a stochastically varied set of delivery
requests.

Our simulation model refers to a
metropolitan area that is divided up into
nine delivery areas (d := 1..9). The num-
ber of delivery areas included is some-
what arbitrary as in this study, demand
data is largely fictitious. However, as de-
scribed below, we rely on income dis-
tributions, which were available for ar-
eas defined according to a segmentation
of the area that follows the directions of
the compass as shown in Fig. 2. In fur-
ther applications of the proposed solu-
tion approach, the division of delivery
areas would be subject to data analysis:
The aim is to find a perfect balance be-
tween demand segmentation (with inter-
nally homogeneous areas) and data ag-
gregation (with areas that are as large
as possible). Figure 2 shows the spatial
segmentation into geographically differ-
ent delivery areas. The letters represent
the center of gravities, which serve as
fictitious locations for forecasted orders
in the corresponding delivery area. Fur-
thermore, eight time slots (s := 1..8) are

Fig. 2 Delivery areas with center of
gravity (NW, N, NE, W, C, E, SW, S, SE)
and depot location (D) for the fictitious
application in the metropolitan area of
Stuttgart. Delivery areas differ in size
due to varying population size. The area
C refers to the inner city of Stuttgart.
The gravity center of each delivery area
serves as a fictitious consumer address

available for delivery that is conducted by
a fleet of four delivery vehicles.

Demand is generated using a Monte
Carlo approach over 100 simulation runs.
As demand is normally distributed, we
provide confidence intervals based on
the student distribution and a 5 %-error
probability (see Kelton and Law 2000).
For each run, the number of requests r
is drawn from the normal distribution
with a mean of 130 and 1 % variation.
While variation was fixed arbitrarily to
provide a reasonable degree of fluctua-
tion, the mean number of requests to be
generated was calibrated to an expected
capacity-to-demand ratio of 2.5 given an
expected capacity c of 52. This ensures
competition for time slots, a condition
for acceptance controls to be meaningful.
Expected capacity was estimated from
preliminary vehicle routing experiments.

To provide demand segmentation, de-
livery requests are created for one of three
population segments P, distinguished by
the average order value VP . For the base
demand scenario as used in Sects. 4.2
and 4.3, the three segments place or-
ders that have an average value of 30, 50,
and 70, respectively, with 10 % variation.
Once more, the data used here is artifi-
cially designed to display both a useful
degree of differentiation and variation.
In real world applications, the distribu-
tion, mean, and variation of order val-
ues would be derived from an analysis of
historical order data.

The desired time slot s and the de-
livery area d are linked to the popula-
tion segment P. These characteristics are
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drawn based on discrete probability dis-
tributions ps(P) and pd(P). This distri-
bution was designed for each segment to
display differences in location preference
and daily schedule. Tables 1 and 2 show
the probability distributions of requests
from each population segment occurring
for a particular time slot s and delivery
area d.

While the distributions used for the
simulation study are artificial, their
motivation is intuitive: Different ur-
ban areas house different proportions
of socio-demographic population seg-
ments. From those, students can be ex-
pected to follow a daily schedule dif-
fering from that of professionals and
pensioners, for example.

Consequentially, some combinations
of time slots and area can expect more
valuable demand than others: A relatively
high share of demand can be expected
for three of the eight delivery time slots,
whereas a relatively low share of demand
can be expected for another three. High
value demand concentrates especially on
one particular time slot, approximating
a “common favorite hour of delivery”.
The distribution of demand across deliv-
ery areas loosely follows data on income
distributions for Stuttgart, as given in
Landeshauptstadt Stuttgart (2012). This
results in a distribution that is diverse
enough to approximate the consequences
of controlling demand fulfillment for a
set of areas with varying income levels.

The result of these parameters is a set
of conditional probabilities. Whenever a
consumer is generated, the demand seg-
ment, time slot, and delivery area are de-
termined based on a random number.
When the delivery area has been set, the
precise address is drawn from a uniform
distribution across all addresses in this
area. Then, the order value is drawn from
another normal distribution described
per segment by an expected value and
deviation.

To include a basic test for sensitivity, we
designed three demand scenarios, differ-
ing in the average order value of the in-
cluded demand segments. The least valu-
able demand segment accounts for 70 %,
the medium segment for 20 %, and the
most valuable segment for 10 % of de-
mand. We kept these values conservative
as the success of value-based approaches
can be expected to increase with the share
of valuable demand. Two further demand
scenarios have been designed for the pur-
pose of the corresponding experiment
presented in Sect. 4.4 as detailed there.

Table 1 Probability distributions for time slot choice per population segment ps(P)

s

1 2 3 4 5 6 7 8

P = 1 10 % 10 % 20 % 20 % 20 % 10 % 5 % 5 %

P = 2 5 % 5 % 5 % 15 % 20 % 20 % 20 % 10 %

P = 3 5 % 5 % 5 % 5 % 10 % 20 % 30 % 20 %

Table 2 Probability distributions for time slot choice per population segment pd(P)

d

1 2 3 4 5 6 7 8 9

P = 1 14 % 8 % 11 % 15 % 10 % 9 % 14 % 9 % 10 %

P = 2 13 % 13 % 11 % 8 % 10 % 9 % 16 % 6 % 14 %

P = 3 13 % 13 % 11 % 9 % 6 % 9 % 13 % 13 % 13 %

For vehicle routing, we consider time-
dependent travel times from computa-
tional experiments that have been con-
ducted for the area of Stuttgart, Ger-
many, by Ehmke et al. (2012b) and are
based on a large historical travel time
database. The nodes of a digital roadmap
represent actual consumer locations. For
travel time determination, consumer lo-
cations are distinguished by two differ-
ent zones, namely the downtown (area
“C” in Fig. 2) and the suburban areas of
Stuttgart. We thus capture varying prox-
imity of consumers, which is much closer
downtown than in suburban areas. Typi-
cal traffic patterns such as morning and
afternoon peak hours with traffic jams
on trunk roads are derived as follows.
Straight-line distances between nodes are
multiplied with a correction factor of
1.5, which is a rough approximation of
a typical shortest path distance on the
underlying detailed road network. These
distances are then converted into travel
times based on typical speeds within and
between zones. Multipliers for the adjust-
ment of downtown paths are provided by
“cluster 6”, while multipliers for the ad-
justment of suburban paths are provided
by “cluster 5” (Ehmke et al. 2012b). The
clusters mainly comprise inner city and
trunk roads, respectively, and thus serve
as a simplified representation of a typi-
cal metropolitan road network. Multipli-
ers reflect the typically varying extent of
speed variation at different times of the
day.

In Table 3, the variables of the compu-
tational study are summarized.

4.2 The Potential of Value-Based
Demand Fulfillment

To demonstrate the potential of value-
based demand fulfillment, we consider
the following four simulation scenarios.
All scenarios make use of the basic de-
mand scenario as described in Sect. 4.1.
They differ by the extent to which value-
based demand fulfillment is realized,
though:
• No VB: This scenario employs no

value-based (VB) techniques. Capac-
ity control is realized by vehicle rout-
ing based order acceptance mecha-
nisms as detailed in Sect. 3.3, accept-
ing or rejecting requests for a partic-
ular delivery area and time slot with-
out regarding the order value. There is
no demand forecast and accordingly,
demand fulfillment is not controlled
further.

• VB with Perfect DF: This scenario
employs value-based (VB) capacity
planning and fulfillment control tech-
niques based on a perfect, determinis-
tic forecast. Capacity planning is real-
ized by considering forecasted requests
in the sequence of their value, start-
ing with the most valuable. Based on
the resulting transport capacity, ac-
tual delivery requests are accepted in
the sequence of their value, assuming
flawless demand fulfillment controls.

• VB Routing with DF: This scenario em-
ploys value-based (VB) capacity plan-
ning and demand fulfillment (DF)
based on a perfect, aggregated forecast:
Based on our knowledge of the simu-
lation set-up, we set r′

b,d,s := rb,d,s in
each simulation run. As described in

Business & Information Systems Engineering 3|2014 159



BISE – RESEARCH PAPER

Table 3 Summarizing the parameterization of demand and traffic in the simulation

Variable Distribution Operationalization

Overall request volume r Normal distribution with mean = 130, variation = 1 % Set in proportion to capacity is 2.5:1 to ensure spill

Population segments P 3 population segments differentiated by average order
value and probability of delivery area and time slot

Request volume ratio 7:2:1, delivery area and time slot
probability distributions given in Tables 1 and 2

Order value Normal distribution with mean varying per population
segment P

Mean varies to account for three demand scenarios for
sensitivity analysis, variation is 10 %

Requested time slot s Empirical discrete distribution across time slot per
demand segment

See Table 1

Delivery area d 9 areas following points of compass See Table 2

Travel times Empirical distribution Following data analysis by Ehmke et al. (2012b)

Sect. 3.2, demand is forecasted for five
value buckets segmenting the range of
possible order values. Capacity control
is realized by considering forecasted
requests per bucket, starting with the
most valuable bucket. Based on the
resulting capacity, EMSR is used to
calculate demand fulfillment, which
is implemented as requests arrive se-
quentially.

• VB Routing without DF: This scenario
employs only value-based (VB) capac-
ity planning without demand fulfill-
ment (DF). Once more, demand is
forecasted for value buckets and capac-
ity planning is realized by treating fore-
casted requests per bucket. The idea
is to demonstrate how, even without
further efforts to control demand ful-
fillment, value-based forecasts of de-
mand can improve the results of capac-
ity planning in terms of the resulting
order value.
Figure 3 compares the overall value of

fulfilled orders expressed in percent of
the results derived from the No VB sce-
nario. The results for the VB with Per-
fect DF scenario illustrate that given the
underlying demand structure, potentially
24 % more value may be realized in terms
of orders using value-based approaches.
The results for the VB Routing with DF
scenario are barely significantly inferior,
however, note that while the forecast is
aggregated to five value buckets, it is still
unrealistically accurate. Finally, while the
results for the scenario VB Routing with-
out DF do not reach such levels, they still
show that an additional 10 % of order
value can be attained by merely planning
transport capacity according to a forecast
of demand value.

Since demand fulfillment controls limit
the number of accepted delivery requests,
the resulting transportation costs are re-
duced as well. As shown in Fig. 4, the
working time generated by the vehicle

Fig. 3 Potential of VB capacity planning and demand fulfillment: Value fulfilled in
% of No VB

Fig. 4 Potential of VB capacity planning and demand fulfillment: Working time in
% of No VB

routes tends to be less than what can
be expected for the No VB scenario. As
working time varies more than fulfilled
value does, the differences between the
scenarios are not significant. However,
there seems to be a tendency for slightly
lower working times when demand ful-
fillment controls are in place – this ap-
pears logical, as these controls limit the
number of accepted orders most severely.

4.3 The Impact of Forecast Accuracy

To illustrate the impact of forecast accu-
racy, we consider some scenarios where
the forecast has been deliberately skewed.
We benchmark the following scenarios by

comparing them to the results of VB Ca-
pacity Planning with DF. Their set-up is
the same with regard to capacity planning
and demand fulfillment; it deviates only
with regard to the forecast as described
below:
• High Volume FC: Initially perfect fore-

cast increased by 10 % across all value
buckets.

• Low Volume FC: Initially perfect fore-
cast reduced by 10 % across all value
buckets.

• High Value FC: The value of fore-
casted orders increased by 10 % before
aggregation into value buckets.

• Low Value FC: The value of fore-
casted orders reduced by 10 % before
aggregation into value buckets.
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Figure 5 illustrates that any skewing of
the forecast decreases the overall value of
fulfilled orders. The comparison is drawn
by expressing value in terms of what
might have been achieved using an ac-
curate, aggregate forecast as done in VB
Capacity Planning with DF.

Note that the scenarios Low Volume
FC and Low Value FC do not result in
as much of a loss of order value as do
High Volume FC and High Value FC. The
lowest value that can be expected from
a too low forecast is that achieved us-
ing first-come-first-serve controls as seen
in the No VB scenario. A too high fore-
cast in terms of value or volume, how-
ever, leads to the rejection of orders that
could actually have been accommodated.
Thereby, an overestimation of demand
can have an extremely negative impact on
performance.

The above argument is underlined by
a comparison of the number of accepted
orders resulting from the skewed forecast
scenarios. Figure 6 shows these orders in
percent of the No VB scenario. While an
underestimation of demand volume will
lead to nearly the same number of or-
ders as the No VB scenario, the overesti-
mation of value decreases the number of
accepted orders by more than 35 %. This
lack of order volume cannot be compen-
sated by actual order value – performance
falls short of expectations.

4.4 The Impact of Demand Composition

To show the impact of different de-
mand set-ups, we consider two alterna-
tive demand scenarios as described in
Sect. 4.1: Heterogeneous and homoge-
neous demand. For each demand sce-
nario, we compute orders as given by the
set-up of VB Capacity Planning with DF.
• Homogeneous Demand: For this sce-

nario, the average expected value of or-
ders for the three demand segments
was adjusted to render the demand
segments more similar. The value of
individual orders is now drawn from
three normal distributions displaying
average values of 40, 50, and 60, re-
spectively. As a result, the variation
coefficient of the demand for this
scenario is 0.18.

• Heterogeneous Demand: For this sce-
nario, the average expected value of or-
ders for the three demand segments
was adjusted to render the demand
segments less similar. The value of in-
dividual orders is now drawn from
three normal distributions displaying

Fig. 5 Impact of forecast accuracy: Value fulfilled in % of VB Capacity Planning with
DF

Fig. 6 Impact of forecast accuracy: Orders in % of VB Capacity Planning with DF

Fig. 7 Impact of demand composition: Value fulfilled in % of potential

average values of 30, 50 and 70, respec-
tively. As a result, the variation coeffi-
cient of the demand for this scenario is
0.63.

As the resulting order value is also deter-
mined by the potential given by the de-
mand scenario, a straightforward com-
parison of results can be misleading in
this case. Accordingly, Fig. 7 shows the
impact of demand composition in terms
of percent of potential value. For each
scenario, the overall potential value has

been calculated by summing up the value
of demand generated for the simula-
tion. This was used to scale the value of
accepted orders.

Figure 7 supports the following in-
tuitive assumption: The more heteroge-
neous the demand is, the more potential
exists for the application of value-based
demand fulfillment. Even for a highly ac-
curate forecast, less than 45 % of poten-
tial value can be turned into orders when
demand is homogeneous. Yet when de-
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Abstract
Catherine Cleophas, Jan Fabian Ehmke

When Are Deliveries Profitable?

Considering Order Value and Transport
Capacity in Demand Fulfillment for
Last-Mile Deliveries in Metropolitan
Areas

The paper aims to optimize the final
part of a firm’s value chain with re-
gard to attended last-mile deliveries.
It is assumed that to be profitable, e-
commerce businesses need to maxi-
mize the overall value of fulfilled or-
ders (rather than their number), while
also limiting costs of delivery. To do
so, it is essential to decide which de-
livery requests to accept and which
time windows to offer to which con-
sumers. This is especially relevant for
attended deliveries, as delivery fees
usually cannot fully compensate costs
of delivery given tight delivery time
windows. The literature review shows
that existing order acceptance tech-
niques often ignore either the order
value or the expected costs of deliv-
ery. The paper presents an iterative so-
lution approach: after calculating an
approximate transport capacity based
on forecasted expected delivery re-
quests and a cost-minimizing routing,
actual delivery requests are accepted
or rejected aiming to maximize the
overall value of orders given the com-
puted transport capacity. With the fi-
nal set of accepted requests, the rout-
ing solution is updated to minimize
costs of delivery. The presented solu-
tion approach combines well-known
methods from revenue management
and time-dependent vehicle routing.
In a computational study for a Ger-
man metropolitan area, the potential
and the limits of value-based demand
fulfillment as well as its sensitivity re-
garding forecast accuracy and demand
composition are investigated.

Keywords: Demand fulfillment, Ve-
hicle routing, Revenue management,
Simulation, City logistics

mand is heterogeneous, more than 55 %
of potential value can be turned into
actual orders. Note that this observa-
tion holds in spite of a constant ratio of
demand to capacity across all scenarios.

5 Conclusions and Outlook

For the near future, we expect that or-
der acceptance systems integrating traf-
fic information, demand forecasting, and
vehicle routing functionality will be-
come more and more relevant due to
the ongoing, increasing competition in
e-commerce. Especially transportation
costs in crowded metropolitan areas can-
not be neglected anymore. Thus, in this
paper, we have combined well-known
techniques of revenue management and
time-dependent vehicle routing in order
to improve the profitability of attended
home delivery applications in metropoli-
tan areas. To this end, we have demon-
strated how vehicle routing and demand
fulfillment controls can be integrated
in order to reserve transport capacities
where and when they are expected to be
profitable and cost-efficient.

Computational experiments underline
challenges and risks of combining rev-
enue management and vehicle routing
techniques for value-based demand ful-
fillment. An accurate forecast is manda-
tory to improve revenues. Given an accu-
rate forecast, the potential benefits with
regard to overall delivered order value are
significant, while transportation costs do
not get out of control. However, this find-
ing is subject to two caveats: On the one
hand, the quality of the forecast must
be carefully controlled so as not to fall
prey to an overestimation of expected de-
mand. As shown, if the expected value or
volume of demand is too high, restric-
tive fulfillment controls can considerably
hurt performance. On the other hand,
the success of value-based fulfillment de-
pends on an existent segmentation of de-
mand. If demand is homogeneous and
cannot be systematically differentiated by
value, the potential of the approach pro-
posed in this paper is limited. Also note
that the considered fleet size should be
aligned with the expected demand in or-
der to alleviate rejection of too many re-
quests and to ensure that transportation
resources can be used efficiently.

Future research directions appear as
follows. Models of consumer behavior
included in the solution approach need
to be extended to advanced e-commerce

business models. For the sake of simplic-
ity, we did not model a flexible choice
of time slots according to consumer-
individual priorities of time windows.
In practice, however, e-commerce busi-
nesses offer a choice of differently priced
delivery time slots. Furthermore, when
deciding on the acceptance of an order,
one may not only want to investigate its
short-term value, but also consider the
history of sales and potential future re-
quests of a consumer, i.e., the long-term
consumer value.

With respect to revenue manage-
ment techniques, more sophisticated ap-
proaches than EMSR, such as the imple-
mentation of bid price controls and/or
dynamic programming, would allow for
a more finely grained control of value-
based consumer acceptance. However,
this would require a somewhat more
complex forecast, e.g., a distribution on
value and number of expected con-
sumers. Furthermore, more advanced
techniques of vehicle routing would allow
for a detailed consideration of expected
demand and consumer locations, e.g.,
by including information on the like-
lihood of an individual consumer pos-
ing a request. While we concentrated on
the impact of the forecast’s accuracy on
solution quality, we did not investigate
the impact of the routing technique on
the quality of value-based demand fulfill-
ment. Instead, we utilized a state-of-the-
art time-dependent routing framework.
Future work could explore to what ex-
tent the success of demand fulfillment de-
pends on the particular quality of the ve-
hicle routing technique and the quality of
the underlying travel time data.

Finally, our contribution merely in-
tends to demonstrate the potential of
even simple first steps at combining the
two areas of vehicle routing and value-
based order acceptance. Apart from ap-
plying more advanced techniques from
these areas, a parallel rather than itera-
tively integrated solution of the described
problem is conceivable.
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