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Abstract. Recent research on Boolean satisfiability (SAT) reveals mod-
ern solvers’ inability to handle formulae in the abundance of parity (xor)
constraints. Although xor-handling in SAT solving has attracted much
attention, challenges remain to completely deduce xor-inferred impli-
cations and conflicts, to effectively reduce expensive overhead, and to
directly generate compact interpolants. This paper integrates SAT solv-
ing tightly with Gaussian elimination in the style of Dantzig’s simplex
method. It yields a powerful tool overcoming these challenges. Experi-
ments show promising performance improvements and efficient derivation
of compact interpolants, which are otherwise unobtainable.

1 Introduction

For over a decade of intensive research, Boolean satisfiability (SAT) solving [2] on
conjunctive normal form (CNF) formulae has become a mature technology en-
abling pervasive applications in hardware/software verification, electronic design
automation, artificial intelligence, and other fields. The maturity on the other
hand sharpens the boundary between what can and what cannot be achieved
by the state-of-the-art solving techniques [23,22,10]. One clear limitation is their
poor scalability in solving formulae that in part encode parity (xor) constraints,
which arise naturally in real-world applications such as cryptanalysis [21], model
counting [11], decoder synthesis [14], arithmetic circuit verification, etc.

To overcome this limitation, there are prior attempts integrating special xor
handling into SAT solving [27,4,15,6,7,25,16,26,17]. Two different strategies have
been explored. Non-interactive xor handling, on the one hand, as pursued in
[27,6,7] performs xor reasoning and SAT solving in separate phases. Interac-
tive xor handling, on the other hand, as pursued in [4,15,25,16,26,17] invokes
xor reasoning on-the-fly during SAT solving. Despite the expensiveness of xor
handling compared to CNF handling, positive results on conquering tradition-
ally difficult problems have been demonstrated especially by the latter strategy,
which is taken in this paper. Prior interactive methods can be further classified
into two categories: inference-rule based [4,15,16,17] and linear-algebra based
[25,26] xor reasoning. The latter tends to be simpler in realization, and can be
faster in performance as suggested by the empirical results in [17]. This paper
adopts linear-algebra based computation [25,26].
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Regardless of the recent progress in xor-reasoning, several challenges remain
to be further addressed. Firstly, the deductive power of xor-reasoning should be
enhanced. To the best of the authors’ knowledge, no current solver guarantees
complete propagation/conflict detection for a given set of xor-constraints with
respect to some variable assignment. Secondly, the overhead of xor-reasoning
should be reduced, and the synergy between CNF solving and xor-reasoning
should be further strengthened. Thirdly, Craig interpolant generation is not
supported by any current solver equipped with the xor-reasoning capability.
As interpolation becomes an indispensable tool for verification [19] and synthe-
sis [13], compact interpolant derivation from combined CNF and xor reasoning
should be solicited.

The efforts of combining CNF and xor reasoning share a common connection
to Satisfiability Modulo Theories (SMT) [24]. There is, however, a subtle differ-
ence that makes these efforts distinct. The underlying CNF and xor handlers
encounter the same variables, whereas most, if not all, current SMT solvers with
capability of producing Craig interpolants [8] assume the considered theories are
of disjoint signatures. This difference makes recent advances in SMT solving and
interpolation [20,28,5] not immediately helpful to alleviate the aforementioned
challenges.

This paper tackles the above three challenges with the following results.
Gauss-Jordan elimination (GJE) (in contrast to prior Gaussian elimination (GE)
[25,26]) is proposed for xor-constraint processing in a matrix form. It admits
complete detection of xor-inferred propagations and conflicts. As the matrix is
in the reduced row echelon form, the two-literal watching scheme fits in naturally
for fast propagation/conflict detection, and for lazy and incremental matrix up-
date in the style of Dantzig’s simplex algorithm [9]. This simple data structure
effectively reduces computation overhead and tightens the integration between
CNF and xor reasoning. Moreover, interpolant derivation rules are obtained for
direct and compact interpolant generation. Experimental results suggest strong
benefit of the proposed method in accelerating SAT solving. Promising improve-
ments over the prior state-of-the-art solver [26] are observed. Moreover the results
show efficient derivation of compact interpolants, which are otherwise unobtain-
able.

This paper is organized as follows. Preliminaries are given in Section 2. Sec-
tion 3 presents our framework on SAT solving and xor-reasoning; Section 4
covers interpolant generation in our framework. Experimental results and dis-
cussions are given in Section 5. Detailed comparison with the closest related work
is performed in Section 6. Finally, Section 7 concludes this paper and outlines
future work.

2 Preliminaries

We define terminology and notation to be used throughout this paper. Symbols
∧, ∨, ¬, and ⊕ stand for Boolean and, or, not, and exclusive or (xor) oper-
ations, respectively. A literal is either a variable (i.e., in the positive phase) or
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the negation of a variable (i.e., in the negative phase). A (regular) clause is a
disjunction of a set of literals. A Boolean formula is in conjunctive normal form
(CNF) if it is expressed as a conjunction of a set of clauses. For a literal l, its
corresponding variable is denoted as var (l). Also since a clause is viewed as a
set of literals, expression l ∈ C denotes that l is a constituent literal of clause
C, and C′ ⊆ C denotes C′ is a subclause of C.

2.1 XOR Constraints

An xor-clause is a series of xor operations over a set of literals and/or Boolean
constants {0, 1}. It equivalently represents a linear equation over GF(2), the
Galois field of two elements. An xor-clause is in the standard form if all of its
literals appear in the positive phase. E.g., the xor-clause (x1⊕¬x2⊕x3) can be
written in the standard form as (x1 ⊕x2⊕x3⊕1), which equivalently represents
the linear equation x1 ⊕ x2 ⊕ x3 = 0. Note that an xor-clause consisting of
n variables translates into a conjunction of 2n−1 clauses with n literals each.
E.g., the xor-clause (x1 ⊕ ¬x2 ⊕ x3) can be clausified to the equivalent CNF
(¬x1∨¬x2∨¬x3)∧(¬x1∨x2∨x3)∧(x1∨¬x2∨x3)∧(x1∨x2∨¬x3). To avoid such
exponential translation, an n-element xor-clause (l1 ⊕ · · · ⊕ ln) can be divided
into two xor-clauses (l1 ⊕ · · · ⊕ lk ⊕ y) and (¬y⊕ lk+1 ⊕ · · · ⊕ ln) by introducing
a new fresh variable y. Some modern SAT solvers, e.g., CryptoMiniSat [26],
can extract xor-clauses from a set of regular clauses.1

A set of m xor-clauses over n variables x = {x1, . . . , xn} can be considered as
a system of m linear equations over n unknowns. Hence the xor-constraints can
be represented in a matrix form as Ax = b, where A is an m×n matrix and b is
an m×1 constant vector of values in {0, 1}. In the sequel, Ax = b is alternatively
represented as a single Boolean matrix M = [A|b], where separation symbol “ |”
denotes matrix concatenation of A and b, that is, matrix A is augmented with
one more column b.

Example 1. The three xor-clauses c1: (x1 ⊕ ¬x4), c2: (x2 ⊕ x4), and c3: (x1 ⊕
¬x2 ⊕ ¬x3) correspond to the linear equations with the following matrix form.

⎛
⎝

x1 x2 x3 x4 b

c1 1 0 0 1 0
c2 0 1 0 1 1
c3 1 1 1 0 1

⎞
⎠

A matrix M can be reduced by Gaussian or Gauss-Jordan elimination to remove
linearly dependent equations. Without loss of generality, we shall assume that
matrix M has been preprocessed and is of full rank. In our treatment a matrix is
often underdetermined, namely, there are more columns (unknowns) than rows
(constraints). In the sequel, a matrix is also viewed as a set of rows.

This paper is concerned with the Boolean satisfiability of a formula given as
a conjunction of regular clauses and/or xor-clauses. Thus a formula is viewed
1 Our implementation adopts the xor extraction computation of CryptoMiniSat.



When Boolean Satisfiability Meets Gaussian Elimination 413

as a set of (xor-)clauses. (In practice, the xor-clauses can be given as part
of the formula or deduced from the regular clauses.) In the sequel, a formula
φ (respectively a system of linear equations [A|b]) over variables x subject to
some truth assignment α : x′ → {0, 1} on variables x′ ⊆ x is denoted as φ|α
(respectively [A|b]|α). That is, φ|α (respectively [A|b]|α) is the induced formula of
φ (respectively linear equations [A|b]) with variable xi substituted with its truth
value α(xi). We represent α with a characteristic function. E.g., α = ¬x1x2¬x3

denotes α(x1) = 0, α(x2) = 1, and α(x3) = 0.

2.2 Resolution Refutation and Craig Interpolation

Assume literal l is in clause C1 and ¬l in C2. A resolution of clauses C1 and C2 on
var(l) yields a new clause C containing all literals in C1 and C2 except for l and
¬l. The clause C is called the resolvent of C1 and C2. For an unsatisfiable CNF
formula, there always exists a resolution sequence, referred to as a resolution
refutation, leading to an empty-clause resolvent. Resolution refutation has a
tight connection to Craig interpolants.

Theorem 1 (Craig Interpolation Theorem). [8]
For two Boolean formulae φA and φB with φA ∧ φB unsatisfiable, there exists a
Boolean formula IA referring only to the common variables of φA and φB such
that φA → IA and IA ∧ φB is unsatisfiable.

The Boolean formula IA is referred to as the interpolant of φA with respect to
φB. When φA and φB are in CNF, a refutation proof of φA ∧ φB is derivable
from a SAT solver such as MiniSat [10]. Further, an interpolant circuit IA can
be constructed from the refutation proof in linear time [20].

3 Satisfiability Solving under XOR Constraints

Modern SAT solvers are based on the conflict-driven clause learning (CDCL)
mechanism. Our proposed decision procedure is built on top of the modern
solvers. Figure 1 sketches the pseudo code, where lines 2 and 13-16 are inserted
for special xor-handling. In line 2, xor-clauses are extracted from the input
formula φ. Let Ax = b be a system of linearly independent equations derived
from these xor-clauses. ThenM = [A|b]. If M is empty, lines 13-16 take no effect
and the pseudo code works the same as the standard CDCL procedure. On the
other hand, when M contains a non-empty set of linear equations, the procedure
Xorplex in line 13 deduces implications or conflicts whenever they exist from M
with respect to a given variable assignment α. In the process, matrix M may be
changed along the computation. When implication (or propagation) happens,
α is expanded to include newly implied variables. If any implication or conflict
results from Xorplex, in line 15 essential information is added to φ in the form
of learnt clauses, which not only reduces search space but also facilitates future
conflict analysis.
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SatSolve
input: Boolean formula φ
output: Sat or Unsat
begin
01 α := ∅;
02 M := ObtainXorMatrix(φ);
03 repeat
04 (status, α) := PropagateUnitImplication(φ, α);
05 if status = conflict
06 if conflict at top decision level
07 return Unsat;
08 φ := AnalyzeConflict&AddLearntClause(φ, α);
09 α := Backtrack(φ, α);
10 else
11 if all variables assigned
12 return Sat;
13 (status, α) := Xorplex(M , α);
14 if status = propagation or conflict
15 φ := AddXorImplicationConflictClause(φ, M , α);
16 continue;
17 α := Decide(φ, α);
end

Fig. 1. Algorithm: SatSolve

3.1 XOR Reasoning

Before elaborating our xor-reasoning technique, we show an example motivating
the adoption of Gauss-Jordan elimination.

Example 2. Consider the following matrix triangularized by Gaussian elimina-
tion.

[A|b] =

⎛
⎜⎜⎝

1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1

⎞
⎟⎟⎠

No implication can be deduced from it. With Gauss-Jordan elimination, however,
it is reduced to the following diagonal matrix.

[A′|b′] =

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 1 1

⎞
⎟⎟⎠

The values of the first three variables can be determined from the four equa-
tions. Therefore Gaussian elimination (as is used by CryptoMiniSat) is strictly
weaker than Gauss-Jordan elimination in detecting implications and conflicts.
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The efficacy of xor-handling in the pseudo code of Figure 1 is mainly de-
termined by the procedure Xorplex. In essence, two factors, deductive power
and computational efficiency, need to be considered in realizing Xorplex. We
show how the two-literal watching scheme in unit propagation [22] fits incre-
mental Gauss-Jordan elimination in a way similar to the simplex method to
support lazy update. Consequently, Xorplex can be implemented efficiently and
has complete power deducing implications and conflicts whenever they exist.

In the simplex method, the variables of the linear equations Ax = b are
partitioned into m basic variables and (n − m) nonbasic variables assuming
that the m × (n + 1) matrix [A|b] is of full rank and m < n. Matrix [A|b] is
diagonalized to [I|A′|b′], where I is an m × m identity matrix and A′ is an
m × (n − m) matrix, by Gauss-Jordan elimination such that the m basic and
(n−m) nonbasic variables correspond to the columns of I and A′, respectively.
Note that diagonalizing [A|b] to [I|A′|b′] may incur column permutation, which
is purely for the ease of visualization to make the columns indexed by the basic
variables adjacent to form the identity matrix. In practice, such permutation
is unnecessary and not performed. By the simplex method, a basic variable
and a nonbasic variable may be interchanged in the process of searching for
a feasible solution optimal with respect to some linear objective function. The
basic variable to become nonbasic is called the leaving variable, and the nonbasic
variable to become basic is called the entering variable. Although the simplex
method was proposed for linear optimization over the reals, the matrix operation
mechanism works for our considered xor-constraints, i.e., linear equations over
GF(2).

The problem of xor-constraint solving is formulated as follows. Given a sys-
tem of linear equations Ax = b and a partial truth assignment α to variables
x′ ⊆ x, if the induced linear equations [A|b]|α with respect to α are consistent,
derive all implications to the non-assigned variables x\x′. Otherwise, detect a
conflicting assignment to x′ that leads to the inconsistency. In fact, Gauss-Jordan
elimination achieves this goal as the following proposition asserts.

Proposition 1. Given a set of xor-constraints Ax = b and a partial truth
assignment α : x′ → {0, 1} for x′ ⊆ x, Gauss-Jordan elimination on the induced
linear equations [A|b]|α detects all implications to the non-assigned variables
x\x′ if [A|b]|α is consistent, or detects a conflict if [A|b]|α is inconsistent.

Proof. The proposition follows from the soundness and completeness of GJE for
solving a system of linear equations.

To equip complete power in deducing implications and conflicts, procedure Xor-
plex of Figure 1 maintains M |α in a reduced row echelon form. Since Xorplex
is repeatedly applied under various assignments α during SAT solving, Gauss-
Jordan elimination needs to be made fast. A two-literal2 watching scheme is
proposed to make incremental updates on M in a lazy fashion, thus avoiding

2 Since the variables in M are of positive phases, there is no need to distinguish “two-
literal” or “two-variable” watch.
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wasteful computation. Essentially, the following invariant is maintained for M
at all times.

Invariant: Given a partial truth assignment α to the variables of matrix M =
[A|b], for each row r of M two non-assigned variables are watched. Particu-
larly, the first watched variable (denoted w1(r)) must be a basic variable and
the second watched variable (denoted w2(r)) must be a nonbasic variable.

Note that, by this invariant, we assume each row of A contains at least three
1-entries. The reason is that a row without any 1-entry corresponds to either a
tautological or conflicting equation, a row with one 1-entry corresponds to an
immediate implication, and a row with two 1-entries asserts the equivalence or
complementary relation between two variables and is handled specially. Note
also that the number of 1-entries in some row of A can possibly be reduced to
two later due to incremental Gauss-Jordan elimination. In this situation this row
is removed from M and handled specially.

To maintain the invariant, when the two watched variables of some row in
M are non-assigned, no action needs to be taken on this row for Gauss-Jordan
elimination. On the other hand, actions need to be taken for the following two
cases. For the first case, when variable w2(r) is assigned, another non-assigned
nonbasic variable in row r is selected as the new second watched variable. No
other rows are affected by this action. For the second case, when w1(r) is as-
signed and thus becomes the leaving variable, a non-assigned nonbasic variable
in row r needs to be selected as the entering variable. The column c of the enter-
ing variable then undergoes the pivot operation, which performs row operations
(additions) forcing all entries of c to be 0 except for the only 1-entry appearing
at row r. Note that the pivot operation may possibly cause the vanishing of
variable w2(r′) from another row r′. In this circumstance a new non-assigned
nonbasic variable needs to be selected for the second watched variable in row r′,
that is, the first case. Note that the process of maintaining the invariant always
terminates because for every row r the update of w1(r) can occur at most once,
and thus a row is visited at most m times for M of m rows.

When the invariant can no longer be maintained on some row r of M under
α, either of the following two cases happens. Firstly, all variables of r are as-
signed. In this case the linear equation of r is either satisfied or unsatisfied. For
the former, no further action needs to be applied on r; for the latter, Xorplex
returns the detected conflict. Secondly, only variable w1(r) (respectively variable
w2(r)) is non-assigned. In this case, the value of w1(r) (respectively w2(r)) is
implied. Accordingly, α is expanded with w1(r) (respectively w2(r)) assigned to
its implied value.

Upon termination, procedure Xorplex leads to one of the four results: 1) prop-
agation, 2) conflict, 3) satisfaction, and 4) indetermination. Only the first two
cases yield useful information for CDCL SAT solving. The information is pro-
vided by procedure AddXorImplicationConflictClause in line 15 of the pseudo
code in Figure 1. In the propagation case, the corresponding rows in M that
implications occur are converted to learnt clauses. In the conflict case, the con-
flicting row in M is converted to a learnt clause. For example, a propagation
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(respectively conflict) occurs at a row corresponding to the linear equation
x1 ⊕ x2 ⊕ x3 = 0 under α(x1) = 0, α(x2) = 1 (respectively α(x1) = 0, α(x2) =
1, α(x3) = 0). Then the learnt clause (x1 ∨ ¬x2 ∨ x3) is produced.

3.2 Implementation Issues

In our actual realization, an m× (n+ 1) matrix M is implemented with a one-
dimensional bit array, similar to [26]. Thereby matrix row addition is performed
by bitwise xor operation; a row addition operation translates to n/k bitwise xor
operations, where k is the bit width of a computer word. Moreover, similar to [26],
if two xor-constraint sets have disjoint support variables, they are represented
by two individual matrices rather than a single matrix for the sake of memory
and computational efficiency.

To support two-literal (or two-variable) watch on M , a watch list is main-
tained, which provides fast lookup for which rows of M to update when a vari-
able is assigned. To maintain the invariant of two-literal watching, the most
costly computation occurs when the basic variable of some row is assigned. It
may incur in the worst case O(m) row additions to set a new basic variable for
the row. Nevertheless notice that this action cannot make the basic variables
of other rows be assigned, and therefore no chain reaction is triggered. For an
entire Gauss-Jordan elimination, the time complexity is O(m2n).

4 Refutation and Interpolation

This section shows how Craig interpolants can be compactly constructed under
the framework of SatSolve, which combines CDCL-based clause reasoning and
GJE-based xor-constraint solving. Although interpolants for combined proposi-
tional and linear arithmetic theories are available under the framework of SMT
[20,28,5], they are not directly applicable in our context due to the underlying
assumption of most SMT solvers that requires the considered theories to be of
disjoint signatures. On the other hand, although theoretically xor-constraints
can always be expressed in CNF and thus propositional interpolation is suffi-
cient, practically such CNF formulae are hard to solve and even if solvable their
interpolants can be unreasonably large. A new method awaits to be uncovered.

4.1 Interpolant Generation

For problem formulation, consider interpolant generation for a given unsatisfiable
formula φ = φA ∧ φB with the set VA of variables of φA, VB of φB , and VAB of
common variables shared by φA and φB . Let φA = ϕA ∧ψA and φB = ϕB ∧ψB ,
where ϕA and ϕB are CNF formulae and ψA and ψB are xor-constraints. Let
MA (respectivelyMB) be the matrix form of the set of linear equations expressed
by ψA (respectively ψB). Then the union of the rows of MA and MB corresponds
to the matrix M denoted in the previous section.3

3 For an xor-constraint whose constituent clauses are not all implied by φA or by φB,
it is not included in M when interpolant derivation is concerned.
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If ϕA∧ϕB is already unsatisfiable, the following clause interpolation rules [20]
suffice to produce the interpolant.

Cls-A C ∈ ϕA
C: 〈 ∨

l∈C,var(l)∈VAB
l 〉

Cls-B C ∈ ϕB
C: 〈 1 〉

C1 ∨ l: 〈 I1 〉 C2 ∨ ¬l: 〈 I2 〉
Cls-ResA var (l) ∈ VA\VAB

C1 ∨C2: 〈 I1 ∨ I2 〉

C1 ∨ l: 〈 I1 〉 C2 ∨ ¬l: 〈 I2 〉
Cls-ResB var (l) ∈ VB

C1 ∨ C2: 〈 I1 ∧ I2 〉
Similarly, if ψA ∧ ψB is already unsatisfiable, the inequality interpolation rules
[20] suffice for interpolant derivation. They are modified in our context for linear
equations over GF(2) in the following.

Xor-A [aT |b] ∈MA[aT |b]: 〈 [aT |b] 〉
Xor-B [aT |b] ∈MB

[aT |b]: 〈 [0T |0] 〉

[a1
T |b1]: 〈 [a∗

1
T |b∗1] 〉 [a2

T |b2]: 〈 [a∗
2

T |b∗2] 〉
Xor-Sum

[a1
T |b1] + [a2

T |b2]: 〈 [a∗
1

T |b∗1] + [a∗
2

T |b∗2] 〉
In the above rules, a partial interpolant, shown in the angle brackets, is associ-
ated to each linear equation. Superscript “T ” and operator “+” denote matrix
transpose and (modulo 2) matrix addition, respectively. The correctness of these
derivation rules is immediate from prior results [20].

Complication arises, however, in interpolant generation when the refutation
proof of φ involves both clausal resolution and xor linear arithmetic. Essentially
the partial interpolant of a constituent clause of a linear equation is needed. Let
C be a constituent clause of equation aT x = b, whose partial interpolant is
a∗T x = b∗. Then the following derivation rule applies.

XorToCls C ∈ [aT |b]: 〈 [a∗T |b∗] 〉
C: 〈 C∗ ∨ (a∗T x = b∗)|¬C 〉

where C∗ ⊆ C with C∗ = {l ∈ C | var(l) ∈ VAB ∩Var(a∗T x = b∗)} for Var(E)
denoting the variable set involved in equation E.

Example 3. Consider two equations [1 0 1 1 1 1] ∈ MA and [0 1 0 1 1 1] ∈ MB

in matrix form over variables {x1, . . . , x5} with VAB = {x3, x4, x5}, where the
underlined variables are watched. Assume x1 and x2 are the basic variables.
Under assignment (x1 = 0, x2 = 1), the first and second equations are updated
to [1 0 1 1 1 1] and [1 1 1 0 0 0], respectively, with new basic variables x2 and
x4. The partial interpolant of [1 1 1 0 0 0], i.e., equation x1 ⊕ x2 ⊕ x3 = 0, is
derived as follows.
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[1 0 1 1 1 1]: 〈 [1 0 1 1 1 1] 〉 [0 1 0 1 1 1]: 〈 [0 0 0 0 0 0] 〉
[1 1 1 0 0 0]: 〈 [1 0 1 1 1 1] 〉

Since implication occurs with x3 = 1, a learnt clause (x1∨¬x2∨x3) is generated,
which is a constituent clause of the clause set {(¬x1 ∨ ¬x2 ∨ ¬x3), (¬x1 ∨ x2 ∨
x3), (x1 ∨ ¬x2 ∨ x3), (x1 ∨ x2 ∨ ¬x3)} defined by x1 ⊕ x2 ⊕ x3 = 0. By rule
XorToCls, the partial interpolant of the learnt clause equals

x3 ∨ (x1 ⊕ x3 ⊕ x4 ⊕ x5 = 1)|¬x1x2¬x3

= x3 ∨ (x4 ⊕ x5).

Note that any clause implied by φA (respectively φB) can be considered as a
clause of φA (respectively φB). Similarly any linear equation derivable from MA

(respectively MB) can be viewed as a linear equation of MA (respectively MB).
With this observation, one can verify that the partial interpolant derivation for
a constituent clause of a linear equation in MA (respectively MB) reduces to
McMillan’s clause interpolation rule for clauses of φA (respectively φB). The
general correctness of rule XorToCls is asserted by the following proposition.

Proposition 2. The partial interpolant derived from rule XorToCls for C ∈
[aT |b] is consistent with that derived from the clause interpolantion rules applied
on the clauses clausified from xor-constraints.

Proof. Observe that every linear equation E = [aT |b] derivable from M can
always be expressed as a summation of two equations, one, EA, derived from a
linear combination of equations in MA and the other, EB , from MB. (In fact
EA is the partial interpolant of E.) For C be a constituent clause of E, we show
that its partial interpolant derived by XorToCls is the same as that derived
by the clause interpolation rules applied on the resolution sequence leading to
C from the clauses of EA and EB.

Let the variables appearing in EA and EB be divided into five disjoint (pos-
sibly empty) subsets: V1 for those in EA but not in EB and VAB , V2 for those in
EA and VAB but not in EB, V3 for those in both EA and EB (surely in VAB),
V4 those in EB and VAB but not in EA, and V5 for those in EB but not in EA

and VAB . Then the variable set of C must be V1 ∪ V2 ∪ V4 ∪ V5.
Because the system consisting of two linear equations EA|¬C and EB|¬C must

be unsatisfiable (due to the fact C being a clause of the summation of EA

and EB), by the completeness of resolution, C can be derived by resolution on
variables V3 from the clauses of EA and EB, more precisely, those clauses whose
literals are consistent with C. Since the clauses of EA and EB can be considered
as clauses in φA and φB , respectively, by rule Cls-A the partial interpolants for
EA clauses are subclauses with V1 variables being removed, and by rule Cls-B
the partial interpolants for EB clauses equal constant 1. Since only V3 variables
are resolved, the partial interpolants are built from pure conjunction operation.
As can be verified, the so-derived partial interpolant of C is the same as that of
XorToCls regardless of the detailed resolution steps.
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In essence rule XorToCls provides a short cut in generating interpolants. The
xor-constraint reasoning circumvents unnecessary complex fine-grained resolu-
tions and, perhaps more importantly, enforces its equivalent clausal resolution
steps being performed within φA and φB locally whenever possible. These ad-
vantages make compact interpolants derivable from simple generation rules.

4.2 Implementation Issues

For an xor-equation derived as a summation of rows R ⊆ M , its partial inter-
polant is simply the summation of rowsR∩MA. To derive the partial interpolant,
the m× (n+ 1) matrix M is augmented to M∗ = [M |M∗

A] by concatenating M
with another m× n matrix M∗

A, which is derived from M by removing the last
column and replacing every row belonging to MB with a row of 0’s. Essentially
the sub-matrix M∗

A of M∗ maintains the partial interpolants at any moment
of Gauss-Jordan elimination on M∗. More precisely, in [M |M∗

A], a row in the
sub-matrix M∗

A corresponds to the partial interpolant of the same row in the
sub-matrix M .

5 Experimental Results

The proposed SAT solving method, named SimpSat, was implemented in the
C++ language based on CryptoMiniSat 2.9.1 (CMS) [26], a state-of-the-art
solver equipped with Gaussian elimination. All experiments were conducted on
a Linux workstation with a 3.3 GHz Intel Xeon CPU and 64 GB memory. Bench-
mark examples with many xor-constraints were taken for experiments.

The first experiment compares our method with CMS on cryptanalysis bench-
marks [26]. Four ciphers, Bivium, Trivium, HiTag-2, and Grain, were included
with 100 instances each. For fair comparison, same parameters were applied on
CMS and SimpSat. The results are shown in Table 1, where three methods
were applied, namely, CMS− (CMS with GE disabled), CMS+ (CMS with GE
enabled), and SimpSat. The total CPU time averaging over the 100 instances
is reported in the second, third, and seventh columns; the portion spent on GE
is reported in the fourth and eighth columns; the number of invoked GE calls
averaging over the 100 instances is shown in the fifth and ninth columns; the
utility of GE, defined as the ratio of the number of useful GE calls (where im-
plication or conflict happened) to that of all GE calls, is listed in the sixth and
tenth columns; the speedup of SimpSat over CMS+ in terms of the average
total CPU time (the ratio of that spent by CMS+ to that spent by SimpSat) is
displayed in the eleventh column; the speedup of SimpSat over CMS+ in terms
of the average CPU time taken per GE call (the ratio of that spent by CMS+ to
that spent by SimpSat) is calculated in the last column. To summarize, Simp-
Sat exhibited stronger deductive power (as seen by comparing the sixth and
tenth columns) in shorter computation time (as seen from the last column) com-
pared with CMS+. Thereby SimpSat achieved average speedup of 1.69x, 2.00x,
1.21x, and 1.11x for Bivium, Trivium, HiTag-2, and Grain, respectively. Figure 2
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Table 1. Performance Comparison on Cryptanalysis Benchmarks

Instance

CMS− CMS+ SimpSat
Time GE Time GE Spdup GE

Time Time GE #GE Util Time GE #GE Util over Spdup
(sec) (sec) (sec) (%) (sec) (sec) (%) CMS+ per call

Bivium-45 58.39 65.59 14.70 392200.37 38.39 30.65 9.86 545247.52 63.51 2.14 2.07
Bivium-46 29.47 26.75 8.09 214578.71 40.99 17.28 5.89 317329.83 64.09 1.55 2.03
Bivium-47 18.80 17.99 5.79 157721.70 42.39 10.53 4.01 216342.67 65.52 1.71 1.97
Bivium-48 12.50 11.48 3.91 109732.89 43.74 7.43 2.85 151763.17 66.12 1.55 1.90
Bivium-49 6.51 6.40 2.70 77970.24 46.91 3.55 1.51 80411.71 66.83 1.80 1.85
Bivium-50 5.89 4.76 1.97 59077.97 47.25 2.51 1.23 61643.62 67.55 1.90 1.68
Bivium-51 2.79 2.43 1.13 36940.35 48.48 1.32 0.65 34248.57 67.64 1.84 1.59
Bivium-52 1.15 1.31 0.66 23139.51 49.88 0.77 0.36 18385.35 68.02 1.71 1.46
Bivium-53 0.73 0.72 0.40 17602.80 52.45 0.44 0.22 10868.63 69.03 1.63 1.14
Bivium-54 0.59 0.58 0.27 11318.58 50.98 0.38 0.13 7248.02 68.99 1.51 1.29
Bivium-55 0.42 0.40 0.22 10905.49 53.43 0.26 0.11 5540.11 69.54 1.52 0.98
Bivium-56 0.24 0.23 0.12 5958.18 54.16 0.16 0.06 2842.08 71.29 1.40 0.94

Trivium-151 264.88 2314.04 60.81 1221568.44 36.19 131.14 32.21 1721026.43 60.69 1.76 2.66
Trivium-152 156.83 140.32 39.95 801775.05 38.31 70.59 19.88 1100015.00 61.63 1.99 2.76
Trivium-153 72.97 64.18 22.36 437299.75 41.06 30.76 9.91 581075.51 63.13 2.09 3.00
Trivium-154 57.76 45.57 16.20 316464.91 42.57 20.48 6.50 408162.70 63.38 2.23 3.21
Trivium-155 31.68 25.90 9.57 190731.45 42.65 13.38 4.57 268314.49 63.09 1.93 2.94
Trivium-156 15.39 16.72 6.56 133200.84 44.45 8.47 3.06 186959.82 64.14 1.97 3.01
Trivium-157 15.15 14.56 5.85 124892.01 45.36 7.14 2.63 164411.23 64.66 2.04 2.93
HiTag2-9 313.58 308.30 2.29 355291.70 7.39 235.89 5.50 1436229.45 22.34 1.31 1.69
HiTag2-10 146.93 143.32 1.40 208920.52 7.40 115.45 3.18 860728.62 22.13 1.24 1.81
HiTag2-11 60.87 61.02 0.71 104612.13 7.20 49.63 1.56 425575.32 21.85 1.23 1.86
HiTag2-12 27.50 27.03 0.40 57723.48 7.49 23.17 0.84 230317.78 21.21 1.17 1.90
HiTag2-13 14.02 13.63 0.26 38584.40 7.21 11.64 0.48 131037.02 21.31 1.17 1.82
HiTag2-14 6.24 6.27 0.13 17048.46 6.94 5.37 0.26 68325.91 20.73 1.17 2.02
HiTag2-15 2.93 2.90 0.07 10649.43 5.77 2.52 0.15 37043.91 20.55 1.15 1.72
Grain-106 688.50 712.27 35.23 841125.77 8.62 690.27 57.17 3347468.01 30.00 1.03 2.45
Grain-107 269.72 242.70 17.15 373763.02 8.48 211.73 24.24 1429181.91 29.79 1.15 2.71
Grain-108 1114.20 119.86 11.41 227777.96 9.33 112.99 14.32 872262.35 31.50 1.06 3.05
Grain-109 68.83 85.55 8.80 171188.65 9.87 70.54 9.63 592547.87 32.43 1.21 3.16

compares the performance of SimpSat and CMS+ on all of the cryptanalysis
benchmarks. The CPU times spent by SimpSat and CMS+ are shown on the
y-axis and x-axis, respectively. As can be seen, SimpSat steadily outperformed
CMS+.

Under a similar setting, experiments were performed on equivalence check-
ing benchmarks for Altera CRC (cyclic redundancy check) circuits [1].4 Table 2
compares the performances of ABC cec command [3], CMS−, CMS+, and Simp-
Sat.5 As can be seen, SimpSat is the most robust among the four methods.
It is intriguing that SimpSat outperforms CMS+ by a substantial margin on
several examples. Taking the extreme case crc32-dat48 for example, SimpSat
finished within 3 seconds while all other methods timed out at 7,200 seconds.
A close investigation revealed that SimpSat was able to deduce from Gaussian
elimination many more powerful short xor-clauses (with lengths less than or
equal to 2) than CMS+ as seen from columns six and nine, where the numbers
4 A benchmark was prepared by creating a miter structure comparing a design against

its synthesized version using a script of ABC commands dc2, dch, balance -x.
5 The cec command of ABC exploits circuit structure similarities and logic synthesis

methods for efficient equivalence checking [18].
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Fig. 2. Rumtimes on cryptanalysis benchmarks

of xor-clauses of lengths less than or equal to 2, denoted “#2xcl,” are shown.
These short xor-clauses contributed to the effectiveness of SimpSat.

Another experiment on the benchmarks from randomly generated 3-regular
graphs [12] is shown in Table 3. The number of instances of each benchmark
suite is shown in the second column; the number of solved instances (within a
7,200-second limit) is shown in the third, fifth, and seventh columns; the entire
runtime for solving solvable instances is shown in the fourth, sixth, and eighth
columns. SimpSat and CMS+ achieved similar results.

To study interpolant generation, a prototype, named MiniSat-GE, was built
upon MiniSat-p 1.14 [10] (for which proof logging is supported) with xor-
constraint solving integrated as the pseudo code sketched in Figure 1. Bench-
marks were created from a subset of the unsatisfiable instances of Table 3 by
evenly assigning clauses to φA and φB for interpolation. Table 4 compares the
interpolants generated from the refutation proofs of MiniSat using McMillan’s
clause interpolation rules and those generated from MiniSat-GE using our
derivation rules. A 300-second limit was imposed on SAT solving, and inter-
polants were synthesized using ABC script dc2, dc2, balance. The so gener-
ated interpolants were compared in terms of their number of inputs, number of
AIG (and-inverter graph) nodes, and number of logic levels. The reported run-
time includes SAT solving time and interpolant synthesis time. In the table, an
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Table 2. Performance Comparison on Equivalence Checking of CRC Circuits

Instance

ABC cec CMS− CMS+ SimpSat
GE GE Spdup Spdup

Time Time Time Util GE Time Util GE over over
(sec) (sec) (sec) (%) #2xcl (sec) (%) #2xcl ABC CMS+

crc16-dat16 0.11 0.04 0.02 23.37 1 0.02 33.03 15 6.88 1.38
crc16-dat24 0.53 0.17 0.16 26.79 1 0.04 49.53 16 12.93 4.00
crc16-dat32 1.44 1.77 2.05 10.58 2 0.11 33.27 15 12.97 18.48
crc24-dat64 4667.42 >7200 >7200 0.27 0 360.64 3.36 18 12.94 -

crc24-dat64-only-flat 31.52 >7200 >7200 0.17 0 4.71 36.30 22 6.69 -
crc24-zer64-flat 0.62 >7200 29.10 9.39 5 17.13 13.08 11 0.04 1.70

crc24-zer64x2-flat 0.51 498.17 633.49 3.47 0 0.73 16.42 19 0.69 863.20
crc24-zer64x3-flat 0.45 26.84 49.07 0.54 0 0.65 15.31 19 0.70 75.85

crc32c-dat32 596.94 >7200 >7200 22.34 0 0.22 47.95 35 2713.78 -
crc32c-dat64 >7200 >7200 >7200 0.00 7 3386.20 0.14 32 - -

crc32c-dat64-only 1055.18 >7200 >7200 33.10 3 486.81 20.57 32 2.17 -
crc32c-zer64 0.86 101.39 102.70 4.93 5 0.54 28.78 34 1.59 190.21
crc32-dat16 0.91 7.21 6.88 10.56 1 0.49 56.18 31 1.85 14.02
crc32-dat24 2.51 64.94 10.70 30.86 3 0.93 63.11 32 2.71 11.56
crc32-dat32 385.73 >7200 2153.89 3.38 1 0.49 63.17 32 792.18 4423.46
crc32-dat40 6666.37 >7200 >7200 6.67 0 0.59 48.28 32 11339.10 -
crc32-dat48 >7200 >7200 >7200 17.01 4 2.23 57.09 32 - -
crc32-dat56 >7200 >7200 >7200 23.36 0 146.22 1.12 32 - -
crc32-dat8 0.21 0.40 0.40 0.00 0 0.40 0.00 0 0.52 1.00

Table 3. Performance Comparison on 3-Regular Graph Benchmarks

Instance #inst
CMS− CMS+ SimpSat

Time Time Time
#solved (sec) #solved (sec) #solved (sec)

mod2-rand3bip-sat 165 103 136064.80 165 6.98 165 7.13
mod2-rand3bip-unsat 75 75 72.46 75 15.65 75 15.66
mod2c-rand3bip-unsat 75 75 962.40 75 871.05 75 862.89

mod2-3cage-unsat 23 23 18.00 23 15.93 23 15.95
mod2c-3cage-unsat 23 23 115.44 23 106.27 23 102.06

entry “-” indicates data unavailable due to timeout, or due to large interpolant
sizes not practically synthesizable by ABC. As can be seen, xor-constraint solv-
ing is effective in reducing SAT solving time and admits compact interpolant
generation.

6 Related Work

Prior efforts [4,15,16,17] deployed inference rules for xor-reasoning. In [4],
the authors proposed a framework integrating xor-reasoning with the DPLL
procedure using Gauss resolution rules. However there was no implementation
provided. In [15], the author focused on recognizing binary and ternary xor-
clauses for equivalence reasoning. Several inference rules were integrated into
the DPLL search procedure for literal substitution. Based on the framework of
[4], prior work [16,17] proposed some lightweight inference rules for practical
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Table 4. Results on Interpolant Generation

Instance

MiniSat MiniSat-GE
Time Time Time Time

#in #node #level SAT Syn #in #node #level SAT Syn
(sec) (sec) (sec) (sec)

mod2-rand3bip-unsat-105-1 45 32106 2273 4.32 23.58 45 132 14 0.01 0.1
mod2-rand3bip-unsat-120-1 - - - 88.93 - 44 129 12 0.01 0.12
mod2-rand3bip-unsat-135-1 - - - 280.31 - 54 159 14 0.01 0.09
mod2-rand3bip-unsat-150-1 - - - 53.45 - 50 147 14 0.01 0.09
mod2-rand3bip-unsat-90-1 34 111625 9730 0.63 388.28 34 99 12 0.01 0.09

mod2c-rand3bip-unsat-105-15 - - - 63.15 - 57 105 12 0.01 0.1
mod2c-rand3bip-unsat-90-15 30 105500 9375 1.56 175.32 31 5405 538 0.03 25.02

mod2c-3cage-unsat-11 - - - >300 - 70 1857 137 0.01 1.55
mod2-3cage-unsat-9-1 - - - 74 - 26 75 12 0.01 0.09
mod2-3cage-unsat-10-1 - - - >300 - 29 84 12 0.01 0.05

xor-reasoning and supported with conflict-driven learning for xor-clauses. The
DPLL and xor-reasoning procedures were integrated in a way similar to SMT
solvers.

Compared to the closest prior work [26], our approach is similar but with the
following main differences. For matrix representation, ours is in a reduced row
echelon form, in contrast to the prior row echelon form. For matrix update, ours
uses two-variable watching for incremental matrix update, in contrast to the
prior column search and row swap. For matrix size, ours maintains a single-sized
matrix for propagation/conflict detection, in contrast to the prior doubled-sized
matrix. On the other hand, interpolant generation is supported in this work but
not previously.

7 Conclusions and Future Work

Boolean satisfiability solving integrated with Gauss-Jordan elimination has been
shown powerful in solving hard real-world instances involving xor-constraints.
With two-variable watching and simplex-style matrix update, Gauss-Jordan elim-
ination has been made fast for complete detection of xor-inferred implica-
tions/conflicts. Moreover, Craig interpolation has been made straight for
compact interpolant generation, thus bypassing blind and unnecessarily detailed
resolutions. For future work, extension to three-variable watching is planned for
variable (in)equivalence, in addition to implication and conflict, detection.
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