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Abstract

Catalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems 
also features some prominent computational complexity questions, and in particular the problem of using only one catalyst 
in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several 
additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one cata-
lyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules 
have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the 
derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the 
underlying configuration.

Keywords Catalytic rules · Derivation mode maxobjects · Priority of catalytic rules · P systems

1 Introduction

Membrane systems were introduced in [10] as a multiset-
rewriting model of computing inspired by the structure and 
the functioning of the living cell. During two decades, now 
membrane computing has attracted the interest of many 
researchers, and its development is documented in two text-
books, see [11] and [12]. For actual information, see the 
P systems webpage [14] and the issues of the Bulletin of 

the International Membrane Computing Society and of the 
Journal of Membrane Computing.

One basic feature of P systems already presented in [10] 
is the maximally parallel derivation mode, i.e., using non-
extendable multisets of rules in every derivation step. The 
result of a computation can be extracted when the system 
halts, i.e., when no rule is applicable any more. Catalysts are 
special symbols which allow only one object to evolve in its 
context (in contrast to promoters, which allow all promoted 
objects to evolve) and in their basic variant never evolve 
themselves, i.e., a catalytic rule is of the form ca → cv , 
where c is a catalyst, a is a single object and v is a multiset 
of objects. In contrast, non-catalytic rules in catalytic P sys-
tems are non-cooperative rules of the form a → v.

From the beginning, the question how many catalysts are 
needed in the whole system for obtaining computational 
completeness has been one of the most intriguing chal-
lenges regarding (catalytic) P systems. In [5], it has already 
been shown that two catalysts are enough for generating 
any recursively enumerable set of multisets, without any 
additional ingredients like a priority relation on the rules 
as used in the original definition. As already known from 
the beginning, without catalysts, only regular (semi-linear) 
sets can be generated when using the standard halting mode, 
i.e., a result is extracted when the system halts with no rule 
being applicable any more. As shown, for example, in [7], 

A preliminary version of this paper only containing the result on 
weak priority was presented at ICMC 2020, see [2].
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using various additional ingredients, i.e., additional control 
mechanisms, one catalyst can be sufficient: in P systems with 
label selection, only rules from one set of a finite number 
of sets of rules in each computation step are used; in time-
varying P systems, the available sets of rules change periodi-
cally with time. On the other hand, for catalytic P systems 
with only one catalyst, a lower bound has been established 
in [8]: P systems with one catalyst can simulate partially 
blind register machines, i.e., they can generate more than 
just semi-linear sets.

In [2], we returned to the idea of using a priority rela-
tion on the rules, but took only a very weak form of such a 
priority relation: we only required that overall in the system, 
catalytic rules have weak priority over non-catalytic rules. 
This means that the catalyst c must not stay idle if the cur-
rent configuration contains an object a with which it may 
cooperate in a rule ca → cv ; all remaining objects evolve in 
the maximally parallel way with non-cooperative rules. On 
the other hand, if the current configuration does not contain 
an object a with which the catalyst c may cooperate in a rule 
ca → cv , c may stay idle and all objects evolve in the maxi-
mally parallel way with non-cooperative rules. Even without 
using more than this, weak priority of catalytic rules over 
the non-catalytic (non-cooperative) rules, we could estab-
lish computational completeness for catalytic P systems with 
only one catalyst. In this paper, we recall the result from  [2], 
but show a somehow much stronger result using a similar 
construction as in [2]: we show computational completeness 
for catalytic P systems with only one catalyst using the deri-
vation mode maxobjects, i.e., we only take those multisets 
of rules which affect the maximal number of objects in the 
underlying configuration.

2  De�nitions

For an alphabet V, by V∗ , we denote the free monoid gener-
ated by V under the operation of concatenation, i.e., contain-
ing all possible strings over V. The empty string is denoted 
by �. A multiset M with underlying set A is a pair (A, f) 
where f ∶ A → ℕ is a mapping. If M = (A, f ) is a multiset, 
then its support is defined as supp(M) = {x ∈ A | f (x) > 0} . 
A multiset is empty (respectively, finite) if its support is the 
empty set (respectively, a finite set). If M = (A, f ) is a finite 
multiset over A and supp(M) = {a1,… , ak} , then it can also 
be represented by the string af (a

1
)

1
… a

f (ak)

k
 over the alphabet 

{a1,… , a
k
} , and, moreover, all permutations of this string 

precisely identify the same multiset M. For further notions 
and results in formal language theory, we refer to textbooks 
like [4] and [13].

2.1  Register machines

Register machines are well-known universal devices for 
generating or accepting or even computing with sets of 
vectors of natural numbers.

Definition 1 A register machine is a construct

where

– m is the number of registers,
– B is a finite set of labels,
– l

0
∈ B is the initial label,

– l
h
∈ B is the final label, and

– P is the set of instructions bijectively labeled by ele-
ments of B.

The instructions of M can be of the following forms:

– p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{

lh
}

 , q, s ∈ B , 1 ≤ r ≤ m

.
  Increase the value of register r by one, and non-deter-

ministically jump to instruction q or s.
– p ∶ (SUB(r), q, s) , with p ∈ B ⧵

{

lh
}

 , q, s ∈ B , 1 ≤ r ≤ m

.
  If the value of register r is not zero, then decrease the 

value of register r by one (decrement case) and jump to 
instruction q, otherwise jump to instruction s (zero-test 
case).

– l
h
∶ HALT .

  Stop the execution of the register machine.

A configuration of a register machine is described by the 
contents of each register and by the value of the current 
label, which indicates the next instruction to be executed. 
M is called deterministic if the ADD-instructions all are 
of the form p ∶ (ADD(r), q, q) , simply also written as 
p ∶ (ADD(r), q).

In the accepting case, a computation starts with the 
input of an l-vector of natural numbers in its first l registers 
and by executing the first instruction of P (labeled with l

0
 ); 

it terminates with reaching the HALT-instruction. Without 
loss of generality, we may assume all registers to be empty 
at the end of the computation.

In the generating case, a computation starts with all reg-
isters being empty and by executing the first instruction of 
P (labeled with l

0
 ); it terminates with reaching the HALT-

instruction and the output of a k-vector of natural numbers 
in its last k registers. Without loss of generality, we may 

M =

(

m, B, l0, l
h
, P

)
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assume all registers except the last k output registers to be 
empty at the end of the computation.

In the computing case, a computation starts with the 
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled 
with l

0
 ); it terminates with reaching the HALT-instruction 

and the output of a k-vector of natural numbers in its last 
k registers. Without loss of generality, we may assume all 
registers except the last k output registers to be empty at 
the end of the computation.

For useful results on the computational power of reg-
ister machines, we refer to [9]; for example, to prove our 
main theorem, we need the following formulation of results 
for register machines generating or accepting recursively 
enumerable sets of vectors of natural numbers with k com-
ponents or computing partial recursive relations on vectors 
of natural numbers:

Proposition 1 Deterministic register machines can accept 

any recursively enumerable set of vectors of natural num-

bers with l components using precisely l + 2 registers. 

Without loss of generality, we may assume that at the end 

of an accepting computation, all registers are empty.

Proposition 2 Register machines can generate any recur-

sively enumerable set of vectors of natural numbers with k 

components using precisely k + 2 registers. Without loss of 

generality, we may assume that at the end of an accepting 

computation the first two registers are empty, and, moreo-

ver, on the output registers, i.e., the last k registers, no SUB 

-instruction is ever used.

Proposition 3 Register machines can compute any partial 

recursive relation on vectors of natural numbers with l 

components as input and vectors of natural numbers with 

k components as output using precisely l + 2 + k registers, 

where without loss of generality, we may assume that at the 

end of a successful computation the first l + 2 registers are 

empty, and, moreover, on the output registers, i.e., the last 

k registers, no SUB -instruction is ever used.

In all cases, it is essential that the output registers never 
need to be decremented.

2.2  Partially blind register machines

We now consider one-way non-deterministic machines 
which have registers allowed to hold positive or negative 
integers and which accept by final state with all registers 
being zero. Such machines are called blind if their actions 
depend on the state (label) and the input only and not on 
the register configuration itself. They are called partially 

blind if they block when any register is negative (i.e., only 
non-negative register contents is allowed) but do not know 
whether or not any of the registers contains zero.

Definition 2 A partially blind register machine is a 
construct

where

– m is the number of registers,
– B is a finite set of labels,
– l

0
∈ B is the initial label,

– l
h
∈ B is the final label, and

– P is the set of instructions bijectively labeled by ele-
ments of B.

The instructions of M can be of the following forms:

– p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{

lh
}

 , q, s ∈ B , 1 ≤ r ≤ m

.
  Increase the value of register r by one, and non-deter-

ministically jump to instruction q or s.
– p ∶ (SUB(r), q) , with p ∈ B ⧵

{

lh
}

 , q ∈ B , 1 ≤ r ≤ m.
  If the value of register r is not zero, then decrease 

the value of register r by one and jump to instruction q, 
otherwise abort the computation.

– l
h
∶ HALT .

  Stop the execution of the register machine.

Again, a configuration of a partially blind register 
machine is described by the contents of each register and 
by the value of the current label, which indicates the next 
instruction to be executed.

A computation works as for a register machine, yet with 
the restriction that a computation is aborted if one tries 
to decrement a register which is zero. Moreover, comput-
ing, accepting or generating now also requires all regis-
ters (except output registers) to be empty at the end of the 
computation.

Remark 1 For any register machine (even for a blind or 
a partially blind one), without loss of generality, we may 
assume that the first instruction is an ADD-instruction: 
in fact, given a register machine M =

(

m, B, l0, l
h
, P

)

 with 
having a SUB-instruction as its first instruction, we can 
immediately construct an equivalent register machine M′ 
which starts with an increment immediately followed by a 
decrement of the first register:

M =

(

m, B, l0, l
h
, P

)
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2.3  Catalytic P systems

As in [8], the following definition cites Definition 4.1 in 
Chapter 4 of [12].

Definition 3 An extended catalytic P system of degree 
m ≥ 1 is a construct

where

– O is the alphabet of objects;
– C ⊆ O is the alphabet of catalysts;
– � is a membrane structure of degree m with membranes 

labeled in a one-to-one manner with the natural num-
bers 1,… , m;

– w1,… , w
m
∈ O

∗ are the multisets of objects initially 
present in the m regions of �;

– R
i
 , 1 ≤ i ≤ m , are finite sets of evolution rules over O 

associated with the regions 1, 2,… , m of � ; these evolu-
tion rules are of the forms ca → cv or a → v , where c 
is a catalyst, a is an object from O ⧵ C , and v is a string 
from ((O ⧵ C) × {here, out, in})∗;

– i0 ∈ {0, 1,… , m} indicates the output region of �  (0 
indicates the environment).

The membrane structure and the multisets in � at the 
current moment of a computation constitute a configura-

tion of the P system; the initial configuration is given by 
the initial multisets w1,… , w

m
 . A transition between two 

configurations is governed by the application of the evolu-
tion rules, which is done in a given derivation mode. In 
this paper, we consider the maximally parallel derivation 
mode (max for short), i.e., only applicable multisets of 
rules which cannot be extended by further rules are to be 
applied to the objects in all membrane regions, as well as 
the derivation mode maxobjects where in every membrane 
region only applicable multisets of rules which affect the 
maximal number of objects are to be applied. We remark 
that all the multisets which can be used in the derivation 
mode maxobjects can also be used in the derivation mode 
max.

The application of a rule u → v in a region containing 
a multiset M results in subtracting from M the multiset 
identified by u, and then in adding the multiset identified by 

M
� =

(

m, B
�
, l
�
0
, l

h
, P

�
)

,

B
� = B ∪ {l

�
0
, l
��
0
},

P
� = P ∪ {l

�
0
∶ (ADD(1), l

��
0

, l
��
0
), l

��
0
∶ (SUB(1), l0, l0) }.

� = (O, C,�, w1,… , w
m

, R1,… , R
m

, i0)

v. The objects can eventually be transported through mem-
branes due to the targets in (i.e., to the region of an inner 
membrane) and out (i.e., to the region of the surrounding 
membrane) or else stay in the membrane where the rule 
has been applied (target here). We refer to [12] for further 
details and examples.

The P system continues with applying multisets of rules 
according to the derivation mode until there remain no appli-
cable rules in any region of � . Then, the system halts. We 
consider the number of objects from O ⧵ C contained in the 
output region i

0
 at the moment when the system halts as 

the result of the underlying computation of � . The system 
is called extended since the catalytic objects in C are not 
counted to the result of a computation. Yet, as often done 
in the literature, in the following, we will omit the term 
extended and just speak of catalytic P systems, especially as 
we will restrict ourselves to P systems with only one catalyst.

The set of results of all computations possible in � using 
the derivation mode � is called the set of natural numbers 
generated by � using � and it is denoted by N(� , �) if we 
only count the total number of objects in the output mem-
brane; if we distinguish between the multiplicities of different 
objects, we obtain a set of vectors of natural numbers denoted 
by Ps(� , �).

Remark 2 As in this paper, we only consider catalytic P 
systems with only one catalyst, without loss of general-
ity, we can restrict ourselves to one-membrane catalytic 
P systems with the single catalyst in the skin membrane, 
by taking into account the well-known flattening process, 
e.g., see [6].

Remark 3 Finally, we make the convention that a one-mem-
brane catalytic P system with the single catalyst in the skin 
membrane and with internal output in the skin membrane, 
not taking into account the single catalyst c for the results, 
throughout the rest of the paper will be described without 
specifying the trivial membrane structure or the output 
region (assumed to be the skin membrane), i.e., we will 
just write

where O is the set of objects, c is the single catalyst, w is 
the initial input specifying the initial configuration, and R 
is the set of rules.

As already mentioned earlier, the following result was 
shown in [8], establishing a lower bound for the computa-
tional power of catalytic P systems with only one catalyst:

� = (O, {c}, w, R)
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Proposition 4 Catalytic P systems with only one catalyst 

working in the derivation mode max have at least the com-

putational power of partially blind register machines.

Example 1 In [8], it was shown that the vector set

(which is not semi-linear) can be generated by a P system � 
working in the derivation mode max with only one catalyst 
and 19 rules as the multiset language

i.e., Ps(� , max) = L.

3  Weak priority of catalytic rules

In this section, we now study catalytic P systems with 
only one catalyst in which the catalytic rules have weak 
priority over the non-catalytic rules.

Example 2 To illustrate this weak priority of catalytic rules 
over the non-catalytic rules, consider the rules ca → cb and 
a → d . If the current configuration contains k > 0 copies of 
a, then the catalytic rule ca → cb must be applied to one of 
the copies, while the rest of objects a may be taken up by 
the non-catalytic rule a → d . In particular, if k = 1 , only 
ca → cb may be applied.

We would like to highlight the fact that weak priority 
of catalytic rules is much weaker than the general weak 
priority, as the priority relation is only constrained by 
the types of rules.

Remark 4 The reverse weak priority, i.e., non-catalytic 
rules having priority over catalytic rules, is useless for our 
purposes, since it is equivalent to removing all catalytic 
rules for which there are non-catalytic rules with the same 
symbol on the left-hand side of the rule. In that way, we 
just end up with an even restricted variant of P systems 
with only one catalyst, although it might still be interesting 
to characterize the family of multiset languages obtained 
by this restricted variant of P systems: obviously, the lower 
bound still are the semi-linear languages, as for generating 
those we only need catalytic rules with one catalyst; on 
the other hand, the result stated in Proposition 4 cannot be 
obtained anymore with the methods used in [8].

S = {(n, m) ∣ 0 ≤ n, n ≤ m ≤ 2
n}

L = {a
n
b

m ∣ 0 ≤ n, n ≤ m ≤ 2
n},

3.1  Computational completeness with weak 
priority

We now are going to show that catalytic P systems with 
one catalyst only and with weak priority of catalytic rules 
are computationally complete.

Theorem 1 Catalytic P systems with only one catalyst and 

with weak priority of catalytic rules over the non-cooper-

ative rules when working in the derivation mode max are 

computationally complete.

Pro o f  G i ve n  a n  a r b i t r a r y  r e g i s t e r  m a ch i n e 
M =

(

m, B, l0, l
h
, P

)

 , we will construct a corresponding 
catalytic P system with one membrane and one catalyst 
� = (O, {c}, w, R) simulating M. Without loss of general-
ity, we may assume that, depending on its use as an accept-
ing or generating or computing device, the register machine 
M, as stated in Proposition 1, Proposition 2, and Proposi-
tion 3, fulfills the condition that on the output registers, we 
never apply any SUB-instruction. The following proof is 
given for the most general case of a register machine com-
puting any partial recursive relation on vectors of natural 
numbers with l components as input and vectors of natu-
ral numbers with k components as output using precisely 
l + 2 + k registers, where without loss of generality, we 
may assume that at the end of a successful computation, 
the first l + 2 registers are empty, and, moreover, on the 
output registers, i.e., the last k registers, no SUB-instruction 
is ever used. In fact, the proof works for any number n of 
decrementable registers, no matter how many of them are 
the l input registers and the working registers, respectively.

The main idea behind our construction is that all the sym-
bols except the catalyst c and the output symbols (represent-
ing the contents of the output registers) go through a cycle of 
length n + 2 where n is the number of decrementable regis-
ters of the simulated register machine. When the symbols are 
traversing the r-th section of the n sections, they “know” that 
they are to probably simulate a SUB-instruction on register 
r of the register machine M.

The alphabet O of symbols includes register symbols 
(a

r
, i) for every decrementable register r of the register 

machine and only the register symbol a
r
 for each of the k 

output registers r, m − k + 1 ≤ r ≤ m.
Now let B

ADD
 denote the set of labels of ADD-instructions 

p ∶ (ADD(r), q, s) of arbitrary registers r and B
SUB(r) denote 

the set of labels of all SUB-instructions p ∶ (SUB(r), q, s) 
of decrementable registers r. For every ADD-instruction 
p ∶ (ADD(r), q, s) , i.e., p ∈ BADD(r) , of the register machine 
we take the state symbols (p, i), 1 ≤ i ≤ n + 2 , into O. For 
every SUB-instruction p ∶ (SUB(r), q, s) of the register 
machine, i.e., p ∈ BSUB(r) , we need the state symbols (p, i) for 
1 ≤ i ≤ r + 1 as well as (p, j)− and (p, j)0 for r + 2 ≤ j ≤ n + 2 . 
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Moreover, we use a decrement witness symbol e as well as 
the catalyst c and the trap symbol #.

Observing that n = m − k , in total, we get the following 
set of objects:

The starting configuration of � is

where l
0
 is the starting label of the machine and �

0
 is the 

multiset encoding the initial values of the registers.
All register symbols a

r
 , 1 ≤ r ≤ n , representing the con-

tents of decrementable registers, are equipped with the rules 
evolving them throughout the whole cycle:

The construction also includes the trap rule # → # : once the 
trap symbol # is introduced, it will always keep the system 
busy and prevent it from halting and thus from producing 
a result.

For simulating ADD-instructions, we need the following 
rules:

Increment p ∶ (ADD(r), q, s):
The (variants of the) symbol p cycles together with all the 

other symbols, always involving the catalyst:

At the end of the cycle, the register r is incremented and 
the non-deterministic jump to q or s occurs: for r being a 
decrementable register, we take

whereas for r being a register never to be decremented, we 
take

The output symbols need not undergo the cycle, in fact, they 
must not do that because otherwise the computation would 
never stop. When the computation of the register machine 
halts, only output symbols (of course, besides the catalyst c) 
will be present, as we have assumed that at the end of a com-
putation all decrementable registers will be empty, i.e., no 
cycling symbols will be present any more in the P system. 
Finally, we have to mention that if q or s is the final label l

h
 , 

O = {ar ∣ n + 1 ≤ r ≤ m}

∪ {(ar, i) ∣ 1 ≤ r ≤ n, 1 ≤ i ≤ n + 2}

∪ {(p, i) ∣ p ∈ BADD, 1 ≤ i ≤ n + 2}

∪ {(p, i) ∣ p ∈ BSUB(r), 1 ≤ i ≤ r + 1, 1 ≤ r ≤ n}

∪ {(p, i)−, (p, i)0 ∣ p ∈ BSUB(r), r + 2 ≤ i ≤ n + 2, 1 ≤ r ≤ n}

∪ {c, e, #}.

w = c(l0, 1)�0,

(1)
(a

r
, i) → (a

r
, i + 1), 1 ≤ r ≤ n + 1; (a

r
, n + 2) → (a

r
, 1).

(2)c(p, i) → c(p, i + 1), 1 ≤ i ≤ n + 1.

(3)
c(p, n + 2) → c(q, 1)(a

r
, 1), c(p, n + 2) → c(s, 1)(a

r
, 1),

(4)c(p, n + 2) → c(q, 1)a
r
, c(p, n + 2) → c(s, 1)a

r
.

then we take � instead, which means that also the P system 
will halt, because, as already explained above, the only sym-
bols left in the configuration (besides the catalyst c) will be 
output symbols, for which no rules exist.

The state symbol is not allowed to evolve without the 
catalyst:

Hence, in that way, it is guaranteed that the catalyst cannot 
be used in another way, i.e., affecting a symbol (a

r
, i) as 

explained below during the simulation of a SUB-instruction 
on register r.

Decrement and zero-test p ∶ (SUB(r), q, s):
The simulation of a SUB-instruction is carried out in three 

steps of the cycle, i.e., in steps r, r + 1 , and r + 2.
Before reaching the simulation phase for register r, i.e., 

step r of the cycle, the state symbol goes through the cycle, 
necessarily involving the catalyst:

By definition, in the P system � we construct, catalytic rules 
have priority over the non-cooperative rules, i.e., the cata-
lytic rule c(p, i) → c(p, i + 1) has priority over the non-cat-
alytic rule (p, i) → # ; we indicate this general priority rela-
tion for the object (p, i) by the sign > (and we use < for the 
reverse relation) in order to make the situation even clearer.

In the first step of the simulation phase for register r, i.e., 
in step r, the state symbol releases the catalyst to try to per-
form the decrement and to produce a witness symbol e if 
register r is not empty:

Note that due to the counters identifying the position of the 
register symbols in the cycle, it is guaranteed that the cata-
lytic rule transforming (a

r
, r) picks the correct register sym-

bol. Furthermore, due to the priority of the catalytic rules, 
one of the register symbols (a

r
, r) must be transformed by the 

catalytic rule if present, instead of continuing along its cycle.
In the second step of simulation phase r, i.e., in step r + 1 , 

the detection of the possible decrement happens. The out-
come is stored in the state symbol:

If in the first step of the simulation phase, the catalyst did 
manage to decrement the register, it produced e. Thus, in the 
second step, i.e., in step r + 1 , the catalyst has three choices: 

1. the catalyst c correctly erases e, because otherwise this 
symbol will trap the computation, and to the program 

(5)(p, i) → #, 1 ≤ i ≤ n + 2.

(6)c(p, i) → c(p, i + 1) > (p, i) → #, 1 ≤ i < r.

(7)(p, r) → (p, r + 1), c(a
r
, r) → ce.

(8)

ce → c > e → #,

(p, r + 1) → (p, r + 2)− < c(p, r + 1) → c(p, r + 2)0.
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symbol (p, r + 1) the rule (p, r + 1) → (p, r + 2)− must be 
applied as the catalyst is not available for using it with 
the catalytic rule c(p, r + 1) → c(p, r + 2)0 ; all register 
symbols evolve in the usual way;

2. the catalyst c takes the program symbol (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0 , thus forcing the object 
e to be trapped by the rule e → # , and all register sym-
bols evolve in the usual way; this variant cannot lead to 
a halting computation due to the introduction of the trap 
symbol #;

3. the catalyst c takes a register object (a
r+1, r + 1) , thus 

leaving the object e to be trapped by the rule e → # , 
the program symbol (p, r + 1) evolves with the rule 
(p, r + 1) → (p, r + 2)− , and all other register objects 
evolve in the usual way; this variant again cannot lead 
to a halting computation due to the introduction of the 
trap symbol #.

On the other hand, if register r is empty, no object e is gener-
ated, and the catalyst c has only two choices: 

1. the catalyst c takes the program symbol (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0 , and all register sym-
bols evolve in the usual way;

2. the catalyst c takes a register object (a
r+1, r + 1) thereby 

generating e, the program symbol (p, r + 1) evolves with 
the rule (p, r + 1) → (p, r + 2)− , and all other register 
objects evolve in the usual way; this variant leads to the 
situation that e will be trapped in step r + 2 , as otherwise 
the program symbol will be trapped, hence, this variant 
in any case cannot lead to a halting computation due to 
the introduction of the trap symbol # . We mention that 
in case no register object (a

r+1, r + 1) is present we have 
to apply case 1 and thus have a correct computation step.

Observe that in this case of register r being empty, both rules 
(p, r + 1) → (p, r + 2)− and c(p, r + 1) → c(p, r + 2)0 would 
be applicable, but due to the priority of the catalytic rules, 
the second rule must be preferred, thus producing (p, r + 2)0 . 
Therefore, the superscript of the state symbol correctly 
reflects the outcome of the SUB-instruction: it is “−” if the 
decrement succeeded, and “0” if it did not.

After the simulation of the SUB-instruction 
p ∶ (SUB(r), q, s) on register r, the state symbols evolve to 
the end of the cycle and produce the corresponding next 
state symbols:

The additional two steps n + 1 and n + 2 are needed to cor-
rectly finish the decrement and zero-test cases even for r = n.

(9)

c(p, i)− → c(p, i + 1)−, r + 2 ≤ i ≤ n + 1, c(p, n + 2)− → c(q, 1),

c(p, i)0 → c(p, i + 1)0, r + 2 ≤ i ≤ n + 1, c(p, n + 2)0 → c(s, 1),

(p, i)− → #, (p, i)0 → #, r + 2 ≤ i ≤ n + 2.

Finally, we again mention that if q or s is the final label 
l
h
 , then we take � instead, which means that not only the 

register machine but also the P system halts, because, as 
already explained above, the only symbols — except the 
single catalyst c — left in the configuration will be output 
symbols, for which no rules exist.   ◻

The proof elaborated above is an improved version of 
the proof given in [3]. In this new version of the proof the 
simulation of the decrement case on register r still takes two 
steps, but as the second step of the simulation can overlap 
with the first step of simulating the decrement case on reg-
ister r + 1 in the next cycle, we only need n + 2 steps (the 
first +1 comes from the second step for register n in the 
decrement case, the second +1 comes from the third step for 
register n in the zero-test case) instead of 2n steps as needed 
in the proof elaborated in [3].

Moreover, we want to emphasize that the simulation is 
also a specific kind of deterministic: the only non-deter-
ministic choice happens between a rule producing a trap 
symbol # and another one which does not introduce # . 
This means that the appearance of the trap symbol may 
immediately abort the computation, which is the concept 
used for toxic P systems as introduced in [1]. Using the 
trap symbol # as such a toxic object, the only successful 
computations are those which simulate register machines 
in a quasi-deterministic way with a look-ahead of one, i.e., 
considering all possible configurations computable from 
a given one, there is at most one successful continuation 
of the computation.

It remains a challenging question whether the length of 
the cycle now being n + 2 can still be reduced; in fact, as we 
will immediately show below, the length of the cycle can 
even be reduced to n in case we have at least three decre-
mentable registers and to n + 1 in case we have at least two 
decrementable registers. As for n decrementable registers we 
only need a cycle of length n and in the version of the proof 
elaborated below we do not need extra steps at the beginning 
or the end, this proof technique itself does not seem to allow 
for further improvements.

Theorem 2 For any register machine with at least three dec-

rementable registers, we can construct a catalytic P system 

with only one catalyst and with weak priority of catalytic 

rules over the non-cooperative rules and working in the 

derivation mode max which can simulate every step of the 

register machine in n steps where n is the number of decre-

mentable registers.

Proof In the proof of Theorem 1, the last two steps in the 
cycle of length n + 2 were only needed to capture the second 
and third step in the simulation of SUB-instructions of the 
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n-th register, and to capture the third step in the simulation 
of SUB-instructions of register n − 1.

The new idea now is to shift the second simulation step in 
the case of register n − 1 to the first step of the next cycle and 
to shift the first and the second simulation step in the case of 
register n to the first and second step of the next cycle. Yet, 
in this case, we have to guarantee that after a SUB-instruc-
tion on register n − 1 or n the next instruction to be simulated 
is not a SUB-instruction on register 1 or 2, respectively.

One solution for this problem is to use a similar trick as 
already elaborated in Remark 1: we not only do not start 
with a SUB-instruction, but we also change the register 
machine program in such a way that after a SUB-instruc-
tion on register n − 1 or n two intermediate instructions are 
introduced, i.e., as in Remark 1, we use an ADD-instruction 
on register 1 immediately followed by a SUB-instruction on 
register 1, whose simulation will end at most in step n, as 
we have assumed n ≥ 3.

We then may simulate the resulting register machine ful-
filling these additional constraints M =

(

m, B, l0, l
h
, P

)

 by a 
corresponding catalytic P system with one membrane and 
one catalyst � = (O, {c}, w, R) . Without loss of general-
ity, we may again assume that, depending on its use as an 
accepting or generating or computing device, the register 
machine M, as stated in Proposition 1, Proposition 2, and 
Proposition 3, fulfills the condition that on the output reg-
isters, we never apply any SUB-instruction. As in the proof 
of Theorem 2, also here we take the most general case of 
a register machine computing a partial recursive function 
on vectors of natural numbers with l components as input 
and vectors of natural numbers with k components as output 
using n decrementable registers, where without loss of gen-
erality, we may assume that at the end of a successful com-
putation the first n registers are empty, and, moreover, on the 
output registers, i.e., the last k registers, no SUB-instruction 
is ever used.

The alphabet O of symbols now reduces to the following 
set, as the length of the cycle now is only n:

The construction includes the trap rule # → # which will 
always keep the system busy and prevent it from halting and 
thus from producing a result as soon as the trap symbol # 
has been introduced.

O = {ar ∣ n + 1 ≤ r ≤ m}

∪ {(ar, i) ∣ 1 ≤ r ≤ n, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BADD, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BSUB(r), 1 ≤ i ≤ r + 1, 1 ≤ r ≤ n}

∪ {(p, i)−, (p, i)0 ∣ p ∈ BSUB(r), r + 2 ≤ i ≤ n, 1 ≤ r ≤ n − 2}

∪ {c, e, #}.

The sets of rules introduced by Eqs. 1, 2, 3, 4, 5, 6, 7, 8, 
and 9 read as follows:

For simulating ADD-instructions, we need the following 
rules:

Increment p ∶ (ADD(r), q, s):

If r is a decrementable register:

If r is an output register:

Enforcing the use of the catalyst:

For simulating SUB-instructions, we need the following 
rules:

Decrement and zero-test p ∶ (SUB(r), q, s):

If r < n − 1:

If r = n − 1:

If r = n:

As we have guaranteed that in the case of r = n − 1 or r = n , 
the next instruction to be simulated is an ADD-instruction, 
starting with the simulation of the next instruction later in 
the first or second step of the next cycle makes no harm.  
 ◻

(10)(a
r
, i) → (a

r
, i + 1), 1 ≤ r < n; (a

r
, n) → (a

r
, 1).

(11)c(p, i) → c(p, i + 1), 1 ≤ i < n.

(12)c(p, n) → c(q, 1)(a
r
, 1), c(p, n) → c(s, 1)(a

r
, 1),

(13)c(p, n) → c(q, 1)a
r
, c(p, n) → c(s, 1)a

r

(14)(p, i) → #, 1 ≤ i ≤ n.

(15)c(p, i) → c(p, i + 1) > (p, i) → #, 1 ≤ i < r.

(16)(p, r) → (p, r + 1), c(a
r
, r) → ce.

(17)

ce → c > e → #,

(p, r + 1) → (p, r + 2)− < c(p, r + 1) → c(p, r + 2)0.

(18)

c(p, i)− → c(p, i + 1)−, r + 2 ≤ i < n, c(p, n)− → c(q, 1),

c(p, i)0 → c(p, i + 1)0, r + 2 ≤ i < n, c(p, n)0 → c(s, 1),

(p, i)− → #, (p, i)0 → #, r + 2 ≤ i ≤ n.

(19)
ce → c > e → #,

(p, n) → (q, 1) < c(p, n) → c(s, 1).

(20)
ce → c > e → #,

(p, n + 1) → (q, 2) < c(p, n + 1) → c(s, 2).
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If we only have two decrementable registers, then we 
need one additional step at the end; we leave the details 
of the proof, following the constructions elaborated in the 
preceding two proofs, to the interested reader:

Theorem 3 For any register machine with at least two dec-

rementable registers, we can construct a catalytic P system 

with only one catalyst and with weak priority of catalytic 

rules over the non-cooperative rules and working in the 

derivation mode max which can simulate every step of the 

register machine in n + 1 steps where n is the number of 

decrementable registers.

As the number of decrementable registers in generating 
register machines needed for generating any recursively enu-
merable set of (vectors of) natural numbers is only two, from 
Theorem 2, we obtain the following result:

Corollary 1 For any generating register machine with two 

decrementable registers, we can construct a catalytic P sys-

tem with only one catalyst and with weak priority of cata-

lytic rules over the non-cooperative rules which can simulate 

every step of the register machine in 3 steps, and therefore 

such catalytic P systems with only one catalyst and with 

weak priority of catalytic rules over the non-cooperative 

rules can generate any recursively enumerable set of (vectors 

of) natural numbers.

4  Catalytic P systems with only one 
catalyst working in the derivation mode 
maxobjects

In this section, we now study catalytic P systems with only 
one catalyst which work in the derivation mode maxobjects 
and show that computational completeness can be obtained 
with only one catalyst and no further ingredients.

Theorem 4 For any register machine with at least three dec-

rementable registers, we can construct a catalytic P system 

with only one catalyst and working in the derivation mode 

maxobjects which can simulate every step of the register 

machine in n steps where n is the number of decrementable 

registers.

Proof We take over the proof of Theorem 2. The priority of 
catalytic rules then is somehow regained by the fact that a 
catalytic rule ca → cv affects two objects, whereas the cor-
responding non-catalytic rule a → v only affects one object.

Again we use the trick as elaborated in Remark 1 and 
already used in the proof of Theorem 2 for getting a specific 
variant of register machines: without loss of generality, we 

not only do not start with a SUB-instruction, but we also 
change the register machine program in such a way that after 
a SUB-instruction on register n − 1 or n two intermediate 
instructions are introduced, i.e., as in Remark 1, we use an 
ADD-instruction on register 1 immediately followed by a 
SUB-instruction on register 1.

We then may simulate the resulting register machine ful-
filling these additional constraints M =

(

m, B, l0, l
h
, P

)

 by a 
corresponding catalytic P system with one membrane and 
one catalyst � = (O, {c}, w, R) . Without loss of general-
ity, we may again assume that, depending on its use as an 
accepting or generating or computing device, the register 
machine M, as stated in Proposition 1, Proposition 2, and 
Proposition 3, fulfills the condition that on the output reg-
isters we never apply any SUB-instruction. As in the proof 
of Theorem 2, also here we take the most general case of 
a register machine computing a partial recursive function 
on vectors of natural numbers with l components as input 
and vectors of natural numbers with k components as output 
using n decrementable registers, where without loss of gen-
erality, we may assume that at the end of a successful com-
putation the first n registers are empty, and, moreover, on the 
output registers, i.e., the last k registers, no SUB-instruction 
is ever used.

The alphabet O of symbols now reduces to the following 
set:

The construction still includes the trap rule # → # which will 
always keep the system busy and prevent it from halting and 
thus from producing a result as soon as the trap symbol # 
has been introduced.

The sets of rules introduced by Eqs. 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, and 20 read as follows, yet now omitting 
all trap rules except e → #:

For simulating ADD-instructions, we need the following 
rules:

Increment p ∶ (ADD(r), q, s):

If r is a decrementable register:

If r is an output register:

O = {ar ∣ n + 1 ≤ r ≤ m}

∪ {(ar, i) ∣ 1 ≤ r ≤ n, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BADD, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BSUB(r), 1 ≤ i ≤ r + 1, 1 ≤ r ≤ n}

∪ {(p, i)−, (p, i)0 ∣ p ∈ BSUB(r), r + 2 ≤ i ≤ n, 1 ≤ r ≤ n − 2}

∪ {c, e, #}.

(21)(a
r
, i) → (a

r
, i + 1), 1 ≤ r < n; (a

r
, n) → (a

r
, 1).

(22)c(p, i) → c(p, i + 1), 1 ≤ i < n.

(23)c(p, n) → c(q, 1)(a
r
, 1), c(p, n) → c(s, 1)(a

r
, 1),
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The catalyst has to be used with the program symbol which 
otherwise would stay idle when the catalyst is used with a 
register symbol, and the multiset of rules applied in this way 
would use one symbol less and thus violate the condition of 
using the maximal number of objects, hence, now we do not 
need the trap rules (p, i) → # , 1 ≤ i ≤ n.

For simulating SUB-instructions, we need the following 
rules:

Decrement and zero-test p ∶ (SUB(r), q, s):

For 1 ≤ i < r , we again do not need trap rules (p, i) → # , 
as otherwise the program symbol (p, i) would stay idle and 
thus the condition of using the maximal number of objects 
would be violated.

In case that register r is empty, i.e., there is no object (a
r
, r) , 

then the catalyst will stay idle as in this step there is no other 
object with which it could react.

If r < n − 1:

If in the first step of the simulation phase, the catalyst did 
manage to decrement the register, it produced e. Thus, in 
the second simulation step, the catalyst has three choices: 

1. The catalyst c correctly erases e, and to the program 
symbol (p, r + 1) the rule (p, r + 1) → (p, r + 2)− must 
be applied due to the derivation mode maxobjects; all 
register symbols evolve in the usual way;

2. The catalyst c takes the program symbol (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0 , thus forcing the object 
e to be trapped by the rule e → # , and all register sym-
bols evolve in the usual way;

3. The catalyst c takes a register object (a
r+1, r + 1) , thus 

leaving the object e to be trapped by the rule e → # , 
the program symbol (p, r + 1) evolves with the rule 
(p, r + 1) → (p, r + 2)− , and all other register objects 
evolve in the usual way.

In fact, only variant 1 now fulfills the condition given by the 
derivation mode maxobjects and therefore is the only possi-
ble continuation of the computation if register r is not empty.

On the other hand, if register r is empty, no object e is 
generated, and the catalyst c has only two choices: 

(24)c(p, n) → c(q, 1)a
r
, c(p, n) → c(s, 1)a

r

(25)c(p, i) → c(p, i + 1), 1 ≤ i < r.

(26)(p, r) → (p, r + 1), c(a
r
, r) → ce.

(27)
ce → c, e → #, (p, r + 1) → (p, r + 2)−;

c(p, r + 1) → c(p, r + 2)0.

1. The catalyst c takes the program symbol (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0 , and all register sym-
bols evolve in the usual way;

2. The catalyst c takes a register object (a
r+1, r + 1) thereby 

generating e, the program symbol (p, r + 1) evolves with 
the rule (p, r + 1) → (p, r + 2)− , and all other register 
objects evolve in the usual way; this variant leads to the 
situation that e will be trapped in step r + 2 , as otherwise 
the program symbol stays idle, thus violating the con-
dition of the derivation mode maxobjects. Hence, this 
variant in any case cannot lead to a halting computation 
due to the introduction of the trap symbol # . We mention 
that in case no register object (a

r+1, r + 1) is present we 
have to apply case 1 and thus have a correct computation 
step.

Both variants fulfilll the condition for the derivation mode 
maxobjects, but only variant 1 is not introducing the trap 
symbol # and therefore is the only reasonable continuation 
of the computation if register r is empty.

Again the catalyst has to be used with the program symbol 
which otherwise would stay idle when the catalyst is used 
with a register symbol, and the multiset of rules applied in 
this way would use one symbol less and thus violate the 
condition of using the maximal number of objects.

If r = n − 1:

We observe that in this case, during the first step of the next 
cycle, we have to guarantee that in the zero-test case, the 
catalyst must be used with the program symbol, hence, we 
will simulate an ADD-instruction on register 1, as the intro-
duction of the symbol e in the wrong variant of the zero-test 
case must lead to introducing the trap symbol and not allow-
ing e to be erased by the catalytic rule ce → c.

If r = n:

In this case, the second step of the simulation is already the 
first step of the next cycle, and the third step of the simula-
tion is already the second step of the next cycle, which again 
means that in this case of r = n the next instruction to be 
simulated is an ADD-instruction on register 1. The introduc-
tion of the symbol e in the second step of the simulation, 
i.e., in the first step of the next cycle, in the wrong variant 
of the zero-test case allows for trapping e as the program 

(28)

c(p, i)− → c(p, i + 1)−, r + 2 ≤ i < n, c(p, n)− → c(q, 1),

c(p, i)0 → c(p, i + 1)0, r + 2 ≤ i < n, c(p, n)0 → c(s, 1).

(29)
ce → c, e → #,

(p, n) → (q, 1), c(p, n) → c(s, 1).

(30)
ce → c, e → #,

(p, n + 1) → (q, 2), c(p, n + 1) → c(s, 2).
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symbol has to be used with the catalyst in the second step 
of the next cycle.

We finally observe that the proof construction given 
above is quite similar to the one elaborated in the proof of 
Theorem 2, but the only rule introducing the trap symbol 
now is the single rule e → # .   ◻

If we only have two decrementable registers, then we 
need one additional step at the end; again we leave the 
details of the proof, based on the constructions elaborated 
in the preceding proofs, to the interested reader:

Theorem 5 For any register machine with at least two dec-

rementable registers, we can construct a catalytic P system 

with only one catalyst and working in the derivation mode 

maxobjects which can simulate every step of the register 

machine in n + 1 steps where n is the number of decrementa-

ble registers.

As the number of decrementable registers in generating 
register machines needed for generating any recursively enu-
merable set of (vectors of) natural numbers is only two, from 
Theorem 5, we obtain the following result:

Corollary 2 For any generating register machine with two 

decrementable registers, we can construct a catalytic P 

system with only one catalyst and working in the deriva-

tion mode maxobjects which can simulate every step of the 

register machine in 3 steps, and therefore such catalytic P 

systems with only one catalyst and working in the derivation 

mode maxobjects can generate any recursively enumerable 

set of (vectors of) natural numbers.

As for accepting register machines, in addition to the two 
working registers, we have at least one input register, we 
immediately infer the following result from Theorem 5:

Corollary 3 For any recursively enumerable set of d -vectors 

of natural numbers given by a register machine with d + 2 

decrementable registers, we can construct an accepting 

catalytic P system with only one catalyst and working in the 

derivation mode maxobjects which can simulate every step 

of the register machine in d + 2 steps, and therefore such 

catalytic P systems with only one catalyst and working in 

the derivation mode maxobjects can accept any recursively 

enumerable set of (vectors of) natural numbers.

The results obtained in this section are optimal with 
respect to the number of catalysts for catalytic P systems 
working in the derivation mode maxobjects, as the results 
for P systems only using non-cooperative rules are the same 
for both the derivation mode maxobjects and the derivation 
mode max; for example, in the generating case, P systems 

only using non-cooperative rules can only generate semi-
linear sets.

5  Conclusion

In this paper, we revisited a classical problem of compu-
tational complexity in membrane computing: can catalytic 
P systems working in the derivation mode max with only 
one catalyst in the whole system already generate all recur-
sively enumerable sets of multisets? This problem has been 
standing tall for many years, and nobody has yet managed 
to give a positive or a negative answer to this problem. In 
this paper, we come tantalizingly close to showing compu-
tational completeness: we give a construction that simulates 
an arbitrary register machine with a very weak ingredient — 
the weak priority of catalytic rules over non-catalytic rules. 
This ingredient confers very little additional power indeed, 
because the structure of the priority relation is very simple, 
as it is only constrained by the two types of rules.

We believe that a similar construction driving the sym-
bols around in a loop but avoiding any additional ingredients 
altogether will not be sufficient for obtaining computational 
completeness, as we still conjecture that P systems work-
ing in the derivation mode max with one catalyst and no 
additional control mechanisms cannot reach computational 
completeness. Finding an answer to the question of char-
acterizing the computational power of P systems with one 
catalyst working in the derivation mode max therefore still 
remains one of the biggest challenges in the theory of P sys-
tems, although the result established in our paper has made 
the gap between the computational power of P systems with 
one catalyst and computational completeness smaller again.

The second variant proved to be computationally com-
plete in this paper comes even closer to the original question: 
when using the derivation mode maxobjects instead of the 
derivation mode max, we really obtain computational com-
pleteness with only one catalyst and no further ingredients.

The results obtained in this paper can also be extended to 
P systems dealing with strings, following the definitions and 
notions used in [8], thus showing computational complete-
ness for computing with strings.

Acknowledgements The authors gratefully acknowledge the useful 
hints of the referees. Rudolf Freund acknowledges the TU Wien sup-
porting the open access publishing of this paper.

Funding Open access funding provided by TU Wien (TUW). Artiom 
Alhayov acknowledges project 20.80009.5007.22 “Intelligent informa-
tion systems for solving ill-structured problems, processing knowledge 
and big data” by the National Agency for Research and Development. 
Sergiu Ivanov is partially supported by the Paris region via the project 
DIM RFSI n ◦2018-03 “Modèles informatiques pour la reprogramma-
tion cellulaire”.



181When catalytic P systems with one catalyst can be computationally complete  

1 3

Declarations 

 Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alhazov, A., & Freund, R. (2014). P systems with toxic objects. 
In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zan-
dron, C. (Eds.) Membrane computing—15th International Con-

ference, CMC 2014, Prague, Czech Republic, August 20–22, 

2014, Revised Selected Papers, Lecture Notes in Computer Sci-

ence, vol. 8961, pp. 99–125. Springer. https:// doi. org/ 10. 1007/ 
978-3- 319- 14370-5_7.

 2. Alhazov, A., Freund, R., & Ivanov, S. (2020). Catalytic P systems 
with weak priority of catalytic rules. In: Freund, R. (Ed.) Proceed-

ings ICMC 2020, September 14–18, 2020, TU Wien, pp. 67–82.
 3. Alhazov, A., Freund, R., & Ivanov, S. (2020). Computational com-

pleteness of catalytic P systems with weak priority of catalytic 
rules over non-cooperative rules. In: Orellana-Martín, D., Păun, 
Gh., Riscos-Núñez, A., Pérez-Hurtado, I. (Eds.) Proceedings 18th 

Brainstorming Week on Membrane Computing, Sevilla, February 

4–7, 2020. RGNC REPORT 1/2020, Research Group on Natural 
Computing, Universidad de Sevilla, pp. 21–32.

 4. Dassow, J., & Păun, Gh. (1989). Regulated Rewriting in Formal 

Language Theory. Springer. https:// www. sprin ger. com/ de/ book/ 
97836 42749 346.

 5. Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Compu-
tationally universal P systems without priorities: Two catalysts 
are sufficient. Theoretical Computer Science, 330(2), 251–266. 
https:// doi. org/ 10. 1016/j. tcs. 2004. 06. 029.

 6. Freund, R., Leporati, A., Mauri, G., Porreca, A. E., Verlan, S., & 
Zandron, C. (2014). Flattening in (tissue) P systems. In: Alhazov, 
A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu., Rozenberg, G., 
Salomaa, A. (eds.) Membrane Computing, Lecture Notes in Com-

puter Science, vol. 8340, pp. 173–188. Springer. https:// doi. org/ 
10. 1007/ 978-3- 642- 54239-8_ 13.

 7. Freund, R., Oswald, M., & Păun, Gh. (2015). Catalytic and purely 
catalytic P systems and P automata: Control mechanisms for 
obtaining computational completeness. Fundamenta Informati-

cae, 136(1–2), 59–84. https:// doi. org/ 10. 3233/ FI- 2015- 1144.
 8. Freund, R., & Sosík, P. (2015). On the power of catalytic P sys-

tems with one catalyst. In: Rozenberg, G., Salomaa, A., Sempere, 
J. M., Zandron, C. (eds.) Membrane Computing—16th Interna-

tional Conference, CMC 2015, Valencia, Spain, August 17–21, 

2015, Revised Selected Papers, Lecture Notes in Computer Sci-

ence, vol. 9504, pp. 137–152. Springer. https:// doi. org/ 10. 1007/ 
978-3- 319- 28475-0_ 10.

 9. Minsky, M. L. (1967). Computation: Finite and infinite machines. 
Englewood Cliffs, NJ: Prentice Hall.

 10. Păun, Gh. (2000). Computing with membranes. Journal of Com-

puter and System Sciences, 61(1), 108–143. https:// doi. org/ 10. 
1006/ jcss. 1999. 1693.

 11. Păun, Gh. (2002). Membrane Computing: An introduction. 
Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 56196-2.

 12. Păun, Gh., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The 

Oxford Handbook of Membrane Computing. Oxford University 
Press.

 13. Rozenberg, G., & Salomaa, A. (Eds.) (1997). Handbook of Formal 

Languages. Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 59136-5.
 14. The P Systems Website. http:// ppage. psyst ems. eu/.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-14370-5_7
https://doi.org/10.1007/978-3-319-14370-5_7
https://www.springer.com/de/book/9783642749346
https://www.springer.com/de/book/9783642749346
https://doi.org/10.1016/j.tcs.2004.06.029
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.3233/FI-2015-1144
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-59136-5
http://ppage.psystems.eu/

	When catalytic P systems with one catalyst can be computationally complete
	Abstract
	1 Introduction
	2 Definitions
	2.1 Register machines
	2.2 Partially blind register machines
	2.3 Catalytic P systems

	3 Weak priority of catalytic rules
	3.1 Computational completeness with weak priority

	4 Catalytic P systems with only one catalyst working in the derivation mode maxobjects
	5 Conclusion
	Acknowledgements 
	References


