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ABSTRACT

This article presents a novel robotic partner which children
can teach handwriting. The system relies on the learning by
teaching paradigm to build an interaction, so as to stimu-
late meta-cognition, empathy and increased self-esteem in
the child user. We hypothesise that use of a humanoid
robot in such a system could not just engage an unmoti-
vated student, but could also present the opportunity for
children to experience physically-induced benefits encoun-
tered during human-led handwriting interventions, such as
motor mimicry.

By leveraging simulated handwriting on a synchronised
tablet display, a nao humanoid robot with limited fine mo-
tor capabilities has been configured as a suitably embodied
handwriting partner. Statistical shape models derived from
principal component analysis of a dataset of adult-written
letter trajectories allow the robot to draw purposefully de-
formed letters. By incorporating feedback from user demon-
strations, the system is then able to learn the optimal pa-
rameters for the appropriate shape models.

Preliminary in situ studies have been conducted with pri-
mary school classes to obtain insight into children’s use of
the novel system. Children aged 6-8 successfully engaged
with the robot and improved its writing to a level which
they were satisfied with. The validation of the interaction
represents a significant step towards an innovative use for
robotics which addresses a widespread and socially mean-
ingful challenge in education.

1. INTRODUCTION
Handwriting difficulties in children at an early age of-

ten negatively affect the academic performance of the stu-
dents [5], in addition to their self-esteem being adversely af-
fected [14], causing them to shy away from expressing what
they know [16]. Successful interventions for children with
handwriting difficulties involve the student in many sessions
where they are engaged in physically practising the skill [10].
However, the link between handwriting difficulties and low
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self-efficacy [6] results in children who are unmotivated to
participate in such sessions, potentially leading to a devel-
opmental arrest in the acquisition of the skill.

The learning by teaching paradigm, which engages the tar-
get student in the act of teaching another, has been shown to
produce motivational, meta-cognitive, and educational ben-
efits in a range of disciplines [18]. To our best knowledge,
the application of the paradigm to handwriting interven-
tion remains, however, unexplored. One reason for this may
due to the requirement of an appropriately unskilled peer
for the target child to tutor, as this may present a logisti-
cal constraint if the target child is the lowest performer in
their class. In some cases, it may be appropriate for a peer
or teacher to simulate a näıve learner for the target child to
teach. For handwriting, where one’s skill level is visually evi-
dent, however, this acting is likely to be eventually detected.
As such, there is motivation for the use of a teachable agent
which can be configured for a variety of skill levels, and for
which children do not have preconceptions about its hand-
writing ability.

We present the development of a novel teachable agent
that intentionally makes mistakes typical of children learn-
ing handwriting. Through this capability, the robot can be
taught by children, who themselves may learn through their
teaching.

Within this article, Section 3 presents the novel work in
the area of artificial intelligence to develop a learning algo-
rithm suitable for a teachable agent in the context of hand-
writing. Section 4 details the extension of this algorithm to
an embodied robotic learning agent, including the new ap-
proach for achieving simulated fine motor skills on commer-
cially affordable humanoid robots such as the nao. Section
5 explores the contributions made to the study of human-
robot interaction, in discussing the use of the system with
primary school children and its potential as a tool for ad-
dressing wider pedagogical research questions in education.
Finally, Section 6 addresses the challenges which are faced
in extending this system to a level suitable for long-term
studies, and Section 7 concludes by reiterating the impact
of the article’s contributions.

2. RELATED WORK
Teachable computer-based agents have previously been

used to encourage the “protégé effect”, wherein students in-
vest more effort into learning when it is for a teachable agent
than for themselves [4]. As we are concerned with learning
of a physical skill, the learning agent developed is embodied
in a humanoid robot which is capable of physically demon-



strating handwriting trajectories to its child learning part-
ner. This is supported by the potential for motor mimicry
to yield significant improvements in handwriting interven-
tions in which letter formations are demonstrated to par-
ticipants [2]. Furthermore, when compared to screen-based
agents, robotic partners have been shown in some contexts
to increase users’ compliance with tasks [1], maintain more
effective long-term relationships [11], and produce greater
learning gains when acting as tutors [12].

Robots have been used as teachers or social partners to
promote children’s learning in a range of contexts, most com-
monly related to language skills [9], and less often to physi-
cal skills (such as calligraphy [15]). Looking at the converse
(humans teaching robots), Werfel notes in [22] that most
of the work focuses on the robot’s benefits (in terms of lan-
guage [19] or physical [17] skills, for example) rather than the
learning experienced by the human tutor themselves. Our
work concentrates on this latter aspect: by demonstrating
handwriting to a robot, we aim at improving the child’s per-
formance. Note that our work must be distinguished from
“learning from demonstration” approaches to robots learn-
ing physical skills, as the agent we present is only simulating
fine motor skills for interaction purposes.

A robotic learning agent which employs the learning by
teaching paradigm has previously been developed by Tanaka
and Matsuzoe [21]. In their system, children learn vocabu-
lary by teaching the nao robot to act out verbs. The robot
is tele-operated and mimics the actions that the children
teach it, but with no long-term memory or learning algo-
rithm in place. Our project significantly extends this line
of work in two ways. First, by investigating the context of
children’s acquisition of a challenging physical skill (hand-
writing), and second by proposing a robotic partner which
is fully autonomous in its learning.

3. A LEARNING AGENT IN THE CONTEXT

OF HANDWRITING
A parameterisation of letters and their deformities is used

such that different quality shapes can be generated, depend-
ing on the parameters input to the letter models. This al-
lows us to configure the system to improve its writing by
modifying the parameters based on feedback from the rein-
forcement learning partner (Section 3.3).

3.1 Shape Modelling of Letters
We use statistical shape modelling for generating a shape

model which can appropriately represent realistic variations
in shapes. Statistical shape modelling is an application of
principle component analysis (PCA), where a linear trans-
form which de-correlates data vectors is found [20] and al-
lows for dimensionality reduction.

PCA is performed on a set of letter paths captured from
a digital pen, using the UJI Pen Characters 2 dataset [13]
with 120 instances of each letter (2 repetitions from 60 adult
users). While it may be appropriate in future work to iden-
tify the location of salient features of the shapes which are
robust to unanticipated user input (such as shapes drawn
backwards), the features are currently taken as n = 70 uni-
formly spaced points along the shape path. The points are
arranged into an observation vector presented in (1), where
xi and yi represent the coordinates of each of the points
along the path. The observation shapes are normalised to

have a unit maximum dimension and 0 mean.

x = [x1, x2, . . . , xn, y1, y2, . . . , yn]
T (1)

Equation (2) represents the projection from the original
2n-dimensional feature space to a reduced N -dimensional
space, where p contains the coordinates in theN -dimensional
space with 0-origin, calculated as in (3). Φ is an orthogonal
2n×N matrix composed of the eigenvectors vi correspond-
ing to the largest N eigenvalues (λi) of the covariance matrix
of the observations [20], as shown in (4). If there is corre-
lation between the points in the observations, there will be
eigenvalues of the covariance matrix which are close to zero.
As such, removing the associated eigenvectors from Φ allows
for dimensionality reduction with minimal impact.

x̃ = x̄+Φp (2)

p = ΦT (x− x̄) (3)

Φ = [v1,v2, . . . ,vN ]T (4)

PCA is performed on all of the paths of a particular allo-
graph in the dataset individually, to reduce the 2n-dimensional
space for that shape to one with N = 10 dimensions. Each
shape is then approximated by the mean shape of the allo-
graph plus a sum of the top 10 eigenvectors, weighted by
the parameter vector p.
Equation (2) may also be used to generate new shapes

based on the parameters p which are used. p = 0 will yield
the mean shape, and variations to each of the N values in
p will cause a change in the shape represented by the corre-
sponding eigenvector (Figure 1). For the dataset presented
in Figure 1, the eigenvectors associated with the 3 largest
eigenvalues explain 78.5% of the variance in the dataset, il-
lustrating the capability of the statistical shape modelling
approach to produce compact parameterisation of shapes.

Figure 1: The mean shape (left) and the effect
(right) of varying the first three parameters (each
row) of a shape model. Parameter variation is de-
pendent on the eigenvalue λ corresponding to the
parameter’s eigenvector. The percentage of the to-
tal variance in the dataset explained by each param-
eter is shown to the left of the corresponding row.

Interestingly, although the parameters are the result of an
unsupervised shape analysis, they still represent variations
which could have been intuitively identified by a manual pa-
rameterisation. For example, for the model shown in Figure
1, the parameters may represent the height of the top half
of the letter compared to the bottom half, the width of the
overall shape, etc. The ability to generate varied levels of



deformations which may be ascribed descriptive interpreta-
tions (not just numerical) is an advantage of this method,
given its intended use with humans. It is, for instance, pos-
sible for a teacher to create letters – which will be used as a
starting point for the system – with a particular feature (a
wide ‘s’ or a ‘d’ with a large loop, for example).

3.2 Generating Poor Letters
As explained, new letters can be generated by varying the

parameter values for a shape model in accordance with (2).
By choosing parameter values which lie within the observed
range in the dataset, it is possible to produce letters which
are more likely to be reasonable looking. When the param-
eter values are outside of the range observed in the dataset,
they are less likely to represent shapes from the dataset of
adult-written letters, and as a result are more likely to rep-
resent poor shapes. Figure 2 illustrates sample letters gen-
erated from the models of ‘e’ and ‘g’ by selecting random
values for the first 5 parameters from a distribution with
standard deviation of 3

√
λi, rather than the

√
λi standard

deviation observed in the dataset.

Figure 2: Sample letters generated from the PCA
shape model on ‘e’ (left) and ‘g’ paths (right), gen-
erated randomly from parameters with 3× the stan-
dard deviation observed in the dataset.

In [3], Chandra found that children aged 4-6 years par-
ticipating in a handwriting peer tutoring pilot study most
often made mistakes qualitatively classified as internal pro-
portions (inappropriate proportion of the different strokes
within a letter), or global deformations (overall deformation
in the appearance of the letter). As exemplified in Figure 2,
the shapes generated by the system exhibit the same kind
of deformities. Chandra identifies other, less common, mis-
takes which involve topological changes, such as letters being
broken into subparts or mirrored. Using a database of chil-
dren’s letters when available may yield potential for better
parameterising these other mistakes. However, as an initial
approximation, the shape models generated from PCA on a
dataset of only adults’ writing have shown to be well-suited
to generate ‘poor’ letters that children were able to identify
as such and successfully improve.

3.3 Responding to Feedback
In addition to generating letters by varying input param-

eters, the statistical shape model of Section 3.1 may also
be used to determine a particular letter’s parameters, given
the model. The parameters of user-drawn letters may there-
fore be used in order implement a learning algorithm which
adapts to the user’s feedback via demonstration letters.

The statistical shape model is used to determine the pa-
rameters of a demonstration shape by projecting the features
of the observed shape into the lower-dimensional space de-
termined by the model. Mathematically, the parameters
associated with a demonstration xdemo are determined as in
(3) with x = xdemo, and will reconstruct the closest approx-
imate shape.

The method we employ for responding to user demonstra-
tions is to move the learning algorithm’s parameters towards
those of the demonstration. In the results presented in this
work, the linear update equation shown in (5) is used, where
p is the learned parameter vector at time step k, and α is
the learning rate, between 0 and 1.

p(k+1) = p(k) + (pdemo − p(k))× α (5)

Figure 3 illustrates the response of the system to demon-
strations from a child for the letter ‘s’ using a learning rate of
α = 1/2. Observe that even poorly-written demonstrations
allow the system to improve.

Learned

shape

Demonstration

shape

iterations

Figure 3: Example of the learning algorithm re-
sponding (top) to user demonstration of shapes
(bottom) for the letter ‘s’ (demonstrations received
from two 7-8 year-old children taking turns).

It is possible that parameters p(k) and pdemo, which indi-
vidually yield acceptable shapes, produce parameters p(k+1)

which yield an unacceptable shape. This is especially true if
the demonstration shape is of a different style to that learnt
at time k (see Figure 4), as there are no restrictions im-
posed on parameter values. However, the proposed method
for adapting to the demonstration shapes has the advantage
of being able to recover from such a situation: with further
demonstrations of the same letter, the system would even-
tually approach the demonstration shape. As a result, the
event of poor-looking intermediate letters would not limit
the interaction later proposed in Section 5 in a technical
sense, but it may influence the user’s perception of the learn-
ing agent. It remains to be seen if it is necessary to avoid
such an event mathematically.

Learned

shape

Demonstration
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iterations

Figure 4: Example of the learning algorithm re-
sponding (top) to user demonstration of shapes
(bottom) for the letter ‘e’, passing through a param-
eter state which yields a poor letter (demonstrations
received from a 7-8 year-old child).



4. EMBODIMENT OF THE LEARNING AGENT

WITH THE NAO HUMANOID ROBOT
In order to develop a teachable agent that is appropriate

for engaging a child in the learning by teaching paradigm,
we have established capabilities for the robot to engage in
handwriting and interactive turn-taking.

The nao V4 humanoid robot, which has been purposely
designed by Aldebaran Robotics to look approachable [8],
is used for this work. It is a commercially affordable biped
robot, 58cm tall, with 25 degrees of freedom, two cameras,
speech capabilities and the ability to autonomously execute
a range of tasks.

Precise control over what the robot is writing is neces-
sary in the proposed application of a handwriting. Because
of the limited fine motor skills possible with such an af-
fordable robot, in addition to the absence of force feedback
and other technical necessities, we have configured the nao

to use simulated handwriting with a synchronised tablet to
achieve this level of control.

The development of the necessary components for embed-
ding the handwriting learning algorithm presented in Sec-
tion 3 in the humanoid agent are presented in the sections
which follow.

4.1 Robot Trajectory Following Movements
Using simulated handwriting provides an opportunity for

the robot’s writing to appear smoother than would be achiev-
able with a writing instrument. However, the robot’s mo-
tions must still sufficiently match the displayed trajectory
in order capture the engagement of the child participant in
the action. Aldebaran’s NaoQi API is used for the inverse
kinematics of the trajectory following. The Robot Operat-
ing System (ROS)1 is used for integration of the nao with
external reference frames, such as the tablet’s location, using
the tf transformation library [7].

When using simulated handwriting, it is no longer neces-
sary that the robot engages in the typical style of handwrit-
ing of using a writing instrument at a desk. Having the robot
point at a vertical writing surface to cause the trajectory to
appear (as in Figure 5) has several advantages:

• The working space of the robot increases, both in the
technical sense and the interaction sense: someone can,
in theory, show the tablet to the robot from across the
room and have it still respond, without needing the
tablet to be within arm’s reach.

• Concerns about whether or not the child would start
mimicking the robot’s incorrect writing form (e.g. pen
grip) are mitigated.

• Perhaps most significantly, the accuracy of the match-
ing of the robot’s motion with the trajectory displayed
on the tablet is not as critical. This is because a pen
tip would be expected to touch the tablet exactly at
the trajectory point, while a fingertip may not.

We have therefore designed the system in such a way
that the robot is simulating handwriting by pointing at the

1The ROS stack for nao is available at: http://wiki.ros.
org/nao_robot.
3See https://www.youtube.com/watch?v=2qWFSJRxCU0 for
a video of the synchronised writing demonstration.

Figure 5: A demonstration of the robot simulating
the writing of a word with its finger. The motion
of the robot is synchronised with the display of the
tablet, communicating over ROS.3

tablet4. As interacting with a tablet with one’s finger is not
uncommon, this may aid the acceptance of the writing style
by users.

Because motion planning is performed with respect to the
hand of the robot, rather than its fingertip, one or two of the
orientation degrees of freedom of the hand are fixed to keep
the finger approximately perpendicular to the writing sur-
face, depending on the desired accuracy. The remaining free
orientation(s), coupled with the whole-body motion control
available, allow for a sufficient working space for writing on
the entire tablet.

4.2 Synchronisation with the Tablet Trajectory
Display

To enable the robot’s ‘writing’ to display while the robot
is tracing trajectories, ROS is used for the communication
between the devices, including the Android tablet5. As a
result, aspects of the networking between the tablet and the
robot, such as the overheads associated with connections,
ports, etc. have been simplified.

An Android application has been developed to receive the
trajectory message over a ROS topic and display the trajec-
tory as an animation. Synchronisation between the tablet
and the robot is achieved by using NTP servers to synchro-
nise device clocks; passing only the necessary number of
points (7) to the robot’s motion planner to improve tim-
ing accuracy; and not running computationally expensive
tasks on the robot (such as camera publishing) while it is
writing.

To instruct the robot where to write, the robot has been
configured to detect a particular fiducial marker, a chilitag6,
with the camera located in its head, and to use that to de-
termine the relative position of the writing surface (Figure
6). When used in an interaction involving a participant, this
allows a user to move the tablet as required for the inter-
action. The tablet is assumed to be stationary during the

4Teachers interviewed for their feedback on the system ad-
vised that children are asked to draw letters in the air in a
similar manner as part of their handwriting education. The
behaviour is hence not unfamiliar to children.
5For more information about ROS on Android devices see
http://wiki.ros.org/android
6See https://github.com/chili-epfl/ros_markers for
more information on the fiducial markers used.

http://wiki.ros.org/nao_robot
http://wiki.ros.org/nao_robot
https://www.youtube.com/watch?v=2qWFSJRxCU0
http://wiki.ros.org/android
https://github.com/chili-epfl/ros_markers


writing process as detecting the tablet interferes with the
robot’s adherance to writing synchronisation.

Figure 6: Detection of the tablet using a fiducial
marker to represent the origin of the writing surface
frame, visualised in RViz. The robot’s camera image
is on the left, with the text trajectory overlay visible.

4.3 Integration into a Teachable Robotic Agent
The fusion of the embodied handwriting agent developed

with the handwriting learning algorithm presented in Sec-
tion 3 involves the integration of three components: the
robot, the tablet, and a central controller (Figure 7). The
robot and Android tablet application present the writing
process/result to the user, as explained in the previous sec-
tion. The tablet application has been extended to act as the
primary medium for capturing participant input, and sub-
mits the user’s demonstrations when they are satisfied with
their writing.

The user demonstrations are received by the interaction
controller running on a desktop computer. It is responsible
for getting the nao to prompt and respond appropriately to
feedback received using a finite state machine to manage the
interaction stage and various system inputs. In the context
of learning handwriting, an additional input to the system is
a word from which the letters are to be learned, which is de-
tected by a fiducial marker on the card displaying the word.
The controller provides inputs to the learning algorithm in-
cluding the word to learn and the user demonstrations, by
inferring the letter which the demonstrations are intended
for based on their position on the tablet. The output shapes
from the learning algorithm are then sent again to the de-
vices which write them.

The source code for the teachable robotic handwriting
partner has been made available at https://github.com/

chili-epfl/cowriter_letter_learning.

5. A TOOL FOR SOCIAL AND PEDAGOG-

ICAL INVESTIGATIONS
In addition to constituting a technically novel system, the

presented teachable robotic agent represents a tool which
may be used for investigating social and pedagogical research
questions. For example, one such question is what impact
the addition of such a teachable robotic agent would have on
the outcomes of a typical handwriting intervention. Prelim-
inary studies at two schools in the Geneva area, involving
over 50 children, have been conducted to evaluate the fea-
sibility and technical soundness of the interaction system
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Figure 7: Overview of the system. Components in
the top row run on the tablet, those in the mid-
dle row on the central controller, and those in the
bottom row on the robot.

proposed as a tool for such investigations.

5.1 Interaction Context
Figure 8 illustrates an example interaction sequence be-

tween the participant and the robot which consists of the
following stages:

1. The participant shows the robot one of seven different
3-letter words to write, made up of 7 possible letters
(‘c’, ‘e’, ‘n’, ‘o’, ‘s’, ‘u’, ‘w’). Fiducial markers which
are printed on the word cards allow them to be de-
tected with the robot’s camera.

2. The robot responds to the word request verbally and
writes the letters according to the method described
in Section 4.2.

3. The robot asks for feedback from the participant and
they demonstrate how to write the letter which they
feel needs to be corrected. The tablet may be moved
into the most appropriate position for the child to write
on it with the stylus. Only one letter may be demon-
strated at a time and the position of the participant’s
demonstration on the tablet encodes the letter that it
is a demonstration for. The participant can remove
and repeat their letter if they are unhappy with it.
When the participant is satisfied with the demonstra-
tion, they press a button on the tablet which signals
that it is the robot’s turn.

4. The robot writes an adapted letter in response to the
participant’s feedback, and the interaction iterates, with
participants taking turns to interact with the robot
if necessary. When the participant(s) is/are satisfied
with the robot’s performance on all letters, they may
use the “test” card and an additional word for which
they will verbally evaluate the robot’s performance.

5.2 Outcomes of Preliminary Study 1
A pilot study at the first school consisted of four groups

of approximately 8 english-speaking children each, aged 6-7
years. The children interacted with the system for a to-
tal of 65 minutes, with the robot writing 96 letters. 49 of

https://github.com/chili-epfl/cowriter_letter_learning
https://github.com/chili-epfl/cowriter_letter_learning


(a) The user shows a card
to the robot with a word to
write.

(b) The robot writes the
word seen on the card and
asks for feedback.

(c) The user provides feed-
back on the letters written
via demonstration.

(d) The robot responds to
the feedback, until the user
is satisfied.

Figure 8: A user engaging with the robot in the
learning by teaching interaction, using demonstra-
tions as feedback.

these letters were in response to demonstrations from the
children and the remaining were from when new words were
requested.

As a result of the pilot study, we acted on two key ob-
servations. The first was that children appeared to have
a difficult time providing demonstrations to the robot in
the same place as previously-written letters. At the time,
the system required the children to write on top of a letter
of the same type as the one which they were demonstrat-
ing, and the children seemed to find this counter-intuitive
and would occasionally just trace the robot’s letter as it
appeared. As such, the technical components of the system
were extended to allow the children the opportunity to write
around previously-written letters instead of on top.

The second key point which came from the pilot study was
that children were observed giving advice to the child desig-
nated as the letter demonstrator, potentially giving rise to a
higher level paradigm of learning by teaching to teach. As a
consequence of this observation, the study which followed at
the second school was designed to further observe the effect
of the number of children interacting with the robot.

5.3 Outcomes of Preliminary Study 2
The study at the second school involved 21 french-speaking

students aged 7-8 years. 7 children interacted with the robot
individually and 7 sessions included the remaining 14 stu-
dents interacting with the robot in pairs. Initial parame-
ters were drawn from a range purposely chosen to gener-
ate shapes for letters ‘e’ and ‘s’ which would elicit correc-
tion. For the other letters, parameters were fixed, generating

shapes which some groups still chose to correct (e.g. 13/14
for ‘n’ and 2/14 for ‘c’). The duration of the sessions was
between 8 and 15 minutes, with an average of 11.4 minutes
(SD = 2.3).

We have concluded following the second study that the
system has been validated as a technically sound autonomous
interaction. The interaction setup including the teachable
robotic agent withstood the interaction which lasted for a
total of 160 minutes. During this time the robot wrote 335
letters, 152 of which in response to demonstrations received
from the 21 children. Technical intervention was only re-
quired for the three instances that the robot fell later in
the day. Otherwise, the technical components of the system
operated autonomously and as expected over the sessions.

Furthermore, no child indicated that they did not believe
that the robot was writing by itself. There were, at times,
questions about the robot’s writing method at the beginning
of the interaction, but when advised that the robot“tells the
tablet what it wants to write,” this was accepted by the chil-
dren. On the rare occasion that the robot’s writing was not
correctly synchronised with the tablet, this did not appear
to influence the children’s impression. If older children par-
ticipate in the interaction study – which may be likely as
children with lasting handwriting difficulties are included as
participants – it may become more important to invest time
into the believability of the robot’s writing scheme. How-
ever, for 6-8 year olds the proposed setup appears sufficient.

Regarding the engagement of the children in teaching the
robot, an average of 10.9 demonstration letters (SD = 4.4)
were provided to the robot for each session during the inter-
action. In 9 out of the 14 sessions (64%), the robot received
demonstration letters even after reaching the test stage of
the interaction. The participants’ teaching after the test
word had been written and evaluated – the only purpose-
fully imposed external motivation – may suggest that by
that time the participants had become intrinsically moti-
vated to engage in the interaction, as we anticipated.

6. TOWARDS LONG-TERM STUDIES
A conclusion drawn in a systematic review of handwriting

intervention studies [10] is that any of the studies considered
which involved fewer than two practice sessions per week and
fewer than a total of 20 practice sessions, including home-
work, were not found to demonstrate effective results. This
highlights the necessity to engage students in an interaction
which will be sustainable over the long-term if we want to
address research questions which involve the measurement
of learning gains. Several challenges are raised in developing
such long-term capabilities for the system.

In terms of the interaction experience, the current exper-
imental setting, while technically autonomous, can not ro-
bustly recover from situations outside of the nominal proto-
col presented in Section 5, and consequently still requires the
supervision of an experimenter. The interaction finite state
machine would require extension in non-trivial ways to allow
for long, fully autonomous interactions with children.

In the current system, the robot can ask questions and
prompt participants, but it cannot engage in discussions
with the participants. It is clear that work is necessary to de-
velop the conversational agent in the interaction so that the
presence of an experimenter is not required for a captivating
and continuing engagement. While there is the possiblity to
focus the interaction design on group-based interaction with



the robot in order to alleviate the necessity of a conversa-
tional agent, we find reason to believe that constructing such
a social interaction is not a trivial task. Anecdotes from the
preliminary studies have shown that some children may crit-
icise another’s demonstrations to the robot, which may or
may not be as damaging to a child’s self-efficacy as when
they are criticised in a typical educational context.

How the children’s perception of the robot as a learning
agent may change over the long-term remains to be seen.
On one occasion during the preliminary studies, a child’s re-
sponse to whether or not the nao could write its own name
(not previously demonstrated) included that it may have
problems with the ‘n’, as the child had been correcting the
robot on this letter. We believe that the user was project-
ing human-like learning features, such as forgetfulness, onto
the robot, although they were not technically present in the
system. This may need to be capitalised on when consid-
ering how to extend the interaction for long-term use, as
the present system – with a learning rate such that progress
is evident to the user – will cause convergence for a letter
within a few iterations.

We expect that incorporating a database of letters drawn
by children into the shape modeling process will facilitate
generating shape models which capture a wider range of
mistakes typical of children learning handwriting. However,
the current system has conceptual – a PCA-only approach
can not generate or learn a different shape topology – and
technical – no support is currently implemented for shapes
which require pen lifting between strokes – limitations which
would need to be overcome.

If the system is extended to allow for a wider range of mis-
takes, a further topic for exploration then is how the hand-
writing error generation of the system may be abstracted
to a higher level of control so that a teacher may config-
ure it to work with a child on a particular type of mistakes
based on the child’s performance. Where would the balance
lie between developing autonomous capabilities for the sys-
tem to determine the child’s difficulties and empowering the
teaching staff to decide for themselves instead?

Addressing these challenges will take us further towards
answering if the addition of a teachable robotic agent to
handwriting interventions would benefit the participants’
self-esteem, motivation, and learning gains.

7. IMPACT AND CONCLUSION
We believe that this article introduces three noteworthy

contributions: an innovative application of data processing
and artificial intelligence for the learning of hand-written let-
ters suitable for educative purposes; a robotic system which
was able to provide scaffolding for complex human-robot
interactions (teacher-learner social interactions, learning by
demonstration, simulated robotic fine motor skills) during
two preliminaries studies; and an initial experimental in-
vestigation of what appears to be a new role for robots in
education.

Specifically, the technical challenges involved in develop-
ing a teachable robotic agent in the context of handwriting
which have been addressed in this work include:

• developing capabilities for a robot with limited fine
motor capabilities, in particular the nao robot, to en-
gage in the act of handwriting in a way which is believ-
able for interacting with children. This is accomplished

by leveraging simulated handwriting with a synchro-
nised tablet communicating via ROS;

• developing an algorithm capable of incorporating user
feedback and demonstrations in order to adapt artifi-
cially generated handwriting quality so as to simulate a
teachable agent, which has been implemented by main-
taining a learning algorithm in the parameter space of
the PCA-based shape models and converging towards
the parameters of user demonstrations; and

• integrating the system into a working interaction suit-
able for engaging children in the learning by teaching
paradigm, accomplished by fusing the robotic drawing
capabilities and the learning algorithm for handwrit-
ten letters established with a central controller which
manages the flow of the interaction, turn taking and
integration of the connected devices.

However, we believe that the strongest impact of this work
is for the human-robot interaction community and relates to
the very nature of the interaction fostered by this research.
The work presented here investigates a particular role for a
robot in the education of handwriting: not only is the robot
actively performing the activity by drawing letters, but it
does so in a way that engages the child in a very specific
social role. The child is the teacher in this relationship and
the robot is the learner: the child must engage in a (meta-)
cognitive relationship with the robot to try to understand
why the robot fails and how to help it best. Here, the robot
is more than just an activity facilitator or orchestrator –
its physical presence and embodiment induce agency and
anthropomorphising, and cognitively engage the child into
the learning activity, which we predict will lead to higher
learning efficacy.

Also notable, the robot is not used in the usual context of
robotics or computer education, but instead in an activity –
handwriting – which requires fine physical skills. In such ac-
tivities, the embodied nature of the robot is appropriate as
in interventions where motor mimicry is elicited [2] the arm
motion for instance is, by itself, part of the teaching. Fur-
thermore, when facing a child with school difficulties, robots
can play the role of a näıve learner which neither adults nor
peers – because of the social effects it would induce – can
convincingly play. Along these lines, we hope to see more
research on non-STEM educational applications of robotics.

The strong social impact of early educational problems
makes continued research in this field an undoubtedly mean-
ingful challenge for robotics and human-robot interaction.
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