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Abstract—The ability to identify authors of computer pro-
grams based on their coding style is a direct threat to the privacy
and anonymity of programmers. While recent work found that
source code can be attributed to authors with high accuracy,
attribution of executable binaries appears to be much more
difficult. Many distinguishing features present in source code, e.g.
variable names, are removed in the compilation process, and com-
piler optimization may alter the structure of a program, further
obscuring features that are known to be useful in determining
authorship. We examine programmer de-anonymization from the
standpoint of machine learning, using a novel set of features that
include ones obtained by decompiling the executable binary to
source code. We adapt a powerful set of techniques from the
domain of source code authorship attribution along with stylistic
representations embedded in assembly, resulting in successful de-
anonymization of a large set of programmers.

We evaluate our approach on data from the Google Code
Jam, obtaining attribution accuracy of up to 96% with 100 and
83% with 600 candidate programmers. We present an executable
binary authorship attribution approach, for the first time, that
is robust to basic obfuscations, a range of compiler optimization
settings, and binaries that have been stripped of their symbol
tables. We perform programmer de-anonymization using both
obfuscated binaries, and real-world code found ‘“in the wild”
in single-author GitHub repositories and the recently leaked
Nulled.IO hacker forum. We show that programmers who would
like to remain anonymous need to take extreme countermeasures
to protect their privacy.

I. INTRODUCTION

If we encounter an executable binary sample in the wild,
what can we learn from it? In this work, we show that the
programmer’s stylistic fingerprint, or coding style, is preserved
in the compilation process and can be extracted from the
executable binary. This means that it may be possible to infer
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the programmer’s identity if we have a set of known potential
candidate programmers, along with executable binary samples
(or source code) known to be authored by these candidates.

Programmer de-anonymization from executable binaries
has implications for privacy and anonymity. Perhaps the creator
of a censorship circumvention tool distributes it anonymously,
fearing repression. Our work shows that such a programmer
might be de-anonymized. Further, there are applications for
software forensics, for example to help adjudicate cases of
disputed authorship or copyright.

The White House Cyber R&D Plan states that “effective
deterrence must raise the cost of malicious cyber activities,
lower their gains, and convince adversaries that such activities
can be attributed [42].” The DARPA Enhanced Attribution calls
for methods that can “consistently identify virtual personas
and individual malicious cyber operators over time and across
different endpoint devices and C2 infrastructures [25].” While
the forensic applications are important, as attribution methods
develop, they will threaten the anonymity of privacy-minded
individuals at least as much as malicious actors.

We introduce the first part of our approach by significantly
overperforming the previous attempt at de-anonymizing pro-
grammers by Rosenblum et al. [39]. We improve their accuracy
of 51% in de-anonymizing 191 programmers to 92% and then
we scale the results to 83% accuracy on 600 programmers.
First, whereas Rosenblum et al. extract structures such as
control-flow graphs directly from the executable binaries, our
work is the first to show that automated decompilation of exe-
cutable binaries gives additional categories of useful features.
Specifically, we generate abstract syntax trees of decompiled
source code. Abstract syntax trees have been shown to greatly
improve author attribution of source code [16]. We find that
syntactical properties derived from these trees also improve
the accuracy of executable binary attribution techniques.

Second, we demonstrate that using multiple tools for dis-
assembly and decompilation in parallel increases the accuracy
of de-anonymization by generating different representations of
code that capture various aspects of the programmer’s style.
We present a robust machine learning framework based on
entropy and correlation for dimensionality reduction, followed



by random-forest classification, that allows us to effectively use
disparate types of features in conjunction without overfitting.

These innovations allow us to de-anonymize a large set
of real-world programmers with high accuracy. We perform
experiments with a controlled dataset collected from Google
Code Jam (GCJ), allowing a direct comparison to previous
work that used samples from GCJ. The results of these
experiments are discussed in detail in Section V. Specifically;
we can distinguish between thirty times as many candidate
programmers (600 vs. 20) with higher accuracy, while utilizing
less training data and much fewer stylistic features (53) per
programmer. The accuracy of our method degrades gracefully
as the number of programmers increases, and we present
experiments with as many as 600 programmers. Similarly, we
are able to tolerate scarcity of training data: our accuracy for
de-anonymizing sets of 20 candidate programmers with just a
single training sample per programmer is over 75%.

Third, we find that traditional binary obfuscation, enabling
compiler optimizations, or stripping debugging symbols in
executable binaries results in only a modest decrease in
de-anonymization accuracy. These results, described in Sec-
tion VI, are an important step toward establishing the practical
significance of the method.

The fact that coding style survives compilation is unintu-
itive, and may leave the reader wanting a “sanity check” or an
explanation for why this is possible. In Section V-J, we present
several experiments that help illuminate this mystery. First, we
show that decompiled source code is not necessarily similar
to the original source code in terms of the features that we
use; rather, the feature vector obtained from disassembly and
decompilation can be used to predict, using machine learning,
the features in the original source code. Even if no individual
feature is well preserved, there is enough information in the
vector as a whole to enable this prediction. On average, the
cosine similarity between the original feature vector and the re-
constructed vector is over 80%. Further, we investigate factors
that are correlated with coding style being well-preserved, and
find that more skilled programmers are more fingerprintable.
This suggests that programmers gradually acquire their own
unique style as they gain experience.

All these experiments were carried out using the GCJ
dataset; the availability of this dataset is a boon for research
in this area since it allows us to develop and benchmark
our results under controlled settings [39], [9]. Having done
that, we present the first ever de-anonymization study on
an uncontrolled real-world dataset collected from GitHub in
Section VI-D. This data presents difficulties, particularly noise
in ground truth because of library and code reuse. However,
we show that we can handle a noisy dataset of 50 programmers
found in the wild with 65% accuracy and further extend our
method to tackle open world scenarios. We also present a
case study using code found via the recently leaked Nulled.IO
hacker forum. We were able to find four forum members who,
in private messages, linked to executables they had authored
(one of which had only one sample). Our approach correctly
attributed the three individuals who had enough data to build
a model and correctly rejected the fourth sample as none of
the previous three.

We emphasize that research challenges remain before pro-

grammer de-anonymization from executable binaries is fully
ready for practical use. For example, programs may be au-
thored by multiple programmers and may have gone through
encryption. We have not performed experiments that model
these scenarios which require different machine learning and
segmentation techniques and we mainly focus on the privacy
implications. Nonetheless, we present a robust and principled
programmer de-anonymization method with a new approach
and for the first time explore various realistic scenarios. Ac-
cordingly, our effective framework raise immediate concerns
for privacy and anonymity.

The remainder of this paper is structured as follows.
We begin by formulating the research question investigated
throughout this paper in Section II, and discuss closely related
work on de-anonymization in Section III. We proceed to
describe our novel approach for binary authorship attribution
based on instruction information, control flow graphs, and
decompiled code in Section IV. Our experimental results are
described in Section V, followed by a discussion of results in
Section VII. Finally, we shed light on the limitations of our
method in Section VIII and conclude in Section IX.

II. PROBLEM STATEMENT

In this work, we consider an analyst interested in deter-
mining the author of an executable binary purely based on its
style. Moreover, we assume that the analyst only has access
to executable binary samples each assigned to one of a set of
candidate programmers.

Depending on the context, the analyst’s goal might be
defensive or offensive in nature. For example, the analyst
might be trying to identify a misbehaving employee that
violates the non-compete clause in his company by launching
an application related to what he does at work. By contrast, the
analyst might belong to a surveillance agency in an oppressive
regime who tries to unmask anonymous programmers. The
regime might have made it unlawful for its citizens to use
certain types of programs, such as censorship-circumvention
tools, and might want to punish the programmers of any such
tools. If executable binary stylometry is possible, it means
that compiled and cryptic code does not guarantee anonymity.
Because of its potential dual use, executable binary stylometry
is of interest to both security and privacy researchers.

In either (defensive or offensive) case, the analyst (or ad-
versary) will seek to obtain labeled executable binary samples
from each of these programmers who may have potentially
authored the anonymous executable binary. The analyst pro-
ceeds by converting each labeled sample into a numerical
feature vector, and subsequently deriving a classifier from these
vectors using machine learning techniques. This classifier can
then be used to attribute the anonymous executable binary to
the most likely programmer.

Since we assume that a set of candidate programmers
is known, we treat our main problem as a closed world,
supervised machine learning task. It is a multi-class machine
learning problem where the classifier calculates the most likely
author for the anonymous executable binary sample among
multiple authors. We also present experiments on an open-
world scenario in Section VI-E.



Stylistic Fingerprints. An analyst is interested in identify-
ing stylistic fingerprints in binary code to show that compiling
source code does not anonymize it. The analyst engineers
the numeric representations of stylistic properties that can be
derived from binary code. To do so, the analyst generates
representations of the program from the binary code. First,
she uses a disassembler to obtain the low level features in
assembly code. Second, she uses a decompiler to generate the
control flow graph to capture the flow of the program. Lastly,
she utilizes a decompiler to convert the low level instructions
to high level decompiled source code in order to obtain abstract
syntax trees. The analyst uses these three data formats to nu-
merically represent the stylistic properties embedded in binary
code. Given a set of labeled binary code samples with known
authors, the analyst constructs the numeric representation of
each sample. The analyst determines the set of stylistic features
by calculating how much entropy each numeric value has
in correctly differentiating between authors. She can further
analyze how programmers’ stylistic properties are preserved
in a transformed format after compilation. Consequently, the
analyst is able to quantify the level of anonymization and the
amount of preserved stylistic fingerprints in binary code that
has gone through compilation.

Additional Assumptions. For our experiments, we assume
that we know the compiler used for a given program binary.
Previous work has shown that with only 20 executable binary
samples per compiler as training data, it is possible to use
a linear Conditional Random Field (CRF) to determine the
compiler used with accuracy of 93% on average [41], [27].
Other work has shown that by using pattern matching, library
functions can be identified with precision and recall between
0.98 and 1.00 based on each one of three criteria; compiler
version, library version, and linux distribution [23].

In addition to knowing the compiler, we assume to know
the optimization level used for compilation of the binary.
Past work has shown that toolchain provenance, including
compiler family, version, optimization, and source language,
can be identified with a linear CRF with accuracy of 99% for
language, compiler family, and optimization and with 92% for
compiler version [40]. Based on this success, we make the
assumption that these techniques will be used to identify the
toolchain provenance of the executable binaries of interest and
that our method will be trained using the same toolchain.

III. RELATED WORK

Any domain of creative expression allows authors or cre-
ators to develop a unique style, and we might expect that there
are algorithmic techniques to identify authors based on their
style. This class of techniques is called stylometry. Natural-
language stylometry, in particular, is well over a century
old [31]. Other domains such as source code and music
also have stylistic features, especially grammar. Therefore
stylometry is applicable to these domains as well, often using
strikingly similar techniques [45], [10].

Linguistic stylometry. The state of the art in linguistic
stylometry is dominated by machine-learning techniques [6],
[32], [7]. Linguistic stylometry has been applied successfully
to security and privacy problems, for example Narayanan et
al. used stylometry to identify anonymous bloggers in large

datasets, exposing privacy issues [32]. On the other hand,
stylometry has also been used for forensics in underground
cyber forums. In these forums, the text consists of a mixture
of languages and information about forum products, which
makes it more challenging to identify personal writing style.
Not only have the forum users been de-anonymized but also
their multiple identities across and within forums have been
linked through stylometric analysis [7].

Authors may deliberately try to obfuscate or anonymize
their writing style [12], [6], [30]. Brennan et al. show how
stylometric authorship attribution can be evaded with adver-
sarial stylometry [12]. They present two ways for adversarial
stylometry, namely obfuscating writing style and imitating
someone else’s writing style. Afroz et al. identify the stylistic
changes in a piece of writing that has been obfuscated while
McDonald et al. present a method to make writing style
modification recommendations to anonymize an undisputed
document [6], [30].

Source code stylometry. Several authors have applied
similar techniques to identify programmers based on source
code [16], [34], [15]. Source code authorship attribution has
applications in software forensics and plagiarism detection'.

The features used for machine learning in source code
authorship attribution range from simple byte-level [20] and
word-level n-grams [13], [14] to more evolved structural
features obtained from abstract syntax trees [16], [34]. In
particular, Burrows et al. present an approach based on n-grams
that reaches an accuracy of 77% in differentiating 10 different
programmers [14].

Similarly, Kothari et al. combine n-grams with lexical
markers such as the line length, to build programmer profiles
that allow them to identify 12 authors with an accuracy of
76% [26]. Lange et al. further show that metrics based on
layout and lexical features along with a genetic algorithm
reach an accuracy of 75% in de-anonymizing 20 authors [28].
Finally, Caliskan-Islam et al. incorporate abstract syntax tree
based structural features to represent programmers’ coding
style [16]. They reach 94% accuracy in identifying 1,600
programmers of the GCJ data set.

Executable binary stylometry. In contrast, identifying
programmers from compiled code is considerably more diffi-
cult and has received little attention to date. Code compilation
results in a loss of information and obstructs stylistic features.
We are aware of only two prior works, both of which perform
their evaluation and experiments on controlled corpora that
are not noisy, such as the GCJ dataset and student homework
assignments [39], [9]. Our work significantly overperforms
previous work by using different methods and in addition we
investigate noisy real-world datasets, an open-world setting,
effects of optimizations, and obfuscations.

[9] present an onion approach for binary code authorship
attribution. [39] identify authors of program binaries. Both
Alrabaee et al. and Rosenblum et al. utilize the GCJ corpus.

Rosenblum et al. present two main machine learning tasks
based on programmer de-anonymization. One is based on

'Note that popular plagiarism-detection tools such as Moss are not based
on stylometry; rather they detect code that may have been copied, possibly
with modifications. This is an orthogonal problem [8].



supervised classification with a support vector machine to iden-
tify the authors of compiled code [18]. The second machine
learning approach they use is based on clustering to group
together programs written by the same programmers. They
incorporate a distance based similarity metric to differentiate
between features related to programmer style to increase clus-
tering accuracy. They use the Paradyn project’s Parse API for
parsing executable binaries to get the instruction sequences and
control flow graphs whereas we use four different resources to
parse executable binaries to generate a richer representation.
Their dataset consists of submissions from GCJ and homework
assignments with skeleton code.

Malware attribution. While the analysis of malware is
a well developed field, authorship attribution of malware has
received much less attention. Stylometry may have a role
in this application, and this is a ripe area for future work
that requires automated packer and encryption detection along
with binary segment and metadata analysis. The difficulty in
obtaining ground truth labels for malware samples has led
much work in this area to focus on clustering malware in
some fashion, and the wide range of obfuscation techniques in
common use have led many researchers to focus on dynamic
analysis rather than the static features we consider. The work
of [29] examines several static features intended to provide
credible links between executable malware binary produced by
the same authors, however many of these features are specific
to malware, such as command and control infrastructure and
data exfiltration methods, and the authors note that many must
be extracted by hand. In dynamic analysis, the work of [35]
examines information obtained via both static and dynamic
analysis of malware samples to organize code samples into
lineages that indicate the order in which samples are derived
from each other. [11] convert detailed execution traces from
dynamic analysis into more general behavioral profiles, which
are then used to cluster malware into groups with related
functionality and activity. Supervised methods are used by [38]
to match new instances of malware with previously observed
families, again on the basis of dynamic analysis.

IV. APPROACH

Our ultimate goal is to automatically recognize program-
mers of compiled code. We approach this problem using
supervised machine learning, that is, we generate a classifier
from training data of sample executable binaries with known
authors. The advantage of such learning-based methods over
techniques based on manually specified rules is that the ap-
proach is easily retargetable to any set of programmers for
which sample executable binaries exist. A drawback is that the
method is inoperable if samples are not available or too short
to represent authorial style. We study the amount of sample
data necessary for successful classification in Section V.

Data representation is critical to the success of machine
learning. Accordingly, we design a feature set for executable
binary authorship attribution with the goal of faithfully repre-
senting properties of executable binaries relevant for program-
mer style. We obtain this feature set by augmenting lower-level
features extractable from disassemblers with additional string
and symbol information, and, most importantly, incorporating
higher-level syntactical features obtained from decompilers.

In summary, such an approach results in a method consist-
ing of the following four steps (see Figure 1) and the code is
available at https://github.com/calaylin/bda.

e Disassembly. We begin by disassembling the program
to obtain features based on machine code instructions,
referenced strings, symbol information, and control
flow graphs (Section IV-A).

e  Decompilation. We proceed to translate the program
into C-like pseudo code via decompilation. By sub-
sequently passing the code to a fuzzy parser for
C, we thus obtain abstract syntax trees from which
syntactical features and n-grams can be extracted
(Section IV-B).

o Dimensionality reduction. With features from disas-
semblers and decompilers at hand, we select those
among them that are particularly useful for classi-
fication by employing a standard feature selection
technique based on information gain and correlation
based feature selection (Section IV-C).

e  C(lassification. Finally, a random-forest classifier is
trained on the corresponding feature vectors to yield
a program that can be used for automatic executable
binary authorship attribution (Section IV-D).

In the following sections, we describe these steps in greater
detail and provide background information on static code
analysis and machine learning where necessary.

A. Feature extraction via disassembly

As a first step, we disassemble the executable binary to
extract low-level features that have been shown to be suitable
for authorship attribution in previous work. In particular,
we follow the basic example set by Rosenblum et al. and
extract raw instruction traces from the executable binary [39].
In addition to this, disassemblers commonly make symbol
information available, as well as strings referenced in the code,
both of which greatly simplify manual reverse engineering. We
augment the feature set accordingly. Finally, we can obtain
control flow graphs of functions from disassemblers, providing
features based on program basic blocks. The required informa-
tion necessary to construct our feature set is obtained from the
following two disassemblers.

We use two disassemblers to generate two sets of instruc-
tions for each binary. We disassemble the binary with the
Netwide Disassembler (ndisasm) which is a widely available
x86 disassembler. We then use the open source radare2 disas-
sembler to get more detailed and higher level instructions than
ndisasm’s disassembly.

o The netwide disassembler. We begin by exploring
whether simple instruction decoding alone can already
provide useful features for de-anonymization. To this
end, we process each executable binary using the
netwide disassembler (ndisasm), a rudimentary disas-
sembler that is capable of decoding instructions but is
unaware of the executable’s file format [44]. Due to
this limitation, it resorts to simply decoding the exe-
cutable binary from start to end, skipping bytes when
invalid instructions are encountered. A problem with
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Fig. 1: Overview of our method. Instructions, symbols, and strings are extracted using disassemblers (1), abstract syntax tree
and control-flow features are obtained from decompilers (2). Dimensionality reduction first by information gain criteria and then
by correlation analysis is performed to obtain features that represent programmer style (3). Finally, a random forest classifier is

trained to de-anonymize programmers (4).

this approach is that no distinction is made between
bytes that represent data versus bytes that represent
code. Nonetheless, we explore this simplistic approach
as these inaccuracies may not degrade a classifier,
given the statistical nature of machine learning.

o The radare2 disassembler. We proceed to apply
radare2 [33], a state-of-the-art open-source disas-
sembler based on the capstone disassembly frame-
work [37]. In contrast to ndisasm, radare2 under-
stands the executable binary format, allowing it to
process relocation and symbol information in par-
ticular. This allows us to extract symbols from the
dynamic (.dynsym) as well as the static symbol table
(.symtab) where present, and any strings referenced
in the code. Our approach thus gains knowledge
over functions of dynamic libraries used in the code.
Finally, radare2 attempts to identify functions in code
and generates corresponding control flow graphs.

Firstly, we strip the hexadecimal numbers from assembly
instructions and replace them with the uni-gram number, to
avoid overfitting that might be caused by unique hexadecimal
numbers. Then, information provided by the two disassemblers
is combined to obtain our disassembly feature set as follows:
we tokenize the instruction traces of both disassemblers and
extract token uni-grams, bi-grams, and tri-grams within a sin-
gle line of assembly, and 6-grams, which span two consecutive
lines of assembly. We cannot know exactly what each 6-
gram corresponds to in assembly code but for most assembly
instructions, a meaningful construct is longer than a line of
assembly code. In addition, we extract single basic blocks of
radare2’s control flow graphs, as well as pairs of basic blocks
connected by control flow.

B. Feature extraction via decompilation

Decompilers are the second source of information that we
consider for feature extraction in this work. In contrast to
disassemblers, decompilers do not only uncover the program’s
machine code instructions, but additionally reconstruct higher
level constructs in an attempt to translate an executable binary
into equivalent source code. In particular, decompilers can
reconstruct control structures such as different types of loops
and branching constructs. We make use of these syntactical
features of code as they have been shown to be valuable in
the context of source code authorship attribution [16]. For
decompilation, we employ the Hex-Rays decompiler [1].

Hex-Rays is a commercial state-of-the-art decompiler. It
converts executable programs into a human readable C-like
pseudo code to be read by human analysts. It is noteworthy
that this code is typically significantly longer than the original
source code. For example, decompiling an executable binary
generated from 70 lines of source code with Hex-Rays pro-
duces on average 900 lines of decompiled code. We extract
two types of features from this pseudo code: lexical features,
and syntactical features. Lexical features are simply the word
unigrams, which capture the integer types used in a program,
names of library functions, and names of internal functions
when symbol information is available. Syntactical features are
obtained by passing the C-pseudo code to joern, a fuzzy parser
for C that is capable of producing fuzzy abstract syntax trees
(ASTs) from Hex-Rays pseudo code output [47]. We derive
syntactic features from the abstract syntax tree, which represent
the grammatical structure of the program. Such features are
(illustrated in Figure 2) AST node unigrams, labeled AST
edges, AST node term frequency inverse document frequency,
and AST node average depth. Previous work on source code
authorship attribution [16], [46] shows that these features are
highly effective in representing programming style.
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Fig. 2: Feature extraction via decompilation and fuzzy parsing: C-like
pseudo code produced by Hex-Rays is transformed into an abstract
syntax tree and control-flow graph to obtain syntactic and control-flow
features.

C. Dimensionality reduction

Feature extraction produces a large amount of features,
resulting in sparse feature vectors with thousands of elements.
However, not all features are equally informative to express
a programmer’s style. This makes it desirable to perform
feature selection to obtain a compact representation of the
data to reduce the computational burden during classification
as well as the chances of overfitting. Moreover, sparse vectors
may result in a large number of zero-valued attributes being
selected during random forest’s random subsampling of the
attributes to select a best split. Reducing the dimensions of the
feature set is important for avoiding overfitting. One example
to overfitting would be a rare assembly instruction uniquely
identifying an author. For these reasons, we use information
gain criteria followed by correlation based feature selection
to identify the most informative attributes that represent each
author as a class. This reduces vector size and sparsity while
increasing accuracy and model training speed. For example, we
get 705,000 features from the 900 executable binary samples of
100 programmers. If we use all of these features in classifica-
tion, the resulting de-anonymization accuracy is slightly above
30% because the random forest might be randomly selecting
features with values of zero in the sparse feature vectors.
Once information gain criteria is applied, we get less than
2,000 features and the correct classification accuracy of 100
programmers increases from to 90%. Then, we identify locally
predictive features that are highly correlated with classes and
have low intercorrelation. After this second dimensionality re-
duction method, we are left with 53 predictive features and no
sparsity remains in the feature vectors. Extracting 53 features
or training a machine learning model where each instance has
53 attributes is computationally efficient. Given such proper
representation of instances, the correct classification accuracy
of 100 programmers reaches 96%.

We applied the first dimensionality reduction step using
WEKA'’s information gain attribute selection criterion [21],
which evaluates the difference between the entropy of the dis-
tribution of classes and the Shannon entropy of the conditional
distribution of classes given a particular feature [36].

The second dimensionality reduction step was based on
correlation based feature selection, which generates a feature-
class and feature-feature correlation matrix. The selection
method then evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature
along with the degree of redundancy between them [22]. Fea-
ture selection is performed iteratively with greedy hillclimbing
and backtracking ability by adding attributes that have the
highest correlation with the class to the list of selected features.

D. Classification

We used random forests as our classifier which are en-
semble learners built from collections of decision trees, where
each tree is trained on a subsample of the data obtained
by random sampling with replacement. Random forests by
nature are multi-class classifiers that avoid overfitting. To
reduce correlation between trees, features are also subsampled;
commonly (logM)+1 features are selected at random (without
replacement) out of M, and the best split on these (logM )+ 1
features is used to split the tree nodes.

The number of selected features represents one of the few
tuning parameters in random forests: increasing it increases
the correlation between trees in the forest which can harm
the accuracy of the overall ensemble, however increasing the
number of features that can be chosen between at each split
also increases the classification accuracy of each individual
tree making them stronger classifiers with low error rates. The
optimal range of number of features can be found using the
out of bag error estimate, or the error estimate derived from
those samples not selected for training on a given tree.

During classification, each test example is classified via
each of the trained decision trees by following the binary deci-
sions made at each node until a leaf is reached, and the results
are aggregated. The most populous class is selected as the
output of the forest for simple classification, or classifications
can be ranked according to the number of trees that ‘voted’
for the label in question when performing relaxed attribution
for top-n classification.

We employed random forests with 500 trees, which em-
pirically provided the best tradeoff between accuracy and
processing time. Examination of out of bag error values across
multiple fits suggested that (logM )+1 random features (where
M denotes the total number of features) at each split of the
decision trees was in fact optimal in all of the experiments
listed in Section V, and was used throughout. Node splits were
selected based on the information gain criteria, and all trees
were grown to the largest extent possible, without pruning.

The data was analyzed via k-fold cross-validation, where
the data was split into training and test sets stratified by
author (ensuring that the number of code samples per author
in the training and test sets was identical across authors).
The parameter k varies according to datasets and is equal
to the number of instances present from each author. The



cross-validation procedure was repeated 10 times, each with a
different random seed, and average results across all iterations
are reported, ensuring that results are not biased by improbably
easy or difficult to classify subsets.

We report our classification results in terms of kappa
statistics, which is roughly equivalent to accuracy but subtracts
the random chance of correct classification from the final
accuracy. As programmer de-anonymization is a multi-class
classification problem, an evaluation based on accuracy, or the
true positive rate, represents the correct classification rate in
the most meaningful way.

V. GOOGLE CODE JAM EXPERIMENTS

In this section, we go over the details of the various
experiments we performed to address the research question
formulated in Section II.

A. Dataset

We evaluate our executable binary authorship attribution
method on a controlled dataset based on the annual pro-
gramming competition GCJ [5]. It is an annual contest that
thousands of programmers take part in each year, including
professionals, students, and hobbyists from all over the world.
The contestants implement solutions to the same tasks in a
limited amount of time in a programming language of their
choice. Accordingly, all the correct solutions have the same
algorithmic functionality. There are two main reasons for
choosing GCJ competition solutions as an evaluation corpus.
First, it enables us to directly compare our results to previous
work on executable binary authorship attribution as both [9]
and [39] evaluate their approaches on data from GCJ. Second,
we eliminate the potential confounding effect of identifying
programming task rather than programmer by identifying func-
tionality properties instead of stylistic properties. GCJ is a less
noisy and clean dataset known definitely to be single authored.
GClJ solutions do not have significant dependencies outside of
the standard library and contain few or no third party libraries.

We focus our analysis on compiled C++ code, the most
popular programming language used in the competition. We
collect the solutions from the years 2008 to 2014 along with
author names and problem identifiers. In GCJ experiments we
are assuming that the programmers are not deliberately trying
to hide their identity. Accordingly, we show results without
excluding symbol information.

B. Code Compilation

To create our experimental datasets, we first compiled the
source code with GNU Compiler Collection’s gcc or g++
without any optimization to Executable and Linkable Format
(ELF) 32-bit, Intel 80386 Unix binaries. The training set needs
to be compiled with the same compiler and settings otherwise
we might end up detecting the compiler instead of the author.
Passing the training samples through the same encoder pre-
serves mutual information between code style and labels and
accordingly we can successfully de-anonymize programmers.

Next, to measure the effect of different compilation options,
such as compiler optimization flags, we additionally compiled
the source code with level-1, level-2, and level-3 optimizations,

namely the O1, O2, and O3 flags. O3 is a superset of O2
optimization flags and similarly O2 is a superset of O1 flags.
The compiler attempts to improve the performance and/or code
size when the compiler flags are turned on but at the same
time optimization has the expense of increasing compilation
time and complicating program debugging.

C. 53 features represent programmer style.

We are interested in identifying features that represent
coding style preserved in executable binaries. With the current
approach, we extract 705,000 representations of code proper-
ties of 100 authors, but only a subset of these are the result
of individual programming style. We are able to capture the
features that represent each author’s programming style that is
preserved in executable binaries by applying information gain
criteria to these 705,000 features. After applying information
gain to effectively represent coding style, we reduce the
feature set to contain approximately 1,600 features from all
feature types. Furthermore, correlation based feature selection
during cross validation eliminates features that have low class
correlation and high intercorrelation and preserves 53 of the
highly distinguishing features which can be seen in Table I
along with their authorial style representation power.

Considering the fact that we are reaching such high accura-
cies on de-anonymizing 100 programmers with 900 executable
binary samples (discussed below), these features are providing
strong representation of style that survives compilation. The
compact set of identifying stylistic features contain features
of all types, namely disassembly, CFG, and syntactical de-
compiled code properties. To examine the potential for over-
fitting, we consider the ability of this feature set to generalize
to a different set of programmers (see Section V-G), and
show that it does so, further supporting our belief that these
features effectively capture coding style. Features that are
highly predictive of authorial fingerprints include file and
stream operations along with the formats and initializations of
variables from the domain of ASTs whereas arithmetic, logic,
and stack operations are the most distinguishing ones among
the assembly instructions.

D. We can de-anonymize programmers from their executable
binaries.

This is the main experiment that demonstrates how de-
anonymizing programmers from their executable binaries is
possible. After preprocessing the dataset to generate the exe-
cutable binaries without optimization, we further process the
executable binaries to obtain the disassembly, control flow
graphs, and decompiled source code. We then extract all the
possible features detailed in Section IV. We take a set of 100
programmers who all have 9 executable binary samples. With
9-fold-cross-validation, the random forest correctly classifies
900 test instances with 95% accuracy, which is significantly
higher than the accuracies reached in previous work.

There is an emphasis on the number of folds used in these
experiments because each fold corresponds to the implementa-
tion of the same algorithmic function by all the programmers
in the GCJ dataset (e.g. all samples in fold 1 may be attempts
by the various authors to solve a list sorting problem). Since
we know that each fold corresponds to the same Code Jam



Feature Source Number Selected Features
of Possible /
Features Information Gain
Word unigrams decompiled 29,278 6/5.75
code™
AST decompiled 5,278 3/1.85
node TF} code*
Labeled AST decompiled 26,783 0/0
edge TF{ code*
AST decompiled 5,278 1/0.75
node TFIDFi code™
AST node decompiled 5,278 0/0
average depth code*
C++ keywords decompiled 73 0/0
code™
radare2 radare 21,206 3/1.61
disassembly unigrams | disassembly
radare2 disassembly | radare 39,506 1/0.62
bigrams disassembly
radare2 disassembly | radare 112,913 0/0
trigrams disassembly
radare2 disassembly | ndisasm 260,265 0/0
6-grams disassembly
radare2 CFG radare 5,297 3/1.98
node unigrams disassembly
radare2 radare 10,246 1/0.63
CFG edges disassembly
ndisasm disassembly | ndisasm 5,383 2/1.79
unigrams disassembly
ndisasm disassembly | ndisasm 14,305 5/2.95
bigrams disassembly
ndisasm disassembly | ndisasm 5,237 4/1.44
trigrams disassembly
ndisasm ndisasm 159,142 24/16.08
disassembly 6-grams disassembly
Total 705,468 53/35
*hex-rays decompiled code TFt= term frequency
TFIDFi= term frequency inverse document frequency

TABLE I: Programming Style Features and
Selected Features in Executable Binaries
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Fig. 3: Amount of Training Data Required for
De-anonymizing 100 Programmers

problem, by using stratified cross validation without random-
ization and preserving order, we ensure that all training and test
samples contain the same algorithmic functions implemented
by all of the programmers. The classifier uses the excluded fold
in the testing phase, which contains executable binary samples
that were generated from an algorithmic function that was
not previously observed in the training set for that classifier.
Consequently, the only distinction between the test instances
is the coding style of the programmer, without the potentially
confounding effect of identifying an algorithmic function.

E. Even a single training sample per programmer is suffi-
cient for de-anonymization.

A drawback of supervised machine learning methods,
which we employ, is that they require labeled examples to
build a model. The ability of the model to accurately generalize
is often strongly linked to the amount of data provided to it
during the training phase, particularly for complex models.
In domains such as executable binary authorship attribution,
where samples may be rare and obtaining “ground truth” for
labeling training samples may be costly or laborious, this can
pose a significant challenge to the usefulness of the method.

We therefore devised an experiment to determine how
much training data is required to reach a stable classification
accuracy, as well as to explore the accuracy of our method with
severely limited training data. As programmers produce a lim-
ited number of code samples per round of the GCJ competition,
and programmers are eliminated in each successive round, the
GCJ dataset has an upper bound in the number of code samples
per author as well as a limited number of authors with a large
number of samples. Accordingly, we identified a set of 100
programmers that had exactly 9 program samples each, and
examined the ability of our method to correctly classify each
author out of the candidate set of 100 authors when training
on between 1 and 8 files per author.

As shown in Figure 3, the classifier is capable of correctly
identifying the author of a code sample from a potential field of
100 with 65% accuracy on the basis of a single training sample.
The classifier also reaches a point of dramatically diminishing
returns with as few as three training samples, and obtains a
stable accuracy by training on 6 samples. Given the complexity
of the task, this combination of high accuracy with extremely
low requirement on training data is remarkable, and suggests
the robustness of our features and method. It should be noted,
however that this set of programmers with a large number of
files corresponds to more skilled programmers, as they were
able to remain in the competition for a longer period of time
and thus produce this large number of samples.

F. Relaxed Classification: In difficult scenarios, the classi-
fication task can be narrowed down to a small suspect set.

In Section V-A, the previously unseen anonymous exe-
cutable binary sample is classified such that it belongs to the
most likely author’s class. In cases where we have too many
classes or the classification accuracy is lower than expected,
we can relax the classification to top—n classification. In top—n
relaxed classification, if the test instance belongs to one of the
most likely n classes, the classification is considered correct.
This can be useful in cases when an analyst or adversary
is interested in finding a suspect set of n authors, instead
of a direct top—I classification. Being able to scale down an
authorship investigation for an executable binary sample of
interest to a reasonable sized set of suspect authors among
hundreds of authors greatly reduces the manual effort required
by an analyst or adversary. Once the suspect set size is reduced,
the analyst or adversary could adhere to content based dynamic
approaches and reverse engineering to identify the author of
the executable binary sample. Figure 4 shows how correct
classification accuracies approach 100% as the classification
is relaxed to top-10.
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Fig. 4: Reducing Suspect Set Size:
Top-n Relaxed Classification

It is important to note from Figure 3 that, by using only
a single training sample in a 100-class classification task, the
machine learning model can correctly classify new samples
with 75.0% accuracy. This is of particular interest to an analyst
or adversary who does not have a large amount of labeled
samples in her suspect set. Figure 3 shows that an analyst or
adversary can narrow down the suspect set size from 100 or
600 to a significantly smaller set.

G. The feature set selected via dimensionality reduction
works and is validated across different sets of programmers.

In our earlier experiments, we trained the classifier on the
same set of executable binaries that we used during feature
selection. The high number of starting features from which we
select our final feature set via dimensionality reduction does
raise the potential concern of overfitting. To examine this, we
applied this final feature set to a different set of programmers
and executable binaries. If we reach accuracies similar to what
we got earlier, we can conclude that these selected features do
generalize to other programmers and problems, and therefore
are not overfitting to the 100 programmers they were generated
from. This also suggests that the final set of features in general
capture programmer style.

Recall that analyzing 900 executable binary samples of
the 100 programmers resulted in about 705,000 features, and
after dimensionality reduction, we are left with 53 important
features. We picked a different (non-overlapping) set of 100
programmers and performed another de-anonymization exper-
iment in which the feature selection step was omitted, using
instead the information gain and correlation based features
obtained from the original experiment. This resulted in very
similar accuracies: we de-anonymized programmers in the
validation set with 96% accuracy by using features selected
via the main development set, compared to the 95% de-
anonymization accuracy we achieve on the programmers of
the main development set. The ability of the final reduced
set of 53 features to generalize beyond the dataset which
guided their selection strongly supports the assertion that these
features obtained from the main set of 100 programmers are
not overfitting, and they actually represent coding style in
executable binaries, and can be used across different datasets.

H. Large Scale De-anonymization: We can de-anonymize
600 programmers from their executable binaries.

We would like to see how well our method scales up to
600 users. An analyst with a large set of labeled samples might
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Fig. 5: Large Scale Programmer De-anonymization

be interested in performing large scale de-anonymization. For
this experiment, we use 600 contestants from GCJ with 9
files. We only extract the reduced set of features from the
600 users. This decreases the amount of time required for
feature extraction. On the other hand, this experiment shows
how effectively overall programming style is represented after
dimensionality reduction. The results of large scale program-
mer de-anonymization in Figure 5, show that our method can
scale to larger datasets with the reduced set of features with a
surprisingly small drop on accuracy.

1. We advance the state of executable binary authorship
attribution.

Rosenblum et al. presented the largest scale evaluation of
executable binary authorship attribution on 191 programmers
each with at least 8 training samples [39]. We compare our
results with Rosenblum et al.’s in Table II to show how we
advance the state of the art both in accuracy and on larger
datasets. Rosenblum et al. use 1,900 coding style features
to represent coding style whereas we use 53 features, which
might suggest that our features are more powerful in repre-
senting coding style that is preserved in executable binaries.
On the other hand, we use less training samples as opposed
to Rosenblum et al., which makes our experiments more
challenging from a machine learning standpoint. Our accuracy
in authorship attribution is significantly higher than Rosenblum
et al.’s, even when we use an SVM as our classifier, showing
that our different approach is more powerful and robust for
de-anonymizing programmers. Rosenblum et al. suggest a
linear SVM is the appropriate classifier for de-anonymizing
programmers but we show that our different set of techniques
and choice of random forests is leading to superior and larger
scale de-anonymization.

Related Work Number of Number of Accuracy | Classifier
Programmers | Training Samples

Rosenblum [39] | 20 8-16 77% SVM
This work 20 8 90% SVM
This work 20 8 99% RF
Rosenblum [39] | 100 8-16 61% SVM
This work 100 8 84% SVM
This work 100 8 96 % RF
Rosenblum [39] | 191 8-16 51% SVM
This work 191 8 81% SVM
This work 191 8 92% RF
This work 600 8 71% SVM
This work 600 8 83% RF

TABLE II: Comparison to Previous Results



J. Programmer style is preserved in executable binaries.

We show throughout the results that it is possible to de-
anonymize programmers from their executable binaries with a
high accuracy. To quantify how stylistic features are preserved
in executable binaries, we calculated the correlation of stylistic
source code features and decompiled code features. We used
the stylistic source code features from previous work on de-
anonymizing programmers from their source code [16]. We
took the most important 150 features in coding style that
consist of AST node average depth, AST node TFIDF, and the
frequencies of AST nodes, AST node bigrams, word unigrams,
and C++ keywords. For each executable binary sample, we
have the corresponding source code sample. We extract 150
information gain features from the original source code. We
extract decompiled source code features from the decompiled
executable binaries. For each executable binary instance, we
set one corresponding information gain feature as the class
to predict and then we calculate the correlation between the
decompiled executable binary features and the class value. A
random forest classifier with 500 trees predicts the class value
of each instance, and then Pearson’s correlation coefficient
is calculated between the predicted and original values. The
correlation has a mean of 0.32 and ranges from -0.12 to 0.69
for the most important 150 features.

To see how well we can reconstruct the original source
code features from decompiled executable binary features,
we reconstructed the 900 instances with 150 features that
represent the highest information gain features by predicting
the original features from decompiled code features. We calcu-
lated the cosine similarity between the original 900 instances
and the reconstructed instances after normalizing the features
to unit distance. The cosine similarity for these instances is
in Figure 6, where a cosine similarity of 1 means the two
feature vectors are identical. The high values (average of 0.81)
in cosine similarity suggest that the reconstructed features
are similar to the original features. When we calculate the
cosine similarity between the feature vectors of the original
source code and the corresponding decompiled code’s feature
vectors (no predictions), the average cosine similarity is 0.35.
In summary, reconstructed features are much more similar to
original code than the raw features extracted from decompiled
code. 5% of the reconstructed features have less than 60%
similarity based on the cosine similarity between original and
decompiled source code features. At the same time, the de-
anonymization accuracy of 900 executable binaries is 95% by
using source code, assembly, CFG, and AST features. This
might indicate that some operations or code sequences cannot
be preserved after compilation followed by decompilation, due
to the nature of transformations during each process.

VI

A. Programmers of optimized executable binaries can be de-
anonymized.

REAL-WORLD SCENARIOS

In Section V, we discussed how we evaluated our approach
on a controlled and clean real-world dataset. Section V shows
how we advance over previous methods that were all evaluated
with clean datasets such as GCJ or homework assignments. In
this section, we investigate a complicated dataset which has
been optimized during compilation, where the executable bi-
nary samples have been normalized further during compilation.

10

—

Original vs. Réconstructed Feature Similarity

0.8
0.6

0.4 |f Original vs. Decompiled Feature Average Similarity -|

Cosine Similarity

0.2 §

| |
300 600

Reconstructed Feature Vectors

900

Fig. 6: Feature Transformations: Each data point on the x-axis
is a different executable binary sample. Each y-axis value is the
cosine similarity between the feature vector extracted from the
original source code and the feature vector that tries to predict the
original features. The average value of these 900 cosine similarity
measurements is 0.81, suggesting that decompiled code preserves
transformed forms of the original source code features well enough
to reconstruct the original source code features.

Compiling with optimization tries to minimize or maxi-
mize some attributes of an executable program. The goal of
optimization is to minimize execution time or the amount of
memory a program occupies. The compiler applies optimizing
transformations which are algorithms that transform a program
to a semantically equivalent program that uses fewer resources.

GCC has predefined optimization levels that turn on sets
of optimization flags. Compilation with optimization level-1,
tries to reduce code size and execution time, takes more time
and much more memory for large functions than compilation
with no optimizations. Compilation with optimization level-2
optimizes more than level-1, uses all level-1 optimization flags
and more. Level-2 optimization performs all optimizations that
do not involve a space-speed tradeoff. Level-2 optimization
increases compilation time and performance of the generated
code when compared to level-1 optimization. Level-3 opti-
mization yet optimizes more than both level-1 and level-2.

So far, we have shown that programming style features
survive compilation without any optimizations. As compilation
with optimizations transforms code further, we investigate how
much programming style is preserved in executable binaries
that have gone through compilation with optimization. Our
results summarized in Table III show that programming style
is preserved to a great extent even in the most aggressive level-
3 optimization. This shows that programmers of optimized
executable binaries can be de-anonymized and optimization
is not a highly effective code anonymization method.

Number of | Number of | Compiler Accuracy
Programmers Training Optimization
Samples Level
100 8 None 96%
100 8 1 93%
100 8 2 89%
100 8 3 89%

TABLE III: Programmer De-anonymization with Compiler
Optimization

B. Removing symbol information does not anonymize exe-
cutable binaries.

To investigate the relevance of symbol information for
classification accuracy, we repeat our experiments with 100



authors presented in the previous section on fully stripped
executable binaries, that is, executable binaries where symbol
information is missing completely. We obtain these executable
binaries using the standard utility GNU strip on each ex-
ecutable binary sample prior to analysis. Upon removal of
symbol information, without any optimizations, we notice
a decrease in classification accuracy by 24%, showing that
stripping symbol information from executable binaries is not
effective enough to anonymize an executable binary sample.

C. We can de-anonymize programmers from obfuscated
binaries.

We are furthermore interested in finding out whether our
method is capable of dealing with simple binary obfusca-
tion techniques as implemented by tools such as Obfuscator-
LLVM [24]. These obfuscators substitute instructions by other
semantically equivalent instructions, they introduce bogus con-
trol flow, and can even completely flatten control flow graphs.

For this experiment, we consider a set of 100 programmers
from the GCJ data set, who all have 9 executable binary
samples. This is the same data set as considered in our main
experiment (see Section V-D), however, we now apply all three
obfuscation techniques implemented by Obfuscator-LLVM to
the samples prior to learning and classification.

We proceed to train a classifier on obfuscated samples.
This approach is feasible in practice as an analyst who has
only non-obfuscated samples available can easily obfuscate
them to obtain the necessary obfuscated samples for classifier
training. Using the same features as in Section V-D, we obtain
an accuracy of 88% in correctly classifying authors.

D. De-anonymization in the Wild

To better assess the applicability of our programmer de-
anonymization approach in the wild, we extend our experi-
ments to code collected from real open-source programs as
opposed to solutions for programming competitions. To this
end, we automatically collected source files from the popular
open-source collaboration platform GitHub [4]. Starting from
a seed set of popular repositories, we traversed the platform
to obtain C/C++ repositories that meet the following criteria.
Only one author has committed to the repository. The reposi-
tory is popular as indicated by the presence of at least 5 szars,
a measure of popularity for repositories on GitHub. Moreover,
it is sufficiently large, containing a total of 200 lines at least.
The repository is not a fork of another repository, nor is it
named ‘linux’, ‘kernel’, ‘osx’, ‘gcc’, ‘llvm’, ‘next’, as these
repositories are typically copies of the so-named projects.

We cloned 439 repositories from 161 authors meeting these
criteria and collect only C/C++ files for which the main author
has contributed at least 5 commits and the commit messages
do not contain the word ’signed-off’, a message that typically
indicates that the code is written by another person. An author
and her files are included in the dataset only if she has written
at least 10 different files. In the final step, we manually verified
ground truth on authorship for the selected files to make sure
that they do not show any clear signs of code reuse from other
projects. The resulting dataset had 2 to 344 files and 2 to 8
repositories from each author, with a total of 3,438 files.
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We developed our method and evaluated it on the GCJ
dataset, but collecting code from open source projects is an-
other option for constructing a dataset. Open source projects do
not guarantee ground truth on authorship. The feature vectors
might capture topics of the project instead of programming
style. As a result, open source code does not constitute the ideal
data for authorship analysis; however, it allows us to better
assess the applicability of programmer de-anonymization in the
wild. We therefore present results from a dataset collected from
the hosting platform GitHub, which we obtain by spidering the
platform to collect C and C++ repositories.

We subsequently compile the collected projects to obtain
object files for each of the selected source files. We perform our
experiment on object files as opposed to entire binaries, since
the object files are the binary representations of the source files
that clearly belong to the specified authors.

For different reasons, compiling code may not be possible
for a project, e.g., the code may not be in a compilable state,
it may not be compilable for our target platform (32 bit Intel,
Linux), or the files to setup a working build environment can
no longer be obtained. Despite these difficulties, we are able
to generate 1,075 object files from 90 different authors, where
the number of object files per author ranges from 2 to 24, with
most authors having at least 9 samples. We used 50 of these
authors that have 6 to 15 files to perform a machine learning
experiment with more balanced class sizes.

We extract the information gain features that were selected
from GCJ data from this GitHub dataset. GitHub datasets are
noisy for two reasons since the executable binaries used in
de-anonymization might contain properties from third party
libraries and code. For these two reasons, it is more difficult to
attribute authorship to anonymous executable binary samples
from GitHub, but nevertheless we reach 65% accuracy in
correctly classifying these programmers’ executable binaries.
Another difficulty in this particular dataset is that there is
not much training data to train an accurate random forest
classifier that models each programmer. For example, we can
de-anonymize the two programmers with the most samples,
one with 11 samples and one with 7, with 100% accuracy.

Being able to de-anonymize programmers in the wild by
using a small number of features obtained from our clean
development dataset is a promising step towards attacking
more challenging real-world de-anonymization problems.

E. Have I seen this programmer before?

While attempting to de-anonymize programmers in real-
world settings, we cannot be certain that we have formerly
encountered code samples from the programmers in the test
set. As a mechanism to check whether an anonymous test
file belongs to one of the candidate programmers in the
training set, we extend our method to an open world setting by
incorporating classification confidence thresholds. In random
forests, the class probability or classification confidence P(B;)
that executable binary B is of class ¢ is calculated by taking
the percentage of trees in the random forest that voted for class
1 during classification.
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Fig. 7: Confidence Thresholds for Verification

There are multiple ways to assess classifier confidence
and we devise a method that calculates the classification
confidence by using classification margins. In this setting, the
classification margin of a single instance is the difference
between the highest and second highest P(B;). The first step
towards attacking an open world classification task is identify-
ing the confidence threshold of the classifier for classification
verification. As long as we determine a confidence threshold
based on training data, we can calculate the probability that
an instance belongs to one of the programmers in the training
set and accordingly accept or reject the classification.

We performed 900 classifications in a 100-class problem to
determine the confidence threshold based on the training data.
The accuracy was 95%. There were 40 misclassifications with
an average classification confidence of 0.49. We took another
set of 100 programmers with 900 samples. We classify these
900 samples with the closed world classifier that was trained
in the first step on samples from a disjoint set of programmers.
All of the 900 samples are attributed to a programmer in the
closed world classifier with a mean classification confidence
of 0.40. We can pick a verification threshold and reject all
classifications with confidence below the selected threshold.
Accordingly all the rejected open world samples and mis-
classifications become true negatives, and the rejected correct
classifications end up as false negatives. Open world samples
and misclassifications above the threshold are false positives
and the correct classifications are true positives. Based on
this, we generate an accuracy, pecision, and recall graph
with varying confidence threshold values in Figure 7. This
figure shows that the optimal rejection threshold to guarantee
90% accuracy on 1,800 samples and 100 classes is around
confidence 0.72. Other confidence thresholds can be picked
based on precision and recall trade-offs. These results are
encouraging for extending our programmer de-anonymization
method to open world settings where an analyst deals with
many uncertainties under varying fault tolerance levels.

The experiments in this section can be used in software
forensics to find out the programmer of a piece of malware. In
software forensics, the analyst does not know if source code
belongs to one of the programmers in the candidate set of
programmers. In such cases, we can classify the anonymous
source code, and if the majority number of votes of trees in
the random forest is below a certain threshold, we can reject
the classification considering the possibility that it might not
belong to any of the classes in the training data. By doing so,
we can scale our approach to an open world scenario, where
we might not have encountered the suspect before. As long
as we determine a confidence threshold based on training data
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[43], we can calculate the probability that an instance belongs
to one of the programmers in the set and accordingly accept
or reject the classification. We performed 270 classifications
in a 30-class problem using all the features to determine the
confidence threshold based on the training data. The accuracy
was 96.67%. There were 9 misclassifications and all of them
were classified with less than 15% confidence by the classifier.

Where V;(i) = 1 if the j'" tree voted for class i and 0
otherwise, and |T'|; denotes the total number of trees in forest
f. Note that by construction, ) . P(C;) = 1 and P(C;) > 0
V i, allowing us to treat P(C;) as a probability measure.

F. Case Study: Nulled.10 Hacker Forum

On May 6, 2016 the well known ‘hacker’ forum Nulled.10
was compromised and its forum dump was leaked along with
the private messages of its 585,897 members. The members
of these forums share, sell, and buy stolen credentials and
cracking software. A high number of the forum members are
active developers that write their own code and sell them, or
share some of their code for free in public GitHub repositories
along with tutorials on how to use them. The private messages
of the sellers in the forum include links to their products and
even to screenshots of how the products work, for buyers. We
were able to find declared authorship along with active links
to members’ software on sharing sites such as FileDropper?
and MediaFire® in the private messages.

For our case study, we created a dataset from four forum
members with a total of thirteen Windows executables. One
of the members had only one sample, which we used to test
the open world setting described in Section VI-E. A challenge
encountered in this case study is that the binary programs ob-
tained from Nulled.IO do not contain native code, but bytecode
for the Microsoft Common Language Infrastructure (CLI).
Therefore, we cannot immediately analyze them using our
existing toolchain. We address this problem by first translating
bytecode into corresponding native code using the Microsoft
Native Image Generator (ngen.exe), and subsequently forcing
the decompiler to treat the generated output files as regular
native code for binaries. On the other hand, radare2 is not
able to disassemble such output or the original executables.
Consequently we had access to a subset of the information
gain feature set obtained from GCJ. We extracted a total of
605 features consisting of decompiled source code features and
ndisasm disassembly features. Nevertheless, we are able to de-
anonymize these programmers with 100% accuracy while the
one sample from the open world class is classified in all cases
with the lowest confidence, such as 0.4, which is below the
verification threshold and is recognized by the classifier as a
sample that does not belong to the rest of the programmers.

A larger de-anonymization attack can be carried out by
collecting code from GitHub users with relevant repositories
and identifying all the available executables mentioned in the
public portions of hacker forums. GitHub code can be com-
piled with necessary parameters and used with the approach
described in Section VI-D. Incorporating verification thresh-
olds from Section VI-E can help handle programmers with

2www.filedropper.com: ‘Simplest File Hosting Website..’
3www.mediafire.com: ‘All your media, anywhere you go’



only one sample. Consequently a large number of members
can be linked, reduced to a cluster or directly de-anonymized.

The countermeasure against real-world programmer de-
anonymization attacks requires a combination of various pre-
cautions. Developers should not have any public repositories.
A set of programs should not be released by the same online
identity. Programmers should try to have a different coding
style in each piece of software they write and also try to code
in different programming languages. Software should utilize
different optimizations and obfuscations to avoid deterministic
patterns. A programmer who accomplishes randomness across
all potential identifying factors would be very difficult to de-
anonymize. Nevertheless, even the most privacy savvy devel-
oper might be willing to contribute to open source software or
build a reputation for her identity based on her set of products,
which would be a challenge for maintaining anonymity.

Some of these developers obfuscate their code with the
primary goal of hiding the source code and consequently
they are experienced in writing or using obfuscators and
deobfuscators. An additional challenge encountered in this case
study is that the binary programs obtained from NULLED.io
do not contain native code, but bytecode for the Microsoft
Common Language Infrastructure (CLI). Therefore, we can-
not immediately analyze them using our existing toolchain.
We address this problem by first translating bytecode into
corresponding native code using the Microsoft Native Image
Generator (ngen), and subsequently forcing the decompiler to
treat the generated output files as regular native code binaries.

VII. DISCUSSION

Our experiments are devised for a setting where the pro-
grammer is not trying to hide her coding style, and there-
fore, only basic obfuscation techniques are considered in our
experiments. Accordingly, we focus on the general case of
executable binary authorship attribution, which is a serious
threat to privacy but at the same time an aid for forensic
analysis.

We consider two data sets: the GCJ dataset, and a dataset
based on GitHub repositories. Using the GitHub dataset, we
show that we can perform programmer de-anonymization with
executable binary authorship attribution in the wild. We de-
anonymize GitHub programmers by using stylistic features
obtained from the GCJ dataset. Using the same small set
of features, we perform a case study on the leaked hacker
forum Nulled.IO and de-anonymize four of its members. The
successful de-anonymization of programmers from different
sources supports the supposition that, in addition to its other
useful properties for scientific analysis of attribution tasks,
the GCJ dataset is a valid and useful proxy for real-world
authorship attribution tasks.

The advantage of using the GCJ dataset is that we can
perform the experiments in a controlled environment where
the most distinguishing difference between programmers’ solu-
tions is their programming style. Every contestant implements
the same functionality, in a limited amount of time while at
each round problems are getting more difficult. This provides
the opportunity to control the difficulty level of the samples and
the skill set of the programmers in the dataset. In source code
authorship attribution, programmers who can implement more
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sophisticated functionality have a more distinct programming
style [16]. We observe the same pattern in executable binary
samples and gain some software engineering insights by an-
alyzing stylistic properties of executable binaries. In contrast
to GCJ, GitHub and Nulled.IO offer noisy samples. However,
our results show that we can de-anonymize programmers with
high accuracy as long as enough training data is available.

Previous work shows that coding style is quite prevalent
in source code. We were surprised to find that it is also
preserved to a great degree in compiled source code. Coding
style is not just the use of particular syntactical constructs
but also the AST flows, AST combinations, and preferred
types of operations. Consequently, these patterns manifest in
the binary and form a coding fingerprint for each author. We
can de-anonymize programmers from compiled source code
with great accuracy, and furthermore, we can de-anonymize
programmers from source code compiled with optimization
or after obfuscation. In our experiments, we see that even
though basic obfuscation, optimization, or stripping symbols
transforms executable binaries more than plain compilation,
stylistic features are still preserved to a large degree. Such
methods are not sufficient on their own to protect programmers
from de-anonymization attacks.

In scenarios where authorship attribution is challenging, an
analyst or adversary could apply relaxed attribution to find a
suspect set of n authors, instead of a direct top—I classification.
In top—10 attribution, the chances of having the original author
within the returned set of 10 authors approaches 100%. Once
the suspect set size is reduced to 10 from hundreds, the
analyst or adversary could adhere to content based dynamic
approaches and reverse engineering to identify the author of
the executable binary sample. However, our experiments in
these cases are performed using the information-gain features
determined from the unoptimized case with symbol tables in-
tact. Future work that customizes the dimensionality reduction
step for these cases (for example, removing features from the
trees that are no longer relevant) may be able to improve upon
these numbers, especially since dimensionality reduction was
able to provide such a large boost in the unoptimized case.

Even though executable binaries look cryptic and difficult
to analyze, we can still extract many useful features from them.
We extract features from disassembly, control flow graphs,
and also decompiled code to identify features relevant to only
programming style. After dimensionality reduction, we see
that each of the feature spaces provides programmer style
information. The initial development feature set contains a
total of 705,000 features for 900 executable binary samples of
100 authors. Approximately 50 features from abstract syntax
trees and assembly instructions suffice to capture enough key
information about coding style to enable robust authorship
attribution. We see that the reduced set of features are valid in
different datasets with different programmers, including opti-
mized or obfuscated programmers. Also, the reduced feature
set is helpful in scaling up the programmer de-anonymization
approach. While we can identify 100 programmers with 96%
accuracy, we can de-anonymize 600 programmers with 83%
accuracy using the same reduced set of features. 83% is a very
high number for such a challenging task where the random
chance of correctly identifying an author is 0.17%.



VIII. LIMITATIONS

Our experiments suggest that our method is able to assist
in de-anonymizing a much larger set of programmers with
significantly higher accuracy than state-of-the-art approaches.
However, there are also assumptions that underlie the validity
of our experiments as well as inherent limitations of our
method which we discuss in the following paragraphs. First,
we assume that our ground truth is correct, but in reality pro-
grams in GCJ or on GitHub might be written by programmers
other than the stated programmer, or by multiple programmers.
Such a ground truth problem would cause the classifier to train
on noisy models which would lead to lower de-anonymization
accuracy and a noisy representation of programming style.
Second, many source code samples from GCJ contestants
cannot be compiled. Consequently, we perform evaluation only
on the subset of samples which can be compiled. This has
two effects: first, we are performing attribution with fewer
executable binary samples than the number of available source
code samples. This is a limitation for our experiments but
it is not a limitation for an attacker who first gets access
to the executable binary instead of the source code. If the
attacker gets access to the source code instead, she could
perform regular source code authorship attribution. Second,
we must assume that whether or not a code sample can be
compiled does not correlate with the ease of attribution for
that sample. Third, we mainly focus on C/C++ code compiled
(except Nulled.IO samples) using the GNU compiler gcc in
this work, and assume that the executable binary format is
the Executable and Linking Format. This is important to note
as dynamic symbols are typically present in ELF binary files
even after stripping of symbols, which may ease the attribution
task relative to other executable binary formats that may not
contain this information. We defer an in depth investigation of
the impact that other compilers, languages, and binary formats
might have on the attribution task to future work.

Finally, while we show that our method is capable of
dealing with simple binary obfuscation techniques, we do not
consider binaries that are heavily obfuscated to hinder reverse
engineering. While simple systems, such as packers [2] or
encryption stubs that merely restore the original executable
binary into memory during execution may be analyzed by
simply recovering the unpacked or decrypted executable bi-
nary from memory, more complex approaches are becoming
increasingly commonplace. A wide range of anti-forensic
techniques exist [19], including methods that are designed
specifically to prevent easy access to the original bytecode
in memory via such techniques as modifying the process
environment block or triggering decryption on the fly via guard
pages. Other techniques such as virtualization [3] transform
the original bytecode to emulated bytecode running on vir-
tual machines, making decompilation both labor-intensive and
error-prone. Finally, the use of specialized compilers that lack
decompilers and produce nonstandard machine code (see [17]
for an extreme but illustrative example) may likewise hinder
our approach, particularly if the compiler is not available and
cannot be fingerprinted. We leave the examination of these
techniques, both with respect to their impact on authorship
attribution and to possible mitigations, to future work.
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IX. CONCLUSION

De-anonymizing programmers has direct implications for
privacy and anonymity. The ability to attribute authorship to
anonymous executable binaries has applications in software
forensics, and is an immediate concern for programmers
that would like to remain anonymous. We show that coding
style is preserved in compilation, contrary to the belief that
compilation wipes away stylistic properties. We de-anonymize
100 programmers from their executable binaries with 96%
accuracy, and 600 programmers with 83% accuracy. Moreover,
we show that we can de-anonymize GitHub developers or
hacker forum members with high accuracy. Our work, while
significantly improving the limited approaches in programmer
de-anonymization, presents new methods to de-anonymize
programmers in the wild from challenging real-world samples.

We discover a small set of features that effectively represent
coding style in executable binaries. We obtain this precise
representation of coding style via two different disassemblers,
control flow graphs, and a decompiler. With this comprehen-
sive representation, we are able to re-identify GitHub authors
from their executable binary samples in the wild, where we
reach an accuracy of 65% for 50 programmers, even though
these samples are noisy and products of collaborative efforts.

Programmer style is embedded in executable binary to a
surprising degree, even when it is obfuscated, generated with
aggressive compiler optimizations, or symbols are stripped.
Compilation, binary obfuscation, optimization, and stripping
of symbols reduce the accuracy of stylistic analysis but are
not effective in anonymizing coding style.

In future work, we plan to investigate snippet and function
level stylistic information to de-anonymize multiple authors of
collaboratively generated binaries. We also defer the analysis
of highly sophisticated compilation and obfuscation methods
to future work. Nevertheless, we show that identifying stylistic
information is prevalent in real-world settings and accordingly
developers cannot assume to be anonymous unless they take
extreme precautions as a countermeasure. Examples to possible
countermeasures include a combination of randomized coding
style, different programming language usage, and employment
of indeterministic set of obfuscation methods. Since incorpo-
rating different languages or obfuscation methods is not always
practical, especially in open source software, our future work
would focus on completely stripping stylistic information from
binaries to render them anonymous.

We also plan to look at different real-world executable
binary authorship attribution cases, such as identifying authors
of malware, which go through a mixture of sophisticated
obfuscation methods by combining polymorphism and encryp-
tion. Our results so far suggest that while stylistic analysis is
unlikely to provide a “smoking gun” in the malware case, it
may contribute significantly to attribution efforts.

Moreover, we show that attribution is sometimes possible
with only small amounts of training binaries, however, having
more binaries for training helps significantly. In addition, we
observe that advanced programmers (as measured by progres-
sion in the GCJ contest) can be attributed more easily than
their less skilled peers. Our results present a privacy threat for
people who would like to release binaries anonymously.
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