When are Timed Automata Determinizable?

Christel Baier!', Nathalie Bertrand?, Patricia Bouyer®, and Thomas Brihaye*

! Technische Universitit Dresden, Germany
2 INRIA Rennes Bretagne Atlantique, France
3 LSV, CNRS & ENS Cachan, France
4 Université de Mons, Belgium

Abstract. In this paper, we propose an abstract procedure which, given
a timed automaton, produces a language-equivalent deterministic infinite
timed tree. We prove that under a certain boundedness condition, the
infinite timed tree can be reduced into a classical deterministic timed au-
tomaton. The boundedness condition is satisfied by several subclasses of
timed automata, some of them were known to be determinizable (event-
clock timed automata, automata with integer resets), but some others
were not. We prove for instance that strongly non-Zeno timed automata
can be determinized. As a corollary of those constructions, we get for
those classes the decidability of the universality and of the inclusion
problems, and compute their complexities (the inclusion problem is for
instance EXPSPACE-complete for strongly non-Zeno timed automata).

1 Introduction

Timed automata have been proposed by Alur and Dill in the early 90s as a model
for real-time systems [2]. A timed automaton is a finite automaton which can
manipulate real-valued variables called clocks, that evolve synchronously with
the time, can be tested and reset to zero. One of the fundamental properties
of this model is that, although the set of configurations is in general infinite,
checking reachability properties is decidable. From a language-theoretic point
of view, this means that checking emptiness of the timed language accepted by
a timed automaton can be decided (and is a PSPACE-complete problem). The
proof relies on the construction of the so-called region automaton, which finitely
abstracts behaviours of a timed automaton. Since then, its appropriateness as
a model for the verification of real-time systems has been confirmed, with the
development of verification algorithms and dedicated tools.

There are however two weaknesses to that model: a timed automaton cannot
be determinized, and inclusion (and universality) checking is undecidable [2], ex-
cept for deterministic timed automata. This basically forbids the use of timed au-
tomata as a specification language. Understanding and coping with these weak-
nesses have attracted lots of research, and, for instance, testing whether a timed
automaton is determinizable has been proved undecidable [6]. Also, the undecid-
ability of universality has been further investigated, and rather restricted classes
of timed automata suffer from that undecidability result [1]. On the other hand,

classes of timed automata have been exhibited, that either can be effectively
determinized (for instance event-clock timed automata [3], or timed automata
with integer resets [9]), or for which universality can be decided (for instance
single-clock timed automata [7]).

In this paper, we describe a generic construction that is applicable to ev-
ery timed automaton, and which, under certain conditions, yields a determin-
istic timed automaton, which is language-equivalent to the original timed au-
tomaton. The idea of the procedure is to unfold the timed automaton into a
finitely-branching infinite tree that records the timing constraints that have to
be satisfied using one clock per level of the tree (hence infinitely many clocks).
When reading a finite timed word in that infinite tree, we may reach several
nodes of the tree, but the timing information stored in the clocks is independent
of the run in the tree. Thanks to this kind of input-determinacy property, we
can determinize this infinite object, yielding another finitely-branching infinite
tree. And, under a boundedness condition on the amount of timing informa-
tion we need to store, we will be able to fold back the tree into a deterministic
timed automaton. This boundedness condition is not a syntactical condition on
the original timed automaton, but will be satisfied by large classes of timed au-
tomata: event-clock timed automata [3], timed automata with integer resets [9],
and strongly non-Zeno timed automata. Furthermore, our construction yields
automata of exponential-size in the first case, and doubly-exponential-size au-
tomata otherwise. In particular, our approach provides an EXPSPACE algorithm
to check universality (and inclusion) for a large class of timed automata, and
we prove that this complexity is tight. Our algorithm can easily be adapted into
a PSPACE one, in the special case of event-clock timed automata, allowing to
recover the known result of [3].

2 Timed automata

Preliminaries. Given X a finite or infinite set of clocks and M a non-negative
integer, a clock valuation over X bounded by M is a mapping v : X — Ty,
where Ty, = [0, M] U {L}. We assume furthermore that L > M. The notation
L is for abstracting values of clocks that are above some fixed value M. This is
rather non-standard (though used for instance in [8]) but it will be convenient in
this paper. We note 0 the valuation that assigns 0 to all clocks. If v is a valuation
over X and bounded by M, and t € R, then v + ¢t denotes the valuation which
assigns to every clock z € X the value v(z) +1t if v(x)+¢t < M, and L otherwise
(in particular, if v(x) = L, then (v+¢)(z) = 1). For Y C X we write [V « OJv
for the valuation equal to v on X \ Y and to 0 on Y, and vjy for the valuation
v restricted to clocks in Y. A(n M-bounded) guard (or constraint) over X is a
finite conjunction of constraints of the form x ~ ¢ where € X, ¢ € NN [0, M]
and ~ € {<,<,=,>,>}. We denote by Gp(X) the set of M-bounded guards
over X . Given a valuation v and a guard g we write v |= g whenever v satisfies g.
A timed word over X is a finite sequence of pairs (a1,t1)(as,t2) ... (ak, tx)
such that for every 4, a; € X and (¢;)1<i<k is a nondecreasing sequence in Ry .

Timed automata. A timed automaton is a tuple A = (L, %y, Lace, X, M, E)
such that: () L is a finite set of locations, (i) £y € L is the initial location, (4i%)
Lacc € L is the set of final locations, (iv) X is a finite set of clocks, (v) M € N,
and (vi) E C L x Gyr(X) x X x 2% x L is a finite set of edges. Constant M is
called the maximal constant of A.

The semantics of a timed automaton A is given as a timed transition system
Ta = (5,50, Sacc, (Ry x), —) with set of states S = L x Ty, initial state
so = (£o,0), set of accepting states Sace = Lacc X TTAX4, and transition relation
— C Sx(Ry x %) xS composed of moves of the form (¢,v) =% (¢,v') whenever
there exists an edge (¢, g,a,Y,¢') € E such that v+7 |= gand v’ = [V « 0](v+71).

A run g of A is a finite sequence of moves, i.e., o = sg T, gL I g
It is said initial whenever sy = ({p,0). An initial run is accepting if it ends in
an accepting location. The timed word v = (a1,t1)(az2,t2) ... (ag,tx) is said to
be read on ¢ whenever ¢; = Z;Zl 7; for every 1 < i < k. We write L(.A) for the
set of timed words (or timed language) accepted by A, that is the set of timed
words u such that there exists an initial and accepting run o which reads w.

A timed automaton A is deterministic whenever for every timed word u, there
is at most one initial run which reads u. It is strongly non-Zeno whenever there
exists K € N such that for every run o = sg RELLZN S1... SLILLN spin A, k> K
implies Zle 7; > 1. This condition is rather standard in timed automata [4].

Example 1. An example of timed automaton is depicted in Fig. 1. This automa-
ton will be used as a running example throughout the paper in order to illustrate
the different steps of our construction. This automaton is not deterministic and
accepts the timed language {(a,t1)(a,t2) - (a,t2,) [n > 1, 0<t; <ty < -+ <

ton—1 and to, — tap—o = 1}, with the convention that tg = 0. The timed word

(a,0.5)(a, 1.6)(a,2.9) can be read on the initial run (£o,0) —2% (£5,0) —2%

(4o,0) BN (¢1, 1) but is not accepted. The last configuration of the above run

is (¢1, L) because the value of clock x should be 1.3, but as it is larger than the
maximal constant 1, we abstract the precise value into L.

x>0,a,{z} l
x>0,a,{x}

Fig. 1. A timed automaton A

On timed bisimulations. A strong timed (resp. time-abstract) simulation re-
lation between two timed transition systems 7; = (.S;, 4.0, Si,acc; (X URL), =)

for i € {1,2} is a relation R C S; x Sy such that if s;1 R s2 and s; fue, s} for
some t; € Ry and a € X, then there exists s, € Sy (resp. t2 € Ry and s}, € Ss)

such that sy % sh (resp. s2 t2g, sh) and s] R sh. A strong timed (resp. time-

abstract) bisimulation relation between two timed transition 7; for ¢ € {1,2}
is a relation ;8 C S; x Sy such that both 98 and SR~! are strong timed (resp.
time-abstract) simulation relations. The above relations preserve initial (resp.

accepting) states whenever s19 R s2o (resp. s1 R s2 and s; € S;acc implies
S3_i € S3_;acc). Note that the notion of strong timed bisimulation which pre-
serves initial and accepting states is stronger than that of language equivalence.

The classical region construction. We let X be a finite set of clocks, and
M € N. We define the equivalence relation =x p; between valuations in T,; as
follows: v =x p v iff (¢) for every clock z € X, v(z) < M iff v/(z) < M; (4t) for
every clock z € X, if v(x) < M, then |v(x)] = |v'(z)], and (i7) for every pair
of clocks (z,y) € X? such that v(z) < M and v'(z) < M, {v(x)} < {v(y)} iff
{v'(2)} < {v'(y)}. ® The equivalence relation is called the region equivalence for
the set of clocks X w.r.t. M, and an equivalence class is called a region. We note
Regf\z for the set of such regions. A region r’ is a time-successor of a region r if
there is v € r and ¢ € R4 such that v +¢ € r/. If v is a valuation, we will write
[v] for the region to which v belongs (when X and M are clear in the context).
It is a classical result [2] that given a timed automaton A with maximal
constant M and set of clocks X, the relation SR x s between configurations of A
defined by (¢,v) Rx ar (¢,0") iff v =x pr v s a time-abstract bisimulation.

3 Some transformations

In this section, we describe a general construction that aims at determinizing
a timed automaton. We know however that not all timed automata can be de-
terminized [2], and even that we cannot decide whether a timed automaton can
be determinized [6]. We will thus give conditions that will ensure (¢) that our
procedure can be properly applied, and (é¢) that the resulting timed automaton
is deterministic and accepts the same timed language as the original automaton.
We will then analyze the complexity of the procedure, and apply it to several
subclasses of timed automata, some of which were known to be determinizable,
some other were not known to be determinizable.

This construction consists in four steps: (i) an unfolding of the original au-
tomaton into an infinite timed tree, (i¢) a region abstraction, (iii) a symbolic
determinization, and (iv) a reduction of the number of clocks, allowing to fold
the tree back into a timed automaton. These steps are described in the following
subsections. Due to page limitation, we will give no formal definitions of the
objects we build in our construction, and better illustrate the construction on
the running example. All details can be found in the technical report [5].

3.1 Construction of an equivalent infinite timed tree

In this first step, we unfold the timed automaton .4 into a finitely-branching
infinite timed tree A that has infinitely many clocks (one clock per level of
the tree), we call Z = {zp,21,...} this infinite set of clocks. The idea of this
unfolding is to use a fresh clock reset at each level of the tree in order to record

® Where || (resp. {a}) denotes the integral (resp. fractional) part of «.

the timing constraints that have to be satisfied in A. Each node n of A% is
labelled by a pair (¢,0) € L x ZX where £ records the location of A that node
n simulates and o describes how the clocks of A are encoded using the clocks
of A (if o(x) = z;, the value clock x would have in A is the current value of
clock z;). The advantage of this infinite timed tree is that it enjoys some input-
determinacy property: when reading a finite timed word v in A, there may be
several runs in the tree that read u, but the timing information stored in the
clocks is independent of the run in the tree (see Remark 4).

Ezxample 2. Part of the infinite timed tree A* associated with the timed au-
tomaton A of Fig. 1 is depicted in Fig. 2. Notice that a fresh clock is reset at
each level; for instance zs is reset on all edges from level-1 to level-2 nodes (i.e.
ny — n3 and ny — ny). The timed tree A corresponds to the unfolding of A:
the two branches starting from the node ng represent the possible choice in state
£y of A; the same phenomenon also happens in n4. The label of ny is (¢, 22); it
means that node ny4 represents the location ¢y of A and that the value of clock
x can be recovered from the current value of clock zs. It is important to observe
how the second component of the label evolves. First consider the edge ny — ns;
it represents the transition from ¢y to ¢; in A, which does not reset clock x; the
reference for clock z is the same in nj as it is in n4, that is why the label of ns
is ({1, 22). Now consider the edge ny — ng; it represents the transition from £,
to £3 in A, which resets clock x; the reference for clock x thus becomes z3, the
clock which has just been reset, that is why the label of ng is (¢3, 23).

l (£0,20)
level 0
20>0,a,{z1} z0>0,a,{z1}
level 1 @ (£1,20) (£3,21)
z20=1,a,{22} 21>0,a,{z2}

(£o,22)

level 2 (£2,22)

22>0,a,{z3}
level 3 , @ (£3,23)
level 4 (€0,24)

22>0,a,{z3}

Fig. 2. The infinite timed tree A associated with the timed automaton A of Fig. 1.

The correctness of this unfolding is stated in the follow lemma.

Lemma 3. The relation Ry between states of A and states of A defined by
(L,vo0) Ry (n,v) if label(n) = (¢,0) is a strong timed bisimulation.

Remark 4. In A, for every finite timed word wu, there is a unique valuation
v, € TZ such that for every initial run ¢ in A that reads u, o ends in some
configuration (n,v,) with level(n) = |u|. Indeed, if the timed word w is of the
form (a1,t1)...(ajy|, tju)), any initial run g reading u necessarily ends in a config-
uration (n,v,) where level(n) = |u| and v, (2;) = t,| — t; for any j < |u].

3.2 A region abstraction

In this second step, we extend in a natural way the classical region equivalence to
the above infinite timed tree: at level ¢ of the tree, only clocks in Z; = {zo,- - , 2;}
are relevant (all other clocks have not been used yet), we thus consider regions
over that set of clocks. We use R(A>) to denote this region abstraction, and we
interpret it in a timed manner. We do not illustrate this transformation step on
our running example, since R(A™) is easily obtained from .4°°, but only depict
the transformation on an edge, see below:

level i (¢,0) (¢,0) r: region over Z;
" ri
'’ region over Z;
17 .
gvav{zi+1} N T ,a,{zi+1} time successor of r

included in g

r’: region over Z; 41

level i+1 @ (Z/)a'/)

It is worth noting that, in R(A°°), any state reached after a transition is of the
form ((n,r),v), where n is a node of A (of some level, say i), r is a region over
Z;, and v is a valuation over Z; which belongs to r. It is not difficult to see that,
as in the standard region construction in timed automata, two states ((n,r),v1)
and ((n,r),v) with vy, ve € r are time-abstract bisimilar. Furthermore, R(A)
will satisfy the same input-determinacy property as A> (see Remark 4). The
correctness of R(A*) can then be stated as follows.

=r""A(2;41=0)

Lemma 5. The relation Rs between states of A and states of R(A>) defined
by (n,v) R ((n,7),v) if v € r is a strong timed bisimulation.

3.3 Symbolic determinization

This third step is the crucial step of our construction. We will symbolically deter-
minize the infinite timed tree R(A*) using a rather standard subset construc-
tion, and we denote by SymbDet(R(A*)) the resulting infinite tree. However
there will be a subtlety in the subset construction: useless clocks will be forgot-
ten ‘on-the-fly’. More precisely, at each node, we only consider active clocks, i.e.
clocks that appear in the label of the node (other clocks record values that do
not impact on further behaviours of the system). The determinization is then
performed on the ‘symbolic’ alphabet composed of regions over active clocks
and actions, and thanks to the input-determinacy property of R(.A%), this sym-
bolic determinization coincides with the determinization of the underlying timed
transition system. Let us explain this crucial step on our running example.

Ezample 6. The construction of SymbDet(R(A>)) is illustrated on Fig. 3. The
determinization is performed using a classical subset construction. For example
starting from node ng, both n; and ny can be reached via a transition with
guard 0 < zp < 1. This is reflected in the leftmost {nj,ns}-node at the first
level. It is also important to understand the meaning of active clocks. In A,
the only active clock in node ny is zo. Therefore, guards on transitions leaving
the node ({n4}, 22 = 0) in SymbDet(R(.A>)) are regions over this unique clock
2. If we consider a node combining ns and ng, active clocks will consist in the
union of active clocks in both nodes, hence z5 and z3. For sake of readability,
we have mostly omitted labels of nodes on Fig. 3, but they can be naturally
inferred from those in R(A); for instance, the label of the top-rightmost node
is {(¢1,20), ({3, 21)}, the union of the labels of ny; and ng in R(A>).

label
| {(€1.20).(£5.21)}

0<2p9<1 zp=1 ~

({no},z0=0)

zo>1

’ ({n1,n2},0=21<z0<1) ‘ ’ ({n1,n2},0=21<z9=1) ‘ ’ ({n17n2}70:;1<20:1) ‘

O %
*1,z 21>0 N o 0=z1<zp=1
9%y [\

0 1 zo=1
({ngma},za=0) | =225 ({na},22=0) 2 ({n3},22=0)

0<z1<z0=1

0<z2<1 \
’ ({n5,m6},0=23<22<1) ‘ ’ ({n5,n6},0=23<z2=1) ‘ ’ ({ns,m6},0=23<22=1) ‘
0<z3<za=1 o< z3>1 0=23<za=1
2. LZzZ2
3r205¢ 0<z3<t

({n7,n8},24=0) ({ng},z4=0) ({n7},24=0)

Fig. 3. The DAG induced by the infinite timed tree SymbDet(R(.A))

The subset construction induces a DAG (as seen on Fig. 3). However the rest
of the construction will require a tree instead of a DAG; we thus add markers to
nodes, so that we can have several copies of a node, depending on the ancestors.
A node in SymbDet(R(A>)) is thus a tuple (x, K,r) where x is a marker, K is
a subset of node names in R(A*°) (they all have same level), and r is a region
over the set Act(K) = U,k 1apei(n)=(e,0) 7(X), the set of active clocks in K.

The correctness of SymbDet(R(A>)) is stated in the following proposition.

Proposition 7. SymbDet(R(A>)) is a deterministic timed tree, and for every
node N = (x, K,r) and for every valuation v € TALUE) with v e r,

L(SymbDet(R(A®)), (N,v)) = |] LR(A®), ((n,7),v))

nekK

Remark 8. In case A has a single clock x, a level-i node of SymbDet(R(A>))
carries the following information: a finite set of pairs of the form (¢, z +— z;)
for some j < i and a region for clocks in Z;. We skip details, but with this
information, we can easily recover the well-quasi-order that gives the decidability
of the universality problem in single-clock timed automata [7].

3.4 Reduction of the number of clocks

SymbDet(R(A)) is an infinite object (it is an infinite timed tree and it has in-
finitely many clocks). Our aim is to fold this tree back into a deterministic timed
automaton. Obviously we cannot do so for all timed automata, and so far we have
not made any assumption on A. Given v € N, we say that SymbDet(R(A>))
is y-clock-bounded if in every node, the number of active clocks is bounded by
~. Under this hypothesis, we will be able to quotient SymbDet(R(A>)) by an
equivalence of finite index, and get a deterministic timed automaton B4~ which
accepts the same language as the original timed automaton A.

The idea will be to fix a finite set of clocks X, = {z1,---,2,}, and start-
ing from the level-0 node of SymbDet(R(.A*°)) to rename the active clocks into
clocks in X, following a deterministic policy. Under the y-clock-boundedness as-
sumption, each time we will require a new clock (because a new one has become
active), there will be (at least) one free clock in X. Of course, we rename clocks
in guards and regions as well, and change the labels of the nodes accordingly
(an element of the label of a node is now a pair (¢,0) where ¢ is a location of A
and o: X — X, assigns to each clock of A its representative in the tree). The
new object is still infinite, but it has finitely many clocks. A node is now a tuple
(%, K,r) where « is a marker, K is a subset of nodes in R(A*) and r is a region
over (a subset of) X.,. Now it is just a matter of noticing that two nodes with
the same region and the same labels are isomorphic and strongly timed bisimilar
(in particular they are language-equivalent). Timed automaton B4 . is obtained
by merging such nodes.

Ezample 9. In Fig. 3, it is easy to see that SymbDet(.A%) is 2-clock-bounded.
So one can rename the clocks to Xy = {1, 22}, for instance we can map clocks
with even indices to x; and clocks with odd indices to zo. After this renaming,
nodes sharing the same label (that is: set of locations of A, mappings from X
to {x1,22} and regions over {z1,z2}) can be merged. Indeed, one can show
that subtrees rooted at nodes with the same label are strongly timed bisimilar.
For instance, in our running example, nodes ({ng},zo = 0) and ({ns}, 22 =
0), labelled respectively by {({g,20)} and {(¢o,22)} in SymbDet(R(A>)), are
merged into a single location with region ;1 = 0. The resulting timed automaton
is depicted on Fig. 4. In general, a location of this automaton is of the form
({(t;,05) | g € J},r) where J is a finite set, ¢; is a location of A, 0;: X — X,
and r is a region over a subset of Xs. In our running example, there is a single
clock x, hence we assimilate o; with the value o;(z).

The correctness of the construction is stated in the following proposition.

({(t1.21).(ta.02)} 0=ra<o1<1) | | ({(Ge)(bs.@2)) 0=aa<or=1) | | ({(1.01).(6 32)) 0=a <1 =1) |

[22
& X“O r1=1,a
z1=1,a Z’@jv‘]»q 5',\/7 q)\ Ix;LO‘ 1=1,
{z1} <2 & (o2} {z1}
| ({(f0,21). (82,21} 01=0) | ({(t2,21)},01=0)

Fig. 4. The deterministic version of A: the timed automaton B4,

Proposition 10. Assume that SymbDet(R(A>)) is y-clock-bounded. Then, B4 -
is a deterministic timed automaton, and L(Ba,) = L(A).

3.5 Algorithmic issues and complexity

In this subsection, we shortly discuss the size of the effectiveness of its construc-
tion. If A = (L, £o, Lace, X, M, E) is a timed automaton such that SymbDet(R(.A))
is y-clock-bounded (for some v € N), then the timed automaton B 4 - has roughly

a(A,y) = 2IE X ((2M +2)0+D? -7!) locations because a location is char-

acterized by a finite set of pairs (¢,0) with £ a location of A, o: X — X, and
a region over X, .

The procedure we have described goes through the construction of infinite
objects. However, if we abstract away the complete construction, we know pre-
cisely how locations and transitions are derived. Hence, B4, can be computed
on-the-fly by guessing new transitions, and so can its complement (since B4
is deterministic). A location of the automaton B4 - can be stored in space log-
arithmic in a(A,), and we will thus be able to check for universality (e.g.) in
nondeterministic space log(a(A,7)).

4 Our results

We will now investigate several classes of timed automata for which the procedure
described in Section 3 applies.

4.1 Some classes of timed automata are determinizable

Automata satisfying the p-assumption (TA,). Given p € N, we say that a
timed automaton A satisfies the p-assumption if for every n > p, for every run
0= (£o,v0) RALLN (b1,v1) ... RAZLUN (ln,vy,) in A, for every clock z € X either x
is reset along g or v, (z) = L. This assumption will ensure that we can apply the
previous procedure, because if A satisfies the p-assumption, SymbDet(R(.A>)) is

p-clock-bounded. Then we observe that any strongly non-Zeno timed automaton

(we write SnZTA for this class) satisfies the p-assumption for some p € N which
is exponential in the size of the automaton. We thus get the following result:

Theorem 11. For every timed automaton A in SnZTA or in TA,, we can con-
struct a deterministic timed automaton B, whose size is doubly-exponential in
the size of A, and which recognizes the same language as A.

Event-clock timed automata (ECTA) [3]. An event-clock timed automaton
is a timed automaton that contains only event-recording clocks: for every letter
a € X, there is a clock x,, which is reset at every occurrence of a. It is easy
to see that the deterministic timed tree associated with such an automaton is
| X]-clock-bounded. Thus, applying our procedure, we recover the result of [3],
with the same complexity bound.

Theorem 12. For every timed automaton A in ECTA, we can construct a de-
terministic timed automaton B, whose size is exponential in the size of A, and
which recognizes the same language as A.

Timed automata with integer resets (IRTA) [9]. A timed automaton with
integer resets is a timed automaton in which every edge e = (¢, g, a,Y, ¢’) is such
that Y is non empty if and only if g contains at least one atomic constraint of
the form x = ¢, for some clock z. In that case, we observe that the deterministic
timed tree associated with such an automaton is (M + 1)-clock-bounded. We
thus recover the result of [9], with the same complexity bound.

Theorem 13. For every timed automaton A in IRTA, we can construct a de-
terministic timed automaton B, whose size is doubly-exponential in the size of
A, and which recognizes the same language as A.

4.2 Deciding universality and inclusion

The universality and the inclusion problems are undecidable for the general
class of timed automata [2]. Given A and B two timed automata, the univer-
sality problem asks whether £(A) is the set of all finite timed words, and the
inclusion problem asks whether £(B) C L£(A). When A belongs to one of the
above determinizable classes, we will be able to decide the universality and the
inclusion problems (there is no need to restrict automaton B). We establish now
the precise complexity of those problems, and start by providing a lower bound
for the universality problem.

Proposition 14. Checking universality in timed automata either satisfying the
p-assumption for some p or with integer resets is EXPSPACE-hard.

Proof (sketch). The idea of the proof is as follows. Given an exponential-space
Turing machine M with input word wy, we define a timed automaton Ax,w,
such that Axg ., is universal if and only if M does not halt on input wy. An

10

execution of M over wy is encoded by a timed word, and Aay., will accept
all finite timed words that are not encodings of halting executions of M on wy.
Assuming |wg| = n, the maximal length of the tape is 2", and a configuration
of M can be seen as a pair (g, w), where ¢ is a control state of M and w is a
word of length 2" that represents the content of the tape (the position of the
tape head is marked by a dotted letter). We furthermore require that actions
are separated by precisely one time unit, which entails for instance that control
states should be separated by precisely 2™ + 1 time units.

A finite timed word might not be the encoding of an halting computation in
M for several reasons: it is not the encoding of a proper execution in M, or it
does not end in the halting state, or actions do not occur at integer time points, or
control states are not separated by 2™ +1 time units, etc. All these properties can
be described using either timed automata satisfying the p-assumption, or timed
automata with integer resets. For instance, a rule of the form (g, a, b, right, ¢’) can
be unfaithfully mimicked for two reasons: either the dotted letter (representing
the position of the head) is not transferred properly (first automaton below), or
the rest of the configuration is not copied properly (second automaton below).

y=1,{y} y=1,-Q,{y} y=1,{y} y=1,{y}
Q y=1,q,{y} Q y=L,a,{z,y} Q y=1,=2"+2,-b Q
N\ /) NN O

y=1,{y} y=1,-Q,{y} y=1,{y} y=1,{y}

Q y=1,q,{y} Q y=1,a,{z,y} Q y=1,2=2"+1,-a @
U U U O

All other cases can be handled in a similar way, which concludes the proof. O

This lower bound applies as well for the inclusion problem in the very same
classes of timed automata. Note that strongly non-Zeno timed automata are
never universal, but we can modify the above proof to show that the inclusion
problem is EXPSPACE-hard as well for strongly non-Zeno timed automata.

Summary of the results. We can summarize our results in the following table.
The column on the left indicates the subclass we consider. New results are in
black and italic, and in particular we can notice that there was no lower bound
known for the class IRTA.

size of the det. TA | universality problem inclusion problem
TA, doubly exp. EXPSPACE-complete | EXPSPACE-complete
SnZTA doubly exp. EXPSPACE-complete
ECTA [3]
IRTA [9] complete complete

11

5 Conclusion

In this paper, we proposed a general framework for the determinization of timed
automata by means of an infinite timed tree. We showed that for a wide range
of timed automata this infinite tree is language-equivalent to a deterministic
timed automaton. The construction of this deterministic timed automaton yields
the basis for algorithms to check universality or language inclusion. Concerning
the complexity, these algorithms applied to event-clock timed automata [3] and
timed automata with integer resets [9] provide tight bounds. In addition, our
general framework yields the decidability of the universality problem for strongly
non-Zeno timed automata, which was not known before.

We have focused on finite timed words, but we believe the procedure can be
extended to timed automata over infinite timed words (with an w-regular accep-
tance condition), by incorporating a Safra-like construction in our procedure. In
that framework the strong non-Zenoness assumption will even make more sense,
and we thus claim that strongly non-Zeno timed automata are determinizable!

References

1. S. Adams, J. Ouaknine, and J. Worrell. Undecidability of universality for timed
automata with minimal resources. In Proc. 5th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’07), volume 4763 of Lecture
Notes in Computer Science, pages 25—-37. Springer, 2007.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

3. R. Alur, L. Fix, and Th. A. Henzinger. A determinizable class of timed automata.
In Proc. 6th International Conference on Computer Aided Verification (CAV’94),
volume 818 of Lecture Notes in Computer Science, pages 1-13. Springer, 1994.

4. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In Proc. IFAC Symposium on System Structure and Control, pages 469-474.
Elsevier Science, 1998.

5. C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When are timed automata deter-
minizable? Research Report LSV-09-08, Laboratoire Spécification & Vérification,
ENS de Cachan, France, 2009.

6. O. Finkel. Undecidable problems about timed automata. In Proc. 4th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’06),
volume 4202 of Lecture Notes in Computer Science, pages 187-199. Springer, 2006.

7. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In Proc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), pages 54-63. IEEE Computer Society Press, 2004.

8. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1:8), 2007.

9. P. V. Suman, P. K. Pandya, S. N. Krishna, and L. Manasa. Timed automata with
integer resets: Language inclusion and expressiveness. In Proc. 6th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS08),
volume 5215 of Lecture Notes in Computer Science, pages 78-92. Springer, 2008.

12

