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Abstract. People usually regard algorithms as more abstract
than the programs that implement them. The natural way to for-
malize this idea is that algorithms are equivalence classes of pro-
grams with respect to a suitable equivalence relation. We argue
that no such equivalence relation exists.

1. Introduction

At the end of his contribution to a panel discussion on logic for the
twenty-first century [6, page 175], Richard Shore posed, as the last of
three “probably pie-in-the-sky” problems, the following:

Find, and argue conclusively for, a formal definition of
algorithm and the appropriate analog of the Church-
Turing thesis. Here we want to capture the intuitive
notion that, for example, two particular programs in
perhaps different languages express the same algorithm,
while other ones that compute the same function repre-
sent different algorithms for the function. Thus we want
a definition that will up to some precise equivalence re-
lation capture the notion that two algorithms are the
same as opposed to just computing the same function.

The purpose of this paper is to support Shore’s “pie-in-the-sky” as-
sessment of this problem by arguing that there is no satisfactory def-
inition of the sort that he wanted. That is, one cannot give a precise
equivalence relation capturing the intuitive notion of “the same algo-
rithm.” We describe several difficulties standing in the way of any
attempt to produce such a definition, and we give examples indicating
that the intuitive notion is not sufficiently well-defined to be captured
by a precise equivalence relation.
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Following the terminology in Shore’s statement of the problem, we
use “program” for an element of the set on which the desired equiva-
lence relation is to be defined and we use “algorithm” for an equivalence
class of programs (or for the abstract entity captured by an equivalence
class) with respect to an equivalence relation of the sort requested by
Shore.

Shore’s question has been addressed in a limited context by Yanof-
sky [23]. He considers programs only in the form of (fairly) standard
constructions of primitive recursive functions, and he defines an equiv-
alence relation on these programs by listing a number of situations in
which two programs should be considered equivalent. He does not, how-
ever, claim that the equivalence relation generated by these situations
completely captures the intuitive notion of equivalence of programs. In
fact, he explicitly says “it is doubtful that we are complete,” and he
anticipates one of our objections to the “equivalence class of programs”
view of algorithms by saying that “whether or not two programs are
the same . . . is really a subjective decision.” By considering only a lim-
ited class of programs and limited sorts of equivalence between them,
Yanofsky obtains a notion of algorithm with pleasant properties from
the point of view of category theory, but not what Shore asked for.

We shall also consider only a limited class of algorithms, namely
deterministic, small-step, non-interactive algorithms. But for our pur-
poses, such a limitation strengthens our argument. If no suitable equiv-
alence relation can be found in this limited case, then the situation is
all the more hopeless when more algorithms (distributed ones, inter-
active ones, etc.) enter the picture. Any suitable equivalence relation
on a large class of programs would restrict to a suitable equivalence
relation on any subclass.

Small-step algorithms are those that proceed in a discrete sequence
of steps, performing only a bounded amount of work per step. (The
bound depends on the algorithm but not on the input or on the step in
the computation.) Non-interactive algorithms1 of this sort were char-
acterized axiomatically in [12]. They include traditional models of
computation such as Turing machines and register machines. Most
people, when they hear the word “algorithm”, think of deterministic,
small-step, non-interactive algorithms unless a wider meaning is explic-
itly suggested. And until the 1960’s, essentially all algorithms in the
literature were of this sort. Because Shore posed his question in the
context of traditional recursion theory, it is reasonable to suppose that

1It is argued in [12, Section 9] that non-determinism is a special case of interac-
tion. Thus, “non-interactive” implicitly entails “deterministic.”
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he had deterministic, small-step, non-interactive algorithms in mind.
If so, then it is not only reasonable but in a sense necessary to argue
our case in the limited context of such algorithms. For if an argument
against the existence of the desired equivalence relation depended on
other sorts of algorithms (for example, interactive ones or massively
parallel ones), then that argument might be regarded as missing the
point of Shore’s question.

In Sections 2 and 3, we discuss preliminary issues concerning the
choice of programming languages and their semantics. In Section 4, we
describe situations where people can reasonably disagree as to whether
two programs implement the same algorithm. In Section 5, we discuss
how the intended use of algorithms can affect whether they should
count as the same. Section 6 contains examples where two quite differ-
ent algorithms are connected by a sequence of small modifications, so
small that one cannot easily say where the difference arises. Finally, in
Section 7, we mention several other domains in which analogous issues
arise.

2. Programs

In order to even hope to capture the notion of algorithm by a precise
equivalence relation on the set of programs, it is necessary first to have
a precise set of programs to work with. The present section addresses
this preliminary issue. We argue that there is a precise set of programs,
at least for small-step, non-interactive algorithms, but that this fact is
not as obvious as one might think at first.

The mention, in Shore’s question, of “programs in perhaps different
languages” suggests that the set of programs should be rather wide,
encompassing programs written in a variety of languages. But caution
is needed here, in order to keep the set of programs well-defined. We
cannot allow arbitrary programming languages, because new ones are
being created (and perhaps old ones are falling out of use) all the time.
Even languages that persist over time tend to gradually acquire new
dialects. We should work instead with a specific set of stable languages.

Not only should the languages be stable, so as not to present a mov-
ing target for an equivalence relation, but they should have a precise,
unambiguous semantics. For example, in some languages, such as C,
the order of evaluation of subexpressions in an expression may be left
to the discretion of the compiler, and whether this ambiguity matters
in a particular program is, in general, undecidable. If deterministic
algorithms are to be captured by equivalence classes of programs, then
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ambiguity in the programs is unacceptable. This consideration ex-
cludes a lot of languages. And pseudo-code, despite being widely used
to describe algorithms, is even worse from the point of view of precision.

For many purposes in theoretical computer science, especially in
complexity theory, it is traditional to use, as the official framework,
low-level models of computation, such as Turing machines or regis-
ter machines, that have an unambiguous semantics. Such models of
computation are, however, inadequate to serve as the domain of an
equivalence relation capturing the general notion of algorithm. The
problem is that they can express algorithms only at a low level of ab-
straction, with many implementation details that are irrelevant to the
algorithm.

At first sight, it seems that this difficulty can be circumvented by
a suitable choice of equivalence relation on, say, Turing machine pro-
grams. Programs that differ only in the irrelevant details of imple-
mentation should be declared equivalent. There remains, however, the
problem that, by including such details, a Turing machine program
may make the intended algorithm unrecognizable. It is not in gen-
eral easy to reverse engineer a Turing machine program and figure out
what algorithm it implements. In fact, it may be impossible; here is
an example illustrating the problem (as well as some other issues to be
discussed later).

Example 1. The Euclidean algorithm for computing the greatest com-
mon divisor (g.c.d.) of two positive integers is described by the follow-
ing abstract state machine (ASM), but readers unfamiliar with ASM
notation should be able to understand it as if it were pseudo-code. In
accordance with the usual conventions [11] for ASMs, the program is
to be executed repeatedly until a step leaves the state unchanged. We
assume for simplicity that the numbers whose g.c.d. is sought are the
values, in the initial state, of dynamic nullary function symbols x and
y. We use rem for the remainder function; rem(a, b) is the remainder
when a is divided by b.

if rem(y, x) = 0
then output:= x
else do in parallel x :=rem(y, x), y := x enddo

endif

Here is a variant, using subtraction instead of division. In fact, this
variant corresponds more closely to what Euclid actually wrote; see
[13, Propositions VII.2 and X.3].
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if x < y then y := y − x
elseif y < x then x := x− y
else output:= x
endif

Notice that the second version in effect uses repeated subtraction
(rather than division) to compute in several steps the remainder func-
tion rem used in a single step of the first version.

Are these two versions the same algorithm? As we shall discuss
later, this issue is debatable. The point we wish to make here, before
entering any such debate, is that the use of low-level programs like
Turing machines might cut off the debate prematurely by making the
two versions of Euclid’s algorithm identical. Consider programming
these versions of Euclid’s algorithm to run on a Turing machine, the
input and output being in unary notation. The most natural way
to implement division in this context would be repeated subtraction.
With this implementation of division, any difference between the two
versions disappears.

If we were to use Turing machines (or similar low-level programs)
as our standard, then to avoid letting them preempt any discussion of
whether the two versions of Euclid’s algorithm are the same, we would
have to implement at least one of the two versions in a special way.
For example, we might implement division by converting the inputs
to decimal notation and having the Turing machine perform division
as we learned to do it in elementary school. But then the question
arises whether the preprocessing from unary to decimal notation has
altered the algorithm. And once preprocessing enters the picture, there
are arbitrary choices to be made (decimal or binary?), which further
complicate the picture.

Motivated by examples like the preceding one, we refuse to restrict
ourselves to low-level programming languages. We want a language
(or several languages) capable of expressing algorithms at their natural
level of abstraction, not forcing the programmer to decide implementa-
tion details. This desideratum, combined with the earlier one that the
language(s) should have a precise, unambiguous semantics, severely
restricts the supply of candidate languages. In fact, the only such
language that we are aware of is the abstract state machine language,
which, in our present context, means small-step (also called sequential)
ASMs, as presented in [12].

Remark 2. To make this paper more self-contained, we give the follow-
ing brief description of sequential ASMs. For more details, see [7] or
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[11] or [12]. The rest of this paper does not depend on the exact defini-
tion of ASMs; a reader willing to read ASM programs as pseudo-code
should have no difficulty with their use here.

An ASM program describes operations to be performed on a state.
The state is a structure in the usual sense of first-order logic. The
computation progresses in discrete steps, changing the interpretations
of certain function symbols in the state. The basic units from which
ASM programs are built are update rules of the form f(t1, . . . , tk) := t0,
whose meaning is that the value of (the interpretation of) the k-ary
function symbol f at the k-tuple consisting of (the values of) t1, . . . , tk
is to be changed to (the value of) t0. ASM programs are built from
update rules by two constructors. One is parallel composition;

do in parallel R1, . . . , Rn enddo

means to make all the state changes given by the rules R1, . . . , Rn. (If
two of those changes clash, prescribing different updates of the same
function at the same arguments, then no changes are to be made.) The
other constructor is the conditional

if ϕ then R0 else R1,

with the obvious meaning; here ϕ is a quantifier-free first-order formula.
This concludes our rough description of ASM programs.

We note here another advantage of ASMs: They can deal directly
with structures, such as graphs, as input and output. This contrasts
with the need, in most other programming languages, to code struc-
tures. In the case of graphs, coding would involve not only deciding, for
example, to represent graphs as adjacency matrices, but also choosing,
for each particular input graph, an ordering of its vertices, because an
adjacency matrix presupposes a particular ordering.

ASMs also make it possible to write programs that use powerful,
high-level operations. This is important for our purposes because we
do not want the programming language to prejudge whether an al-
gorithm using such operations is equivalent to one that implements
those operations by means of lower-level ones. To avoid prejudging,
the language must be able to formulate separately the high-level and
low-level versions, not simply use the latter as a surrogate for the for-
mer. The possibility of writing programs at different levels is one of
the key strengths of ASMs.

In view of these considerations, we shall use ASMs as our standard
programs in this paper. We emphasize, however, that this decision
is not essential for most of our arguments. The difficulties facing an
attempt to define the “right” equivalence relation on programs are
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intrinsic difficulties, not caused by our decision to use ASMs. In fact,
the difficulties would be even worse if we were to use programming
languages that lack a precise semantics or programming languages that
cannot work at multiple levels of abstraction.

Remark 3. Moschovakis [17] has proposed identifying algorithms with
recursors. A recursor is a monotone inductive operator whose least
fixed point includes (along with some auxiliary material) the partial
function computed by the recursor. This approach does not involve
first introducing a class of programs and then imposing an equivalence
relation to arrive at algorithms. It is thus more direct than what Shore
apparently envisaged in his “pie-in-the-sky” problem. It would, how-
ever, provide an equivalence relation on programs if we had a transla-
tion from programs (in some language) to recursors; call two programs
equivalent if their recursor translations are the same.

Moschovakis indicates how certain recursors, which he calls ma-
chines, can represent programs, and it appears that, in particular,
ASMs can be translated into his framework (as mentioned in [2, Sec-
tion 4.3]). This translation, however, is so direct that it rarely if ever
produces the same recursor from different ASMs. (Here “different”
should be taken to mean “not behaviorally equivalent”; see Section 3
below.) Thus, the equivalence relation that it provides is too fine to
capture the intuitive notion.

It should also be noted that a recursor does not, strictly speaking,
describe a specific computational process. There are several ways to
compute the least fixed point of a monotone inductive operator Γ.
Taking the definition as a guide, one would inspect all subsets of the
appropriate domain, check which ones are closed under Γ, and find the
smallest of these. Such an inspection is possible only when the domain
is finite, and even then it is almost always absurdly inefficient. A more
reasonable approach proceeds by iteration; start with the empty set
and repeatedly apply Γ until a fixed point is reached. Although this
takes only polynomial time (relative to the size of the domain, provided
this size is finite and provided Γ can be applied in polynomial time), it
is still not the “right” method. For example, in the case of the merge-
sort algorithm, as presented in [17], this would involve merging and
sorting arbitrary lists, not only those relevant to the given input. To
actually apply Moschovakis’s mergesort recursor to a given input list,
one would use the given recursion equations to break down the prob-
lem into subgoals, subsubgoals, etc., in the style of logic programming.
But then there are many decisions to be made about the details of the
execution. Identifying mergesort with a recursor means declaring these
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details to be irrelevant; changing them results in an equivalent program
(the same algorithm). That may be correct, in the sense of aligning
with our intuition of equivalence of programs, but it should not be built
into the basic framework a priori. The idea that “same recursor implies
equivalent programs” should be justified, not presupposed.

There is also a question about the converse implication, from “equiv-
alent programs” to “the same recursor.” Moschovakis’s mergesort re-
cursor provides a simple example here. That recursor involves (as would
anything claiming to be mergesort) an operation breaking a string (of
length at least 2) into “halves.” Moschovakis takes the halves to be
genuine halves when the string to be broken has even length, with ap-
propriate adjustment in the case of odd length. There are two obvious
ways to make the adjustment: The first half could be one item longer
than the second, or it could be one item shorter. The two choices cor-
respond to two different recursors. Yet one could reasonably consider
them to be the same algorithm; indeed, one implicitly does so by call-
ing both “mergesort.” (Surely if one version were known, we could not
expect much credit for inventing the other version.)

So it seems that recursors do not, by themselves, provide the answer
to the question “When are two algorithms the same?”—an equivalence
relation on programs that accords with intuition.

3. Behavioral Equivalence

A proper understanding of the use of ASMs to describe algorithms
requires a look at the concept of behavioral equivalence, which plays a
central role in the theory of ASMs. It is based on an abstract view of
algorithms presented in [12]. Before discussing this point of view, it is
necessary to resolve a terminological ambiguity, because the word “al-
gorithm”, which plays a crucial role in Shore’s question, is also used as
an abbreviation for “sequential algorithm” (as defined in [12]) when no
other sorts of algorithms are under consideration. We shall be careful
to abstain from this abbreviation. “Sequential algorithm” will mean
what is defined in [12], namely an entity to which are associated a set
of states, a set of initial states, and a transition function, subject to
certain postulates;2 “algorithm” without “sequential” will mean what
Shore asked for (and what we claim admits no precise characterization),
essentially an equivalence class of programs with respect to the pie-in-
the-sky equivalence relation. The terminology is somewhat unfortunate

2A rough summary of the postulates is that states are first-order structures, the
transition function involves only a bounded part of the state, and everything is
invariant under isomorphisms of structures.
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in that (1) it suggests that “sequential algorithms” are a special case
of “algorithms”, whereas the two concepts are actually separate and
(2) the word “sequential” that is the difference between the two names
is not a difference between the concepts, since we retain our earlier
convention that the only algorithms (in Shore’s sense) that we consider
here are small-step, non-interactive ones. Nevertheless, it seems rea-
sonable to use the expressions “sequential algorithm” and “algorithm”
to match the terminology of the sources, [12] and [6] respectively.

Behavioral equivalence, defined in [12] (but there called simply
“equivalence”) is a very fine equivalence relation on sequential algo-
rithms, requiring that they have the same states, the same initial states,
and the same transition function. The main theorem in [12] is that ev-
ery sequential algorithm is behaviorally equivalent to a (sequential)
ASM. As was pointed out in [12], behavioral equivalence seems exces-
sively fine for many purposes, but this circumstance only makes the
main theorem of [12] stronger.

For our present purposes, it is useful, though not absolutely nec-
essary, to know that behavioral equivalence is fine enough, that is,
that two behaviorally equivalent sequential algorithms are equivalent
in Shore’s sense. This knowledge is useful because it ensures that, by
using ASMs as our standard programs, we have representatives for all
of the algorithms in Shore’s sense. If it were possible for behaviorally
equivalent programs to be inequivalent in Shore’s sense, then there
might be algorithms that, although behaviorally equivalent to ASMs,
are not Shore-equivalent to any ASMs, and such algorithms would be
overlooked in our discussion. This would not be a disaster – if we con-
vince the reader that there is no precise definition for Shore-equivalence
on ASMs, then there is surely no such definition for an even wider class
of programs (this is why we described the knowledge above as not abso-
lutely necessary)—but it is desirable to know that we are dealing with
the whole class of algorithms that we intended to deal with.

Is this desirable knowledge in fact correct? Must behaviorally equiv-
alent algorithms be equivalent in the sense that Shore asked for? In the
rest of this section, we argue that the answer is yes, as long as we do not
read into ASMs more information than they are intended to convey.
In brief, the point is that ASMs are intended to describe sequential al-
gorithms and, since these are not specified beyond their states, initial
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states, and a transition function,3 there is no room for any distinction
between behaviorally equivalent ASMs or sequential algorithms.

Because the ASM syntax is readable as pseudo-code, however, there
is a temptation to consider an ASM as providing additional information
beyond the sequential algorithm that it defines. Here is an example to
illustrate the situation.

Example 4. We describe here, in ASM form, a binary decision tree
algorithm. The vocabulary has 0-ary relation symbols (also known as
propositional symbols) Us for every sequence s ∈ {0, 1}≤5 (i.e., every
sequence of at most 5 binary digits), it has constant symbols cs for
s ∈ {0, 1}6, and it has one additional 0-ary symbol output. (Visualize
the symbols Us as attached to the internal nodes s of a binary tree
of height 7 and the symbols cs as attached to the leaves.) The only
dynamic symbol is output. States are arbitrary structures for this
vocabulary. The ASM program we want is best described by reverse
induction on binary strings s of length ≤ 6. If s has length 6, let Πs

be the program
output := cs.

If s has length ≤ 5, let Πs be

if Us then Πs_〈1〉 else Πs_〈0〉.

The program we are interested in is Π∅ where ∅ is the empty sequence.
Its natural, intuitive interpretation is as a computation that begins by
looking up U∅; depending on the answer, it looks up Us for s = 〈0〉 or
s = 〈1〉; depending on the answer, it looks up Us for an appropriate s
of length 2; and so forth, until, after 6 queries, it sets output to the
appropriate cs. In other words, we have a standard binary decision
tree.

The algorithm does all this work in one step. (If it were allowed to
run for another step, nothing would change in the state.) Notice that
the program has length of the order of magnitude 26 and that its natural
interpretation as a computational process looks up 7 values, namely 6
Us’s and one cs. (To make precise sense of “order of magnitude” here
and similar notions below, pretend that 6 is a variable.)

Now let us apply the proof of the main theorem in [12] to the se-
quential algorithm defined by this ASM. The proof produces another
ASM, Π′, behaviorally equivalent to our Π∅. This ASM (see [12,
Lemma 6.11]) is a parallel combination of guarded updates, one for

3The definition of “sequential algorithms” [12] says that they are entities asso-
ciated with the three items mentioned, but the postulates concern only these three
items. No further role is played by the entities themselves.



WHEN ARE TWO ALGORITHMS THE SAME? 11

each of the 263 possible systems of values of the Us’s. So Π′ has length
of the order of magnitude 226

, exponentially greater than Π∅. Fur-
thermore, in each run of the natural, intuitive interpretation of Π′ as a
computational process, it looks up the values of all 63 of the Us’s.

In view of the vastly greater work done by Π′ in each run (and its
vastly greater length), it would be difficult to convince people that it
represents the same algorithm as Π∅. Yet, all the complexity of Π′ is
hidden if one looks only at states and transition functions, and so Π′

is behaviorally equivalent to Π∅. We assert that Π′ and Π∅ should be
regarded as defining the same algorithm, that is, as equivalent programs
in Shore’s sense. The apparent differences between them arise from
regarding the ASM programs not merely as descriptions of sequential
algorithms but as telling in detail how the transition function is to be
computed. It is tempting to assign this sort of detailed operational
semantics to ASMs, but this conflicts with our intention to use them,
as in [12], simply to describe sequential algorithms.

We do not claim that one should ignore the difference between an
algorithm that looks up seven values and performs six tests on them
and an algorithm that looks up 63 values and performs approximately
263 tests on them. But we do claim that, if these properties of the
algorithms are to be taken into account, then the ASMs representing
the algorithms should be designed to make these properties visible in
the states and transition functions. That this can be done is part of
the ASM thesis: Any algorithm can be represented at its natural level
of abstraction by an ASM. In the case at hand, the level of abstraction
could involve keeping track of which Us’s the algorithm has used. This
can be done, for example, by having additional dynamic symbols Vs

(with value false or undef in initial states) with the intended meaning
“Us has been used” and by including in both Π∅ and Π′ updates setting
Vs to true whenever Us is used.4 Similarly, if we wish to take into
account the huge number of guards (of conditional rules) evaluated in
the computation intuitively described by Π′, then we should write the
ASM at that level of abstraction, that is, we should include updates
whereby the algorithm keeps a record of all this work.

For the rest of this paper, we shall take for granted, with the support
of considerations like the preceding paragraph, that, whatever Shore’s

4Another way to make the evaluation of Us’s visible for the purposes of behavioral
equivalence is to make the Us’s external function symbols, so that evaluating them
involves a query to the environment. In this paper, however, we prefer to consider
only non-interactive algorithms.
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pie-in-the-sky equivalence relation ought to be, it will be at least as
coarse as behavioral equivalence.

Remark 5. Udi Boker [personal communication] has suggested that,
once it is clear that ASMs are to serve as descriptions of what is to hap-
pen as a result of a single step, not caring about how it is accomplished
within the step, then behavioral equivalence captures the intuitive no-
tion of algorithm. We feel that, although behavioral equivalence is a
natural and important equivalence relation, it need not capture the
intuition. In Example 1 above and the related Example 7 below, we
have algorithms that are not behaviorally equivalent but can neverthe-
less be reasonably viewed as the same algorithm. In other words, the
intuitive notion of “the same algorithm” seems not to require the com-
putations to match step by step. Nor does it require the vocabulary
of the states to be the same; a reasonable renaming of identifiers in
a program should not change the algorithm (but see also Example 15
below).

Remark 6. Having emphasized that the intuitive operational semantics
suggested by an ASM is to be disregarded and that only its official
semantics as a sequential algorithm really matters, we could reasonably
consider applying an analogous principle to Moschovakis’s recursors:
Don’t consider the details of the computation suggested by a recursor
but look only at the final result. This approach would provide answers
for some of the issues raised in Remark 3. In particular, it would no
longer matter whether the least fixed point is computed by exhaustive
inspection of all possible partial functions, or by iteration of the given
operator, or by a subgoal-style computation.

Unfortunately, it seems that nothing else would matter either ex-
cept for the least fixed point itself, the final result of the computation.
Everything else about the computation is only suggested, not specifi-
cally required by the recursor. So this approach would create much too
coarse an equivalence relation; two algorithms would count as equiva-
lent if they compute the same final result.

An ASM, in contrast, retains step-by-step information, even when
one ignores the intuitive operational semantics.

Given that Shore’s pie-in-the-sky equivalence relation should be at
least as coarse as behavioral equivalence, the main theorem of [12]
assures us that ASMs are adequate for representing all sequential al-
gorithms in the sense of [12]. These are exactly the small-step, non-
interactive algorithms that we intend to treat in this paper. We there-
fore have an adequate set of programs, the ASMs, with a precisely
defined semantics. That is, we have a set of programs on which it
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makes sense to try to define an equivalence relation of the sort Shore
asked for. Now that this prerequisite for Shore’s question is satisfied,
we turn to the question itself.

4. Subjectivity

The formulation of Shore’s question, to “capture the notion that
two algorithms are the same,” presupposes that there is such a notion.
And indeed, people do seem to have such a notion, to use it, and to
understand each other when they use it. But it is not clear that they
all use it the same way. Will two competent computer scientists (or
mathematicians or programmers) always agree whether two algorithms
are the same? We have already quoted Yanofsky’s doubt about this
point: equivalence of algorithms is a subjective notion.

There are situations where disagreement is almost guaranteed. Sup-
pose X has invented an algorithm and Y later invents a somewhat
modified version of it. X will be more likely than Y to say that the
algorithms are really the same.

Even when ulterior motives are not involved, there can easily be
disagreements about whether two algorithms are the same. Consider,
for example, the two versions of the Euclidean algorithm in Example 1,
one using division and the other using repeated subtraction. Are they
the same?

One can argue that they are different. The version with subtraction
is slower. It can be implemented on simpler processors, for instance,
children who have learned how to subtract but not how to divide. It
is not behaviorally equivalent to the division version because it takes
several steps to do what division did in one step.

Despite all these differences, it seems that most mathematicians (and
computer scientists?) would, when confronted with either of these algo-
rithms, call it the Euclidean algorithm. Furthermore, if one just asks,
“What is the Euclidean algorithm?”, the answer is usually the division
version (see for example [1, Section 8.8] or [8]), even though Euclid
gave the subtraction version. To call the division version “Euclidean”
strongly suggests that it is considered “the same” as what Euclid did.

The subjectivity of the situation is further emphasized by the fol-
lowing variant.

Example 7. For positive integers a and b, let app(a, b) be the multiple
of b that is closest to a (possibly below a and possibly above, and in
case of a tie then below), and let

rem′(a, b) = |a− app(a, b)|
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be the distance from a to the nearest multiple of b. Now replace rem

by rem′ in the division version of the Euclidean algorithm. Does that
change the algorithm? Notice that it may happen that, in runs of
the rem and rem′ versions of the algorithm on the same input, only
the initial and final states coincide; all the intermediate states may be
different (and there may be different numbers of intermediate states).
Nevertheless, both versions are called the Euclidean algorithm.

Finally, what about the Euclidean algorithm applied not to integers
but to polynomials in one variable (over a field)? It proceeds just like
the division version in Example 1, but it uses division of polynomials.
When a and b 6= 0 are polynomials, there are unique polynomials q and
r such that a = bq+r and r has strictly smaller degree than b does. (We
regard the zero polynomial as having degree −∞.) Let Rem(a, b) denote
this r, and replace rem by Rem in the division version above to get the
Euclidean algorithm for polynomials. Is that a different algorithm?

Remark 8. There is a more abstract, non-algorithmic proof that every
two positive integers have a g.c.d. It consists of showing that the
smallest positive element z of the ideal {mx + ny : m, n ∈ Z} serves as
the g.c.d. The main point of the proof is to show that this z divides
both x and y. That proof implicitly contains an algorithm for finding
the g.c.d. z. As before, we take the initial state to have x and y, the
two numbers whose g.c.d. is sought, but this time x and y are static;
there is one dynamic function symbol z, initially equal to x.

if rem(x, z) 6= 0 then z := rem(x, z)
elseif rem(y, z) 6= 0 then z := rem(y, z)
else output:= z
endif

It seems that this algorithm is really different from the Euclidean
one; it uses a different idea. But we are not prepared to guarantee that
no one will regard it as just another form of the Euclidean algorithm.
Nor do we guarantee that “the same idea” has a clear meaning.

Here are some more examples where it is debatable whether two
algorithms should be considered the same.

Example 9. The first is actually a whole class of examples. Consider
two algorithms that do the same calculations but then format the out-
puts differently. Are they the same algorithm? Our description of the
situation, “the same calculations” suggests an affirmative answer, but
what if the formatting involves considerable work?
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Example 10. Is a sorting algorithm, like quicksort or mergesort a single
algorithm, or is it a different algorithm for each domain and each linear
ordering? This question is similar to the earlier one about the Euclidean
algorithm for numbers and for polynomials, and it is clear that one
could generate many more examples of the same underlying question.

Notice that there are some situations that can be regarded as falling
under both of the preceding two examples. Suppose one algorithm
sorts an array of natural numbers into increasing order and a second
algorithm sorts the same inputs into decreasing order. They can be
viewed as the same algorithm with different formatting of the output,
or they can be viewed as the same algorithm applied to two different
orderings of the natural numbers.

Example 11. Quicksort begins by choosing a pivot element from the
array to be sorted. One might always choose the first element, but a
better approach is to choose an element at random. A variant uses
the median of three elements (for example, the first, middle, and last
entries of the array) as the pivot. (See, for example, [1, pages 94 and
95].) Are these different algorithms? What if one increases “three” to
a larger odd number?

5. Purpose

In the preceding section, we attributed variations in the notion of
“the same algorithm” to people’s different opinions and subjective judg-
ments. There is, however, a more important source of variation, even
between the notions used by the same person on different occasions,
namely the intended purpose.

For someone who will implement and run the algorithm, differences
in running time are likely to be important. A difference in storage
requirements may be very important on a small device but not on
a device with plenty of space. Of course, the distinction between a
small device and one with plenty of space depends on the nature of the
computation; even a supercomputer is a small device when one wants to
predict next week’s weather. Thus, when one considers a specific device
and asks whether an algorithm’s space requirements are an essential
characteristic of the algorithm, that is, whether one should count two
algorithms as different just because one uses much more space than the
other, then answer is likely to be “yes” once the space requirements
are large enough but “no” if they are small. Thus, two programs may
well count as the same algorithm for someone programming full-size
computers but not for someone programming cell-phones.
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Although we generally consider only non-interactive algorithms in
this paper, let us digress for one paragraph to consider (a limited degree
of) interaction. If an algorithm is to be used as a component in a
larger system, additional aspects become important, which may be
ignored in stand-alone algorithms. And in this respect, even just the
interaction between an algorithm and the operating system can be
important for some purposes. Two programs that do essentially the
same internal work but ask for different allocations of memory space
(or ask for the same allocation at different stages of the computation)
or that make different use of library calls will be usefully considered
as different algorithms for some purposes but probably not for all.
Similarly, if an algorithm’s output is to be used as the input of some
other calculation, then formatting (see Example 9) is more important
than it otherwise would be.

Returning to the standard situation of non-interactive, small-step
algorithms, we present an example which, although it arose in a differ-
ent context (complexity theory), helps to show how one’s purpose can
influence whether one considers two algorithms the same.

Example 12. Suppose we have programs P and Q, computing functions
f and g, respectively, say from strings to strings, and each requiring
only logarithmic space and linear time (in a reasonable model of compu-
tation). Can we combine P and Q to compute the composite function
f ◦g in linear time and log space? The simplest way to compute f ◦g on
input x would be to first use Q on input x to compute g(x) and then
use P on input g(x) to compute f(g(x)). This combined algorithm
runs in linear time but not in log space; storing the intermediate result
g(x) will in general require linear space.

There is an alternative method to compute f(g(x)). Begin by run-
ning P , intending to use g(x) as its input but not actually computing
g(x) beforehand. Whenever P tries to read a character in the string
g(x), run Q on input x to compute that character and provide it to P .
But make no attempt to remember that computation of Q. When P
needs another character from g(x), run Q again to provide it. Because
this version of the algorithm does not try to remember g(x), it can run
in log space. But because it needs to restart Q every time P wants
a character from g(x), it will run in general in quadratic rather than
linear time.

So we have two programs that combine P and Q to compute f ◦ g.
One runs in linear time, and the other runs in log space, but neither
manages to do both simultaneously. Do these two programs represent
the same algorithm?
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In an application where strict complexity restrictions like linear time
and log space are important, these programs should be considered dif-
ferent. But in more relaxed situations, for example if quadratic time is
fast enough, then the difference between these two programs might be
regarded as a mere implementation detail.

So far, the purposes we have discussed, which may influence the deci-
sion whether two algorithms are the same, have involved implementing
and running the algorithms. But people do other things with algo-
rithms, besides implementing and running them. For someone who will
extend the algorithm to new contexts, or for a mathematician who will
appeal to the algorithm in a proof, the idea underlying the algorithm
is of primary importance. Furthermore, in both of these situations the
presuppositions of the algorithm will play an important role. Thus, for
example, it would be an essential characteristic of (the division form
of) the Euclidean algorithm that it uses a measure of “size” on the rel-
evant domain (numerical value or absolute value in the case of integers,
degree in the case of polynomials) such that one can always5 divide and
obtain a remainder “smaller” than the divisor.

It is reasonable to suppose that any worthwhile notion of sameness
of algorithms will be adapted to some more or less specific purpose,
and that different purposes will yield different notions of sameness. A
global, all-purpose notion of “the same algorithm” is indeed pie in the
sky.

6. Equivalence

Is the relation, between programs, of expressing the same algorithm
really an equivalence relation? The preceding sections suggest that
the relation depends on individual judgment and goals, but suppose
we fix an individual and a goal, and use the resulting judgment; call
two algorithms the same if and only if this particular person regards
them as the same for this particular purpose. (And don’t give him
an opportunity to change his mind.) Now can we expect to have an
equivalence relation? Shore’s question explicitly asks for an equivalence
relation, but is the intuitive notion of “the same algorithm” necessarily
an equivalence relation?

6.1. Reflexivity. It seems obvious that every program defines the
same algorithm as itself, that is, that no program defines two algo-
rithms. But in fact, we had to take some precautions to ensure this

5Or almost always; division by zero should be excluded.
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obvious fact. Recall the example of the division form and the subtrac-
tion form of the Euclidean algorithm which, when programmed on a
Turing machine with unary notation, can become the same program.
One of our reasons for not adopting Turing machines as our standard
programs was precisely this possible failure of reflexivity.

Our insistence that ASMs be understood as defining only sequential
algorithms and in fact as defining only their states, initial states, and
transition functions, not the details of what happens within a step, is
also related to reflexivity. That is because the semantics of ASMs is
defined only at the level of sequential algorithms. There is no guarantee
that an ASM program cannot be regarded, by two readers, as describing
two different processes within a step; the only guarantee is that the
ultimate outcome of the step must be the same.

We believe that we have taken enough precautions to ensure reflex-
ivity. In fact, our discussion of behavioral equivalence in Section 3 was
intended to support the thesis that an ASM program defines the same
algorithm as any behaviorally equivalent ASM, in particular itself.

6.2. Symmetry. The colloquial usage of “the same algorithm” seems
to admit some mild failures of symmetry. For example, given a program
A at a rather abstract level and a detailed implementation B of it,
a person reading the text of B and suddenly understanding what is
really going on amid the details might express his understanding by
exclaiming “Oh, B is just the same as A”, while the symmetric claim
“A is just the same as B” is unlikely.

Nevertheless, the intuitive notion of “the same algorithm” underlying
Shore’s question is clearly a symmetric one. Shore’s description of the
intended intuition refers to the unordered pair of programs, using
the phrases “two particular programs” and “two algorithms” with no
distinction between a first and a second.

Furthermore, someone exclaiming, in the situation described above,
“B is just the same as A,” would probably, if pressed, concede that he
didn’t really mean that they are “the same” but that B is merely an
implementation of A, i.e., that the idea behind B is the same as that
behind A, but B contains more details and thereby hides the idea.

6.3. Transitivity. In view of the preceding brief discussion of reflexiv-
ity and symmetry, we regard the question “Do we have an equivalence
relation?” as coming down to “Do we have transitivity?”, and here
things are considerably less clear. Might there be, for example, finite
(but long) sequences of programs in which each program is essentially
the same as its neighbors (and so should express the same algorithm),
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yet the first and last programs would not be considered the same al-
gorithm? Here are some examples to indicate the sorts of things that
can happen. The first example is a continuation of the binary decision
tree example.

Example 13. Consider the programs Π∅ and Π′ described in Example 4,
and modify them, as described earlier, to make explicit the differences
in the work they do within a step. For example, have them update
Boolean variables Vs with the meaning “Us was used.” These modifi-

cations, call them Π̃∅ and Π̃′, can reasonably be regarded as different
algorithms.

There is, however a “continuous” (in a discrete sense) transition be-
tween them. An intermediate stage of this transition would be an
algorithm that begins by looking up the values of Us for the first k se-
quences s (in order of increasing length and lexicographically for equal
lengths, i.e., for the first few levels of the decision tree and for some ini-
tial segment of the next level). Using the answers, the algorithm finds
(by a single parallel block of guarded updates, i.e., by a table look-up in
a table of size 2k) the path through the part of the tree about which it
asked. It reaches a node s for which it knows the value of Us but didn’t
look up Ut for the children t of s. The value of Us tells the algorithm
which of the two children t of s is relevant, so it looks up the value of
that Ut. This value tells which child of t is relevant, so that determines
the next U to evaluate, and so forth. (The algorithm also updates the
V ’s as above, to indicate which U ’s it evaluated.) When k = 1, this

algorithm is Π̃∅. When k = 63, it is Π̃′. These look different. But is
there a significant difference between the algorithms obtained for two
consecutive values of k? It looks like just a minor bookkeeping dif-
ference. So we have a sorites situation, going from one algorithm to
an arguably different one in imperceptible steps—imperceptible in the
sense that one could reasonably consider the k and k +1 versions mere
variant implementations of the same algorithm.

Example 14. Similarly, in Example 11, the quicksort algorithm could
reasonably be considered unchanged by a minor change in the number
k of elements whose median determines the first pivot. But a succession
of such minor changes can lead to a situation where k becomes as large
as the entire array to be sorted. Then finding the median, to serve as
the first pivot, is practically as hard as sorting the whole array. So at
this stage, the algorithm is much less likely to be regarded as the same
as traditional quicksort.
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The next example involves what may be, at least for logicians, the
archetypal example of a trivial syntactic change that makes no real dif-
ference, namely renaming bound variables (also called α-equivalence).
The particular choice of bound variables is so unimportant that they
are often eliminated altogether, for example by means of de Bruijn in-
dices in the λ-calculus [5] or by the boxes-and-links scheme of Bourbaki
[4].

Example 15. Sequential non-interactive ASMs, which we have chosen
as our standard programs, don’t have bound variables. They can, how-
ever, and often do have variables that resemble bound variables in that
the algorithm shouldn’t care what those variables are (as long as they
are distinct and don’t clash with other variables). For example, many
sequential ASMs have a dynamic symbol mode, serving as a sort of pro-
gram counter, whose value in every initial state is a particular element
(named by) start and whose value at the end of every computation is
final. Neither the name mode nor the names of its intermediate values
make any real difference to the computation. Nevertheless, changing
these names produces a different ASM, one not behaviorally equivalent
to the original because it has a different set of states (for a different
vocabulary). At first sight, it seems clear that two programs that differ
only by such a renaming should be equivalent; the underlying algorithm
is the same.

But for certain purposes, there may be a real difference, especially if
the identifiers become very long strings, for example the entire text of
War and Peace. Then an actual implementation will involve reading
the identifiers and (at least) checking which of them are the same and
which are not. If the identifiers get too long, a real-world interpreter or
compiler will crash. (For such reasons, compiler expert Gerhard Goos
likes to say that every compiler is almost always wrong, meaning that
it is correct on only finitely many programs.) Even if the system (in-
terpreter or compiler) is willing to handle very long identifiers, it must
do additional work to distinguish them. Suppose, for example, that we
take a program written with normal-sized identifiers and modify it by
attaching a particular long random string to the beginning of all the
identifiers. Then, if the compiler reads from left to right, it will have
to read and compare long strings just to tell whether two occurrences
are of the same identifier. (We could also attach another long random
string, of possibly different length than the first, to the end of each
identifier, so as to defeat compilers that don’t just read from left to
right.)
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In accordance with the discussion in Section 3, if we want to take
into account the work involved in reading and comparing identifiers,
then we should write the ASM in a way that makes this work explicit.
Suppose then that this rewriting has been done. Now the example leads
to a sorites paradox. Lengthen the identifiers gradually; at what point
do you get a different algorithm? For a fixed compiler (or interpreter),
there may be a well-defined boundary, but the boundary moves when
the compiler changes.

Finally, here is an example arising from how the first author, after
grading exam papers, sorts them into alphabetical order for recording
the grades and returning the papers to the class; a similar (or the same)
mixture of mergesort and insertion sort is described in [16].

Example 16. With N exams, first find the power of 2, say 2k, such
that s = N/(2k) is at least 3 but less than 6. (We don’t have classes
with fewer than 3 students, so k is a non-negative integer.) Partition
the given, randomly ordered stack of exams into 2k substacks of size s
(rounded up to an integer in some stacks and down in others), and sort
each substack by insertion sort (i.e., by inspection, since the stacks are
so small). Merge these stacks in pairs to produce 2k−1 larger, sorted
stacks. Then merge these in pairs, and so forth, until all the papers
are in one sorted stack. (Implementation detail: If desk space is lim-
ited, then don’t do all the insertion sorts first and then all the merging.
Rather, the stacks that would eventually be merged by the algorithm
above should be actually merged as soon as they become available.
This keeps the number of sorted stacks bounded by k instead of by 2k.
Although it’s irrelevant to the purpose of this example, the variation
raises again the question whether it changes the algorithm.) The deci-
sion to have s between 3 and 6 is just a matter of convenience, so that
insertion sort can be easily applied to the stacks of size s. In princi-
ple, the bounds could be any s and 2s. For a fixed N , varying s gives
a chain of algorithms connecting insertion sort (when 2s > N) and
mergesort (when s = 1), such that each two consecutive algorithms in
the chain are intuitively, at least for some people’s intuition, not really
different algorithms.

If N is not fixed, then there is an infinite sequence of algorithms as
above, indexed by the natural numbers s. But the sequence, which
starts at mergesort, doesn’t reach insertion sort. Instead, there is an-
other sequence, indexed by increasing k (in the notation above), that
starts at insertion sort (when k = 0) and heads toward mergesort. Be-
tween the two sequences, there are other algorithms (or other versions
of the same algorithm), for example one that adjusts k (and therefore
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s) to do half of the work by insertion and half by merging. (It may
be useful to think of this chain of algorithms in a non-standard model
of arithmetic, where N can be infinite, and we have an internally fi-
nite but really infinite chain of algorithms, indexed by k, connecting
insertion sort to mergesort.)

Example 17. Similar comments apply to the usual implementation of
quicksort, where, as described in [14, page 116], “Subfiles of M or fewer
elements are left unsorted until the very end of the procedure; then a
single pass of straight insertion is used to produce the final ordering.
Here M ≥ 1 is a parameter . . . .” A small change in the parameter M
can be viewed as a mere implementation detail, not a change in the
algorithm, but a succession of such changes can lead, for files of a fixed
size, from quicksort to insertion sort. The situation is just like that for
mergesort except that insertion sort is used at the end of quicksort and
at the beginning of mergesort.

In all the preceding examples, we had a finite sequence of programs
such that a reasonable person might call each particular consecutive
pair of algorithms equivalent but might not want to call the first and
last programs of the sequence equivalent. There is no clear transition
from equivalent to inequivalent, just as in the classical sorites paradox
there is no clear transition from a pile of sand to a non-pile (or from
a non-bald head to a bald one). That situation casts doubt on the
transitivity of the supposed equivalence relation.

Vopěnka and his co-workers have developed an interesting approach
to such situations, using the so-called alternative set theory; see [22], es-
pecially Chapter III. This theory distinguishes sets from classes, but the
distinction is not just a matter of size as in the traditonal von Neumann-
Bernays-Gödel or Kelley-Morse theories of sets and classes. Rather,
classes are to be viewed as having somewhat more vague membership
conditions than sets do. As a result, a subclass of a set need not be a
set.

The axiomatic basis of this theory allows a distinction between nat-
ural numbers (in the usual set-theoretic sense) and finite natural num-
bers. If a set contains 0 and is closed under successor, then it contains
all the natural numbers, but a class with the same properties might
contain only the finite ones. The latter can be regarded as formally
modeling the notion of a feasible natural number. If an equivalence
relation is a set (of ordered pairs), then its transitivity property can
be iterated any natural number number of times, but if it is a class
of ordered pairs, then only a feasible number of iterations will work.
Thus, sorites paradoxes disappear if one accepts that feasibly many of
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grains of sand do not constitute a pile and that a man with feasibly
many hairs is bald. These ideas can be similarly applied to our exam-
ples above. (We thereby add credence to the first author’s claim that
the number of exams he has to grade is not feasible.)

7. Analogies

The issues involved in defining equivalence of algorithms are similar
to issues arising in some other contexts, and we briefly discuss a few of
those here.

7.1. Clustering. The basic problem of saying when two things (in our
case, programs) should be treated as the same is very similar to the
basic problem of clustering theory, namely saying which elements of a
given set are naturally grouped together. Indeed, if we had a reasonable
metric on the set of programs, then we might consider applying the
techniques of clustering theory to it. But before doing so, we should
take into account a comment of Papadimitriou [19]:

There are far too many criteria for the ‘goodness’ of a
clustering . . . and far too little guidance about choos-
ing among them. . . . The criterion for choosing the
best clustering scheme cannot be determined unless the
decision-making framework that drives it is made ex-
plicit.

And that brings us back to our earlier comment that the notion of
“same algorithm” that one wants to use will depend on what one in-
tends to do with it and with the algorithms.

We should also note that Papadimitriou’s discussion is in the context
where the metric is given and the issue is to choose a criterion for
goodness of clustering. Our situation is worse, in that we do not have
a natural metric on the set of programs.

7.2. Proofs. Another analog of “When are two algorithms the same?”
is “When are two proofs the same?” The role played by the set of
programs in our discussion of algorithms would be played by the set
of formal deductions in some axiomatic system. The problem is to say
when two formal deductions represent the same proof. There are many
axiomatic systems that one might consider, ranging from propositional
calculus up to systems like Zermelo-Fraenkel set theory that provide a
foundation for almost all of mathematics. But the question of which
deductions represent the same proof makes sense at each level, and it
leads to many of the same issues that we have discussed in connection
with algorithms.
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Equality of proofs has been studied in considerable detail but usu-
ally only at the level of elementary logic; see for example [15] and [10].
Renaming bound variables is regarded as not changing a proof; the
same goes for cancelling the introduction of a connective or quantifier
and an immediately following elimination of that connective or quanti-
fier. (This formulation refers to the introduction and elimination rules
of natural deduction systems, but there are analogous notions for se-
quent calculi. Hilbert-style calculi are not used for studies of equality
of proofs, because they require circumlocutions that make formal de-
ductions bear little resemblance to the intuitive proofs they should ex-
press.) But such equivalence relations between deductions are too fine
to capture the intuitive notion of proofs being the same. In this respect,
they resemble the equivalence relation described in [23]. In fact there
is another similarity here, namely that in both cases the equivalence
relations are designed to look nice from a category-theoretic viewpoint.

Considerably larger rearrangements of the material in a deduction
would be recognized by mathematicians as not changing the proof that
the deduction represents. Other changes, however, are considered es-
sential, for example the difference between an analytic and an elemen-
tary proof in number theory, or the difference between a bijective proof
and a manipulation of generating functions in combinatorics. Between
the “clearly the same” and “clearly different” cases, there is a gray area
that looks quite analogous to what we see in the case of algorithms.

The analogy between proofs and algorithms has been given math-
ematical content by the propositions-as-types or Curry-Howard cor-
respondence. Here formal deductions in certain systems correspond
exactly to programs in certain (usually functional) programming lan-
guages. So there may be reason to think that, if we thoroughly un-
derstood sameness in one of the two contexts, then we could transfer
that understanding (or at least part of it) to the other. Unfortunately,
the existing notions of equivalence of proofs translate into equivalence
relations on algorithms that are too fine; they count algorithms as
equivalent only if they are so for trivial reasons.

In addition to the Curry-Howard correspondence, there is another
connection between proofs and computation. If we take an algorithm
for computing a function f and we run it on input x obtaining output
y, then the record of the computation can be regarded as a proof, in
an appropriate formal system, of the equation f(x) = y. (This is the
essential point behind the theorem that all recursive functions on the
natural numbers are representable in (very weak) systems of arithmetic
like Robinson’s Q; for details see [21, Section 2.4] and note that what
is nowadays called representable was there called definable.) If we had
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a good notion of equivalence of proofs in such formal systems, then we
could use it to define a notion of equivalence of algorithms. Call two
algorithms, for computing the same function f , equivalent if, for each
input x, not only do they produce the same output y, but the resulting
proofs of f(x) = y are equivalent. Unfortunately, it seems that, just
as in the case of the Curry-Howard correspondence, existing notions
of equivalence of proofs are too fine and therefore so are the resulting
notions of equivalence of algorithms.

7.3. Other analogous questions. We already mentioned, in Re-
mark 8, that certain algorithms are considered different because they
are based on different ideas. So we ask: What exactly does it mean for
two ideas to be different? What is the “right” equivalence relation on
ideas? This problem looks even worse than the original question about
algorithms, partly because of its great vagueness and partly because
the only analog for the set of programs, a set of things that can ex-
press ideas, would seem to be something like the set of all (English?)
texts, and the ways in which a text can express an idea seem to be
entirely out of control. A related question about texts is “What does it
mean for a text in one language to be a translation of a text in another
language?” Is expressing the same idea a necessary condition? Is it
a sufficient condition? Does it depend on the chosen notion of “same
idea”?

Moschovakis [18] has argued that the meaning of a term in English
(or other natural languages) is the algorithm for computing its denota-
tion. With this identification of meanings with algorithms, the question
of when two ideas are the same would be not merely analogous to the
question of when two algorithms are the same; the former would be-
come a special case of the latter, at least for those ideas that occur as
the meanings of terms.

Similar issues arise in mathematics. What does it mean to say that
two theorems are equivalent? Material equivalence, meaning equality
of truth values, is certainly not the intention. The intuitive idea is
that each of the theorems follows easily from the other – at least more
easily than proving either theorem from scratch. But “easy” and “from
scratch” are subjective notions.

Reverse mathematics (see [9, 20]) provides a notion of equivalence
of theorems, namely provable equivalence over some weak base theory.
This notion is, however, much coarser than the intuitive notion, since
the proofs of equivalence may be highly non-trivial, often more difficult
(because of the weakness of the base theory) than the usual proofs
(in strong theories like Zermelo-Fraenkel set theory) of the theorems
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themselves. Indeed, much of the fascination of reverse mathematics
comes from the equivalence between theorems from very different fields
of mathematics, theorems that at first seem to have nothing to do
with each other. Another way to view the coarseness of the notion of
equivalence given by reverse mathematics is that it looks only at one
aspect of theorems, namely the set-existence assumptions that underlie
them, whereas the intuitive notion of equivalence would look rather at
the (intuitive) content of the theorems.

We trust that the reader can extend this list of examples.
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structures fondamentales de l’analyse. Livre I. Théorie des ensembles, Her-
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