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Location based services are a vital component of the mobile ecosystem. Among all the

location technologies used behind the scenes, A-GPS (Assisted-GPS) is considered to be

the most accurate. Unlike standalone GPS systems, A-GPS uses network support to speed

up position fix. However, it can be a dangerous strategy due to varying cell conditions

which may impair performance, sometimes potentially neglecting the expected benefits of

the original design. We present the characterization of the accuracy, location acquisition

speed, energy cost, and network dependency of the state of the art A-GPS receivers shipped

in popular mobile devices. Our analysis is based on active measurements, an exhaustive

on-device analysis, and cellular traffic traces processing. The results reveals a number of

inefficiencies as a result of the strong dependence on the cellular network to obtain assisting

data, implementation, and integration problems.

I. Introduction

One of the engines for the success of smartphones

has been the breadth of mobile applications, boot-

strapped by a rich set of platform-dependent APIs that

enabled innovation and creativity by third party de-

velopers. Location APIs have played a leading role

among them. For example, beside classic navigation

and map services, mobile apps can suggest points of

interest, locate friends, provide targeted ads and per-

form geo-tagging, i.e. associate location information

to user content such as photos.

Location APIs operate by processing data both

from the embedded sensors and external data fetched

from the network connection to provide coordinates

or human readable information like the street name.

They rely on two technologies: Network Positioning

System (NPS) and Assisted-GPS (A-GPS). In the first

case, the location is retrieved by measuring the signal

level of surrounding transmitters (Wi-Fi access point

or cellular towers) to compute its location by perform-

ing a lookup on a set of remote databases. NPS tech-

nologies have the ability to provide short Time To

First Fix (TTFF, i.e. time necessary to compute a lo-

cation) at a limited energy cost but they are not an

optimal solution for navigation and other apps requir-

ing high accuracy. On the other hand, GPS is the best

technology for accuracy but it can require minutes to

fix the position depending on the signal conditions.

Sensor Accuracy (m) Energy TTFF (s) Indoors Support

Cellular 100-5000 Mid 1-3 X

Wifi 25-200 Mid 1-3 X

GPS 1-50 High 5-120 Near windows

A-GPS 1-100 Very High 2-60 Near windows

Table 1: Comparison of location technologies in mod-

ern mobile devices.

This makes it not compatible with modern mobile

apps where users typically perform just a single loca-

tion fix for check-in (e.g. Foursquare), or geo-tagging

services. Instead, A-GPS combines GPS capabilities

with assisting data provided through the cellular net-

work to help the receiver to speed up synchronization

of the GPS signal and the position fix. Table 1 com-

pares the characteristics of these technologies report-

ing the accuracy error in fixing the position, the TTFF,

the energy consumed and the ability to sense location

indoors.

While indoors localization techniques and the per-

formance of regular GPS chipsets have been well

studied in the literature, little is known on the true

performance of A-GPS and the assisting infrastruc-

ture. To the best of our knowledge, this is the first

study focused on investigating the whole A-GPS sys-

tem in modern smartphones. We carefully analyse

how A-GPS receivers operate and behave on multiple

devices and on the cellular network. We also cover



the assisting infrastructure and how the current design

impacts on the whole system. We use a comprehen-

sive approach that relies on i) active experiments to

identify different A-GPS implementations in modern

smartphones, ii) a set of on-device analysis to assess

the accuracy, speed and energy cost of acquiring a lo-

cation, and iii) a characterization of A-GPS systems

using real cellular traffic traces from more than three

million users. In more detail, our work reveals a num-

ber of interesting and previously unreported findings:

• A limited number of protocols provide assisting

data. Although standardized protocols like OMA

SUPL specification are available, many of them

are chipset-specific. The whole assisting infras-

tructure is generally hosted in North America.

This design adds significant latency for operation

in other places of the world for mobile content

distribution (Sec. III).

• While accuracy and speed of acquisition are

within the range of the expected performance

of A-GPS systems, the energy evaluation of A-

GPS receivers reveals a positive correlation be-

tween energy overhead and the network depen-

dence (Sec. III).

• A-GPS traffic has virtually no impact on the net-

work in terms of signaling and traffic volume.

However, it is frequently re-downloaded despite

its cacheability. Nevertheless, the control-plane

signaling can negatively affect the performance

of A-GPS receivers (Sec. V).

Despite the fact that A-GPS was originally de-

signed to operate more efficiently and faster than GPS,

this work reveals that the optimization benefits are

bounded to the implementation effort on the device

itself and the OS integration. The impact of the cel-

lular network and the support infrastructure are quite

neglected parameters in current system implementa-

tions. We believe that this work could bring some

light and research interest to the optimisation of A-

GPS technologies, perhaps requiring the addition of

new functionalities and features.

II. From GPS to A-GPS : Principles

GPS is a geolocation system designed to work at

worldwide scale. Started in the 1970s, it is based on a

fleet of satellites constantly broadcasting data frames

at a very low rate (50bps) to receivers on the earth’s

surface, allowing reception with a very low level of

signal. They transmit on the same frequency band (L1

band at 1575 MHz) using CDMA-like spread spec-

trum techniques and a pseudo random sequence. Each

satellite transmits frames composed of i) accurate tim-

ing information generated by an atomic clock em-

bedded into the satellite itself, ii) its precise orbital

information used to compute its location which re-

mains valid for up to 4 hours (the ephemeris), and iii)

ionospheric conditions and the operating status of the

whole system (the almanac).

Before decoding the ephemeris to compute its lo-

cation, any GPS receiver needs to acquire the satel-

lite’s signals and identify the visible satellites through

a frequency and code-delay search1. Once a satellite

is locked, the receiver can decode the data sent in the

frames received at a slow pace2 to compute its loca-

tion. When this information has been obtained from

enough satellites, the receiver can compute its own po-

sition using tri-lateration techniques. The whole pro-

cess can take several minutes. This is known as cold

start and can take even longer if there are bit errors

in frame reception. However, satellite re-acquisition

is faster than acquisition. In other words, if the re-

ceiver was recently active, the ephemeris, time and

last-known position (i.e, a priori position), are still

relatively accurate and allow the time required by the

frequency/code-delay search to be reduced, enabling

a position fix without having to fully decode GPS

frames transmitted by the satellites. This is known

as warm start and it can take about 30 seconds. Even

better, it is possible that the last known position and

the clock offset are valid so the receiver is able to ac-

quire GPS signals faster. This is known as hot start.

GPS receivers were initially designed for periods

of continuous navigation (order of hours) with a rela-

tively short fixing time (order of minutes). However,

a low TTFF on a mobile device is vital for the user

experience. A-GPS takes advantage of the benefits of

re-acquisition by providing assistance data in the form

of a coarse location estimation, time and orbital infor-

mation which is fetched from an online server using

a reliable link such as cellular networks. In particu-

lar, the orbital information is usually provided in the

form of an extended ephemeris which is obtained and

synthesised by a network of GPS receivers deployed

worldwide. Consequently, it has global and longer

temporal validity as it uses forecast techniques to pre-

1Due to satellites’ motion and Doppler effect, it is possible to

have up to 8.4 kHz of frequency shift (receiver’s motion is negli-

gible at pedestrian speed).
2Each GPS frame is broadcast every 30 seconds, and they are

composed of five sub-frames containing the ephemeris (transmit-

ted every 30 seconds), almanac (every 12.5 min as it is fragmented

in several frames) and time (every 6 seconds).
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Figure 1: Autonomous GPS and MSB location (user-

plane) A-GPS logic. The assisting data (gray boxes

and dot lines) is downloaded as a parallel process to

the normal GPS flow (white boxes).

dict the satellite’s orbit. As opposed to standalone

GPS receivers, A-GPS improves receivers’ sensitiv-

ity, allowing them to work sometimes even indoors as

reported by Kjærgaard et al. [2010]. However, there

are variations from one chipset to another. Depending

on whether the location computation is offloaded or

computed locally, A-GPS technologies can be classi-

fied as:

• Mobile Station Based (MSB) - Location compu-

tation is local. The A-GPS receiver (i.e. Mobile

Station) obtains extended ephemeris, almanac,

time and coarse location from a remote server.

The mobile device acquires GPS signals and

computes its position.

• Mobile Station Assisted (MSA) - Location com-

putation is offloaded. The server provides the

mobile device with the expected code delays and

Doppler values. The mobile device acquires

raw satellite’s signal and sends them to a remote

server which computes the location and returns

the results to the mobile device.

A-GPS technologies can be also distinguished with re-

spect to the channels used to provide assistance to the

mobile stations. In the control plane, assistance data is

based on 3GPP control standards such as GSM-RRLP.
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Figure 2: A-GPS logic according to packet capture.

In the user plane, the assistance data is encapsulated

over the IP network. A remarkable example is OMA

SUPL protocol. Hybrid solutions are also possible,

but most modern operating systems configure the A-

GPS receivers as user-plane and MSB. Their basic

theoretical logic is presented in Fig. 1. The download

of assistance data runs in parallel with the mainstream

GPS acquisition process.

III. A-GPS technologies

Most of the smartphone platforms provide analogous

features in terms of location services to the developer

and the end user. However, the final experience and

their openness may vary depending on the level of ab-

straction offered by the operating system and chipset

manufacturer. In order to get a bigger picture, we

completed a series of active experiments on a set of

Android and iPhone devices that can accurately rep-

resent the market as of first quarter 2012 in the UK 3.

The characteristics of these devices are detailed in Ta-

ble 2.

In order to collect and monitor the download of

assistance data over the cellular interface, we run

tcpdump in the background while these operations

are being performed. Despite important OS and hard-

ware operational differences, a common generic be-

haviour has been extracted from their traffic pattern

as described in Fig. 2. It helped us to realise that

3We use geo-tagged Flickr images, a popular photo service,

as an arbitrary index of popularity of these phoneshttp://www.

flickr.com/cameras/



Phone Google Nexus One Google Nexus S iPhone 3G Samsung Galaxy S2 iPhone 4S

GPS Chipset Qualcomm QSD8250 Broadcom 4751 Broadcom 4750 SiRF star IV Qualcomm MDM6610

Type MSB MSB MSB MSB, MSA or pure GPS MSB

Traffic classes gpsOne Bcom-LS + SUPL LTO SUPL gpsOne

Table 2: Mobile devices used for active experiments.

Class Connection Hostname IPs Object Whois

LTO (Broadcom) HTTP iphone-wu.apple.com 17.254.32.16 lto2.dat Apple

gpsOne

(Qualcomm)
HTTP

xtra1.gpsonextra.net 216.187.118.44

xtra.bin
Peer 1

Hosting
xtra2.gpsonextra.net both

xtra3.gpsonextra.net 69.90.74.197

gpsOne (iPhone4, Qualcomm) HTTPS iphone-ld.apple.com variable xtra2.bin Akamai

SUPL (Google) TCP 7275/7276 (SSL) supl.google.com 74.125.x.192 - Google

Bcom-LS

(Broadcom)
raw socket port7275

bcmls2.glpals.com 64.210.203.195
- Broadcom

bcmls.glpals.com 216.34.140.195

Table 3: Characteristics of A-GPS traffic classes.

control-plane latency found in cellular networks can

impair performance, and to identify the following traf-

fic classes:

gpsOne: Qualcomm proprietary technology. It

fetches an extended ephemeris (xtra.bin file) through

HTTP. The service is provided by three hostnames

xtraN.gpsonextra.net, where (N = 1,2,3) corre-

sponding to two IPs in the Peer 1 Hosting network.

A load balancing scheme is used to handle the re-

quests at DNS level (xtra2.gpsonextra.net can

assume both IPs while the other two are statically

mapped). This technology can be found in some An-

droid phones as well as in the latest iPhone versions

(from 4S). In the latter case, assistance is provided by

Apple servers4 rather than Qualcomm ones.

Long Term Orbit (LTO): Broadcom proprietary

technology (similar to gpsOne) used in earlier iPhone

devices (3G, 3GS and 4). A system daemon (lo-

cationd) performs a HTTP connection to iphone-

wu.apple.com in order to fetch the lto2.dat file5. This

data corresponds to chipset specific and satellite data

which is updated a few times a day (i.e, the ex-

tended ephemeris). Despite the quasi-static nature of

this type of content which makes it compatible to be

served through CDN’s, the support infrastructure is

fully centralized: iphone-wu.apple.com resolves into

a single Apple server located in the US.

TCP/7275, TCP/7276 (SSL): SUPL and customized

vendor protocols. Google SUPL supl.google.com ser-

vice is present in every single Android device. The

service can use SSL (port 7276). Although other mi-

4https://iphone-ld.apple.com/xtra/xtra2.bin
5http://iphone-wu.apple.com/7day/v2/latest/

lto2.dat

nor services provide SUPL support on port 7275, We

found that the majority of the traffic on this port is

related to bcmls.glpals.com and bcmls2.glpals.com.

These hostnames are two Broadcom specific servers

for proprietary assistance using an identified TCP pro-

tocol, that we refer to as Bcom-LS (Broadcom Loca-

tion Services).

Table 3 summarizes the characteristics of the four

classes of traffic identified for these popular devices.

For most of the technologies, a few servers, mainly

located in North-America are providing A-GPS assis-

tance for the entire world. A cross-check from other

vantage points in different countries (France, Italy,

Spain, UK, US) corroborates that observation. Fur-

thermore, DNS records are not properly adapted for a

large-scale deployment. For instance, DNS records

for gpsOne present a TTL of one day, mapped to

only three IPs, all hosted in North America under the

same autonomous system. Similarly, Google SUPL

servers resolve to a single physical IP, despite having

a CNAME record with a short TTL. Finally, Bcom-

LS on port 7275 also presents a very short TTL (1

min) that maps to a single IP in the US (without round

robin) serving the whole world. This makes the whole

assisting infrastructure highly vulnerable in case of

failure, but it is changing with newer releases. Newer

Apple devices (from iOS 4) rely on Akamai services

to increase the resilience and reduce latency. We fur-

ther observed two more types of traffic potentially re-

lated to A-GPS. First, we noticed that NTP requests

are performed in certain chipsets each time the A-GPS

receiver is used but it can be attributed to other oper-

ating system services to correct the time. Secondly,

iPhone devices use SSL to perform NPS operations.



Summary:

A-GPS technologies shipped on modern smartphones

differ from one device to another. Despite the pres-

ence of a standard protocol such as OMA SUPL, the

A-GPS ecosystem is clearly using a small set of pro-

prietary protocols. Furthermore, the assistance infras-

tructure for the entire-world is generally localised in

North America, making A-GPS vulnerable to failures.

In Sec. IV, we characterize the performance and en-

ergy consumption of two popular A-GPS chipsets try-

ing to find inefficiencies in the way these technologies

are integrated on mobile systems. We choose Android

devices due to their openness.

IV. Characterizing A-GPS perfor-
mance

Whenever an Android application requests an A-GPS

fix, the Java Location API is invoked (LocationMan-

ager). The Location Manager is responsible for ac-

cessing the low C/C++ layer (Android HAL layer) via

the GpsLocationProvider. That provides access to the

low level GPS functions from the chipset. The open

source nature of Android allows tracing the behaviour

of the Location Manager and other classes involved in

downloading the assistance data (e.g. GpsXtraDown-

loader and SntpClient for Qualcomm chipsets).

Handsets such as the Nexus S integrate the A-GPS

module in a completely different way. We have iden-

tified a binary daemon (gpsd) running in the back-

ground that acts as a middleware layer as shown in

Fig. 3 (the gray elements represent the basic compo-

nents expected on any Android device). Such a de-

sign modifies the standard work-flow by introducing

a software bypass between the A-GPS logic and the

cellular interface (blue arrow on the figure). Further-

more, a dump of the symbols of the gpsd uncovered

additional features such as NTP calls, SSL and SUPL

functions for NPS, and calls to other sensors such as

the magnetometer and accelerometer. This allows the

A-GPS daemon to directly access the network func-

tions without consulting the Android subsystem. This

causes an additional energy overhead as the OS may

perform such actions in parallel.

In this section, we conduct a series of experiments

designed to measure three metrics we consider as rep-

resentative of the A-GPS performance. We select ex-

clusively terminals endorsed by Google such as the

Nexus One and Nexus S. According to the specifica-

tions, these two handsets are running respectively a

Qualcomm and a Broadcom A-GPS chipset, hence it

covers two of the main manufacturers identified in the

Android	
  Loca+on	
  API	
  

libril*	
  	
  

(provide	
  RIL	
  

func+ons)	
  

libgps*	
  	
  

(provide	
  GPS	
  

func+ons)	
  

RIL	
  Daemon	
  

3G	
  Modem	
  

(Data/Serial	
  port)	
  

GPS	
  

(Serial	
  port)	
  

GPS	
  Daemon	
  

Figure 3: Software architecture of A-GPS on the

Nexus S.

previous section. The experiment is designed to see

some differences in their behaviour and performance

at the following levels:

1. Time to first fix or TTFF (seconds): time elapsed

between the instant in which the location engine

receives a location request until the request is ful-

filled. This is designed to address the usability of

A-GPS from a user perspective.

2. Accuracy (metres): difference between the true

location and that returned by A-GPS. It measures

the quality of the position fix.

3. Current draw (mA): amount of current expended

in acquiring a GPS location. It quantifies the en-

ergy cost of using A-GPS technology.

IV.A. Methodology

As already reported by Kjærgaard et al. [2010], the

performance of A-GPS depends on both handset de-

sign and on its context. For that reason, we performed

the experiments in three different environments (all of

them with clear sky conditions) as described in Ta-

ble 5. The scenarios were selected to cover realistic

situations in which A-GPS performance may be com-

promised.

For statistical significance and given the sudden

changes that can occur on the radio channels, TTFF

and accuracy experiments are repeated 25 times. We

placed the devices 10 cm apart from each other on

a surface for practical reasons, in the same position

and facing the same direction while they were sensing

location simultaneously. The “ground truth” is esti-

mated as the average fix between two Nexus One fix-

ing A-GPS locations for a long time and filtering out



Device Location
TTFF Cold start (s) TTFF Warm start (s)

Median 98 Percentile Median 98 Percentile

Nexus S

Open sky 10.1 28.0 9.1 18.1

U. canyon 34.8 143.9 13.1 50.5

U. park 6.9 14.0 7.1 13.1

Nexus One

Open sky 4.1 28.1 4.0 6.1

U. canyon 10.1 86.1 4.1 11.1

U. park 3.1 10.1 3.1 8.1

Table 4: Summary of the TTFF per device in three different environments.

Location Sats

Open sky. Metal columns used for street lightning

were present. Concrete ground

11

Urban canyon. Narrow stairs between concrete

walls to limit viewed sky. Concrete ground

7

Urban park. Park with relatively dense tree

canopy. Earth ground

12

Table 5: Description of the experiment locations and

maximum number of satellites locked

outliers. This methodology has been widely used in

previous experiments such as the study by Kjærgaard

et al. [2010]. As Doppler effect at pedestrian speed

is negligible, whether the devices are static or moving

does not affect the results.

Estimating power consumption is harder to quan-

tify than accuracy and TTFF. We measure the current

drawn by the handset using a Monsoon’s PowerMoni-

tor. Any unnecessary hardware module is off. The en-

ergy evaluation was done on a controlled environment

with clear sky view. To synchronize the traces ob-

tained from the mobile device with the power monitor

ones, we generate a current peak pulse by turning on

and off energy-intense resources (e.g, camera flash)

as to identify when the experiment begins, using USB

disconnection events to trigger the data collection.

IV.B. TTFF

Ideally a cold start in A-GPS receivers should look

like an autonomous GPS warm start. The violin plot6

shown in Fig. 4 corroborates that statement as the

TTFF is usually below 30 seconds for both handsets

instead of minutes as for typical autonomous GPS

receivers as reported by Wing et al. [2005]. How-

ever, despite having network access to obtain assis-

tance data, contextual factors still play an impor-

tant role on the performance of A-GPS receivers.

As a consequence, the TTFF becomes more unpre-

dictable if environmental and network conditions are

6A violin plot is a combination of a box plot and a kernel den-

sity plot that also shows the probability density.
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Figure 4: Violin plot and box plot of the TTFF in three

different locations for a Nexus S and a Nexus One

not favourable as in urban canyons, where the TTFF

in a cold start presents a heavy tailed distribution re-

quiring up to 100 seconds to perform a fix in this en-

vironment.

Table 4 summarizes the results obtained for the de-

vices under study in the three environments analyzed.

As expected, being on a warm start helps to reduce

the TTFF. The 98th percentile decreases notably for

both devices independently of the environment. Over-

all, the Nexus S is likely to have a higher TTFF if

compared to the Nexus One. In fact, while the exper-

iments have been carried with all devices lying on a

surface, we noticed that the TTFF for a Nexus S is im-

proved when the device is lifted up or held on a hand

as the antenna is located on the back. Consequently,

its reception is negatively affected when the device

is acquiring GPS signals7. Impact of the body posi-

tion and gesture on some A-GPS receivers has been

already studied by Blunck et al. [2011].

IV.C. Accuracy

Fig. 5 shows the density of location fixes on a 2D sur-

face obtained during the experiment done to evaluate

the TTFF. As we can see, the accuracy during a warm

start (blue points) is generally better than in a cold

start (red points). The reason is that the receiver is

7http://www.ifixit.com/Teardown/

Nexus-S-Teardown/4365/2
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Red points represent the location fixes on a cold start
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able to acquire more GPS signals, having more free-

dom about which satellites to use in order to compute

its location. This decision is typically based on signal

strength and the expected position of the satellites as

studied by Hadaller [2008].

Consequently, most of the location fixes obtained

on a warm start are within the region of interest that

contains 95% of the fixes for any platform and envi-

ronment, as the receiver can select the signals from

the most adequate satellites. Fig. 6 shows the consec-

utive fixes reported by a static device for 15 minutes.

In presence of fluctuations on the time of flight and

the clock offset caused by a poor reception or even

reflections on the radio signals, consecutive location

fixes can jump from one place to another causing tra-

jectories of several tens of meters that can be observed

across all the scenarios since the first location fix.
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Figure 7: Power consumption during cold start for the

Nexus S (top) and the Nexus One (bottom). Left plot

details 150 seconds while on the right only the first

24 seconds The dashed lines indicate network traffic

while the solid black line marks the first location fix.

IV.D. The energy cost of the network de-
pendency

The studies by Zhang et al. [2010], and by Pathak

et al. [2012] report A-GPS as one of the most energy-

intensive resources on a mobile system. As opposed to

simplified measurements based on power models ob-

tained from linear regression techniques such as Pow-

erTutor, we can obtain detailed information about the

costs of performing different tasks such as turning on

the A-GPS receiver, downloading assistance data over

the cellular network, and fixing location.

Assistance data is vital to reduce the TTFF and im-

prove the sensitivity of the receiver. However, us-

ing the cellular interface to obtain these data imposes

an energy-overhead on the mobile client. The works

by Qian et al. [2010], and Balasubramanian et al.

[2009] are just two examples among the many stud-

ies that analyzed the characteristics of the current cel-

lular stack and the tied relationship with the battery

life in mobile devices. Depending on the volume and

the frequency of the traffic, and according to the in-

activity timers of the RNC states, the mobile device

will exhibit different power levels on its radio inter-

face which define its power consumption, latency, and

throughput.

Fig. 7 shows the current consumed (y axis) by the

A-GPS modules shipped on a Nexus S (top row) and a

Nexus One (bottom) for a cold start, beginning when

the application requests a location fix to the Location-

Manager. The figures on the left show the current

draw during 150 seconds whilst the initial 24 seconds

are detailed on the right side. The vertical lines cor-
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Figure 8: Power consumption during a warm start for

a Nexus S (left) and a Nexus One (right) during a

minute. The dotted black lines represent new loca-

tion fixes and the blue dashed ones acquisition of as-

sistance data. We can see that the Nexus One does not

require acquiring assistance data on a warm start.

respond to requests for assistance data, actions that

happen when the A-GPS receiver is turned on for at

least 15 seconds. In these power measurements it is

possible to clearly identify the energy overhead at-

tributed to downloading assistance data: 401.9 mA

and 338.6 mA on average for the Nexus One and the

Nexus S respectively, including CPU costs and RRC

inactivity timeouts. As we can see, relying on cellu-

lar networks adds a significant energy overhead on the

mobile client, which is positively correlated with the

network conditions and the RNC inactivity timeouts

defined by the network operator. Once the cellular in-

terface is set IDLE (or in paging mode), the current

draw for both chipsets decreases to 266.7 and 167.9

mA approximately respectively.

Fig. 8 shows the current draw on a warm start.

In this case, the A-GPS module should not depend

that much on assistance data (a valid copy should

be already available on the device) but the Nexus S

still imposes an energy overhead caused by the net-

work activity. Despite the lower current draw for

the Nexus S when the cellular interface is IDLE,

its apparent dependency on cellular traffic implies

higher energy consumption with respect to Nexus

One. This is clearly shown in the violin plot repre-

sented in Fig. 9 showing the distribution of the en-

ergy (in mAh) required to fix a location per device,

and GPS state. Considering the network traces col-

lected for the phones listed in Table 2, we can map

this to the fact that the Nexus S combines two A-GPS

traffic classes: the Broadcom specific on port 7275,

followed by SUPL traffic to Google. The combina-

tion of these technologies tends to reduce the power

efficiency of this device, especially for single shot lo-

cation requests.
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Figure 9: Energy consumed until the TTFF (i.e.

single-shot fix) for a Nexus One and a Nexus S in a

cold (left) and a warm start (right).

Summary:

A-GPS does not necessarily improve accuracy but

it reduces notably GPS’s TTFF at the expense of a

higher current draw attributed to fetching assistance

data over the cellular link. Our analysis revealed per-

formance differences across mobile handsets, mainly

due to integration issues that can double the energy

consumption until the first fix. The case of the Nexus

S illustrates the difficulties for hardware manufacturer

to implement innovative schemes that were not ini-

tially planned in the original framework (in this case,

Android). Based on Sec. III findings, we define a rule-

set that will be used in Sec. V against a large data set

of cellular traffic traces. This analysis will allow us to

better understand the way millions of mobile handsets

obtain assistance in the wild over a day.

V. One day of A-GPS traffic

In this section we present a characterization of A-

GPS traffic observed in a large European mobile op-

erator. We refer to a data set of mobile traffic col-

lected on August 13th, 2011 at 8 vantage points which

share the load of the entire country. It contains 1.7

billion connections corresponding to 22 TB of vol-

ume downloaded by more than 3 millions of mobile

subscribers. The monitoring activity at each vantage

point is reported in a set of text log files. Each en-

try in the logs contains a set of standard information,

such as IPs, ports, number of bytes downloaded, and

some other HTTP specific information, such as con-

tent type, HTTP user agent, and HTTP response code.

Given that NTP can be generated by other background

services and applications, it is not included in the net-

work study as it can add uncontrolled noise. Likewise,

the SSL connections found in iOS are also filtered out

as they seem to be related with NPS technologies.

Each user is identified with an anonymized unique

ID and each line of the logs corresponds to a different



(a) Comparing O.S.

Device Fl[k] % Vol[MB] % Usr[k] %

iPhone 792 0.075 29108 0.198 309 14.33

Android 260 0.141 2583 0.116 78 14.87

Total 1051 0.085 31692 0.187 387 14.44

(b) Breakdown Android A-GPS

A-GPS class Fl[k] (%) Vol[MB] (%) Usr[k] (%)

gpsOne 24 9.04 801 31.02 16 21.30

SUPL 124 47.79 93 3.60 52 66.93

Bcom-LS 112 43.17 1689 65.39 15 20.28

Total 260 100 2583 100 83 108.51

Table 6: A-GPS data set.

TCP connection performed by an user. We identified

11 different types of mobile operating systems in the

data set but Android and iPhone devices account for

96% of both volume and flows. iPhone is the most

popular platform type accounting for 70.7% of the

subscribers as opposed to 17.3% of Android devices,

generating 83.5% and 12.5% of the traffic volume re-

spectively. As a consequence, for the remaining part

of this section we focus solely on iPhone and Android

devices. Unfortunately, as the data set accounts ex-

clusively for one day of traffic, an extended and long-

term characterization of this traffic is out of the scope

of this work. However, we aim to provide an overview

of the main properties of A-GPS traffic, highlighting

macroscopic effects also affecting the user experience.

We characterize each class of assisting traffic, inves-

tigating the volumes generated and the time elapsed

between subsequent requests done by each device.

V.A. Volumes

Table 6 reports the amount of A-GPS traffic extracted

from the cellular log using the set of rules obtained

in Sec. IV. Table 6(a) compares the amount of A-

GPS traffic with respect to the device OS considering

number of flows, bytes, and mobile subscribers (per-

centages are related to the amount of A-GPS traffic for

each OS).

As iPhone adopted only LTO at the time of the data

set (iPhone 4S and iPhone5 came later on the market),

Table 6(b) breaks down the A-GPS traffic per assist-

ing protocol for Android. Google SUPL is the most

common one, being responsible for the higher num-

ber of flows but the smallest number of bytes. We ob-

served that 8.51% of devices using SUPL where using

also one of the other two classes. We link this obser-

vation to the fact that SUPL configuration is directly

provided in the Android Open Source Project and its

up to the A-GPS implementation to use it or not.

Fig. 10(a) reports the CDF of the total number of

flows generated by each user during the whole day

for the four classes of traffic. While only 2.87% of

the users have more than 10 flows in the day for

LTO, gpsOne and SUPL, 3.47% of the users gener-

ate more than 30 flows in the day towards the two

Bcom-LS servers. Fig. 10(b) reports the CDF of the

total number of bytes downloaded in the day by each

user. SUPL volume is 10 times smaller than the other

three classes. LTO and gpsOne traffic distributions are

very similar as their requests are composed of mes-

sages of nearly 40 KB thus forcing a RNC promo-

tion to a dedicated channel. LTO traffic tail is heavier

due to the higher number of flows requested as seen

in Fig. 10(a), whereas Bcom-LS presents a bimodal

distribution (requests of 40KB and 1KB). Given their

similarities, it is reasonable to presume that the con-

tent delivered is similar while the protocol is different.

Based on the number of users requesting assisting

data, we can state that Broadcom dominates the mar-

ket as they are shipped in pre-iPhone 4 devices as

shown in Table 6(a). However, different technologies

coexists in the Android ecosystem. An analysis based

on the UserAgent field of the HTTP requests reveals

that Qualcomm is the leading vendor in Android with

62.27% of the devices. Fig. 13 reports a tree map of

both vendors and type device model popularity based

on the number of Android devices generating A-GPS

traffic during the day.

V.B. Inter request time

A-GPS data consists of different type of content, from

satellite info to cell IDs and time. This data, espe-

cially satellite info (e.g, LTO and gpsOne), is highly

cacheable, and has a temporal validity of several days

as described by Frank Van Diggelen [2009]. However,

between 14.65% and 54.47% of devices downloaded

such data more than once a day, causing unnecessary

energy and signaling costs.

Fig. 10(c) reports the inter request time of consec-

utive requests performed by each device for the four

classes of A-GPS traffic. Unexpectedly, results show

the presence of re-downloads within one minute. In

particular, 70% of consecutive requests on iPhone de-

vices are interleaved by less than 30 seconds. This is

in part related to the presence of some outliers which

obtain the content hundreds of times in the day. How-

ever, results do not change when the same measure-

ment is performed considering only devices with a

maximum of five downloads/day. A deeper analysis

of the traffic reveals that these users were legitimately

using A-GPS for location-based applications, such as

Google Maps. On the other hand, the gpsOne dis-
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Figure 10: A-GPS traffic analysis for devices with more than a flow per day.
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Figure 11: Distribution of the download time for the

gpsOne xtra.bin and NTP RTT over 3G.

tribution presents a sharp knee around 300 seconds,

possibly corresponding to a timeout. For SUPL and

Bcom-LS servers, the curves are smoother with two

timeouts at one and five hours. 8% and 40% of the

consecutive requests happen in less than 100 sec for

SUPL and Bcom-LS respectively, thus forcing a larger

number of network promotions.

V.C. The impact of cellular networks la-
tency

The control-plane latency required to allocate a radio

channel in cellular networks implies that the time re-

quired to reach the servers is non-negligible. We run

experiments on one of the phones to quantify its im-

pact. First, we measured the RTT of performing 1000

NTP lookup on the national NTP pool and download-

ing the extended ephemeris for gpsOne on a 3G inter-

face every 30 seconds. The download time histogram

for both types of assisting data is shown in Fig. 11.

The same effect can be seen in the case of LTO. As

feared, the impact of powering up a radio to down-

load a resource from a remote IP (possibly located in

another country) has a non negligible download time

over 3G which varies from 2 to 4 seconds. The energy

expenditure also increases with higher RTTs.

Furthermore, we evaluated the impact of the usage

of NTP over the 3G network with variable RTT (in-

cluding the control-plane latency). Fig. 12 shows the

time error (y axis) as a function of the RTT (x axis).

As we can see, the NTP error increases linearly with

network latency. In that case, the benefits for faster
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Figure 12: Impact of network latency on the accuracy

of 1000 NTP lookups. Android’s SNTP client error

increases linearly with network latency.

satellite acquisition and location fixing achieved by

time synchronization are likely to be affected by the

potential errors caused by the network latency and the

download time.

Summary:

The small amount of data downloaded and the num-

ber of flows observed for assisting GPS do not impact

on the network resources of the hosting operator, as

well as the data plan of the user. However, the strong

dependency on the network may sometimes impair

performance due to network latency (mainly control-

plane latency) while increasing the energy cost of lo-

cation operations. The analysis revealed chipset in-

tegration inefficiencies such as lack of caching. Al-

though the extended ephemeris has a nominal validity

of two weeks, multiple re-downloads happen within a

one minute time-frame.

VI. Re-thinking A-GPS

In the previous sections, we have seen the limitations

of A-GPS mainly due to the dependency on cellu-

lar networks and the strong layering on the OS de-

sign. With the knowledge obtained from the previous

sections, we will discuss different research areas and

problems that can improve the way assistance is per-

formed both on the client and the support architecture.
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On the client:

Location drivers can use networking resources and

sensors autonomously without any coordination with

the OS. This behavior is unexpected, especially on

embedded system, where a good integration of the dif-

ferent modules is key to achieve a good performance.

A more strict integration with the OS can provide im-

portant energy savings by avoiding redundant and un-

necessary access to such power-hungry resources.

The network usage when A-GPS is operative has

a non negligible energy expenditure, especially in the

use of single-shot applications with check-in and geo-

tagging capabilities. Although, most of the assistance

data is highly cacheable, neither the OS nor the loca-

tion APIs incorporate caching capabilities. As an ex-

ample, the extended ephemeris could be corrected on

the handsets by porting some of the logic used to gen-

erate the files to the end-points whenever new satellite

frames are received.

Even time can be cached. A centralised time server

can use periods of connectivity (e.g, by piggyback-

ing RNC promotions caused by other applications) to

perform NTP lookups. It can help to correct the clock-

drift, as well as the latency error shown in Fig. 12,

serving immediately time to applications. The OS can

exploit its central role to monitor the staleness of the

local data and pre-fetch it whenever satisfactory con-

ditions occur. This has two immediate benefits: i) it

allows reducing the usage of the cellular network even

for a cold-start with A-GPS operations, and ii) it al-

lows the A-GPS receiver to have valid data as soon as

possible, reducing the negative impact of the high la-

tency (including the control-plane one) of cellular net-

works when fetching assistance data as shown Fig. 11.

However, identifying when and how data must be pre-

fetched is key to optimise the whole system as it can

increase the volume of mobile traffic and energy costs.

On the assisting infrastructure:

The supporting infrastructure - in terms of redundancy

of DNS records, TTL of these records and servers re-

dundancy, and geographical distribution - is not prop-

erly adapted for the requirements of a world-wide A-

GPS deployment with millions of mobile devices de-

pending from it. We have shown that only a couple of

servers were used for the entire A-GPS network sup-

port on the analyzed country. Exploiting CDNs for

assistance can provide important benefits, as well as

incorporating assistance on network components such

as Wi-Fi APs or even neighbouring devices.

VII. Related Work

Paek et al. [2010] looked at the performance of stan-

dalone GPS receivers in urban and rural scenarios.

Hadaller [2008] analysed the impact of receivers’ mo-

bility, whereas Ramos et al. [2011] studied how to

improve the acquisition phase at the signal processing

phase. Little research effort was focused on a holystic

analysis of A-GPS technologies. Nevertheless, Kjær-

gaard et al. [2010] analyzed A-GPS performance in-

doors, whereas Blunck et al. [2011] characterized the

impact of antenna design and user gesture on the accu-

racy and performance of the receiver. The later article

also proposed a pure GPS signal classification method

to discriminate the environment at the cost of keeping

the A-GPS receiver active.

Nevertheless, there is a broad literature about

energy efficiency for location sensing and mobile

smartphones as surveyed by Vallina-Rodriguez and

Crowcroft [2012]. In particular, Paek et al. [2011],

Zhuang et al. [2010], Lin et al. [2010], and Kjaer-

gaard et al. [2009] studied how to combine different

location sensors such as A-GPS, NPS, compass and

accelerometer to reduce the energy consumption in

navigation modes. They used forecasting, substitu-

tion, suppression, piggybacking and adaptation tech-

niques for outdoors localisation. Liu et al. [2012]

proposed an MSA technique based on offloading some

calculations to the cloud. With few milliseconds of

raw satellite’s data, it can estimate the device’s past

locations by exploiting information from public, on-

line databases. Unfortunately, it is still dependent on

network access.



VIII. Conclusion

In this paper, we presented the first full character-

ization of A-GPS technologies along five different

axis: i) technology and protocols used (Section III),

ii) TTFF, accuracy, and energy consumption (Sec-

tion IV), and iii) network dependency (Section V).

For that, we used active experiments on modern A-

GPS modules as well as passive experiments run on

cellular network traces obtained from a major Euro-

pean carrier. The results reveal that A-GPS technol-

ogy exhibits a severe variability in its performance and

energy consumption despite offering reasonable per-

formance in terms of TTFF and accuracy. The main

reasons behind are related to the way the chipsets

use cellular networks to obtain assistance and how

they are integrated in the OS. We notice that the pat-

terns for fetching data do not match with the sup-

posed temporal validity (and cacheability) of the as-

sistance data, adding unnecessary transmissions over

the energy-costly cellular interface. We discuss sev-

eral possibilities for improvement at different levels

in order to guarantee a better performance (in terms

of TTFF), energy consumption (reduce network de-

pendency), integration (better coupling between the

mobile network capabilities and the A-GPS modules),

and reliability (adding caching and pre-fetching ca-

pabilities for assistance data on the handsets, and in-

crease the security of the assisting infrastructure).
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