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WHEN ARE THE TANGENT SPHERE BUNDLES
OF A RIEMANNIAN MANIFOLD REDUCIBLE?

E. BOECKX

Abstract. We determine all Riemannian manifolds for which the tangent
sphere bundles, equipped with the Sasaki metric, are local or global Riemann-
ian product manifolds.

1. Introduction

When studying the geometry of a Riemannian manifold (M, g), it is often useful
to relate it to the properties of its unit tangent sphere bundle T1M . In earlier
work, we have been primarily interested in the geometric properties of T1M when
equipped with the Sasaki metric gS . This is probably the simplest possible Rie-
mannian metric on T1M and it is completely determined by the metric g on the
base manifold M . In this way, we have obtained a number of interesting charac-
terizations of specific classes of Riemannian manifolds. We refer to [2], [5], [6], [7]
and the references therein for examples of this. Also tangent sphere bundles TrM
with radius r different from 1 and equipped with the Sasaki metric have been stud-
ied recently ([9], [10]). The geometric properties of these Riemannian manifolds
may change with the radius. See [9] for an example of this. Of course, other
Riemannian metrics on the tangent bundle and on the tangent sphere bundles
are possible. Of these, the Cheeger-Gromoll metric gCG may be the best known.
However, for tangent sphere bundles, this specific metric yields nothing new, since
(TrM, gCG) is isometric to (Tr/√1+r2M, gS). The isometry is given explicitly by
φ : TrM → Tr/

√
1+r2M : (x, u) 7→ (x, u/

√
1 + r2).

It is an interesting geometric problem to determine when a tangent sphere bun-
dle, which we always consider with the Sasaki metric in this paper, is reducible,
i.e., when it is locally or globally isometric to a Riemannian product manifold. To
our surprise, we could not find any results in the literature concerning this ques-
tion. Nevertheless, knowledge about reducibility could help to deal with geometric
questions about tangent sphere bundles. In [4] for instance, we use it in an essen-
tial way to determine all unit tangent sphere bundles that are semi-symmetric, i.e.,
for which the curvature tensor at each point is algebraically the same as that of
some symmetric space. Actually, that problem was the inspiration for the present
article. As concerns the local reducibility of tangent sphere bundles, we prove here
the following.
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Local Theorem. A tangent sphere bundle (TrM, gS), r > 0, of a Riemannian
manifold (Mn, g), n ≥ 2, is locally reducible if and only if (M, g) has a flat factor,
i.e., (M, g) is locally isometric to a product (M ′, g′)× (Rk, g0) where 1 ≤ k ≤ n and
g0 denotes the standard Euclidean metric on Rk.

The corresponding global version reads as follows:

Global Theorem. Let (Mn, g), n ≥ 3, be a Riemannian manifold and suppose
that (TrM, gS) is a global Riemannian product. Then, (M, g) is either flat or it is
also a global Riemannian product, with a flat factor.

Conversely, if (M, g) is a global product space (M ′, g′)×(F k, g0) where 1 ≤ k ≤ n
and F is a connected and simply connected flat space, then (TrM, gS) is a global
Riemannian product, also with (F, g0) as a flat factor.

In view of the comments above, these results remain valid if we consider the
tangent sphere bundles equipped with the Cheeger-Gromoll metric.

This article is organized as follows. After giving the necessary definitions and
formulas concerning tangent sphere bundles, we show in Section 3 that only two
types of decomposition for TrM are possible: a vertical and a diagonal one. The
special form of the curvature of (TrM, gS) for vertical vectors is crucial here. In
particular, the same procedure does not go through for the tangent bundle TM .
Section 4 deals with the diagonal case. We find that a diagonal decomposition
gives rise to a Clifford representation via specific curvature operators. As a result,
only base manifolds with dimension 2, 3, 4, 7 or 8 could possibly admit diagonal
decompositions. The different dimensions are then handled separately. It turns out
that diagonal decompositions can only be realized for a flat surface as base space.
The general situation with a vertical decomposition is treated in Section 5 and leads
to the Local Theorem above. The final section is devoted to global considerations.

2. Tangent sphere bundles

We first recall a few of the basic facts and formulas about the tangent sphere bun-
dles of a Riemannian manifold. A more elaborate exposition and further references
can be found in [5] and [9].

The tangent bundle TM of a Riemannian manifold (M, g) consists of pairs (x, u)
where x is a point inM and u is a tangent vector to M at x. The mapping π : TM →
M : (x, u) 7→ x is the natural projection from TM onto M . It is well known
that the tangent space to TM at a point (x, u) splits into the direct sum of the
vertical subspace V TM(x,u) = kerπ∗|(x,u) and the horizontal subspace HTM(x,u)

with respect to the Levi-Civita connection ∇ of (M, g): T(x,u)TM = V TM(x,u) ⊕
HTM(x,u).

For w ∈ TxM , there exists a unique horizontal vector wh ∈ HTM(x,u) for which
π∗(wh) = w. It is called the horizontal lift of w to (x, u). There is also a unique
vertical vector wv ∈ V TM(x,u) for which wv(df) = w(f) for all functions f on M . It
is called the vertical lift of w to (x, u). These lifts define isomorphisms between TxM
and HTM(x,u) and V TM(x,u), respectively. Hence, every tangent vector to TM
at (x, u) can be written as the sum of a horizontal and a vertical lift of uniquely
defined tangent vectors to M at x. The horizontal (respectively vertical) lift of
a vector field X on M to TM is defined in the same way by lifting X pointwise.
Further, if T is a tensor field of type (1, s) on M and X1, . . . , Xs−1 are vector fields
on M , then we denote by T (X1, . . . , u, . . . , Xs−1)v the vertical vector field on TM
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which at (x,w) takes the value T (X1x, . . . , w, . . . , Xs−1x)v, and similarly for the
horizontal lift. In general, these are not the vertical or horizontal lifts of a vector
field on M .

The Sasaki metric gS on TM is completely determined by

gS(Xh, Y h) = gS(Xv, Y v) = g(X,Y ) ◦ π, gS(Xh, Y v) = 0

for vector fields X and Y on M .
Our interest lies in the tangent sphere bundle TrM of some positive radius r,

which is a hypersurface of TM consisting of all tangent vectors to (M, g) of length r.
It is given implicitly by the equation gx(u, u) = r2. A unit normal vector field N
to TrM is given by the vertical vector field uv/r. We see that horizontal lifts
to (x, u) ∈ TrM are tangent to TrM , but vertical lifts in general are not. For
that reason, we define the tangential lift wt of w ∈ TxM to (x, u) ∈ TrM by
wt = wv − 1

r g(w, u)N . Clearly, the tangent space to TrM at (x, u) is spanned
by horizontal and tangential lifts of tangent vectors to M at x. One defines the
tangential lift of a vector field X onM in the obvious way. For the sake of notational
clarity, we will use X̄ as a shorthand for X− 1

r2 g(X,u)u. Then Xt = X̄v. Further,
we denote by V TrM the (n−1)-dimensional distribution of vertical tangent vectors
to TrM .

If we consider TrM with the metric induced from the Sasaki metric gS of TM ,
also denoted by gS , we turn TrM into a Riemannian manifold. Its Levi-Civita
connection ∇̄ is described completely by

∇̄XtY t = − 1
r2
g(Y, u)Xt,

∇̄XtY h = 1
2 (R(u,X)Y )h,(1)

∇̄XhY t = (∇XY )t + 1
2 (R(u, Y )X)h,

∇̄XhY h = (∇XY )h − 1
2 (R(X,Y )u)t

for vector fields X and Y on M . Its Riemann curvature tensor R̄ is given by

R̄(Xt, Y t)Zt =
1
r2

(g(Ȳ , Z̄)Xt − g(Z̄, X̄)Y t),

R̄(Xt, Y t)Zh = (R(X̄, Ȳ )Z)h + 1
4 ([R(u,X), R(u, Y )]Z)h,

R̄(Xh, Y t)Zt = − 1
2 (R(Ȳ , Z̄)X)h − 1

4 (R(u, Y )R(u, Z)X)h,

R̄(Xh, Y t)Zh = 1
2 (R(X,Z)Ȳ )t − 1

4 (R(X,R(u, Y )Z)u)t

+ 1
2 ((∇XR)(u, Y )Z)h,(2)

R̄(Xh, Y h)Zt = (R(X,Y )Z̄)t

+ 1
4 (R(Y,R(u, Z)X)u−R(X,R(u, Z)Y )u)t

+ 1
2 ((∇XR)(u, Z)Y − (∇Y R)(u, Z)X)h,

R̄(Xh, Y h)Zh = (R(X,Y )Z)h + 1
2 (R(u,R(X,Y )u)Z)h

− 1
4 (R(u,R(Y, Z)u)X −R(u,R(X,Z)u)Y )h

+ 1
2 ((∇ZR)(X,Y )u)t

for vector fields X , Y and Z on M . (See [9].)
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3. Two types of decomposition

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2 and suppose that
its tangent sphere bundle TrM is (locally) reducible, i.e., (TrM, gS) ' (M1, g1) ×
(M2, g2). A point (x, u) in TrM corresponds to a couple (p, q) ∈ M1 ×M2, and
the tangent space T(x,u)TrM can be identified with TpM1 ⊕ TqM2. In the sequel,
we will write T(x,u)M1 and T(x,u)M2 for TpM1 and TqM2, considered as subspaces
of T(x,u)TrM , in order not to make the notation too cumbersome.

Suppose first that, at a point (x, u) of TrM , the tangent space to one of the
factors, say to M1, contains a nonzero vertical vector Xt, X ∈ TxM and X ⊥ u.
Since we have a Riemannian product, the curvature operator R̄(U,V) preserves
the tangent spaces to both factors for all vectors U and V tangent to TrM . In
particular, it follows that

R̄(Y t, Xt)Xt =
1
r2

(g(X,X)Y t − g(X,Y )Xt) ∈ T(x,u)M1

for all vectors Y ∈ TxM . As a consequence, V TrM(x,u) ⊂ T(x,u)M1, and M1 is at
least (n−1)-dimensional. Hence, if at a point of TrM one of the factors contains a
nonzero vertical vector, it contains the complete vertical distribution at that point.
We call the decomposition vertical at (x, u) in such a situation. Note that this is
the case as soon as max{dimM1, dimM2} > n. Indeed, if dimM1 > n, then

dim(V TrM(x,u) ∩ T(x,u)M1) = dimV TrM(x,u) + dimT(x,u)M1

− dim(V TrM(x,u) + T(x,u)M1)
> (n− 1) + n− (2n− 1) = 0.

So, the only possibility for the decomposition not to be vertical at (x, u) is that
dimM1 = n, dimM2 = n − 1 (or conversely) and neither factor is tangent to a
vertical vector. We call this a diagonal decomposition at (x, u).

The major part of the sequel will be devoted to the diagonal case. Using a purely
infinitesimal (i.e., pointwise) approach, we show that a diagonal decomposition is
only possible in one specific situation. Afterwards, we study the case of a vertical
decomposition.

4. Diagonal decomposition

4.1. A suitable basis. In this section, we consider a diagonal decomposition
TrM ' M1 ×M2 at (x, u) with dimM1 = n and dimM2 = n − 1. For dimen-
sional reasons, we have

dim(T(x,u)M1 ∩HTM(x,u)) > 0.

Let Xn ∈ TxM be a unit vector such that Xn
h is tangent to M1 at (x, u) and

extend it to an orthonormal basis {X1, . . . , Xn} of TxM . If π∗ (x,u)(T(x,u)M1) 6=
TxM , then there must be a vertical vector tangent to M1 at (x, u), contrary to the
hypothesis. Hence, there exist well-defined vectors Y1, . . . , Yn−1 orthogonal to u
for which X1

h + Y1
t, . . . , Xn−1

h + Yn−1
t and Xn

h are tangent to M1 at (x, u).
Clearly, they form a basis for T(x,u)M1, though not in general an orthonormal one.
Moreover, {Y1, . . . , Yn−1, u} is a basis for TxM too. Otherwise, there would exist
a nonzero vector Y ∈ TxM , orthogonal to u and to Yi, i = 1, . . . , n− 1. But then
Y t would be orthogonal to Xn

h and to Xi
h + Yi

t, i = 1, . . . , n − 1, and hence
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would belong to (T(x,u)M1)⊥ = T(x,u)M2, contrary to the hypothesis that M2 has
no vertical tangent vector.

Next, consider the (n − 1) × (n − 1) matrix α = (gx(Yi, Yj))i,j=1,...,n−1. Since
this matrix is symmetric and positive definite, it can be diagonalized by a suitable
orthogonal transformation:

PαP t = diag(λ1
2, . . . , λn−1

2)

where P = (pij) ∈ O(n − 1) and λi > 0 for i = 1, . . . , n− 1. If we put

X̃i =
n−1∑
j=1

pijXj , Ỹi =
1
λi

n−1∑
j=1

pijYj

for i = 1, . . . , n − 1, then both {X̃1, . . . , X̃n−1, Xn} and {Ỹ1, . . . , Ỹn−1, u/r} are
orthonormal bases for TxM . Further, the vectors

X̃i
h + λiỸi

t =
n−1∑
j=1

pij (Xj
h + Yj

t), i = 1, . . . , n− 1,

together with Xn
h span the tangent space to M1 at (x, u) and these vectors are

pairwise orthogonal. The tangent space to M2 at (x, u) is then spanned by the
orthogonal vectors

λiX̃i
h − Ỹit, i = 1, . . . , n− 1.

Finally, we show that all the numbers λi are equal. To do this, we use that
gS(R̄(U,V)W,T) = 0 at (x, u) as soon as one of the vectors involved is tangent
to M1 and another one is tangent to M2. In particular, for all i, j, k, l = 1, . . . , n−1,
it follows that

0 = gS(R̄(X̃j
h + λj Ỹj

t, Ỹk
t)(λiX̃i

h − Ỹit), Ỹlt).

Using the expressions (2) for the curvature tensor R̄ of (TrM, gS), this leads to the
condition

0 = λi
(
2g(R(X̃j, X̃i)Ỹk, Ỹl)− g(R(u, Ỹl)X̃j , R(u, Ỹk)X̃i)

)
− 4λj

r2
(δikδjl − δijδkl).

Switching the indices i and j, as well as k and l, we find

0 = λj
(
2g(R(X̃i, X̃j)Ỹl, Ỹk)− g(R(u, Ỹk)X̃i, R(u, Ỹl)X̃j)

)
− 4λi

r2
(δjlδik − δjiδlk).

Using the symmetries of the curvature tensor, it then easily follows that λi2 = λj
2

or λi = λj .
Summarizing, we have

Lemma. If TrM 'M1×M2 is a diagonal decomposition at (x, u) with dimM1 =
n and dimM2 = n − 1, then there exist orthonormal bases {X1, . . . , Xn} and
{Y1, . . . , Yn−1, u/r} of TxM and λ > 0, such that an orthogonal basis for T(x,u)M1

is given by
X1

h + λY1
t, . . . , Xn−1

h + λYn−1
t, Xn

h

and an orthogonal basis for T(x,u)M2 is given by

λX1
h − Y1

t, . . . , λXn−1
h − Yn−1

t.
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Remark 1. The number λ has a clear geometric meaning. Take a nonzero vertical
vector U at (x, u): U =

∑n−1
i=1 αiYi

t and a nonzero vector V tangent to M2 at (x, u):
V =

∑n−1
i=1 βi (λXi

h−Yit). The angle between the two vectors has cosine given by

cos(ÛV) =
−
∑
αiβi√∑

αi2
√∑

βi2
√

1 + λ2
.

By the Cauchy-Schwarz inequality, we have

− 1√
1 + λ2

≤ cos(ÛV) ≤ 1√
1 + λ2

with equality if and only if (α1, . . . , αn−1) and (β1, . . . , βn−1) are proportional. We
conclude that the angle θ between V TrM(x,u) and T(x,u)M2 is such that cos θ =
1/
√

1 + λ2 or tan θ = λ. So, λ determines the angle between V TrM andM2 at (x, u)
(and hence also between V TrM and M1 at that point).

Remark 2. Actually, we can give a stronger formulation of the lemma. To see this,
consider the mapping π1 : T(x,u)M1 → V TrM(x,u) : Xh + Y t 7→ Y t. Clearly, this
mapping is linear and one-to-one on (Xn

h)⊥. We restrict π1 to (Xn
h)⊥ ∩ T(x,u)M1

and define the linear mapping

A : u⊥ → Xn
⊥ : Y 7→ λπ∗ (x,u)(π1

−1Y t)

where, as before, π : TrM →M is the natural projection map. Since

AYi = λπ∗ (x,u)(π1
−1Yi

t) = λπ∗ (x,u)

(
(Xi

h + λYi
t)/λ

)
= Xi,

the map A is an isometry from u⊥ to Xn
⊥. It associates to a vector X , orthogonal

to Xn, the unique vector Y , orthogonal to u, such that Xh +λY t is tangent to M1

at (x, u) (or such that λXh − Y t is tangent to M2 at (x, u)). So, in the lemma,
we can actually choose an arbitrary orthonormal basis {X1, . . . , Xn−1} of Xn

⊥ (or,
alternatively, an arbitrary orthonormal basis {Y1, . . . , Yn−1} of u⊥). We will use
this possibility in the subsequent subsections. The vectors Xn (up to sign) and u,
on the other hand, are determined geometrically.

4.2. Curvature conditions. Since (TrM, gS) is a (local) Riemannian product, all
the expressions of the form R̄(U,V)W are zero when U is tangent to M1 and W is
tangent to M2 at (x, u). Using the curvature formulas (2), this leads to a number
of curvature conditions for the manifold M . We list some of these now. From now
on, indices i, j, k and l belong to {1, . . . , n− 1} unless stated otherwise.

The tangential and horizontal components of R̄(Xn
h, Yj

t)(λXk
h− Ykt) give rise

to

2R(Xn, Xk)Yj −
2
r2
g(R(Xn, Xk)Yj , u)u = R(Xn, R(u, Yj)Xk)u,(3)

2λ(∇XnR)(u, Yj)Xk = −2R(Yj, Yk)Xn −R(u, Yj)R(u, Yk)Xn,(4)

while R̄(Xn
h, Xj

h)(λXk
h − Ykt) = 0 leads to

2λ(∇XkR)(Xn, Xj)u = 4R(Xn, Xj)Yk −
4
r2
g(R(Xn, Xj)Yk, u)u(5)

+R(Xj , R(u, Yk)Xn)u−R(Xn, R(u, Yk)Xj)u,
2((∇XnR)(u, Yk)Xj − (∇XjR)(u, Yk)Xn)(6)

= 4λR(Xn, Xj)Xk + 2λR(u,R(Xn, Xj)u)Xk

− λR(u,R(Xj , Xk)u)Xn + λR(u,R(Xn, Xk)u)Xj .
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Considering R̄(Xi
h + λYi

t, Yj
t)(λXk

h − Ykt) = 0, we obtain

2R(Xi, Xk)Yj −
2
r2
g(R(Xi, Xk)Yj , u)u(7)

= R(Xi, R(u, Yj)Xk)u+
4
r2

(δjkYi − δikYj),

2λ(∇XiR)(u, Yj)Xk + 2R(Yj , Yk)Xi +R(u, Yj)R(u, Yk)Xi(8)

+ λ2
(
4R(Yi, Yj)Xk + R(u, Yi)R(u, Yj)Xk −R(u, Yj)R(u, Yi)Xk) = 0.

Finally, from R̄(Xi
h + λYi

t, Xj
h)(λXk

h − Ykt) = 0, we derive

2λ(∇XkR)(Xi, Xj)u− 4R(Xi, Xj)Yk +
4
r2
g(R(Xi, Xj)Yk, u)u(9)

−R(Xj, R(u, Yk)Xi)u +R(Xi, R(u, Yk)Xj)u− 2λ2R(Xj , Xk)Yi

+
2λ2

r2
g(R(Xj, Xk)Yi, u)u+ λ2R(Xj , R(u, Yi)Xk)u = 0,

4λR(Xi, Xj)Xk + 2λR(u,R(Xi, Xj)u)Xk − λR(u,R(Xj , Xk)u)Xi(10)
+ λR(u,R(Xi, Xk)u)Xj − 2(∇XiR)(u, Yk)Xj + 2(∇XjR)(u, Yk)Xi

− 2λ2(∇XjR)(u, Yi)Xk − 2λR(Yi, Yk)Xj − λR(u, Yi)R(u, Yk)Xj = 0.

These conditions can be rewritten in an easier form. To start, we take the inner
product of (3) with Yl. This gives

2g(R(Xn, Xk)Yj , Yl) = g(R(Xn, R(u, Yj)Xk)u, Yl)
= g(R(u, Yl)Xn, R(u, Yj)Xk)
= −g(R(u, Yj)R(u, Yl)Xn, Xk).

This is equivalent to

(11) 2R(Yj , Yl)Xn +R(u, Yj)R(u, Yl)Xn = −g(R(u, Yj)Xn, R(u, Yl)Xn)Xn.

By interchanging the indices j and l in this expression and adding both formulas,
respectively subtracting them, we get

R(u, Yj)R(u, Yl)Xn +R(u, Yl)R(u, Yj)Xn(12)
= −2g(R(u, Yj)Xn, R(u, Yl)Xn)Xn,

R(u, Yj)R(u, Yl)Xn −R(u, Yl)R(u, Yj)Xn = 4R(Yl, Yj)Xn.(13)

Substituting (11) in (4), we find the simpler form

(14) 2λ(∇XnR)(u, Yj)Xk = g(R(u, Yj)Xn, R(u, Yk)Xn)Xn.

Next, we substitute (3) in (5) to obtain

2λ(∇XkR)(Xn, Xj)u = R(Xn, R(u, Yk)Xj)u+R(Xj , R(u, Yk)Xn)u.

Taking the inner product with Yl, we get

2λg((∇XkR)(Xn, Xj)u, Yl)
= g(R(Xn, R(u, Yk)Xj)u, Yl) + g(R(Xj, R(u, Yk)Xn)u, Yl)
= g(R(u, Yl)Xn, R(u, Yk)Xj) + g(R(u, Yl)Xj , R(u, Yk)Xn)
= −g(R(u, Yk)R(u, Yl)Xn, Xj)− g(R(u, Yl)R(u, Yk)Xn, Xj)
= 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2892 E. BOECKX

by (12). Hence,

(15) (∇XkR)(Xn, Xj)u = 0 or, equivalently, (∇XkR)(u, Yl)Xn = 0.

Substituting (14) and (15) in (6), we find
1
λ2

g(R(u, Yj)Xn, R(u, Yk)Xn)Xn(16)

= 4R(Xn, Xj)Xk + 2R(u,R(Xn, Xj)u)Xk

−R(u,R(Xj, Xk)u)Xn +R(u,R(Xn, Xk)u)Xj .

In order to rewrite (7), we proceed as with (3): we take the inner product with Yl,
and we use curvature properties to obtain

(17) 2R(Yj , Yl)Xi +R(u, Yj)R(u, Yl)Xi =
4
r2

(δilXj − δjlXi).

(Note that we also need (11) to know that the left-hand side in (17) is orthogonal
to Xn.) Again switching the indices j and l and adding and subtracting the two
formulas, we get

R(u, Yj)R(u, Yl)Xi +R(u, Yl)R(u, Yj)Xi =
4
r2

(δilXj − 2δjlXi + δijXl),(18)

R(u, Yj)R(u, Yl)Xi −R(u, Yl)R(u, Yj)Xi = 4R(Yl, Yj)Xi +
4
r2

(δilXj − δijXl).(19)

Substituting (17) and (19) in (8), this reduces to

(20) λ(∇XiR)(u, Yj)Xk =
2(λ2 − 1)

r2
(δikXj − δjkXi),

or equivalently, via (15), to

(21) λ(∇XiR)(Xk, Xl)u =
2(λ2 − 1)

r2
(δikYl − δilYk).

It is now easily verified that (9) is a consequence of the above formulas. As
to (10), using (17) and (20), it simplifies to

4R(Xi, Xj)Xk + 2R(u,R(Xi, Xj)u)Xk −R(u,R(Xj , Xk)u)Xi(22)

+R(u,R(Xi, Xk)u)Xj =
4(λ4 − λ2 + 1)

λ2r2
(δjkXi − δikXj).

In the rest of this section, we will only need the formulas (12), (13), (16), (18),
(19) and (22).

4.3. Clifford structures. Putting j = l in (12) and (18), we see that

R(u, Yj)2Xj = 0,

R(u, Yj)2Xi = − 4
r2
Xi, i 6= j,

R(u, Yj)2Xn = −|R(u, Yj)Xn|2Xn.

Since R(u, Yj) is a skew-symmetric operator, the nonzero eigenvalues of R(u, Yj)2

must have even multiplicity. Hence,
• if n is even, the eigenvalue −4/r2 has even multiplicity n−2 on {Xj, Xn}⊥.

Hence, the eigenvalue corresponding to Xn must be zero. This implies that
R(u, Yj)Xn = 0 for j = 1, . . . , n − 1. By (13), also R(Yj , Yk)Xn = 0 for
j, k = 1, . . . , n−1. We conclude that Xn belongs to the nullity distribution
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of the curvature tensor Rx. In this case, the conditions (12), (13) and (16)
are trivially satisfied;
• if n is odd, the eigenvalue −4/r2 has odd multiplicity n− 2 on {Xj, Xn}⊥.

So, the eigenvalue corresponding to Xn must be −4/r2 as well. Hence, it
follows that |R(u, Yj)Xn|2 = 4/r2 for j = 1, . . . , n − 1. By Remark 2, we
even have |R(u, Y )Xn|2 = 4/r2 for every unit vector Y orthogonal to u. Po-
larizing this identity, we obtain g(R(u, Y )Xn, R(u, Z)Xn) = (4/r2) g(Y, Z)
for all vectors Y and Z orthogonal to u. In particular, the right-hand side
of (12) equals −(8δjl/r2)Xn. In this case, conditions (12) and (13) are
included in (18) and (19) if we allow the index i to be n.

Next, we put i = j 6= l in (18). Since R(u, Yj)Xj = 0 (this follows from
R(u, Yj)2Xj = 0), we obtain R(u, Yj)R(u, Yl)Xj = (4/r2)Xl. Applying the op-
erator R(u, Yj) on both sides, we have

4
r2
R(u, Yj)Xl = R(u, Yj)2R(u, Yl)Xj

= − 4
r2

(
R(u, Yl)Xj − g(R(u, Yl)Xj , Xn)Xn)

− g(R(u, Yl)Xj , Xn)|R(u, Yj)Xn|2Xn

or, equivalently,

4(R(u, Yj)Xl +R(u, Yl)Xj) = (4− r2|R(u, Yj)Xn|2)g(R(u, Yl)Xj , Xn)Xn.

Since the right-hand side of this expression vanishes both when n is odd and when
n is even, we conclude

(23) R(u, Yj)Xl +R(u, Yl)Xj = 0

for j, l = 1, . . . , n− 1.
We are now ready to discover Clifford representations in our formulas, in partic-

ular in (12) and (18). First, consider the case when n is even. For j = 1, . . . , n− 1,
define the operators Ri acting on V n = TxM by

Ri =
r

2
R(u, Yi)− 〈Xn, ·〉Xi + 〈Xi, ·〉Xn

where 〈 ·, 〉 = gx. In particular, it follows that RiXi = Xn, RiXn = −Xi and
RiXj = (r/2)R(u, Yi)Xj , j 6= i. Clearly, Ri is a skew-symmetric operator and
Ri

2 = −id.
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For i 6= j 6= k 6= i, we calculate:

(Ri ◦Rj + Rj ◦Ri)Xn = −RiXj −RjXi

= − r
2

(R(u, Yi)Xj +R(u, Yj)Xi) = 0, (by (23))

(Ri ◦Rj + Rj ◦Ri)Xi = Ri(
r

2
R(u, Yj)Xi) + RjXn

=
r2

4
R(u, Yi)R(u, Yj)Xi −Xj = 0 (by (18))

(Ri ◦Rj + Rj ◦Ri)Xk = Ri(
r

2
R(u, Yj)Xk) + Rj(

r

2
R(u, Yi)Xk)

=
r2

4

(
R(u, Yi){R(u, Yj)Xk − g(R(u, Yj)Xk, Xi)Xi}

+R(u, Yj){R(u, Yi)Xk − g(R(u, Yi)Xk, Xj)Xj}
)

+
r

2
(
g(R(u, Yj)Xk, Xi) + g(R(u, Yi)Xk, Xj)

)
Xn

=
r2

4
(
R(u, Yi)R(u, Yj)Xk +R(u, Yj)R(u, Yi)Xk

)
− r

2
g(R(u, Yj)Xi +R(u, Yi)Xj , Xk)Xn

= 0 (by (18) and (23)).

So, for i, j = 1, . . . , n− 1, the operators Ri satisfy

Ri ◦Rj + Rj ◦Ri = −2δij id

and they correspond to a Clifford representation of an (n− 1)-dimensional Clifford
algebra on an n-dimensional vector space.

It is well known (see, e.g., [1] or [3]) that a given real Clifford algebra, say of
dimensionm, has only one (ifm 6≡ 3 (mod 4)) or two (ifm ≡ 3 (mod 4)) irreducible
representations and that the dimension n0 of the corresponding irreducible Clifford
module is completely determined by m. This relationship is given in the following
table.

m 8p 8p+ 1 8p+ 2 8p+ 3 8p+ 4 8p+ 5 8p+ 6 8p+ 7

n0 24p 24p+1 24p+2 24p+2 24p+3 24p+3 24p+3 24p+3

For a reducible Clifford module, the dimension is a multiple kn0 of the number n0

corresponding to the appropriate Clifford algebra.
In the present situation, we have m = n− 1 and kn0 = n for even n. Therefore:
• if n = 8p: 8p = k24p−1 and hence p = 1, k = 1 and n = 8;
• if n = 8p+ 2: 8p+ 2 = k24p+1 and hence p = 0, k = 1 and n = 2;
• if n = 8p+ 4: 8p+ 4 = k24p+2 and hence p = 0, k = 1 and n = 4;
• if n = 8p+ 6: 8p+ 6 = k24p+3, which has no solutions.

Next, suppose that n is odd. Now, we define operators Ri, i = 1, . . . , n − 1,
acting on V n+1 = TxM ⊕ RX0 by

Ri =
r

2
R(u, Yi)− 〈X0, ·〉Xi + 〈Xi, ·〉X0
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where 〈 ·, ·〉 = gx ⊕ g0 with g0(aX0, bX0) = ab. Precisely as before, we show that
Ri ◦Rj + Rj ◦Ri = −2δij id for i, j = 1, . . . , n − 1. So, we have again a Clifford
representation, this time with m = n− 1 and kn0 = n+ 1 for odd n. Therefore, by
the table above:
• if n = 8p+ 1: 8p+ 2 = k24p and hence p = 0, k = 2 and n = 1;
• if n = 8p+ 3: 8p+ 4 = k24p+2 and hence p = 0, k = 1 and n = 3;
• if n = 8p+ 5: 8p+ 6 = k24p+3, which has no solutions;
• if n = 8p+ 7: 8p+ 8 = k24p+3 and hence p = 0, k = 1 and n = 7.
We conclude from this subsection that diagonal decompositions can only occur

when the base manifold has dimension 2, 3, 4, 7 or 8. (The case n = 1 is irrelevant,
since then TrM has dimension equal to one and no decompositions exist.)

4.4. The remaining dimensions.

Case n = 2. In this situation, we have a two-dimensional manifold for which the
nullity vector space of the curvature tensor is non-trivial. This implies that the
curvature tensor is identically zero and the space is flat.

Conversely, since any tangent sphere bundle of a flat surfaceM2(0) is a flat three-
dimensional space, a diagonal decomposition actually exists around each point (x, u)
of TrM2(0). Note, however, that we also have TrM2(0) ' M2(0) × S1(r) with
{x} × S1(r) ' π−1(x). So, TrM2(0) also admits a vertical decomposition.

Case n = 3. Let X3 be the unique unit vector (up to sign) such that X3
h is

tangent to M1 at (x, u). Pick a unit vector X1 orthogonal to X3 and let Y1 be the
corresponding unit vector orthogonal to u (i.e., X1

h+λY1
t is tangent to M1). From

the comments at the beginning of Subsection 4.3, we know that (r/2)R(u, Y1)X3

is a unit vector, which is moreover orthogonal to X1 and X3. So, we obtain an
orthonormal basis {X1, X2, X3} by defining X2 to be X2 := (r/2)R(u, Y1)X3. Let
Y2 be the corresponding unit vector orthogonal to u and Y1. (Since each Yi is fixed
together with its corresponding Xi, we will not mention this explicitly anymore in
what follows.)

Using the properties of the operators R(u, Y1) and R(u, Y2), we then deduce that

(24) R(u, Y1)X1 = 0, R(u, Y1)X2 = − 2
r X3, R(u, Y1)X3 = 2

r X2,
R(u, Y2)X1 = 2

r X3, R(u, Y2)X2 = 0, R(u, Y2)X3 = − 2
r X1

and from (13) and (19) it follows that

(25) R(Y1, Y2)X1 = − 2
r2 X2, R(Y1, Y2)X2 = 2

r2 X1, R(Y1, Y2)X3 = 0.

Next, we compute R(Xi, Xj)Xk, i, j, k = 1, 2, 3, from the equalities (16) and (22),
writing R(u,R(Xi, Xj)u)Xk as

∑
g(R(u, Yl)Xi, Xj)R(u, Yl)Xk and using (24) and

(25). This gives

(26)

X1 X2 X3

r2 R(X1, X2) −AX2 AX1 0
r2 R(X1, X3) −CX3 0 CX1

r2 R(X2, X3) 0 −CX3 CX3

where A = (λ4 − λ2 + 1)/λ2 and C = (3λ2 + 1)/λ2.
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Since both {X1, X2, X3} and {Y1, Y2, u/r} are orthonormal bases for TxM , there
is an orthogonal matrix Q = (qij) ∈ O(3) such that X1

X2

X3

 = Q

 Y1

Y2

u/r

 .

Changing X3 to −X3 if necessary, we may even suppose that Q ∈ SO(3). Then

R(X1, X3) = (q11q32 − q12q31)R(Y1, Y2) +
q11q33 − q13q31

r
R(Y1, u)

+
q12q33 − q13q32

r
R(Y2, u)

= −q23R(Y1, Y2)− q22

r
R(u, Y1) +

q21

r
R(u, Y2).

If we let both sides act on X1, X2 and X3 and if we use (24), (25) and (26), we
find that

q21 = −C/2, q22 = 0, q23 = 0.

Since Q ∈ SO(3), it follows that q21
2 + q22

2 + q23
2 = 1 and hence 1 = (3λ2 +1)/2λ2

or λ2 + 1 = 0, which is a contradiction. Hence, no three-dimensional manifold
admits a diagonal decomposition of its tangent sphere bundles at any point.

Case n = 4. Let X4 be the unique unit vector (up to sign) in the nullity distribu-
tion of Rx. Take two mutually orthogonal unit vectors X1 and X2 perpendicular
to X4. Since (r/2)R(u, Y1)X2 is a unit vector and orthogonal to X1, X2 and X4, we
can define X3 := (r/2)R(u, Y1)X2. From the properties of the operators R(u, Yi),
i = 1, 2, 3, it follows that

(27)

X1 X2 X3 X4

r R(u, Y1) 0 2X3 −2X2 0
r R(u, Y2) −2X3 0 2X1 0
r R(u, Y3) 2X2 −2X1 0 0

Next, we decompose X4 with respect to the basis {Y1, Y2, Y3, u/r}:

X4 = q1Y1 + q2Y2 + q3Y3 + q4
u

r
, q1

2 + q2
2 + q3

2 + q4
2 = 1.

Then R(u,X4) = q1R(u, Y1) + q2R(u, Y2) + q3R(u, Y3). Since X4 belongs to the
nullity distribution of R, this operator vanishes identically. By (27), we must have
q1 = q2 = q3 = 0. Hence, X4 = ±u/r. But this is impossible, since u clearly does
not belong to the nullity distribution. So, also for four-dimensional manifolds, a
diagonal decomposition of its tangent sphere bundles does not exist at any point.

Case n = 7. The argument for n = 7 goes along the same lines as that for n = 3,
but it is more involved technically. Again we start with the unit vectorX7, uniquely
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determined up to sign, such that X7
h is tangent to M1, and with an arbitrary unit

vector X1 orthogonal to X7. The unit vector X2 := (r/2)R(u, Y1)X7 is orthogonal
to both X1 and X7. Then it follows that

R(u, Y1)X1 = 0, R(u, Y1)X2 = − 2
r X7, R(u, Y1)X7 = 2

r X2,
R(u, Y2)X1 = 2

r X7, R(u, Y2)X2 = 0, R(u, Y2)X7 = − 2
rX1.

Note that R(u, Y1) and R(u, Y2) preserve span{X1, X2, X7}, hence by skew-sym-
metry also its orthogonal complement. Next, take a unit vector X4 orthogonal
to X1, X2, X7 and define the unit vectors X5 := (r/2)R(u, Y2)X4 and X6 :=
(r/2)R(u, Y1)X4. Then X5 and X6 are already orthogonal to X1, X2, X4 and X7.
Further,

g(X5, X6) =
r2

4
g(R(u, Y2)X4, R(u, Y1)X4)

= −r
2

4
g(R(u, Y1)R(u, Y2)X4, X4)

=
r2

4
g(R(u, Y2)R(u, Y1)X4, X4) (by (18))(28)

= −r
2

4
g(R(u, Y1)X4, R(u, Y2)X4)

= −g(X5, X6)

and X5 and X6 are mutually orthogonal as well. Finally, since R(u, Y1)X5 is or-
thogonal to X1, X2, X5, X7 and

g(R(u, Y1)X5, X4) = −g(X5, R(u, Y1)X4) = −2
r
g(X5, X6) = 0,

g(R(u, Y1)X5, X6) =
r

2
g(R(u, Y1)X5, R(u, Y1)X4) =

2
r
g(X5, X4) = 0,

we may define X3 := (r/2)R(u, Y1)X5.
In this way, we have defined an orthonormal basis {X1, . . . , X7}, and the actions

of the operators R(u, Yi), i = 1, . . . , 6, can be computed explicitly in this basis using
the properties (12), (18) and (23) above. We obtain

X1 X2 X3 X4 X5 X6 X7

r R(u, Y1) 0 −2X7 −2X5 2X6 2X3 −2X4 2X2

r R(u, Y2) 2X7 0 2X6 2X5 −2X4 −2X3 −2X1

r R(u, Y3) 2X5 −2X6 0 −2X7 −2X1 2X2 2X4

r R(u, Y4) −2X6 −2X5 2X7 0 2X2 2X1 −2X3

r R(u, Y5) −2X3 2X4 2X1 −2X2 0 −2X7 2X6

r R(u, Y6) 2X4 2X3 −2X2 −2X1 2X7 0 −2X5
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Next, we calculate R(Yi, Yj)Xk from (13) and (19):

X1 X2 X3 X4 X5 X6 X7

r2R(Y1, Y2) −2X2 2X1 2X4 −2X3 2X6 −2X5 0
r2R(Y1, Y3) −2X3 −2X4 2X1 2X2 0 2X7 −2X6

r2R(Y1, Y4) −2X4 2X3 −2X2 2X1 2X7 0 −2X5

r2R(Y1, Y5) −2X5 −2X6 0 −2X7 2X1 2X2 2X4

r2R(Y1, Y6) −2X6 2X5 −2X7 0 −2X2 2X1 2X3

r2R(Y2, Y3) 2X4 −2X3 2X2 −2X1 2X7 0 −2X5

r2R(Y2, Y4) −2X3 −2X4 2X1 2X2 0 −2X7 2X6

r2R(Y2, Y5) 2X6 −2X5 −2X7 0 2X2 −2X1 2X3

r2R(Y2, Y6) −2X5 −2X6 0 2X7 2X1 2X2 −2X4

r2R(Y3, Y4) 2X2 −2X1 −2X4 2X3 2X6 −2X5 0
r2R(Y3, Y5) 0 2X7 −2X5 −2X6 2X3 2X4 −2X2

r2R(Y3, Y6) 2X7 0 −2X6 2X5 −2X4 2X3 −2X1

r2R(Y4, Y5) 2X7 0 2X6 −2X5 2X4 −2X3 −2X1

r2R(Y4, Y6) 0 −2X7 −2X5 −2X6 2X3 2X4 2X2

r2R(Y5, Y6) 2X2 −2X1 2X4 −2X3 −2X6 2X5 0

Using (16) and (22), we can now compute the curvature components R(Xi, Xj)Xk

for i, j, k = 1, . . . , 7:

X1 X2 X3 X4 X5 X6 X7

r2 R(X1, X2) −AX2 AX1 2X4 −2X3 2X6 −2X5 0
r2 R(X1, X3) −BX3 X4 BX1 −X2 0 0 0
r2 R(X1, X4) −BX4 −X3 X2 BX1 0 0 0
r2 R(X1, X5) −BX5 X6 0 0 BX1 −X2 0
r2 R(X1, X6) −BX6 −X5 0 0 X2 BX1 0
r2 R(X1, X7) −CX7 0 0 0 0 0 CX1

r2 R(X2, X3) −X4 −BX3 BX2 X1 0 0 0
r2 R(X2, X4) X3 −BX4 −X1 BX2 0 0 0
r2 R(X2, X5) −X6 −BX5 0 0 BX2 X1 0
r2 R(X2, X6) X5 −BX6 0 0 −X1 BX2 0
r2 R(X2, X7) 0 −CX7 0 0 0 0 CX2

r2 R(X3, X4) 2X2 −2X1 −AX4 AX3 2X6 −2X5 0
r2 R(X3, X5) 0 0 −BX5 X6 BX3 −X4 0
r2 R(X3, X6) 0 0 −BX6 −X5 X4 BX3 0
r2 R(X3, X7) 0 0 −CX7 0 0 0 CX3

r2 R(X4, X5) 0 0 −X6 −BX5 BX4 X3 0
r2 R(X4, X6) 0 0 X5 −BX6 −X3 BX4 0
r2 R(X4, X7) 0 0 0 −CX7 0 0 CX4

r2 R(X5, X6) 2X2 −2X1 2X4 −2X3 −AX6 AX5 0
r2 R(X5, X7) 0 0 0 0 −CX7 0 CX5

r2 R(X6, X7) 0 0 0 0 0 −CX7 CX6

where A = (λ4 − λ2 + 1)λ2, B = (λ2 + 1)2/λ2 and C = (3λ2 + 1)/λ2.
We now show that the tables above are incompatible. To see this, we relate

the two orthonormal bases {X1, . . . , X7} and {Y1, . . . , Y6, u/r} by an orthogonal
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transformation. Let Q = (qij) ∈ O(7) be such that X1

...
X7

 = Q


Y1

...
Y6

u/r

 .

Putting Qijkl := qikqjl − qilqjk, we then have the equality

R(Xi, Xj) =
6∑

k<l=1

Qijkl R(Yk, Yl) +
6∑

k=1

(Qijk7/r)R(Yk, u).

So,

2 = r2 g(R(X1, X2)X3, X4)

=
6∑

k<l=1

r2 Q12
kl g(R(Yk, Yl)X3, X4) +

6∑
k=1

r Q12
k7 g(R(Yk, u)X3, X4)

= 2(Q12
12 −Q12

34 +Q12
56)

and
2 = r2 g(R(X1, X2)X5, X6) = 2(Q12

12 +Q12
34 −Q12

56).

This implies that Q12
12 = 1. Now, using the Cauchy-Schwarz inequality and the fact

that Q is orthogonal, we find that

1 = Q12
12 = q11q22 − q12q21 = (q11, q12) · (q22,−q21)

≤
√
q11

2 + q12
2
√
q21

2 + q22
2 ≤

√
q11

2 + · · ·+ q17
2
√
q21

2 + · · ·+ q27
2 = 1.

Hence, all the inequalities must be equalities. In particular, we have q13 = · · · =
q17 = q23 = · · · = q27 = 0 and consequently

X1 = cos θ1 Y1 + sin θ1 Y2, X2 = ε1(− sin θ1 Y1 + cos θ1 Y2)

where ε1 = ±1 and θ1 is some real number. In a similar way, we can show that
Q34

34 = Q56
56 = 1 and that

X3 = cos θ2 Y3 + sin θ2 Y4, X4 = ε2(− sin θ2 Y3 + cos θ2 Y4),
X5 = cos θ3 Y5 + sin θ3 Y6, X6 = ε3(− sin θ3 Y5 + cos θ3 Y6).

As a consequence, we also have X7 = εu/r, ε = ±1. Using the tables above, we
find that

0 = r2 R(X1, X7)X3 = −ε (cos θ1 r R(u, Y1)X3 + sin θ1 r R(u, Y2)X3)
= 2ε(cos θ1X5 − sin θ1X6),

which gives a contradiction. So, also seven-dimensional manifolds cannot have a
diagonal decomposition for their tangent sphere bundles at any point.

Case n = 8. This case is treated as the case n = 4, but the appropriate choice for
the basis {X1, . . . , X8} requires a little more care. Let X8 be the unique unit vector
(up to sign) in the nullity distribution of Rx and take two arbitrary unit vectors
X1 and X2 that are mutually orthogonal and perpendicular to X8. As before, we
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define X3 := (r/2)R(u, Y1)X2, which is a unit vector orthogonal to X1, X2 and X8.
It follows that R(u, Yi)X8 = 0 for i = 1, 2, 3, and

R(u, Y1)X1 = 0, R(u, Y1)X2 = 2
r X3, R(u, Y1)X3 = − 2

r X2,
R(u, Y2)X1 = − 2

r X3, R(u, Y2)X2 = 0, R(u, Y2)X3 = 2
r X1,

R(u, Y3)X1 = 2
r X2, R(u, Y3)X2 = − 2

r X1, R(u, Y3)X3 = 0.

Because they are skew-symmetric, the operators R(u, Y1), R(u, Y2) and R(u, Y3)
also preserveW = {X1, X2, X3, X8}⊥, and on this space they anti-commute by (18).
It is easy to check that the operator (r3/8)R(u, Y1)R(u, Y2)R(u, Y3) is symmetric
on W and that it squares to the identity on W . Hence, it has a basis of eigenvectors
corresponding to the eigenvalues +1 and −1. Let X4 be a unit vector in W such
that r3 R(u, Y1)R(u, Y2)R(u, Y3)X4 = 8εX4 where ε = ±1, and define

X5 :=
r

2
R(u, Y1)X4, X6 :=

r

2
R(u, Y2)X4, X7 :=

r

2
R(u, Y3)X4.

Clearly, X5, X6 and X7 are unit vectors orthogonal to X1, X2, X3, X4 and X8.
A computation similar to (28) shows that they are also orthogonal to one another.
So, we have an orthonormal basis {X1, . . . , X8} for TxM . It is now possible to
compute explicitly the action of R(u, Yi), i = 1, . . . , 7, from the condition (18). We
get

X1 X2 X3 X4 X5 X6 X7 X8

r R(u, Y1) 0 2X3 −2X2 2X5 −2X4 −2εX7 2εX6 0
r R(u, Y2) −2X3 0 2X1 2X6 2εX7 −2X4 −2εX5 0
r R(u, Y3) 2X2 −2X1 0 2X7 −2εX6 2εX5 −2X4 0
r R(u, Y4) −2X5 −2X6 −2X7 0 2X1 2X2 2X3 0
r R(u, Y5) 2X4 −2εX7 2εX6 −2X1 0 −2εX3 2εX2 0
r R(u, Y6) 2εX7 2X4 −2εX5 −2X2 2εX3 0 −2εX1 0
r R(u, Y7) −2εX6 2εX5 2X4 −2X3 −2εX2 2εX1 0 0

Next, decompose X8 with respect to the basis {Y1, . . . , Y7, u/r}:

X8 = q1 Y1 + · · ·+ q7 Y7 + q8
u

r
, q1

2 + · · ·+ q8
2 = 1.

Since X8 belongs to the nullity distribution of the curvature, we have

0 = R(u,X8) =
7∑
i=1

qiR(u, Yi)

and from the table above we deduce q1 = · · · = q7 = 0. Hence, X8 = ±u/r, but
this is impossible since u does not belong to the nullity distribution. So, also in
the eight-dimensional case, a diagonal decomposition of the tangent sphere bundles
does not exist at even a single point.

Remark 3. The operator r3R(u, Y1)R(u, Y2)R(u, Y3) acts as 8ε id on the vector
space spanned by X4, X5, X6 and X7, as is seen easily from the previous table.
The two different cases, ε = +1 and ε = −1, correspond to the two non-equivalent
irreducible Clifford representations of the seven-dimensional Clifford algebra.
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5. Vertical decomposition

Now, we suppose that we have a vertical decomposition TrM ' M1 ×M2 such
that V TrM(x,u) ⊂ T(x,u)M1 everywhere. In this situation, if (x, u) ∈ M1 × {q}
for some q ∈ M2, then π−1(x) ⊂ M1 × {q}. Consequently, we have M1 × {q} =
π−1(π(M1 × {q})). So, the leaves M1 × {q}, corresponding to the product, project
under π to a foliation L1 on (M, g) and π−1(L1) = {M1 × {q}, q ∈ M2}. Let
L1 be the distribution on M tangent to L1. Define the distribution L2 to be the
orthogonal distribution to L1 on M . Then

T(x,u)(M1 × {q}) = V TrM(x,u) ⊕ h(L1x), T(x,u)({p} ×M2) = h(L2x)

where h denotes the horizontal lift.
If X and Y are vector fields on M tangent to L1 and U , V are tangent to L2,

then Xh, Y h are tangent to M1 and Uh, V h are tangent to M2. Because of the
product structure, we have that ∇̄XhY h and ∇̄UhXh are tangent to M1 and ∇̄UhV h
and ∇̄XhUh are tangent to M2. Using the expressions (1) for ∇̄, this means that

• ∇XY and ∇UX are sections of L1: so, L1 is totally geodesic and even
totally parallel;
• ∇UV and ∇XU are sections of L2: so, also L2 is totally geodesic and totally

parallel (in particular, L2 is integrable with associated foliation L2);
• R(U, V )u = R(X,U)u = 0: so, L2 is contained in the nullity distribution

of the curvature. The leaves of L2 are therefore flat.
These properties imply that L1 and L2 consist of the leaves of a local Riemannian
product M 'M ′ × Rk where k = dimL2 ≤ n (see [8]).

Suppose conversely that Mn is locally isometric to M ′×Rk for 1 ≤ k ≤ n. This
gives rise to two foliations on Mn: L1 = {M ′×{v}, v ∈ Rk} and L2 = {{p}×Rk, p ∈
M ′}. Define two complementary distributions L̃1 and L̃2 on TrM by

L̃1 = V TrM ⊕ h(TM ′), L̃2 = h(TRk).

It is easily checked using (1) that L̃1 and L̃2 are totally geodesic and totally parallel
complementary distributions. Hence, the leaves of their corresponding foliations L̃1

and L̃2 are actually the leaves of a local Riemannian product. In particular, note
that L̃1 = {π−1(M ′ × {v}), v ∈ Rk}. So, TrM is indeed locally reducible.

6. Global results

We continue with the notation of the previous section. In order to derive results
concerning the global reducibility of (TrM, gS), we will exploit the relationship
between the foliations L1 and L2 of (M, g) and the foliations L̃1 and L̃2 of (TrM, gS)
in the case of a vertical decomposition. We have already remarked that L1 and L̃1

determine each other reciprocally by L1 = π(L̃1) and L̃1 = π−1L1. The relationship
between the foliations L2 and L̃2 is not so straightforward. We still have L2 =
π(L̃2), but determining L̃2 from L2 requires a little more care. To construct the
leaf S̃ of L̃2 through a point (x, u) ∈ TrM , consider all the curves in the leaf S
of L2 starting at x ∈ M . Then, S̃ consists of all end-points of the horizontal lifts
of these curves starting at (x, u). We call S̃ the horizontal lift of S through (x, u).
Since S̃ is everywhere horizontal, the map π : S̃ → S is a local isometry and S̃ is
a Riemannian covering of S. When S is simply connected, S̃ and S are globally
isometric and, in particular, one-to-one.
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With these comments in mind, we now proceed to the proof of the Global The-
orem. So, we suppose that dimM ≥ 3 and that (TrM, gS) is isometric to a global
Riemannian product (M1, g1)×(M2, g2). Since dimM ≥ 3, this is a vertical decom-
position and V TrM is tangent to one of the factors, say M1. Consider M1 and M2

as submanifolds of TrM (i.e., choose one leaf of each of the foliations L̃1 and L̃2)
and define the submanifolds M ′ := π(M1) and F := π(M2) of M . From the local
considerations in the previous section, we know that (M, g) is locally isometric to
the Riemannian product M ′ × F and that F is flat.

We show that there is a one-to-one correspondence between M and M ′×F . Take
a point x ∈ M and consider an arbitrary vector u ∈ TxM of length r. Through
(x, u) ∈ TrM , there is a unique leaf S̃1u of L̃1 and a unique leaf S̃2u of L̃2. Because
of the product structure on TrM , S̃1u cuts M2 in a unique point q̃u ∈ M2 and
S̃2u cuts M1 in a unique point p̃u ∈M1. Put pu := π(p̃u) ∈M ′ and qu := π(q̃u) ∈ F .
We claim that the correspondence M →M ′ × F : x 7→ (pu, qu) is well-defined, i.e.,
independent of the choice of the tangent vector u. To see this, take another vector
v ∈ TxM of length r. Since π(x, u) = x = π(x, v), the leaf S̃1u of L̃1 contains both
(x, u) and (x, v); so we have S̃1u = S̃1v, q̃u = q̃v and qu = qv. The unique leaf S̃2v

of L̃2 through (x, v) is different from S̃2u. However, both are horizontal lifts of
S2x = π(S̃2u). So, if γ̃u(t) = (x(t), u(t)) is a curve in S̃2u such that γ̃u(0) = (x, u)
and γ̃u(1) = p̃u ∈ M1, then γ = π ◦ γ̃u runs from x to pu ∈ M in S2x. Denote
by γ̃v the horizontal lift of γ starting at (x, v). Clearly, γ̃v lies in S̃2v and ends
at p̃v ∈M1. Hence, pv = π(p̃v) = π(γ̃v(1)) = γ(1) = pu.

On the other hand, starting from a couple (p, q) ∈ M ′ × F , we find the corre-
sponding point x ∈ M as x = π(p̃, q̃) for some p̃ ∈ M1 with π(p̃) = p and the
unique q̃ ∈ M2 with π(q̃) = q. Via an argument as above, one shows that x does
not depend on the choice of p̃ and that the map (p, q) 7→ x defined in this way is
the inverse of the map x 7→ (pu, qu).

Next, we note that the correspondence M → M ′ × F : x 7→ (pu, qu) is defined
so as to respect the local product structure. In particular, the metric g on M
corresponds to the product metric of M ′ × F , and the first statement is proved.

Conversely, suppose that (M, g) is the global product space (M ′, g′) × (F, g0).
By choosing a leaf of both product foliations, one can consider M ′ and F as sub-
manifolds of M . Let x0 be their intersection point and choose a vector u0 ∈ Tx0M
of length r. Define M1 as the inverse image of M ′ under the projection π and
M2 as the horizontal lift of F through (x0, u0). Since we suppose F to be simply
connected, M2 is isometric to the flat space (F, g0) and M1 and M2 have (x0, u0)
as unique intersection point.

We show that there is a one-to-one correspondence between TrM and M1×M2.
Take (x, u) ∈ TrM and denote by S1 the unique leaf of L1 on M through x and by
S2 the unique leaf of L2 on M through x. Then, the leaf S̃1 of L̃1 through (x, u)
is given by π−1(S1) and the leaf S̃2 of L̃2 through (x, u) is the horizontal lift of S2

through this point. S̃1 cuts M2 in a unique point q̃ with π(q̃) = S1 ∩ F , and
S̃2 cuts M1 in a unique point p̃ with π(p̃) = S2 ∩ M ′. (Note that the simply
connectedness of F is essential to ensure uniqueness.) Clearly, the correspondence
TrM →M1 ×M2 : (x, u) 7→ (p̃, q̃) is well-defined and it is not difficult to construct
its inverse. Since this correspondence also respects the local product structure, the
metric gS on TrM corresponds to the product metric on M1×M2. This completes
the proof of the Global Theorem.
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Remark 4. The proof of the Global Theorem continues to hold when n = 2 for the
case of a vertical global decomposition of (TrM, gS). Clearly, the base manifold is
then flat. That we need the simply connectedness of the flat factor can be seen
from the example of a two-dimensional flat cone C. The vertical and horizontal
distributions on TrC are both integrable, and locally their integral manifolds are
the leaves of the local product foliation on TrC. If it were a global decomposition,
every maximal integral manifold of the horizontal distribution would intersect ev-
ery vertical fiber exactly once and it would be isometric to C under the natural
projection π. This would define a global parallelization of C, contrary to the fact
that its full holonomy group is non-trivial.

References

[1] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3, Suppl. 1 (1964), 3–38.
MR 29:5250

[2] J. Berndt, E. Boeckx, P. Nagy and L. Vanhecke, Geodesics on the unit tangent bundle,
preprint, 2001.

[3] J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci
harmonic spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New
York, 1995. MR 97a:53068

[4] E. Boeckx and G. Calvaruso, When is the unit tangent sphere bundle semi-symmetric?,
preprint, 2002.

[5] E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Hous-
ton J. Math. 23 (1997), 427–448. MR 2000e:53052

[6] E. Boeckx and L. Vanhecke, Curvature homogeneous unit tangent sphere bundles, Publ.
Math. Debrecen 53 (1998), 389–413. MR 2000d:53080

[7] E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent
bundles, Differential Geom. Appl. 13 (2000), 77–93. MR 2001f:53138
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