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Abstract

In this note, we focus on smooth nonconvex optimization problems that obey: (1) all local
minimizers are also global; and (2) around any saddle point or local maximizer, the objective has
a negative directional curvature. Concrete applications such as dictionary learning, generalized
phase retrieval, and orthogonal tensor decomposition are known to induce such structures. We
describe a second-order trust-region algorithm that provably converges to a global minimizer
efficiently, without special initializations. Finally we highlight alternatives, and open problems
in this direction.

1 Introduction

General nonconvex optimization problems (henceforth “NCVX problems” for brevity) are NP-
hard, even the goal is computing only a local minimizer [MK87, Ber99]. In applied disciplines,
however, NCVXproblems abound, and heuristic algorithms such as gradient descent and alternating
directions are often surprisingly effective. The ability of natural heuristics to find high-quality
solutions for practical NCVX problems remains largely mysterious.

In this note, we study a family of NCVX problems that can be solved efficiently. This family
cuts across central tasks in signal processing and machine learning, such as complete (sparse)
dictionary learning [SQW15], generalized phase retrieval [SQW16], orthogonal tensor decomposi-
tion [GHJY15], and noisy phase synchronization and community detection [Bou16, BBV16].

Natural optimization formulations for these distinct tasks are nonconvex; surprisingly they
exhibit a common characteristic structure. In each case, the goal is to estimate or recover an object
from observed data. Under certain technical hypotheses, every local minimizer of the objective function
exactly recovers the object of interest.

With this structure, the central issue is how to escape the saddle points and local maximizers.
Fortunately, for these problems, all saddle points and local maximizers are “typical” – the associated
Hessian matrix has at least one negative eigenvalue. Geometrically, this means around any saddle point
or local maximizer, the objective function has a negative curvature in a certain direction. Particularly,
we call saddles of this type ridable saddles;1 the importance of this apparently extraneous restriction
is illustrated in Figure 1. Intuitively, at saddle points or local maximizers, in the direction of negative
curvature the objective function is also locally descending. One can use this to design algorithms

1They are also called “strict saddle" points in optimization literature, see, e.g., pp 38 of [RI10]; see also [GHJY15].
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Figure 1: Not all saddle points are ridable!
Shown in the plot are functions f(x, y) =
x2 − y2 (left) and g(x, y) = x3 − y3 (right).
For g, both first- and second-order derivatives
vanish at (0, 0), producing a saddle that is in-
duced by third-order derivatives. In both plots,
red curves indicate local ascent directions and
blue curves indicate local descent directions.

that escape from the saddle points and local maximizers concerned here. Indeed, consider a natural
quadratic approximation to the objective f around a saddle point x:

f̂(δ;x) = f(x) +
1

2
δ∗∇2f(x)δ.

When δ is chosen to align with one eigenvector associated with a negative eigenvalue λneg[∇2f(x)],
it holds that

f̂(δ;x)− f(x) ≤ −1

2
|λneg| ‖δ‖2 .

Thus, minimizing f̂(δ;x) locally provides a direction δ? that tends to decrease the objective f ,
provided local approximation of f̂ to f is reasonably accurate.2 Based on this intuition, we derive
an algorithmic framework that can exploit the second-order information to escape from saddle
points and local maximizers and provably returns a global minimizer.

2 Nonconvex Optimization with Ridable Saddles

In this section, we present a more quantitative definition of the problem class we focus on and
provide several concrete examples in this class.

We are interested in optimization problem of the form:

minimize f(x), subject to x ∈M. (2.1)

Here we assume f is twice continuously differentiable, i.e., it has continuous first- and second-order
derivatives, andM is a Riemannian manifold. Restricting f toM and (with abuse of notation) writ-
ing the restricted function as f also, one can effectively treat (2.1) as an unconstrained optimization
onM. We further use grad f(x) and Hess f(x) to denote the Riemannian gradient and Hessian
of f at point x 3, which one can think of as Riemannian counterparts of Euclidean gradient and
Hessian for functions, with the exception that grad f(x)[·] and Hess f(x)[·] only act on vectors in
tangent space ofM at x, i.e., TxM.

2For general saddles that seem to demand higher-order approximations, the computation may quickly become
intractable. For example, third order saddle points seem to generally demand studying spectral property of three-way
tensors, which entails NP-hard computational problems [HL13]; see [AG16] for a recent attempt in this line.

3Detailed introduction to these quantities can be found in [AMS09]. We prefer to keep this at an intuitive level not to
obscure the main ideas.
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Definition 2.1 ((α, β, γ, δ)-X functions) A function f :M 7→ R is (α, β, γ, δ)-X (α, β, γ, δ > 0 ) if:
0) all local minimizers of f are also global minimizers;

and f is (α, β, γ, δ)-saddle,4 i.e., any point x ∈ M obeys at least one of the following: (TxM is the
tangent space ofM at point x)

1) [Strong gradient] ‖grad f(x)‖ ≥ β;
2) [Negative curvature] There exists v ∈ TxM with ‖v‖ = 1 such that 〈Hess f(x)[v],v〉 ≤ −α;
3) [Strong convexity around minimizers] There exists a local minimizer x? such that ‖x− x?‖ ≤ δ,

and for all y ∈M that is in 2δ neighborhood of x?, 〈Hess f(y)[v],v〉 ≥ γ for any v ∈ TyM with ‖v‖ = 1,
i.e., the function f is γ-strongly convex in 2δ neighborhood of x?. 5

In words, the function has no spurious local minimizers. Moreover, each point on the manifold
M either has strong Riemannian gradient, or has Riemannian Hessian with at least one strictly
negative eigenvalue, or lives in a small neighborhood of a local minimizer, such that the function is
locally strongly convex. We remark in passing that requiring a function to be ridable may appear
far too restrictive than it actually is. Indeed, one of the central results in Morse theory implies that a
generic smooth function is ridable.

In this note, we deal exclusively with minimizing X functions. 6 These functions indeed appear
in natural nonconvex formulations of important practical problems.

Figure 2: (Left) Function
landscape of learning sparsi-
fying complete basis via (2.3)
in R3. (Right) Function land-
scape of generalized phase re-
trieval via (2.4), assuming the
target signal x is real in R2.
In each case, note the equiv-
alent global minimizers and
the ridable saddles.

• The Eigenvector Problem. For a symmetric matrixA ∈ Rn×n, the classic eigenvector problem
is

maximizex∈Rn x>Ax subject to ‖x‖ = 1. (2.2)

Here the manifold is the sphere Sn−1. It can be easily shown that (see, e.g., Section 4.6
of [AMS09]) the set of critical points to the problem is exactly the set of eigenvectors to A.

4See also strict-saddle function defined in [GHJY15]. WhenM isRn orCn, the two definitions coincide. It is interesting
to see if the two agree in general settings. Particularly, [GHJY15] deals only with sets defined by equalities of the form
ci(x) = 0 with differentiable function c, which excludes many manifolds of interest, such as symmetric positive definite
matrices of a fixed dimension. See this page: http://www.manopt.org/tutorial.html#manifolds for more examples.
See also discussion in Introduction of this paper [ABG07] on relationship between manifold optimization and constrained
optimization in the Euclidean space.

5Strong convexity is required for the sake of deriving concrete convergence rate near the minimizers. Less stringent
conditions might already be sufficient, depending on the specific problems and target computational guarantees. Also,
it is possible to modify the trust-region methods (described later) to take advantage of fine problem structure; see,
e.g.,[SQW16].

6Though if the target is to compute any local minimizer of a ridable function, our method also applies.
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Moreover, suppose λ1 > λ2 ≥ . . . λn−1 > λn, with the corresponding eigenvectors v1, . . . ,vn.
Then, the only global maximizers are ±v1, the only global minimizers are ±vn, and all the
intermediate eigenvectors and their negatives are ridable saddle points.7 Quantitatively, one
can show that the function is (c(λn−1−λn), c(λn−1−λn)/λ1, c(λn−1−λn), 2c(λn−1−λn)/λ1)-
ridable over Sn−1 for a certain absolute constant c > 0.

• Complete Dictionary Recovery [SQW15]. Arising in signal processing andmachine learning,
dictionary learning tries to approximate a given data matrix Y ∈ Rn×p as the product of a
dictionary A and a sparse coefficient matrixX . In recovery setting, assuming Y = A0X0

withA0 square and invertible, Y andX0 have the same row space. Under appropriate model
onX0, it makes sense to recover one row ofX0 each time by finding the sparsest direction8 in
row(Y ) by solving the optimization:

minimizeq

∥∥∥q>Y ∥∥∥
0

subject to q 6= 0,

which can be relaxed as

minimize f(q)
.
=

1

p

p∑
k=1

h(q>yk) subject to ‖q‖2 = 1 [i.e., q ∈ Sn−1]. (2.3)

Here h(·) is a smooth approximation to the |·| function and yk the k-th column of Y , a proxy
of Y . The manifoldM is Sn−1 here. [SQW15] (Theorem 2.3 and Corollary 2.4) showed that
when h(·) = µ log cosh(·/µ) and p is reasonably large, those q’s that help recover rows ofX0

are the only local minimizers of f over Sn−1.9 Moreover, these exists a positive constant c such
that f is (cθ, cθ, cθ/µ,

√
2µ/7)-ridable over Sn−1, where θ controls the sparsity level ofX0.

• (Generalized) Phase Retrieval [SQW16]. For complex signal x ∈ Cn, generalized phase
retrieval (GPR) tries to recover x from the nonlinear measurements of the form yk = |a∗kx|,
for k = 1, . . . ,m. This task has occupied the central place in imaging systems for scientific
discovery [SEC+15]. Assuming i.i.d. Gaussian measurement noise, a natural formulation for
GPR is

minimizez∈Cn f(z)
.
=

1

4m

m∑
k=1

(y2
k − |a∗kz|2)2. (2.4)

The manifoldM here is Cn. It is obvious that for all z, f(z) has the same value as f(zeiθ) for
any θ ∈ [0, 2π). [SQW16] showed whenm ≥ Ω(n log3 n),

{
xeiθ

}
are the only local minimizers,

and also global minimizers (as f ≥ 0). Moreover, modulo the trivial equivalence discussed
above, the function f is (c, c/(n logm), c, c/(n logm))-ridable for a certain absolute constant c,
assuming ‖x‖ = 1.

• IndependentComponentAnalysis (ICA) andOrthogonal TensorDecomposition [GHJY15].
Typical setting of ICA asks for a linear transformationA for a given data matrix Y , such that

7One can state a more general version of the results, allowing multiplicity of maximum eigenvalues.
8The absolute scale is not recoverable.
9These local minimizers are all global when p → ∞. For finite p that is large enough, these local minimizers assume

very close values, and each of them produces a close approximation to a row ofX0.
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rows of AY achieve maximal statistical independence. Tensor decomposition generalizes
spectral decomposition of matrices. Here we focus on orthogonally decomposable d-th order
tensors T which can be represented as

T =
n∑
i=1

a⊗di , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

where⊗ generalizes the usual outer product of vectors. Tensor decomposition refers to finding
(up to sign and permutation) the components ai’s given T . With appropriate processing and
up to small perturbation, ICA is showed to be equivalent to decomposition of a certain form
of 4-th order orthogonally decomposable tensors [FJK96, AGMS12]. Specifically, [GHJY15]
showed (Section C.1.) 10 the minimization problem

minimize f(u)
.
= −T (u,u,u,u) = −

n∑
i=1

(a>i u)4 subject to ‖u‖2 = 1

has ±ai’s as its only minimizers and the function f is (7/n, 1/poly(n), 3, 1/poly(n))-ridable
over Sn−1. Once one of the component is obtained, one can apply deflation to obtain the
others. One alternative that tends to make the process more noise-stable is trying to recover
all the components in one shot. To this end, [GHJY15] proposed to solve

minimize g(u1, . . . ,ur)
.
=
∑
i 6=j
T (ui,ui,uj ,uj) =

∑
i 6=j

n∑
k=1

(a>k ui)
2(a>k uj)

2,

subject to ‖ui‖ = 1 ∀i ∈ [n].

The object {U ∈ Rn×n : ‖ui‖ = 1 ∀i} is called the oblique manifold, which is a product space
of multiple spheres. [GHJY15] showed all local minimizers of g are equivalent (i.e., signed
permuted) copies of [a1, . . . ,an]. Moreover, g is (1/poly(n), 1/poly(n), 1, 1/poly(n))-ridable.

• Phase Synchronization and Community Detection [Bou16, BBV16]. Phase synchronization
concerns recovery of unit-modulus complex scalars from their relative phases. More precisely,
recovering an unknown vector z ∈ Cn1 with

Cn1
.
= {z ∈ Cn : |z1| = · · · = |zn| = 1} ,

from noisy measurements of the form Cij = zizj + ∆ij . The problem is interesting when
the noise is nonzero yet controlled, which demands robust solution schemes. Turning to the
optimization approach, a natural formulation (if one assumes a Gaussian noise model) is

minimizex∈Cn
1
‖xx∗ −C‖2F ,

where we have collectedCij into amatrixC. Assuming the noise is symmetric (i.e., ∆ij = ∆ji),
the above formulation is equivalent to

minimizex∈Cn
1
−x∗Cx. (2.5)

10[GHJY15] has not used the manifold language as we use here, but resorted to Lagrange multiplier and optimality of
the Lagrangian function. For the two decomposition formulations we discussed here, one can verify that the gradient
and Hessian they defined are exactly the Riemannian gradient and Hessian of the respective manifolds.
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Interestingly, for the phase synchronization model, i.e., C = zz∗ + ∆ with Hermitian noise
matrix ∆, [Bou16] recently showed that (Theorem 4) when the noise ∆ is bounded in mild
sense,

second-order necessary condition for optimality is also sufficient.

Particularly, this holds w.h.p. when the noise is i.i.d. complex Gaussians with small variance
(Lemma 5). To understand the above statement, recall that second-order necessary condition
asks for vanishing gradient and negative semidefinite Hessian at a point. The above statement
asserts that such condition is sufficient to guarantee global optimality. In other words, at
any critical points other than these verifying the condition have indefinite Hessians. Thus,
[Bou16] has effectively showed that when ∆ is appropriately bounded,

the function −x∗Cx over Cn1 is a “qualitative” X function. 11

The real counterpart of phase synchronization is called synchronization over Z2, i.e., z ∈
{1,−1}n. In this case, an analogous formulation to (2.5) appears to be a hard combinatorial
problem (think of MAX-CUT) in theory, and also not be friendly for numerical computation (the
domain is discrete). Interestingly, [BBV16] showed certain nonconvex relaxation has a benign
geometric structure. Specifically, applying the usual SDP lifting idea leads to

minimizeX∈Rn×n −〈X,C〉 Xii = 1, ∀ i, X � 0, rank(X) = 1.

Dropping the rank constraint results in a convex program (SDP), which is expensive to solve
for large n. The Burer-Monteiro factorization approach [BM03, BM05] suggests substituting
X = WW> forW ∈ Rn×p for 1 ≤ p� n such that the above relaxation is reformulated as

minimizeW∈Rn×p − tr
(
W>CW

)
‖wi‖ = 1 ∀ i. (2.6)

Classic results [Sha82, Bar95, Pat98] on this says (2.6) has the same optimal value as the
SDP relaxation when p is large enough (p ∼ Θ(

√
n)). Moreover, when p is set to be this

scale, rank-deficient local optimizers are also global [BM05]. Surprisingly, [BBV16] showed
(Theorem 4) that even p = 2, for the Z2 synchronization problem with small noise (i.e., small
∆), formulation (2.6) obeys

all points verifying the second-order necessary condition are global optimizes.

By analogous argument as for the complex case, this implies:

the function− tr
(
W>CW

)
over the obliquemanifold

{
W ∈ Rn×2 : ‖wi‖ = 1 ∀i ∈ [n]

}
is a qualitative X function.

A similar result was derived in [BBV16] for the two-block community detection problem based
on the stochastic block model (Theorem 6).12

11Strictly speaking, our definition of X functions requires the function to be locally strongly convex around the
local/global minimizers, while the Hessian being positive semidefinite is weaker than that. No matter whether their
result can be strengthened in this respect, we note that we impose the strong convexity assumption instead of just convexity
is for the sake of deriving concrete convergence rates for optimization algorithms. One can relax the requirement when
talking of the qualitative aspect of the structure. Similar comment applies to the ensuring discussion of the real version
also.

12Both [BBV16] and [Mon16] also contain results that characterize local optimizers in terms of their correlation with
the optimizer under less stringent/general conditions.
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3 Second-order Trust-region Method and Proof of Convergence

The intuition that second-order information can help escape ridable saddles from the very start sug-
gests a second-order method. We describe a second-order trust-region algorithm on manifolds [ABG07,
AMS09] for this purpose.

For the generic problem (2.1), we start from any feasiblex(0) ∈M, and form a sequence of iterates
x(1),x(2), · · · ∈ M as follows. For the current iterate x(k), we consider the quadratic approximation

f̂(δ;x(k))
.
= f(x(k)) +

〈
δ, grad f(x(k))

〉
+

1

2

〈
Hess f(x(k))[δ], δ

〉
(3.1)

which is defined for all δ ∈ Tx(k)M. The next iterate is determined by minimizing the quadratic
approximation within a small radius ∆ (i.e., the trust region) of x(k), i.e.,

δ(k+1) .
= arg min
δ∈T

x(k)M,‖δ‖2≤∆
f̂
(
δ;x(k)

)
, (3.2)

which is called the Riemannian trust-region subproblem. The vector x(k) + δ(k+1) is generally not a
point onM. One then performs a retraction step Rx(k) that pulls the vector back to the manifold,
resulting in the update formula

x(k+1) = Rx(k)(x(k) + δ(k+1)).

Most manifolds of practical interest are embedded submanifolds of Rm×n and the tangent space is
a subspace of Rm×n. For an x(k) ∈M and an orthonormal basis U for Tx(k)M, one can solve (3.2)
by solving the recast Euclidean trust-region subproblem

ξ(k+1) .
= arg min
‖ξ‖≤∆

f̂(Uξ;x(k)), (3.3)

for which efficient numerical algorithms exist [MS83, CGT00, FW04, HK14]. Design choice of the
retraction is often problem-specific, ranging from the classical exponential map to the Euclidean
projection that works for many matrix manifolds [AM12].

O

q
TqSn−1

δ

expq(δ)

Sn−1

Figure 3: Illustrations of
the tangent space TqSn−1

and exponential map
expq (δ) defined on the
sphere Sn−1.

To show the trust-region algorithm converges to a global minimizer,
we assume ∆ is small enough such that approximation error of (3.1) to f
is “negligible” locally. Each step around a negative-curvature or strong-
gradient point decreases the objective by a certain amount. Indeed, it is
clear there is always one descent direction in such cases. Thus, the trust-
region step will approximately follow one descent direction and decrease
the function value. When the iterate sequence moves into a strongly
convex region around a global minimizer, a step is either constrained
such that it also deceases the objective by an amount, or unconstrained,
which is a good indicator that the target minimizer is within a radius
∆. In the latter case, the algorithm behaves like the classical Newton
method and quadratic sequence convergence can be shown.

Quantitative convergence proof demands knowledge of the ridability
parameters, smoothness parameters of the objective, and elements of Riemannian geometry. We
refer the reader to [SQW15, SQW16] for practical examples of convergence analyses.
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4 Discussion

Recently, there is a surge of interest in understanding nonconvex heuristics for practical prob-
lems [KMO10, JNS13, Har14, HW14, NNS+14, JN14, SL14, ZL15, TBSR15, CW15, NJS13, CLS15,
CC15, WWS15, JO14, AGJ14b, AGJ14a, AJSN15, YCS13, SA14, LWB13, QSW14, LWB13, AAJ+13,
AAN13, AGM13, AGMM15, ABGM14, JJKN15]. Majority of the work start from clever initializa-
tions, and then proceed with analysis of local convergence. In comparison, it is clear that for X
functions, second-order trust-region algorithms with any initialization guarantee to retrieve one
target minimizer. Identifying X functions has involved intensive technical work [SQW15, SQW16,
GHJY15]. It is interesting to see if streamlined toolkits can be developed, say via operational rules or
unified potential functions. This would facilitate study of other practical problems, such as the deep
networks of which saddle points are believed to be prevalent and constitute significant computa-
tional bottleneck [PDGB14, DPG+14, CHM+14]. To match heuristics computationally, more practi-
cal algorithms other than the second-order trust-region methods are needed. Practical trust-region
solvers with saddle-escaping capability may be possible for structured problems [BMAS14, SQW16].
Moreover, simulations with several practical problems suggest gradient-style algorithms with ran-
dom initializations succeed. [GHJY15, LSJR16] are recent endeavors towards this direction.
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