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Inferences about counterfactuals are essential for prediction, answering
‘‘what if ’’ questions, and estimating causal effects. However, when the
counterfactuals posed are too far from the data at hand, conclusions
drawn from well-specified statistical analyses become based on specu-
lation and convenient but indefensible model assumptions rather than
empirical evidence. Unfortunately, standard statistical approaches as-
sume the veracity of the model rather than revealing the degree of
model-dependence, so this problem can be hard to detect. We develop
easy-to-apply methods to evaluate counterfactuals that do not require
sensitivity testing over specified classes of models. If an analysis fails the
tests we offer, then we know that substantive results are sensitive to at
least some modeling choices that are not based on empirical evidence.
We use these methods to evaluate the extensive scholarly literatures on
the effects of changes in the degree of democracy in a country (on any
dependent variable) and separate analyses of the effects of UN peace-
building efforts. We find evidence that many scholars are inadvertently
drawing conclusions based more on modeling hypotheses than on ev-
idence in the data. For some research questions, history contains insuf-
ficient information to be our guide. Free software that accompanies this
paper implements all our suggestions.

Social science is about making inferencesFusing facts we know to learn about facts
we do not know. Some inferential targets (the facts we do not know) are factual,
which means that they exist even if we do not know them. In early 2003, Saddam
Hussein was obviously either alive or dead, but the world did not know which it was
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until he was found. In contrast, other inferential targets are counterfactual, and thus
do not exist, at least not yet. Counterfactual inference is crucial for studying ‘‘what
if ’’ questions, such as whether the Americans and British would have invaded Iraq
if the 9/11/2001 attack on the World Trade Center had not occurred. Counterfac-
tuals are also crucial for making forecasts, such as whether there will be peace in the
Mideast in the next two years, as the quantity of interest is not knowable at the time
of the forecast but will eventually become known. Counterfactuals are essential as
well in making causal inferences, as causal effects are differences between factual
and counterfactual inferences: for example, how much more international trade
would Syria have engaged in during 2003 if the Iraqi War had been averted?

Counterfactual inference has been a central topic of methodological discussion in
political science (Thorson and Sylvan 1982; Fearon 1991; Tetlock and Belkin 1996;
Tetlock and Lebow 2001), psychology (Tetlock 1999; Tetlock, Lebow, and Parker
2000), history (Murphy 1969; Dozois and Schmidt 1998; Tally 2000), philosophy
(Lewis 1973; Kvart 1986), computer science (Pearl 2000), statistics (Rubin 1974;
Holland 1986), and other disciplines. ‘‘Counterfactuals are an essential ingredient
of scholarship. They help determine the research questions we deem important
and the answers we find to them’’ (Lebow 2000:558). As scholars have long rec-
ognized, however, some counterfactuals are more amenable to empirical analysis
than others. In particular, some counterfactuals are more strained, farther from the
data, or otherwise unrealistic.

The problem is easy to see in the simple example in Figure 1. Here, we fit linear
and quadratic models to a simple set of simulated data (with the one explanatory
variable on the horizontal axis and the dependent variable and its expected value
on the vertical axis). The fit of the two models to the observed data is almost
indistinguishable, and we have little statistical reason to choose one over the other.
This is not a problem if we are interested in a prediction of Y for any X between 1
and 2 where the data can be found; in this region, the choice of model is unim-
portant as either model (or most any other model with a reasonably smooth func-
tional form) would yield similar predictions. However, predictions of Y for values of
X outside the range of the data would be exquisitely sensitive to the choice of the
model. In other words, inferences in the range of the data are far less model-
dependent than inferences outside the data. The risk with model-dependent infer-
ences is that substantive conclusions are based more on apparently minor modeling
choices than on the empirical evidence.
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FIG. 1. Linear and Quadratic Models With Equal Fit to Simulated Data But Massively Different
Out-of-Sample Implications
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But how can we tell how model-dependent our inferences are when the coun-
terfactual inference is not so obviously extreme, or when the model involves more
than one explanatory variable? The answer to this question cannot come from any
of the model-based quantities we normally compute and our statistics programs
typically report, such as standard errors, confidence intervals, coefficients, likeli-
hood ratios, predicted values, test statistics, first differences, p-values, etc. (E.g.,
although not shown in the figure, the confidence intervals for the extrapolations in
Figure 1 do not contain the predictions from the other model for much of the range
of the extrapolation.) To understand how far from the facts are our counterfactual
inferences, and thus how model-dependent are our inferences, we need to look
elsewhere. At present, scholars study model-dependence primarily via sensitivity
analyses: changing the model and assessing how much conclusions change. If the
changes are substantively large for models in a particular class, then inferences are
deemed model-dependent. If the class of models examined are all a priori rea-
sonable, and conclusions change a lot as the models within the class change, then
the analyst may conclude that the data contain little or no information about the
counterfactual question at hand. This is a fine approach, but it is insufficient in
circumstances where the class of possible models cannot be easily formalized and
identified, or where the models within a particular class cannot feasibly be enu-
merated and run, that is, most of the time. In practice, the class of models chosen
are those that are convenientFsuch as those with different control variables under
the same functional form. The identified class of models normally excludes at least
some that have a reasonable probability of returning different substantive conclu-
sions. Most often, this approach is skipped entirely.

What the approach offered here provides is several easy-to-apply methods that
reveal the degree of model dependency without having to run all the models. As a
consequence, it applies for the class of nearly all models, whether or not they are
formalized, enumerated, and run, and for the class of all possible dependent vari-
ables, conditional only on the choice of a set of explanatory variables. If an analysis
fails our tests, then we know it will fail a sensitivity test too, but we avoid the
impossible position of having to run all possible models to find out.

Our field includes many discussions of the problem of strained counterfactuals in
qualitative research. For example, Fearon (1991) and Lebow (2000) distinguish be-
tween ‘‘miracle’’ and ‘‘plausible’’ counterfactuals and offer qualitative ways of judg-
ing the difference. Tetlock and Belkin (1996: chapter 1) also discuss criteria for
judging counterfactuals (of which ‘‘historical consistency’’ may be of most relevance
to our analysis). Qualitative analysts seem to understand this issue well. Scholars
frequently ask questions like whether the conflict in Iraq is sufficiently like Vietnam
so that we can infer the outcome from this prior historical experience. Unfortu-
nately, although the use of extreme counterfactuals is one of the most serious
problems confronting comparative politics and international relations, quantitative
empirical scholarship rarely addresses the issue. Yet, it is hard to think of many
quantitative analysts in comparative politics and international relations in recent
years who do not hesitate to interpret their results by asking what happens, for
example, to the probability of conflict if all control variables are set to their means
and the key causal variable is changed from its 25th to its 75th percentile value
(King, Tomz, and Wittenberg 2000). Every one of these analyses is making a
counterfactual prediction, and every one needs to be evaluated by the same ideas
well known in qualitative research. In this paper, we provide quantitative measures
of these and related criteria that are meant to complement the ideas for qualitative
research discussed by many authors.

We offer two empirical examples. The first evaluates inferences in the scholarly
literatures on the effects of democracy. These effects (on any of the dependent
variables used in the literature) have long been among the most studied questions
in comparative politics and international relations. Our results show that many
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analyses about democracy include at least some counterfactuals with little empirical
supportFso that scholars in these literatures are asking some counterfactual ques-
tions that are far from their data, and are therefore inadvertently drawing con-
clusions about the effects of democracy in some cases based on indefensible model
assumptions rather than empirical evidence.

Whereas our example about democracy applies approximately to a large array of
prior work, we also introduce an example that applies exactly to one ground-
breaking study on designing appropriate peacebuilding strategies (Doyle and
Sambanis 2000). We replicate this work, apply our methods to these data, and find
that the central causal inference in the study involves counterfactuals that are too
far from the data to draw reliable inferences, regardless of the methods employed.
We illustrate by showing how inferences about the effect of UN intervention drawn
from these data are highly sensitive to model specification.

The next section shows more specifically how to identify questions about the
future and ‘‘what if ’’ scenarios that cannot be answered well in given data sets. This
section introduces several new approaches for assessing how based in factual ev-
idence is a given counterfactual. The penultimate section provides a new decom-
position of the bias in estimating causal effects using observational data that is more
suited to the problems most prevalent in political science. This decomposition en-
ables us to identify causal questions without good causal answers in given data sets
and shows how to narrow these questions in some cases to those that can be an-
swered more decisively. We use each of our methods to evaluate counterfactuals
regarding the effects of democracy and UN peacekeeping. The last section con-
cludes the article.

Forecasts and ‘‘What If ’’ Questions

Although statistical technology sometimes differs for making forecasts and estimat-
ing the answers to ‘‘what if ’’ questions (e.g., Gelman and King 1994), the logic is
sufficiently similar that we consider them together. Although our suggestions are
general, we use aspects of the international conflict literature as a running example
to fix ideas. Thus, let Y, our outcome variable, denote the degree of conflict initiated
by a country, and let X denote a vector of explanatory variables, including measures
such as GDP and democracy. In regression-type modelsFincluding least squares,
logit, probit, event counts, duration models, and most others used in the social
sciencesFwe usually compute forecasts and answers to ‘‘what if ’’ questions using
the model-based conditional expected value of Y given a chosen vector of values x of
the explanatory variables, X.

The model typically includes a specification for (i.e., assumption about) the con-
ditional expectation function (CEF), which is merely a general expression for the linear
or nonlinear regression line, that is, how the expected value (or mean) of Y depends
on X. In linear regression, the CEF is EðY jXÞ ¼ Xb ¼ b0 þ b1X1 þ . . .þ bkXk,
whereas in logistic regression the CEF is EðY jXÞ ¼ 1=ð1þ e�XbÞ. These CEFs and
others are illustrated in Figure 2 with one statistical model in each of four graphs,
and with three CEFs displayed in each based on different choices of parameter
values from the chosen functional form. For example, the top right graph displays
only the linear functional form, with three lines that differ based on their parameter
values (the intercept and slope). The task of the analyst is to choose the statistical
model (the graph), whereas the task of the parametric statistical analysis optimi-
zation routine is to find the parameter values that select one member of the as-
sumed family of curves that best fits the data. The optimization routines usually
work exceptionally well, but they can only choose within the given family. If the
data are generated by one family of CEFs (one graph) but another is assumed by
the investigator, we will still get an approximation (such as the best linear approximation
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to the logit curve), but the estimated predictions can then be far off the mark, as
Figure 1 illustrates.

Interestingly, no matter how good the fit to the data, each of these CEFs can be
computed for any (real) values of the counterfactual point x. The model never
complains, and exactly the same calculation can be applied for any x. However, even
if the model fits the data we have in our sample well, a vector x far from any rows in
the matrix X is not likely to produce accurate forecasts. If a linear model indicates
that one more year of education will earn you an extra $1,000 in annual income,
the model also implies that 10 more years of education will get you $10,000 in extra
annual income. In fact, it also saysFwith as straight a face as a statistical model ever
offersFthat 50 years more of education will raise your salary by $50,000. Even
though no statistical assumption may be violated as a result of your choice of any set
of real numbers for x, the model is obviously capable of producing better forecasts
(and ‘‘what if ’’ evaluations) for some values of x than for others. Predictive con-
fidence intervals for forecasts farther from the data are larger, but confidence in-
tervals computed in the usual way still assume the veracity of the model. Thus, the
uncertainty it represents does not include model dependence, no matter how far
the counterfactual is from the data.

Worrying about model choice may be good in general, but it will not help here.
Other models will not do verifiably better with the same data; one cannot deter-
mine from the evidence which model is more appropriate. So searching for a better
model, without better data, better theory, or a different counterfactual question, in
this case is simply futile. We merely need to recognize that some questions cannot
be answered reliably from some data sets. Our linearity (or other functional form
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assumptions) are written globallyFfor any value of xFbut in fact are relevant
only locallyFin or near our observed data. In this paper, we are effectively seeking
to understand where ‘‘local’’ ends and ‘‘global’’ begins. For forecasting and ana-
lyzing what if questions, our task comes down to seeing how ‘‘far’’ x is from the
observed X.

Indeed, this point is crucial as the greater the distance from the counterfactual to the
closest reasonably sized portion of available data, the more model dependent inferences can be
about the counterfactual. In our technical companion paper, we define this claim more
precisely and, apparently for the first time, prove it mathematically. That is, no
matter what the counterfactual, no matter what class of models one identifies as
plausible, no matter how well the models tested fit the observed data, the farther
the counterfactual from the data, the higher the degree of model dependence
becomes possible. Counterfactual questions sufficiently far from the data produce
inferences with little or no empirical content. Moreover, our proof is highly general.
It does not assume knowledge of the model, its functional form, the estimator, or
the dependent variable, and it only assumes that the CEF (conditional on X) satisfies
a general continuity condition, which fits almost all statistical models used and
theoretical processes hypothesized in the discipline.

We now offer two procedures for measuring the distance from a counterfactual
to the data that can be used to assess whether a question posed can be reliably
answered from any statistical model. Neither requires any information about the
model, estimator, or even the dependent variable.

Interpolation vs. Extrapolation

A simple but powerful distinction in measuring the distance of a counterfactual
from the data, and thus assessing the counterfactual question x, is whether an-
swering it by computing the CEF E(Y|x) would involve interpolation or extrapo-
lation (e.g., Hastie, Tibshirani, and Friedman 2001; Kuo 2001). Except for some
unusual situations for which we offer diagnostics below, data sets contain more
information about counterfactuals that require interpolation than those that re-
quire extrapolation. Hence, answering a question involving extrapolation normally
requires far more model-dependent inferences than one involving interpolation.

For intuition, imagine we have data on foreign aid received by countries with two
natural disasters in a year, and we wish to estimate how much foreign aid countries
receive when they have two natural disasters in a year. (Suppose for simplicity that
each of the natural disasters is approximately the same size and of roughly the same
consequence.) If we have enough such data, no modeling assumptions are neces-
sary. That is, we can make a model-free inference by merely averaging the amount
of money spent on foreign aid in these countries.

However, suppose we were still interested in foreign aid received by countries
with two natural disasters, but we only observe countries with one or three disasters
in a year. This is a simple (counterfactual) ‘‘what if ’’ question because we have no
data on countries with two natural disasters. The interpolation task, then, is to draw
some curve from expected foreign aid received in countries with a single natural
disaster to the expected aid received in countries with three natural disasters;
where it crosses the two-natural-disaster point is our inference. Without any as-
sumptions, this curve could go anywhere, and the inferred amount of foreign aid
received for countries with two disasters would not be constrained at all. Imposing
the assumption that the CEF is ‘‘smooth’’ (i.e., that it contains no sharp changes of
direction and that it not bend too fast or too many times between the two end
points) is quite reasonable for this example, as it is for most political science prob-
lems; it is also intuitive, but it is stronger than necessary to prove our point. The
consequence of this smoothness assumption is to narrow greatly the range of for-
eign aid into which the interpolated value can fall, especially compared with an
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extrapolation. Even if the aid received by countries with two disasters is higher than
the aid received for countries with three disasters or lower than nations with only
one, it probably will not be too much outside this range.

However, now suppose we observe the same data but need to extrapolate to
foreign aid received for countries with four natural disasters. We could impose
some smoothness again, but even allowing one bend in the curve could make the
extrapolation change a lot more than the interpolation. One way to look at this is
that the same level of smoothness (say the number of changes of direction allowed)
constrains the interpolated value more than the extrapolated value, as for inter-
polation any change in direction must be accompanied by a change back to intersect
the other observed point. With extrapolation, one change need not be matched
with a change in the opposite direction, as there exists no observed point on the
other side of the counterfactual being estimated. This is also an example of our
general proof as the counterfactual requiring interpolation in this example is closer
to more data than the counterfactual requiring extrapolation, so the interpolation is
less model-dependent.

If we learn that a counterfactual question involves extrapolation, we still might
wish to proceed if the question is sufficiently important, but we would be aware of
how much more model-dependent our answers will be. How to determine whether
a question involves extrapolation with one variable should now be obvious. Ascer-
taining whether a counterfactual requires extrapolation with more than one ex-
planatory variable requires only one additional generalizing concept: Questions
that involve interpolation are values of the vector x which fall in the convex hull of X.

Formally, the convex hull of a set of points is the smallest convex set that contains
them. This is easiest to understand graphically, such as via the example in Figure 3
for one explanatory variable (on the left) and for two (on the right), given simulated
data. The small vertical lines in the left graph denote data points on the one
explanatory variable in that example. The convex hull for one variable is marked
by the maximum and minimum data points: any counterfactual question between
those points requires interpolation; points outside involve extrapolation. (The left
graph also includes a nonparametric density estimate, a smooth version of a histo-
gram, that gives another view of the same data.) For two explanatory variables, the
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FIG. 3. Interpolation vs. Extrapolation: The Convex Hull of X is the Smallest Convex Set That
Contains the Data

Inference on points inside the convex hull requires interpolation, outside it requires extrapolation.
With one explanatory variable, the convex hull is the interval between the minimum and the max-
imum values of the observed data (as portrayed as the points farthest to the left and the right on the
left graph). With two explanatory variables, the convex hull is a polygon with vertices at the extreme
points of the data (as in the right graph). Neither graph portrays the dependent variable, as it is not

needed to ascertain whether the counterfactual is an interpolation or extrapolation.
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convex hull is given by a polygon with extreme data points as vertices such that for
any two points in the polygon, all points that are on the line connecting them are
also in the polygon (i.e., the polygon is a convex set). In other words, if the right
graph in Figure 3 were a cork board, and the dots were nails, the convex hull would
be a rubber band stretched around all the points. With this definition of a convex
hull, a counterfactual question x that appears outside the polygon requires ex-
trapolation. Anything inside involves interpolation.

Although Figure 3 only portrays convex hulls for one and two explanatory vari-
ables, the concept is well defined for any number of dimensions. For three ex-
planatory variables, and thus three dimensions, the convex hull could be found by
‘‘shrink wrapping’’ the fixed points in three dimensional space. The shrink-
wrapped surface encloses counterfactual questions requiring interpolation. For
four or more explanatory variables, the convex hull is more difficult to visualize,
but from a mathematical perspective, the task of deciding whether a point lies
within the hull generalizes directly.

The concept of a convex hull is well known in statistics and has been used
regularly to convey the idea of extrapolation and interpolation. However, it has
almost never been used in practice for problems with more than a couple of ex-
planatory variables. The problem is not conceptual but rather computational.
Identifying the hull with even a few explanatory variables can take an extraordin-
ary amount of computational power. Doing it with more than about 10 variables
appears nearly impossible. Moreover, the problem of locating whether a counter-
factual point lies within or outside the hull is itself a difficult computational problem
that also has no solution known in the statistical literature.

In our technical companion paper, we solve this problem with a new algorithm
capable of quickly ascertaining whether a point lies within a convex hull even for
large numbers of variables and data points. We have also developed easy-to-use
software, ‘‘WhatIf: Software for Evaluating Counterfactuals,’’ that automates this
convex hull membership check as well as implements the other methods discussed
in this paper (see Stoll, King, and Zeng, 2006). The result is that the convex hull
can now easily be used in any applied statistical analysis to sort counterfactual
questions that may be close enough to the data to be answered by the empirical
evidence from those that are farther away and may require more highly model-
dependent inferences.

How Far Is the Counterfactual from the Data?

The interpolation vs. extrapolation distinction introduced in ‘‘Interpolation vs. ex-
trapolation’’ is a simple dichotomous assessment of the distance from a counter-
factual to the data. In our experience, this distinction is sufficient in most instances
to ascertain whether the data can support a counterfactual inference without ex-
cessive model dependence. In some instances, however, a finer distinction is war-
ranted. For example, points just outside the convex hull are arguably less of a
problem than those farther outside, and they are clearly closer to the data and, by
our proof, less model dependent. Another related issue is that it is theoretically
possible (although probably empirically infrequent) for a point just outside the
interpolation region defined by the convex hull of X to be closer to a large amount
of data than one inside the hull that occupies a large empty region away from most
of the data. Thus, in addition to assessing whether a counterfactual question re-
quires interpolation or extrapolation, we also more explicitly measure the distance
from the counterfactual to the data.

Our goal here is some measure of the number or proportion of observations
‘‘nearby’’ the counterfactual. To construct this quantity, we begin with a measure of
the distance between two points (or rows) xi and xj based on Gower’s (1971) metric
(which we call G2). It is defined simply as the average absolute distance between the

When Can History Be Our Guide?190



elements of the two points divided by the range of the data:

G2
ij ¼

1

K

X

K

k¼1

xik � xjk

�

�

�

�

rk
; ð1Þ

where the range is rk ¼ maxðX:kÞ �minðX:kÞand the min and max functions return
the smallest and largest elements, respectively, in the set, including the values of the
kth explanatory variable. Thus, the elements of the measure are normalized for
each variable to range between zero and one, and then averaged. The measure is
designed to apply to all types of variables, including both continuous and discrete
data.2 As the counterfactual x may be outside the convex hull of X, our version of G2

may range anywhere from zero on up. Thus, G2 ¼ 0 indicates that x and the row in
question of X are identical, and the larger G2

ij, the more different the two rows are.
(If G2 is greater than 1 for any row of X, then the counterfactual x lies outside the
convex hull of X, but the reverse does not necessarily hold.) We interpret G2 as the
distance between the two points as a proportion of the distance across the data, X. So a
distance between two points of G2 ¼ 0.3 means that to get from one point to the
other, we need to go the equivalent of 30% of the way across the range of the data
set.

With G2 applied to our problem, we need to summarize n numbers, the distances
between the counterfactual and each row in the data X. If space permits, we suggest
presenting a cumulative frequency plot portraying vertically the fraction of rows in
X with G2 values less than the given value on the horizontal axis. If space is short,
such as would typically happen if many counterfactuals need to be evaluated, any
fixed point on this graph could be used as a one-number summary. Our recom-
mendation for a rule of thumb in defining observations that are sufficiently close to
the counterfactual to make for relatively reliable inferences is to use the fraction (or
number) of observations in the data with distances (values of G2) less than the
‘‘geometric variability’’ (GV) of XFwhich is roughly the average distance among all
pairs of observations in the data. Then we could report the fraction of rows in the
data with G2 values less than one GV. We interpret the resulting measure as the
fraction of the observed data nearby the counterfactual. We have found this rule of
thumb to be useful in practice for determining the effective number of observations
available to make inferences without high levels of model dependence.

Observations farther than one GV away from the counterfactual normally have
little empirical content for inference about the counterfactual, and can produce
considerable model dependence. Researchers should consider downweighting or
even discarding these observations from the data, unless they are in the unusual
situation of being certain that their model specification is correct. Of course, this is
only a rule of thumb so more data conserving rules could be applied (such as
discarding data only 1.5 or two GVs away from the counterfactual); alternatively,
one could choose rules that result in less model dependence, if one had less con-
fidence in the chosen model.

Counterfactuals About Democracy

We now apply these methods of evaluating counterfactuals to address one of the
most asked questions in political science: what is the effect of a democratic form of
government (as compared with less democratic forms). We study counterfactuals
relating to the degree of democracy using data collected by the State Failure Task
Force (Esty et al. 1998). See King and Zeng (2002) for an independent evaluation.

2 Following standard practice in data analyses, ordinal explanatory variables are typically assumed intervals or
coded as a set of dichotomous variables. Nominal variables are usually coded as a set of dichotomies. With these
changes, equation (1) applies directly.
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These data are among the most extensively used in this area, in part because the
authors had considerable resources from the federal government to marshal for
their data collection efforts, so the usual scarcity of time, resources, expertise, etc.
that affect most data collection efforts are not constraints here. The main limitation
on types and especially combinations of data the task force could collect was the
world: that is, countries can be found with only a finite number of bundles of
characteristics, and this constraint affects everyone studying counterfactuals about
democracy, no matter what the dependent variable. Thus, to the extent that we find
that certain counterfactual questions of interest are unanswerable, our point re-
garding problems in the literature on the effects of democracy are all that much
firmer.

After elaborate searches, Esty et al. (1998) used as explanatory variables trade
openness (as a proxy for economic conditions and government effectiveness), the
infant mortality rate, and democracy. Democracy is coded as two dummy variables
representing autocracy, partial democracy, and full democracy. King and Zeng
(2002) improved their forecasts by, among other things, adding to these the fraction
of the population in the military, population density, and legislative effectiveness.

The task force’s dependent variable is the onset of state failure, but as we do not
require specifying the dependent variable, our analyses apply to all dependent
variables one might ever want to use. ‘‘What would happen if more of the world
were democratic’’ is a question that underlies much other work in comparative
politics and international relations over the last half century as well as a good deal of
American foreign policy.

Of course, just because our analysis applies to all possible dependent variables,
the subject of any one article will normally be one or a small number of these. To see
how widely our analyses apply, we began collecting other articles in the field that
use a set of explanatory variables with a fair degree of overlap with the set used
here, and stopping at twenty after searching only the last few years. The methods
presented in this section would need to be repeated to draw more precise con-
clusions from each of these other articles, but the overlap in the explanatory vari-
ables was sufficient to infer that the results presented here will likely apply at least
roughly to a large number of articles in the field.

We begin a description of our empirical analyses with four clear examples, the
first two obviously extrapolations and the second two obviously interpolations, and
then we move to averages of many other cases of more substantive interest. Before
turning to empirically reasonable counterfactuals, we begin with examples that are
deliberately extreme. Extreme examples are of course useful for ensuring expos-
itory clarity, but they are also useful here since, although almost no serious re-
searcher would expect the data to provide information about such counterfactuals
if intentionally asked, almost all empirical analysts estimating the effects of democ-
racy have implicitly asked precisely these questions. This is always the case when all
observations are used in the estimation and causal effect evaluation, as is typical in
the literature. So although the two examples we now introduce are obviously ex-
treme, we show that many actually asked in the literature are in fact also quite
extreme.

Our first extreme counterfactual is to suppose that Canada in 1996 had become
an autocracy, but its values on other variables remained at their actual values. We
find, as we would expect, that this extreme counterfactual is outside the convex hull
of the observed data and therefore requires extrapolation. In other words, we can
ask what would have happened if Canada had become autocratic in 1996, but we
cannot use history as our guide, as the world (and therefore our data) includes no
examples of autocracies that are similar enough to Canada on other measured
characteristics. Similarly, if we ask what would have happened if Saudi Arabia in
1996 had become a full democracy, we would also be required to make an ex-
trapolation, as it too falls outside the convex hull.
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We now ask two counterfactual questions that are as obviously reasonable as the
last two were unreasonable. Thus, we ask what would have happened if Poland had
become an autocracy in 1990 (i.e., just after it became a democracy)? From quali-
tative information available about Poland, this counterfactual is quite plausible, and
many even thought (and worried) it might actually occur at the time. Our analysis
confirms the plausibility of this suspicion as this question falls within the convex
hull; analyzing it would require interpolation and probably not much model de-
pendence. In other words, the world has examples of autocracies that are like
Poland in all other measured respects, so history can be our guide. Another rea-
sonable counterfactual is to ask what would have happened had Hungary become a
full democracy in 1989 (i.e., just before it actually did become a democracy). This
question is also in the convex hull and would therefore also require only inter-
polation and little model dependence to draw inferences.

We now further analyze these four counterfactual questions using our modified
Gower distance measure. The question is how far the counterfactual x is from each
row in the observed data set X, so the distance measure applied to the entire data
set gives n numbers. We summarize these numbers with our rule of thumb by
asking what fraction of observations in our data are within one GV of G2, which is
approximately 0.1 (i.e., an average distance that is equivalent to 10% of the distance
from the minimum to the maximum values on each variable in X). Essentially, no
real country-years are within 0.1 or less of this counterfactual for changing Saudi
Arabia to a democracy, but about 25% of the data are within this distance for
Hungary. Similarly, just a few observations in the data are within even 0.15 of
Canada changing to an autocracy, although about a quarter of the country-years are
within this distance for Poland. Recall that we do not need all the data in our
collection to be near a counterfactual, only as much as needed to base our infer-
ences on.

We now examine a larger set of counterfactuals all at once. We start with all
variables set at their actual values and then ask what would happen to all autoc-
racies if they became full democracies, and to all full democracies if they became
autocracies. This analysis includes 5,814 country-years, with 1,775 full democracies
and 4,039 autocracies. What we found was that only 28.4% of the country-years in
this widely examined counterfactual fell within the convex hull of the observed
data. This means that to analyze this counterfactual in practice, 71.6% of the coun-
try-years would require extrapolation and would thus be highly model-dependent
regardless of the model applied or dependent variable analyzed. This is quite im-
portant, as the usual practice of stacking up all the data, running an analysis, and
interpreting the coefficients in standard ways is equivalent to directly evaluating
these counterfactuals.

As Table 1 summarizes, the result is not symmetric: Among the full democracies
switched to autocracies, 53% require interpolation, whereas among the autocracies
switched to full democracies, only 17% are interpolation problems. Unfortunately,
little discussion in the literature reflects these facts, but they are crucial for drawing
valid inferences without high degrees of model dependence.

The first few columns of Table 1 break down these average results for counter-
factuals from three different regions. The rest of the table provides the fraction of
countries within a modified Gower metric of about one GV, or 0.1, of a counter-
factual, averaged over all counterfactuals within a given region and type of change
in democracy. For example, across the 4,039 country-years where we could hypo-
thetically change autocracies to partial democracies, an average of only 4.2% of the
data points are this close to the counterfactual. The rest of the data do not add
much empirical content and generate considerable model dependence.

The overall picture in this table is striking. Studying the effects of changes in
democracy has been a major project within comparative politics and international
relations for at least half a century. This table applies approximately to almost every

GARY KINGAND LANGCHE ZENG 193



such analysis with democracy as an explanatory variable in every field with the
same or similar control variables, regardless of the choice of dependent variable.
The results here appear to suggest that many inferences in these fields (or most
countries within each analysis) have little information content for the questions
being posed and are highly model-dependent. Consequently, many conclusions are
based more on unverifiable assumptions about the model than on empirical data.
The result varies by region and by counterfactuals, and it would of course vary
more if we changed the set of explanatory variables. We can only really know for
sure by applying the methods introduced here to these other data sets, but no
matter how you look at it, the problem of reaching beyond one’s necessarily limited
data comes through in Table 1 with clarity.

Numerous interesting case studies could emerge from analyses like these. For
example, public policy makers and the media spent considerable time debating
what would happen if Haiti became more of a democracy. In the early to mid-
1990s, we find that the counterfactual of moving Haiti from a partial to a full
democracy was in the convex hull, and was a question that had a chance of being
accurately answered with the available data. By 1996, conditions had worsened in
the country, and this counterfactual became more counter to the facts, moving well
out of the hull and thus required extrapolation.

Counterfactuals About UN Peacekeeping

In ‘‘the first quantitative analysis of the correlates of successful peacebuilding and of
the contribution of UN operations to peacebuilding outcomes,’’ Doyle and Samb-
anis (2000, 782) build and analyze a data set of 124 post-World War II civil wars.
They characterize their results as firm enough to go beyond merely academic
conclusions and to provide ‘‘broad guidelines for designing the appropriate peace-
building strategy’’ (779) in practice. This work opens up a new area of quantitative

TABLE 1. How Factual Are Counterfactuals About Democracy?

Counterfactuals N % in Hull

Average % of Data ‘‘Nearby’’

All In Hull Only

Entire World
Full Democracy to Autocracy 1,775 53.6% 5.5% 8.4%
Autocracy to Full Democracy 4,039 17.6 2.4 8.2
Part. Democracy to Autocracy 1,376 80.5 12.3 14.7
Autocracy to Partial Democracy 4,039 61.8 4.2 6.0

Europe and Former USSR
Full Democracy to Autocracy 961 54.9% 4.0% 5.8%
Autocracy to Full Democracy 863 23.3 3.8 10.7
Partial Democracy to Autocracy 493 86.0 11.2 12.7
Autocracy to Partial Democracy 863 76.6 5.3 6.5

Canada and Latin America
Full Democracy to Autocracy 383 64.0 8.6 11.7
Autocracy to Full Democracy 604 30.5 3.4 8.1
Part. Democracy to Autocracy 328 81.7 11.9 13.9
Autocracy to Partial Democracy 604 69.5 5.4 7.3

Other Regions
Full Democracy to Autocracy 431 40.4 5.9 11.6
Autocracy to Full Democracy 2,572 12.8 1.7 6.4
Partial Democracy to Autocracy 555 74.6 13.6 17.3
Autocracy to Partial Democracy 2,572 55.0 3.5 5.4
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analysis about an important public policy question for our field. We follow their
lead and study the authors’ ‘‘main concern’’F‘‘how international capacities, UN
peace operations in particular, influence the probability of peacebuilding success’’
(783). Applying our methods, we found that the empirical conclusions offered in
the article on this issue depend mostly on statistical modeling assumptions rather
than empirical evidence. We do not address the veracity of the article’s conclusions,
only the weight of the data used to support them, and of course the authors should
not be faulted for being unaware of methods we introduce here, years after their
article was published. We also do not address the nine other hypotheses they test or
other methodological issues raised by their analysis.

Doyle and Sambanis were helpful in providing us their data. We begin our anal-
ysis by replicating their key logistic regression model, numbered A8 in their article
(Doyle and Sambanis 2000: Table 3, p. 790). Other models (each with different
measures of UN intervention or other variables) in the article showed no effect of
any specific type of UN intervention considered. It was therefore only the final
specification in their Model A8 that the authors offered to support the article’s key
conclusion that ‘‘multilateral United Nations peace operations make a positive dif-
ference . . . and are usually successful in ending the violence’’ (abstract, p. 779).

Our replication appears in Table 2, marked ‘‘original model.’’ Doyle and Samb-
anis report results in odds ratios, whereas we report the more traditional logit
coefficients, but the replication is otherwise exact.

The theoretical justification for Doyle and Sambanis’ logit specification comes
from what they call their ‘‘interactive model,’’ which posits peacebuilding success as
the result of interactions among the level of hostility, local capacities, and inter-
national capacities such as the UN involvement. Their main concern is the effect of
multidimensional UN peacekeeping operations, which include ‘‘missions with ex-
tensive civilian functions, including economic reconstruction, institutional reform,
and election oversight’’ and which they find ‘‘are extremely significant and posi-
tively associated with peacebuilding’’ (p. 791). In their original model replicated in
Table 2, this is their UNOP4 variable, which is dichotomous: coded 1 for the seven
multidimensional UN peacekeeping operations in their data and 0 for all other
observations. Clearly the result is considerably larger than its standard error, even

TABLE 2. Peacebuilding Models With and Without Interaction Terms

Variables

Original Model Modified Model

Coefficient Robust SE p-Value Coefficient Robust SE p-Value

Wartype � 1.742 0.609 0.004 � 1.666 0.606 0.006
Logdead � 0.445 0.126 0.000 � 0.437 0.125 0.000
Wardur 0.006 0.006 0.258 0.006 0.006 0.342
Factnum � 1.259 0.703 0.073 � 1.045 0.899 0.245
Factnum2 0.062 0.065 0.346 0.032 0.104 0.756
Trnsfcap 0.004 0.002 0.010 0.004 0.002 0.017
Develop 0.001 0.000 0.065 0.001 0.000 0.068
Exp � 6.016 3.071 0.050 � 6.215 3.065 0.043
Decade � 0.299 0.169 0.077 � 0.284 0.169 0.093
Treaty 2.124 0.821 0.010 2.126 0.802 0.008
UNOP4 3.135 1.091 0.004 0.262 1.392 0.851
Wardur � UNOP4 F F F 0.037 0.011 0.001
Constant 8.609 2.157 0.000 7.978 2.350 0.000

N 122 122
Log-likelihood � 45.649 � 44.902
Pseudo R2 0.423 0.433

The logit model on the left replicates Doyle and Sambanis (2000); the model on right is identical to the original
except for the addition of an interaction term.
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given the small number of observations available. When translated into an odds
ratio, which is Doyle and Sambanis’ preferred form, the odds of peacebuilding
success with a multidimensional UN peacekeeping operation is 23 times larger than
with no such operation, holding constant a list of potential confounding control
variables. We return to this remarkable result in ‘‘Identifying multivariate ex-
trapolation regions with the convex hull’’ when we discuss causal inferences.

In this section, we examine the counterfactuals of interest. Assessing the causal
effects of multidimensional UN peacekeeping operations implicitly involves asking
the following question: In civil wars with multilateral UN involvement, how much
peacebuilding success would we have witnessed if the UN had not gotten involved?
Similarly, in civil wars without UN involvement, how much success would there
have been if the UN had gotten involved? In other words, the goal is counterfactual
predictions with the dichotomous UNOP4 variable set to 1FUNOP4, which is one
counterfactual for each observation. To begin with, we check how many counter-
factuals are in the convex hull of the observed data. We found none. That is, every
single counterfactual in the data set is a risky extrapolation rather than what would
have been a comparatively safer interpolation. We also computed the Gower dis-
tance of each counterfactual from the data and found that few of the counterfac-
tuals were near much of the data. For example, for all counterfactuals, an average
of only 1.3% of the observations were within one GV (which is 0.11 in these data).
Thus, not only are the counterfactuals all extrapolations, but in addition they do
not lie just outside the convex hull. Instead, most are fairly extreme extrapolations
well beyond the data. These results strongly indicate that the data used in the study
contain little information to answer the key causal question asked, and hence, the
conclusions reached there are based more on theory and model specifications than
empirical evidence.

We now proceed to give relatively simple examples of the consequences of this
result in terms of model dependence. We begin by making only one change in the
logit specification by including a simple interaction between UNOP4 and the du-
ration of the civil war, leaving the rest of the specification as is. (This is of course
only one illustrative example, and not the only aspect of the specification sensitive
to assumptions.) Including this interaction would seem highly consistent with the
‘‘interactive’’ theory put forward in the article, so it would not seem possible to
exclude on theoretical grounds alone. Excluding this interaction, which the original
specification does, is equivalent to assuming that the effect of UN peacekeeping
operations is identical for wars of all durations (except for the trivial assumed
nonlinearities due to the logit model). Unfortunately, nothing in the theory ex-
pounded in the article, or in other literature in the field, justifies the use of such an
assumption without empirical testing.

The result of this new specification is given in the second set of columns in Table
2. The coefficient on the interaction is positive and clearly distinguishable from zero
(the p-value is 0.001), with a slightly higher likelihood and pseudo R2 values, rep-
resenting clear evidence by the usual rules of thumb to indicate that this model
might even be preferred to the original one. To be clear, however, we do not
necessarily favor this model or the original; we present both as two of many plau-
sible alternatives not ruled out on the grounds of theory or data fitting. Moreover,
no appropriate theory of statistical inference or analysis suggests whether to use the
original or modified model to draw inferences without empirical testing. Thus, we
consider the decision about whether to estimate the coefficient on the interaction as
compared with fixing it to zero (or, equivalently, excluding it) as an apparently
minor specification decision and now show how remarkably sensitive inferences are
to this choice.

We now offer the left graph in Figure 4, which plots predicted values from both
models based on the actual values of UNOP4 and the other explanatory variables.
This graph shows that almost all the predicted values from the two models fall on
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the 451 line, which marks identical predictions. Only six points fall markedly off the
451 line. Of these points, we marked with a circle the five points for which the
model with the interaction fits the in-sample data better than the original model,
and with a square the one point for which the original model fits better than the
modified model. However one looks at the results in this graph, we conclude that
the two models give extremely similar in-sample ‘‘factual’’ predictions. This means
that, except for these six points, the models are indistinguishable on the basis of the
observed data.

We now turn to the counterfactuals of interest by setting UNOP4 to 1�UNOP4,
leaving all other variables at their observed values, computing the same predicted
values, and redoing the same plot. This is the central question implied by Doyle and
Sambanis’s (2000) analysis: What happens if all the civil wars with multidimensional
UN intervention did not have such a UN intervention, and all the civil wars without
such UN interventions did have them. The logit model is effectively used in the
article to evaluate these counterfactual effects. The graph on the right in Figure 4
gives the results by again plotting the predictions for the original vs. modified
models. The result could hardly be more dramatic, with very few of the points
anywhere near the 451 line. That is, for any value of the probability from the
original model on the vertical axis (say 0.5 for example), the probabilities from the
modified model are spread horizontally over almost the entire range from 0 to 1.
This dramatic result indicates that these two modelsFthat differ only very slightly
in their fit to the in-sample dataFare giving wildly different counterfactual pre-
dictions, with very little relationship between them. Of course, these are precisely
the results we would expect when counterfactual predictions are well outside the
convex hull and thus confirm the prediction suggested by the convex hull test:
Although the two models we chose fit the data almost identically, their counter-
factual predictions are completely different because the counterfactuals are far
from the data. The counterfactual questions asked in this analysis are undoubtedly
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FIG. 4. Sensitivity of Predictions to Small Changes in the Model
The vertical axes are predicted probabilities from the model in Doyle and Sambanis (2000) and the
horizontal axes are from the same model with the addition of an interaction term (see Table 2). The

left graph shows how both models produce almost identical probabilities; dots in this graph that
are farther from the line are marked with a square if the original model fits better and a circle if the
modified model fits better. The right graph makes predictions for all observations by switching the
0/1 value of the UN peacekeeping indicator variable while holding others constant. Note how the

in-sample predictions from both models in the left graph are approximately as good, but the
out-of-sample predictions differ wildly.
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very important, but this analysis demonstrates that they cannot be reliably ad-
dressed by the data used.

We return to the analysis of these data, as well as the massively different sub-
stantive implications of these results, in ‘‘Identifying Multivariate Extrapolation
Regions with the Convex Hull.’’

Causal Inference

We now turn to causal inference and the counterfactual evaluation necessary as part
of causal inference. We start with a definition of causal effects, and then our de-
composition of the bias in estimation, and finally a discussion of the components of
bias. We devote the most space to discussing the components of bias due to inter-
polation and extrapolation, during which we show how the techniques introduced
in the previous section can also help solve an existing problem in causal inference.
We illustrate with analyses in the same data used in ‘‘Counterfactuals about UN
peacekeeping’’ on UN peacekeeping.

Causal Effects Definition

To fix ideas, we use as a running example a version of the democratic peace hy-
pothesis, which holds that democratic dyads are less conflictual than other dyads.
Let D denote the ‘‘treatment’’ (or ‘‘key causal’’) variable where D ¼ 1 denotes a
democratic dyad and D ¼ 0 denotes a nondemocratic dyad. The dependent vari-
able is Y, the degree of conflict (but our discussion generalizes to all other depend-
ent variables too).

To define the causal effect of democracy on conflict, denote Y1 as the degree of
conflict that would be observed if the dyad contained two democracies and Y0 as the
degree of conflict if this dyad were not both democracies. Obviously, only either Y0

or Y1 but not both are observed for any one dyad at any given time, as (in our
present simplified formulation) a dyad either is or is not democratic. This is known
as the fundamental problem of causal inference (King, Keohane, and Verba 1994).

In principle, the democracy variable can have a different causal effect for every
dyad in the sample. We can then define the causal effect of democracy by averaging
over all dyads, or for the democratic and nondemocratic dyads separately (or for
any other subset of dyads). For democratic dyads, this is known as the ‘‘average
causal effect among the treated,’’ which we define as follows:

y ¼ EðY1jD ¼ 1Þ � EðY0jD ¼ 1Þ
¼ ‘‘Factual’’� ‘‘Counterfactual’’

ð2Þ

We call the first termFthe average level of conflict among democratic dy-
adsFfactual as Y1 is observable when D ¼ 1. We refer to the second as counter-
factual because Y0Fthe degree of conflict that would exist in a dyad if it were not
democraticFis not observed and indeed is unobservable in democratic dyads
(D ¼ 1). (The causal effect for nondemocratic dyads (D ¼ 0) is directly analogous
and also involves factual and counterfactual terms.)

Although medical researchers are usually interested in the average causal effect
among the treated y, political scientists are also interested in the average causal
effect for the entire set of observations,

g ¼ EðY1Þ � EðY0Þ; ð3Þ
where both terms in this equation have a counterfactual element, as each expect-
ation is taken over all dyads; however, Y1 is only observed for democratic dyads and
Y0 only for nondemocratic dyads. These definitions of causal effects are used in a
wide variety of literatures (Rubin 1974; Holland 1986; King, Keohane, and Verba
1994; Robins 1999a, 1999b; Pearl 2000).
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A counterfactual x in this context, therefore, takes the form of some observed
data with only one element changedFfor example, the Mexico–Spain dyad with all
its attributes fixed but with the regime type in both changed to autocracy. Of
course, we can easily evaluate how reasonable it is to ask about this counterfactual in
one’s data with the methods already introduced in the previous section: Checking
whether x falls in the convex hull of the observed X and computing the distance
from x to X. In addition, as x has only one counterfactual element, we show that we
can easily consult another criterion, whether x falls on the support of X, although we
discuss some problems with this alternative in ‘‘Extrapolation Bias.’’ The support of
X is the range of values of X that are possible (i.e., have positive density) whether or
not they occur in our data.

In real applications, the true causal effect, y or g, is unknown and needs to be
estimated. In ‘‘Bias Decomposition,’’ we discuss the sources of potential problems in
using observational data to estimate these causal effects. We focus on y there for
expository purposes, as is usual in the statistical and econometric literature. How-
ever, unlike prior literature, our companion paper includes proofs that are gen-
eralized to accommodate these quantities of interest to political science to show that
our results also hold for the effect on nondemocracies and for the overall average
treatment effect, g, as well.

Bias Decomposition

We begin with the simplest estimator of y using observational data, the difference
in means (or, equivalently, the coefficient on D from a regression of Y on a constant
and D):

d ¼ meanðY jD ¼ 1Þ �meanðY jD ¼ 0Þ; ð4Þ
which is the average level of conflict in democratic dyads minus the average level of
conflict in nondemocratic dyads. To identify the sources of potential problems using
observational data in causal inference, we now present a new decomposition of the
bias involved in using the simple difference in means estimator d as an estimator of
the causal effect y. This decomposition generalizes Heckman et al.’s (1998) three-
part decomposition. Their decomposition was applied to a simpler problem that
does not adequately represent the full range of issues in causal inference in political
science. Our new version helps to identify and clarify the threats to causal inference
in our discipline, as well as to focus in on where counterfactual inference is most at
issue. In addition to identifying another key component of bias, we also present the
decomposition for both quantities of interest, g and y, whereas Heckman et al.
(1998) only derived the result for the latter. Both results appear in our technical
companion paper and require a fair amount of mathematical derivation (they are
not merely analogies). Yet the results are simple. For y, we show that

Bias � EðdÞ � y ¼ Do þ Dp þ De þ Di: ð5Þ

We derive the equality and give the precise mathematical definition of the terms
Do, Dp, De, and Di in our technical companion paper. These four terms denote
exactly the four sources of bias in using observational data, the subscripts being
mnemonics for the components. The bias components are due to, respectively,
omitted variable bias (Do), post-treatment bias (Dp), interpolation bias (Di), and
extrapolation bias (De). Briefly, Do is the bias due to omitting relevant variables such
as common causes of both the treatment and the outcome variables; Dp is the bias
due to controlling for the consequences of the treatment; Di is the bias that can
result if not properly adjusting for included controls within the region of the data;
De is the bias from extrapolating beyond the range of data in adjusting for included
controls. We now explain and interpret each of these components in more detail
with particular focus on extrapolation bias, including a discussion of how to use the

GARY KINGAND LANGCHE ZENG 199



methods we developed in the previous section to help identify extreme counter-
factuals in causal inference.

Omitted Variable Bias

The absence of all bias in estimating y with d would be assured if we knew that it was
safe to use the observed control group outcome (Y0|D ¼ 0, the level of conflict
initiated by nondemocracies) in place of the unobserved counterfactual (Y0|D ¼ 1,
the level of conflict initiated by democracies, if they were actually nondemocracies).
As this is rarely the case, we introduce control variables: Let Z denote a vector of
control variables (explanatory variables aside from D), such that X ¼ fD, Zg. If,
after controlling for Z, treatment assignment is effectively randomFthat is, if we
measure and control for the right set of control variables (those that are causally
before and correlated with D and affect Y after controlling for D), then the first
component of bias vanishes: Do ¼ 0. Thus, this first component of bias, Do, is due to
the omission of pertinent control variables from X. This is the familiar omitted
variable bias, which can plague any model.

Figure 5 illustrates omitted variable bias by plotting hypothetical data on a de-
pendent variable vertically and a control variable horizontally. The treatment vari-
able values are labeled in the graph. If we ignore the control variable, and thus
project all the points to the left axis, we are left with two histograms. The histo-
grams mostly overlap, but the control group (indicated by the dashed line) has a
higher mean than the treated group (the solid line). However, if we adjust for the
control variable Z, and thus look at the spread of the points in the body for the
graph, the causal effect estimate is revealed by the vertical distance between points
for given values of Z. Where data are available, we see that the treated group data
points are clearly above that for the control group data points, thus reversing the
original conclusion of no effect or a negative treatment effect. (Ranges of Z where
points do not exist for either the treatment or control group require extrpolation,
about which more in ‘‘Extrapolation Bias.’’)

As endogeneity bias and selection bias can be written as omitted variable bias, Do

encompasses these problems as well. In regression-type models, endogeneity
bias, selection bias, and omitted variable bias each cause inferential problems by
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FIG. 5. An Illustration of Omitted Variable Bias
The vertical axis is Y, a dependent variable. The histograms are projections of the points in the graph
to the left by ignoring the control variable Z on the horizontal axis. The dashed line histogram is for

the control group, and the solid line is for the treatment group.
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inducing a correlation between the explanatory variables and the error term. If we
control for the correct variables, then it is sometimes possible to eliminate these
problems. In the omitted variable case, we can avoid the bias by including relevant
variables, such as common causes of D and Y. Similarly, we can avoid the biases due
to nonrandom selection if we control for the probability that each unit is selected
into the sample, and we can eliminate endogeneity bias by including in the controls
covariates that eliminate the conditional relationship between X and the error term.

Post-Treatment Bias

Post-treatment bias is the second component of bias in our decomposition, Dp, and
it deviates from zero when some of the control variables Z are at least in part
consequences of the key causal variable D. If Z includes these post-treatment vari-
ables, then when the key causal variable D changes, the post-treatment variables
may change too, and the plan to interpret the model as revealing the effect of the
treatment ‘‘holding other variables constant’’ becomes impossible.

As a simple example that illustrates the bias of controlling for post-treatment
variables, suppose we are predicting the duration of an African dictatorship using
the unemployment rate as the key explanatory variable. If we control for the ex-
istence of a well-armed cabal inside the palace gates five minutes before a coup
attempt is launched, our estimate of the effect of unemployment would be nearly
zero. The reason is that we are inappropriately controlling for the consequences of
our key causal variable, and for most of the effects of it, thus biasing the overall
effect. Yet, we certainly should control for a pre-treatment variable like the pres-
ence of natural resources in the country, as it cannot be a consequence of un-
employment but may be a common cause of both the explanatory and dependent
variables. Thus, causal models require separating out the pre- and post-treatment
variables and controlling only for the pre-treatment, background characteristics.

Post-treatment variable bias may well be the largest overlooked component of
bias in estimating causal effects in political science (see King 1991; King, Keohane,
and Verba 1994:173ff). It is well known in the statistical literature, but is assumed
away in most models and decompositions. This decision may be reasonable in other
fields, where the distinction between pre- and post-treatment variables is easier to
recognize and avoid, but in political science and especially in comparative politics
and international relations, the problem is often severe. For example, is GDP a
consequence or cause of democracy? How about education levels? Fertility rates?
Infant mortality? Trade levels? Are international institutions causes or consequen-
ces of international cooperation? Many, or possibly even most, variables in these
literatures are both causes and consequences of whatever is regarded as the treat-
ment (or key causal) variable. As Lebow (2000:575) explains, ‘‘Scholars not infre-
quently assume that one aspect of the past can be changed and everything else kept
constant, . . . [but these] ‘Surgical’ counterfactuals are no more realistic than surgical
air strikes.’’ This is especially easy to see in quantitative research when each of the
variables in an estimation takes its turn in different paragraphs of an article playing
the role of the ‘‘treatment.’’ However, only in rare statistical models, and only under
stringent assumptions, is it possible to estimate more than one causal effect from a
single model.

To avoid this component of bias, Dp, we need to ensure that we control for no
post-treatment variables, or that the distribution of our post-treatment variables do
not vary with D. If this assumption holds, then Dp ¼ 0, so this component of bias in
(5) vanishes.

In our field, unfortunately, we almost always need to consider both Do and Dp

together, and in many situations we cannot fix one without making the other worse.
The same is not true in some other fields (which is perhaps the reason the
Dp component was ignored by Heckman et al. 1998), but it is rampant in ours.
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Unfortunately, the news gets worse, as even the methodologist’s last resortFtry it
both ways, and if it does not make a difference, ignore the problemFdoes not work
here. Rosenbaum (1984) studies the situation where we run two analyses, one
including and one excluding the variables that are partly consequences and partly
causes of X. He shows that the true effect could be greater than these two or less
than both. It is hard to emphasize sufficiently the seriousness of this problem and
how prevalent it is in comparative politics and international relations.

Although we have no general solution to this problem, we can offer one useful
way to avoid both Dp and Do in many practical applications. Aside from choosing
better research designs in the first place, of course, our suggestion is to study what
we call multiple-variable causal effects. If we cannot study the effects of democracy
controlling for GDP because higher GDP is in part a consequence of democracy, we
may be able to study the joint causal effect of a change from nondemocracy to
democracy and a simultaneous increase in GDP. This counterfactual is more real-
istic, i.e., closer to the data, because it reflects changes that actually occur in the
world and does not require us to imagine holding variables constant that do not
stay constant in nature. If we have specified a parametric model with both variables,
we can study this question by simultaneously moving both GDP and democracy while
holding constant other variables at (say) their means. An alternative would be to
recode the two variables into one on, as much as possible, a single dimension.

If this alternative formulation provides an interesting research question, then it
can be studied without bias due to Dp, as the joint causal effect will not be affected by
post-treatment bias. Moreover, the multiple-variable causal effect might also have
no omitted variable bias Do, as both variables would be part of the treatment and
could not be potential confounders. Of course, if this question is not of interest, and
we need to stick with the original question, then no easy solution exists at present.
At that point, we should recognize that the counterfactual question being posed is
too unrealistic and too strained to provide a reasonable answer using the given data
with any statistical model. Either way, this is a serious problem that needs to move
higher on the agenda of political methodology.

Interpolation Bias

Even if we can be sure that no omitted variable or post-treatment biases exist, we
still have to control for the observed pre-treatment variables properly. The two
remaining components of biasFinterpolation bias and extrapolation biasFboth
have to do with correctly identifying the necessary control variables but failing to
adjust for them properly. Interpolation bias, or Di, results from adjusting incor-
rectly for the correct control variables in regions of interpolation, and extrapolation
bias results from adjusting for the correct controls where data are needed but do
not exist. Interpolation bias is normally the less serious of the two as it is more
amenable to empirical testing.

Interpolation bias may exist in the simple difference in means estimator if the
measured control variables Z are related in any way to the treatment variable, that is
if the multivariate density of Z for the treatment group differs from that for the
control group (within the region of interpolation). If in addition to these density
differences Z also affects the outcome variable, then interpolation bias will exist if
the density differences in Z are not properly adjusted.

When using a parametric model to adjust for control variables, this component of
bias arises from controlling for Z with the wrong functional form. For example, in
an application without post-treatment bias, with all control variables that could
cause bias identified, and where extrapolation is unnecessary, our estimator could
still generate bias by choosing a linear model to adjust for controls if the data were
generated from a quadratic. Fortunately, standard regression diagnostics are quite
useful for checking model fit within the range of the data. Ultimately, whatever
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method of adjustment is used, the two multivariate histograms of Z for the control
and treatment groups need to be the same for interpolation bias to be eliminated.
We provide further insight into interpolation bias during our discussion of ex-
trapolation bias, to which we now turn.

Extrapolation Bias

The last component of bias, and the one most related to the central theme of the
paper, is extrapolation bias. This component is the second of the two that arise from
not adjusting or improperly adjusting for identified control variables.

Extrapolation bias may arise when the support (or possible values) of the dis-
tribution of Z for the treatment group differs from that of the control group. That
is, there may be certain values of Z that some members of one group take on but no
members of the other group possess. For example, we might observe no full dem-
ocracies with GDP as low as in some of the autocracies, but we still somehow need to
control for GDP. Intuitively, these autocracies have no comparables in the data, so
they are not immediately useful for estimating causal effects. To make causal in-
ferences in situations with nonoverlapping support, we must therefore either elim-
inate the region outside of common supportFas is a standard practice in statistics
and medicineFor attempt to extrapolate to the needed data (e.g., autocracies with
high GDP), such as by using a parametric modelFas is standard practice in political
science and most of the other social sciences. As we demonstrate in the previous
section, extrapolation in forecasting involves considerable model dependence. The
same issue applies in causal inference, as we discuss here. Thus, unless we happen
to be in the extraordinary situation where a known theory or prior evidence makes
it possible to narrow down the possible models to one, or where we happen to guess
the right model, we will be left with extrapolation bias, De6¼0.

Illustration with a Single Control Variable
Figure 6 illustrates some key issues involved in data that generate the need to
extrapolate in causal inference. The figure also illustrates the connection between
the problems of extrapolation in causal inference and extrapolation in forecasting
and what if questions discussed earlier. Figure 6 plots hypothetical data on the
dependent variable vertically and a single control variable Z horizontally. The
treatment and control groups are labeled, and the points are clearly separated in
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FIG. 6. Illustrating Interpolation and Extrapolation Bias
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the figure. To estimate the causal effect in these data, we make comparisons be-
tween the treatment and control groups on the vertical axis (which corresponds to
the outcome variable). The key extrapolation problem is that there exist no treated
units for values of Z42, where some control data do exist, and so any comparison
between the treated and control groups in this region would be based on extrapo-
lating the treatment group data from where it is observed to where it is needed. In
other words, seeking to estimate a causal inference from data where extrapolation
is necessary is the same problem in that region as not having data for one of the two
groups at all.

As the figure shows, the two models, one linear and one quadratic, fit the treated
data almost identically, but in the region to which the counterfactual extrapolations
are needed (i.e., where control units exist but treated units do not), the difference
between the models is vast. This illustrates model dependence, of course, but it also
illustrates extrapolation bias, as at least one of the models shown must be false in the
extrapolation region, so if used would generate bias and make De6¼0. As we have no
data to test which model is appropriate, or whether both are wrong in the ex-
trapolation region, we have no means to rule out extrapolation bias based on
empirical evidence.

Interpolation bias would be seen in the figure if the different functional forms fit
to the treated data differed in-sample. If that were the case (and it is not as drawn),
then bias would result if the estimation model were not close to the model that
represented the data. In practice, because model dependence is much less of an
issue in areas of interpolation (or on the common support) than in extrapolation,
interpolation bias can often be detected and corrected in ways that extrapolation
bias cannot.

Extrapolation bias is far more difficult than interpolation bias. If we use the data
outside the region of common support, we must extrapolate, and we will therefore
have some degree of model dependence and will risk some bias for almost any
model one would choose. Alternatively, we can delete nonoverlap data, which
eliminates the need to extrapolate. Of course, this procedure would fail to produce
any estimates at all in applications where no data lie on the common support, a
problem with some prevalence in our field. If some data do lie within the common
support region, and the quantity of interest is the average treatment effect (g in
equation [3]), dropping observations outside of common support will produce bias
by definition, as it changes the population of inference and the quantity of interest.
Similarly, in the situation where we convince ourselves that we are interested only in
the average treatment effect on the treated (y in equation [2]), dropping treatment
units not on common support will result in bias by changing the population of
inference.

Although extrapolation bias is hard to correct without access to better data or
willingness to change the population of inference (and thus the research questions),
identifying the regions of extrapolation is important in all applications. It may be
disappointing of course to know that the desired questions have no good answers in
available data, but it is better to know this than to ignore it.

Identifying Multivariate Extrapolation Regions with the Convex Hull
In the simple case when a model contains just one pretreatment variable Z, we can
simply plot a histogram of this variable for the treated (Di ¼ 1) units on the same
scale as a histogram of this variable for the control (Di ¼ 0) units, and then compare
them. Areas requiring extrapolation can easily be identified as the areas of the
histograms that do not overlap. (Interpolation bias can arise where the histograms
overlap but differ.)

In most real applications, of course, Z contains many control variables, so iden-
tifying the extrapolation region requires comparing multidimensional histograms
(as estimates of multivariate densities) for the treatment and control groups. For
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more than a few explanatory variables, this is a difficult or impossible task. In
practice, scholars have checked common support by first collapsing their data to
one variable via what is known as the ‘‘propensity score,’’ but we show in our
companion paper that this widespread use of the propensity score is invalid. For-
tunately, as we now show, a simpler procedure is available based on the same
convex hull concept and algorithm already introduced.

If we are interested in estimating the average treatment effect on the treated (y in
equation [2]), then we simply discard any control units for which Z is not within the
convex hull of the treated units Z. (Even if some of the treated units are outside the
convex hull of the control units and thus would require extrapolation, they would
not be omitted so that the quantity of interest remains the same, although it would
be worth identifying them so that the source of the remaining model dependence is
identified.)

If instead we are willing to change the quantity being estimated to something
different, but reliably estimated without high levels of model dependence, then we
would also want to drop treated units that fall outside the convex hull of the control
units. If this alternative is desired, we can consolidate the two steps and estimate the
common support by the convex hull of the subset of observed Z within which the
counterfactual points f1� D, Zg fall. In other words, begin with all the counter-
factuals (which are f1� D, Zg). Then, select only those that fall within the convex
hull of the observed data. Our estimate of the common support is then the convex
hull of Z of this subset of the counterfactuals. Thus, the same procedures for
identifying whether points fall within the convex hull (as described in ‘‘Interpol-
ation vs. Extrapolation’’) can be used to identify the region of common support.
Both procedures are conservative, completely empirical evaluations of common
support and more so in higher-dimensional space, but each is fast, easy to apply,
and applicable to a wide range of problems. To avoid the risk of voids within the
region of common support, we can use the Gower distance to assess whether any of
the counterfactual points within the hull are far from any observed data.

This strategy has not been used in the literature before, mostly because ascer-
taining whether counterfactual points fall in the convex hull has not previously
been viewed as feasible. Given our new algorithm for finding whether points fall
within the hull, this strategy is now feasible, and easy to apply. Indeed, a key
advantage of the strategy suggested here is that at least a good first cut at finding
the region of common support can now be automated and easily included in
standard statistical software. It is already included in the software that accompanies
this paper (Stoll, King, and Zeng 2006) and has also been implemented as part of a
general purpose matching software package called MatchIt (Ho et al. 2006).

Discussion of extrapolation bias in the quantitative empirical literature in most of
the social sciences focusing on causal inference is rare, and relatively few studies
attempt to diagnose this issue formally, much less to do anything about it. Yet, using
data without complete common support produces highly model-dependent ex-
trapolations to areas where no data exist, and thus, inferences become based partly
on theoretical modeling rather than empirical data analyses.

The Causal Effect of UN Peacekeeping

We now apply the ideas introduced in ‘‘Bias Decomposition’’ to the Doyle and
Sambanis (2000) example we first studied in ‘‘Counterfactuals about UN Peace-
keeping.’’ We focus on extrapolation bias, the component of causal effect estimation
bias most relevant to the theme of this paper. In the earlier section, we showed how
all the counterfactuals in these data were extrapolations far from the convex hull
and how, as a result, inferences about them were highly model-dependent. We now
demonstrate the same point by the common support criterion, and show the con-
sequence of this model dependence on the causal inferences of interest.
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Identifying common support by using our convex hull check is easy. We merely
observe how many of the counterfactuals that result by switching all multinational
UN interventions to no intervention, and switching all noninterventions to inter-
ventions, are inside the convex hull of the observed data. In ‘‘Counterfactuals about
UN Peacekeeping,’’ we found that none of these counterfactuals are within the hull,
so the common support is emptyFthe data include no information with which to
reliably compare the two groups and estimate the causal effects of interest. In other
words, there exist no civil wars in the data without UN intervention that are suf-
ficiently like the civil wars with UN intervention to construct an adequately com-
parable control group. Going forward in this situation will generally produce high
levels of model dependence. In fields where scholars have paid attention to these
issues, the data would be judged to contain no information about the quantity of
interest, and no estimates would be attempted unless strict assumptions were war-
ranted.

Although the convex hull check is easy and fast, and the resulting meaning is
clear (the absence of civil wars in the data set without UN intervention that are
otherwise the same as the civil wars where the UN did intervene), it is not always
easy to understand a high dimensional calculation like this. Thus, we also illustrate
the problem with a couple of univariate checks in Figure 7. For example, the left
graph in this figure shows a simple histogram for whether the parties signed a
treaty to end the civil war. The darker histogram shows that all UN interventions in
these data were in civil wars with signed treaties, but the lighter histogram indicates
that only about 20% of the other civil wars had signed treaties. Thus, any civil war
without a signed treaty (the left bar, at 0, in the figure) is outside the common
support and cannot be used as a control group to evaluate the effect of UN in-
tervention. This is quite intuitive: The goal of the causal inference is to isolate the
effect of UN intervention, and so we want a treatment group that differs from the
control group only by intervention status. The problem is that the only way to use
these data would be to take countries without a signed treaty and without UN
intervention and to somehow guess using some model what their peacebuilding
success would be if they had no UN intervention but had signed a treaty. Extrapo-
lations like this are the source of model dependence.

The right graph in Figure 7 illustrates the same point for a continuous variable,
pre-war per capita electricity consumption. The density of electricity consumption
in civil wars with UN intervention are all clustered near the low end of the con-
tinuum. Anything above that is outside the area of common support.

A key point is that, in general, one-dimensional graphs like these can identify
some areas not on the multivariate common supportFhere, for example, any civil
war where the parties have not signed a peace treaty or where pre-war electricity
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consumption is highFas what is not on the common support for any single control
variable is certainly not on the multivariate common support. However, satisfying
support one dimension at a time is not sufficient to identify the multivariate com-
mon support, which is the goal. To do that, we must consider all the explanatory
variables together. That is, it is not enough for some observations to meet the test in
the left graph and a different set of observations meet the test in the right graph.
Observations on common support must meet the common support test (have
overlapping multivariate histograms) for all variables simultaneously. Fortunately,
the convex hull provides a simple way to do this for as many dimensions as are
needed.

Finally, we illustrate the model dependence that results from the fact that none of
the data are on the common support for both the intervention and nonintervention
groups. To do this, we now compare estimates of the causal effects in the two logit
analyses in Table 2, which we showed fit the data almost identically and which differ
only by one interaction term. From these logit models, we compute the marginal
effects of UN peacekeeping operations as a function of the duration of the civil war,
holding constant all other variables at their means. Figure 8 plots these results.

The vertical axis in Figure 8 is the marginal effect, which, conditional on the
veracity of the logit model, is a causal effect. The horizontal axis is the duration of
the civil war. The dotted line is the causal effect of UN peacekeeping estimated by
the model originally presented in Doyle and Sambanis (2000). Without a formal
interaction term, the modest nonlinearities of the logit model allow the effect of
UNOP4 to vary with civil war duration almost linearly, and the consequence is
clear: The effect of UN peacekeeping operations is smaller for civil wars that have
gone on for a longer time before the UN stepped in. This is quite a plausible result,
as we might expect that long conflicts would be more difficult to resolve.

However, as it turns out, the empirical support for this result depends almost
entirely on what are treated in the article as minor modeling assumptions not worth
discussion, much less detailed justification. This can be seen by examining the solid
line in the figure, which portrays the causal effect for the modified model. As can be
seen, the effects for the two models are massively different. In the modified model,
the probability of success is hardly affected by UN operations for relatively short
wars; it increases fast, and declines in parallel to the original model. The huge
differences for shorter wars and the opposite slopes of the two lines in that region
suggest diametrically opposed policy implications for UN missions: According to
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one model, wars with the shortest duration should receive the most attention from
the UN, as that is where the model indicates that the UN can have its biggest effect;
according to the other model, the same civil wars should receive the least attention
from the UN. (Confidence intervals confirm that inferences from the two models
using more than point estimates also differ with dramatically different policy im-
plications.) Although the two models gave nearly identical fit to the factual data, the
counterfactuals are far enough from the observed data to make conclusions highly
sensitive to modeling assumptions. To be clear, no theory offered in Doyle and
Sambanis (2000) or the literature would rule out one of the two models, and the
data do not enable us to choose one either. We also do not prefer the modified
model over the original and introducing the modification only as an illustration of
the extreme model dependence that can result from using data outside of common
support that requires extrapolation.

Concluding Remarks

Even far-out questions with answers that are highly model-dependent may still be
important enough to warrant further study. The following are a few examples:
What would be the future of military conflict if globalization led to a world without
nation states? How bad would the devastation be from a third world war? If a new
virulent infectious disease that is ten times as bad as AIDS strikes the developed
world and lasts longer than the AIDS crisis, would current international institutions
survive? Scholars can and certainly still should ask questions like these, but we
would be better served if we knew whether and to what degree our answers to them
are based on empirical evidence rather than model assumptions. Sometimes, with
the data at hand, no statistical model can give valid answers, and we must rely on
theory or new data collection efforts. The techniques offered in this paper may be
useful in ascertaining the degree to which this is the case. In this regard, it may be
useful for empirical researchers to report these or other statistics, or to at least
address the problem in some way when they evaluate their counterfactuals.

We have used the methods discussed here to evaluate counterfactuals in the large
area of research devoted to assessing the effects of democracy. We found that
questions about democracy with empirical answers that are not highly model-de-
pendent are a subsetFsometimes a small subsetFof those that have been asked.
Usually scholars combine data on all available democracies and autocracies to make
predictions, ask ‘‘what if ’’ questions, or estimate causal effects. Unfortunately, many
of the explicit or implied questions have no available control groups or otherwise
cannot be estimated without making assumptions that even the authors would
probably be unwilling to defend. We might like to know what would happen if Iraq
became a full democracy, for example, but history cannot be our guide as almost no
evidence exists in our data with which to evaluate such a question. Although having
small numbers of cases will often make finding a proper control group harder, in
this example, having access to time-series-cross-sectional data sets with thousands of
observations does not change this basic fact and will not make inferences like these
any more secure. In fact, these data sets must be analyzed with more care than has
been common since, as it turns out, they do not include much evidence on many
otherwise interesting counterfactuals. Asking questions about the effects of changes
in democracy averaged over all countriesFthe predominant approach taken in the
literatureFalmost always implies questions without adequate empirical evidence to
answer. Statistical analyses in data sets like these should change: scholars could seek
different types of evidence, develop better theory, or narrow their inferential
target to a subset of countries and counterfactuals that have empirical support in
their data.

Suppose we read about a model that fits the data exceedingly well, has a
big likelihood ratio or F statistics, narrow confidence intervals, significance on all

When Can History Be Our Guide?208



coefficients, large causal effect estimates, predictions with path-breaking policy im-
plications, and fascinating answers to a range of ‘‘what if ’’ questions. With statistical
reporting standards now commonly used in political science, essentially all such
models would be published and taken seriously by readers. A subset of these,
however, would involve inferences that are so model-dependent as to be nearly
unrelated to the data at hand, based more on the authors’ hypotheses and con-
venient model assumptions than their data. The main message of this article is that
assessing model dependence of counterfactual questions needs to be a routine and
expected part of statistical reporting for anyone making predictions, asking ‘‘what
if ’’ questions, and estimating causal effectsFwhich together encompasses the goals
of a large fraction of empirical work in the discipline.
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