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 CURRENT
OPINION When do co-infections matter?

Andrew J. McArdlea, Anna Turkovab, and Aubrey J. Cunningtonc

Purpose of review

Advances in diagnostic methods mean that co-infections are increasingly being detected in clinical practice,
yet their significance is not always obvious. In parallel, basic science studies are increasingly investigating
interactions between pathogens to try to explain real-life observations and elucidate biological mechanisms.

Recent findings

Co-infections may be insignificant, detrimental, or even beneficial, and these outcomes can occur through
multiple levels of interactions which include modulation of the host response, altering the performance of
diagnostic tests, and drug–drug interactions during treatment. The harmful effects of chronic co-infections
such as tuberculosis or Hepatitis B and C in association with HIV are well established, and recent studies
have focussed on strategies to mitigate these effects. However, consequences of many acute co-infections
are much less certain, and recent conflicting findings simply highlight many of the challenges of studying
naturally acquired infections in humans.

Summary

Tackling these challenges, using animal models, or careful prospective studies in humans may prove to be
worthwhile. There are already tantalizing examples where identification and treatment of relevant co-
infections seems to hold promise for improved health outcomes.
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INTRODUCTION

Globally, co-infections are almost certainly the
norm rather than a rare curiosity. We are continu-
ously exposed to multiple potential pathogens,
most people are chronically or latently infected
(be it with herpes viruses, helminths, or tuberculo-
sis), and we all carry potential pathogens in our
colonizing microbial flora. This means that nearly
every new incident infection is likely to constitute
some sort of co-infection. Nevertheless we know
relatively little about which combinations of co-
infections matter the most for our health. Here,
using examples from the recent literature, we illus-
trate situations in which co-infections have impor-
tant implications, both harmful and beneficial, and
explain why it is sometimes difficult to be sure.

DOUBLE TROUBLE?

One might expect that infection with two or more
pathogens would always be worse than infection
with one. Even if co-infection is just bad luck, the
adverse effect on health might be expected to be
additive. But interactions do occur, on many levels,
and these are not always detrimental (Fig. 1). Three
examples involving malaria illustrate this well.
Deliberate malaria co-infection (so-called, malaria

therapy) was used as a treatment for neurosyphilis
in the preantibiotic era, and is thought to have been
moderately effective because of antitreponemal
effects of the fever and cytokine response to malaria
[1]. There is evidence that some helminth infections
reduce malaria severity, possibly through immuno-
modulation [2]. Somewhat unexpectedly, antiretro-
viral therapy (ART) protected children with HIV from
malaria, by prolonging the half-life of the antimalar-
ial lumefantrine and effectively turning short courses
of treatment into medium-term prophylaxis [3].

Unfortunately, determining the consequences
of co-infection through observation of natural infec-
tions in humans is rife with problems because there
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are so many possible confounders. These include the
presence of additional infections other than those
being studied; the order, timing, and natural history
of each infection; shared risk factors for acquisition
of infections; and shared risk factors for their adverse
outcomes. Interactions between infections which
influence their likelihood of detection at earlier or
later disease stages may also introduce bias. These
challenges in human studies mean that co-infec-
tions are increasingly being investigated in animal
models where conditions can be tightly controlled,
and with careful consideration these can be useful to
help to explain observations in humans.

CO-INFECTIONS IN HIV

In people living with HIV (PLHIV) co-infections
usually do matter, and most have adverse

consequences. Despite providing some of the most
obvious examples for every level of interaction illus-
trated in Fig. 1, HIV co-infection is really a special
case because of lifelong infection and acquired
immunodeficiency. The burden of co-infections in
PLHIV is hard to quantify. Some insights come from
intervention studies such as the recent randomised
controlled trial of combined antifungal, antitubercu-
lous, antihelminthic, and antibacterial prophylaxis
started at the time of ART initiation in African chil-
dren and adults with profound immunosuppression.
This regime preventedone death for every 30 patients
treated in comparison to standard prophylaxis with
cotrimoxazole alone over a 24-week period [4

&&

].

HIV and tuberculosis

Tuberculosis is the leading cause of opportunistic
infection and death among PLHIV. HIV is a potent
risk factor for tuberculosis and complicates every
aspect of tuberculosis care from prevention to diag-
nosis and treatment, whereas tuberculosis increases
progression of HIV and contributes to slower CD4
recovery and faster virological failure on ART [5].
Recent work has shown tuberculosis incidence after
ART initiation is significantly lower in PLHIV with
CD4 more than 500 cells/ml compared to their
counterparts with lower CD4 counts [6

&

]. Ongoing
HIV replication is an important risk factor for tuber-
culosis, regardless of CD4 cell counts [7

&

], but tuber-
culosis risk does not differ before and after ART
initiation when appropriately controlled for labora-
tory values and ART exposure [8

&

].
Timely tuberculosis diagnosis is challenging in

PLHIV because of high rates of smear negative and

KEY POINTS

� Co-infections represent the real-world context in which
most infectious diseases occur.

� Understanding of the possible consequences remains
rudimentary for most combinations of co-infections.

� Increasing evidence reveals many different levels of
interaction which are relevant to health.

� Studies of natural co-infections, particularly acute
infections, in humans are affected by many possible
confounding factors and require cautious interpretation.

� Study of co-infections has the potential to lead to new
strategies to improve human health.

Possibly Beneficial Detrimental

Host response

Diagnosis

Treatment

Outcome

Transmission

Health system

Suscep�bility

Bacterial and viral respiratory co-infec�ons increase mortality

Tuberculosis-HIV drug interac�ons

LRV-1 impairs host killing of Leishmania

Ebola response disrupts malaria control

HIV impairs tuberculosis diagnosis

Co-infec�ons increasing viral load may increase HIV transmission

Response to malaria cures neurosyphilis

HIV diagnosis prompts screen for other blood-borne viruses

Influenza increases suscep�bility to S. pneumoniaeCross-reac�ve an�bodies between flaviviruses may be protec�ve  

An�retroviral-an�malarial interac�ons

Less severe malaria in presence of some helminths

Illness behaviour during co-infec�on may reduce HIV transmission

Mass drug treatment of trachoma reduces other bacterial infec�ons

FIGURE 1. The good and the bad of co-infections. Co-infections can effect health through interactions at multiple levels.
Examples are given where these interactions may be detrimental or sometimes beneficial. LRV-1, Leishmania RNA virus-1.
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extrapulmonary tuberculosis. Clinical screening
performs poorly in PLHIV and may miss up to
25% of all laboratory-confirmed tuberculosis cases
and up to 70% among HIV-infected pregnant
women [9

&&

]. Molecular and lateral flow diagnostics
with greater sensitivity are showing promise for
improving the situation [10,11

&&

,12,13
&&

,14].
Treatment of tuberculosis in PLHIV is challeng-

ing because of drug–drug interactions and overlap-
ping toxicities with ART. Despite this, early ART
initiation within the first 8 weeks of antituberculous
therapy was associated with favourable outcomes in a
large multinational cohort study in children [15

&&

].
Preventing tuberculosis in PLHIV is also complicated
– although isoniazid preventive therapy (IPT) has
been shown to be effective there are concerns that
widespread use will drive the spread of isoniazid
resistance. New estimates suggest that in the context
of a declining/controlled tuberculosis epidemic,
tuberculosis incidence and mortality benefits of con-
tinuous IPT for PLHIV outweigh the potential resis-
tance risks [16

&

]. A systematic review of universal IPT
in children with no known tuberculosis exposure
showed reduction of tuberculosis among children
not receiving ART but, perhaps surprisingly, no clear
benefit for children on ART [17

&

].

HIV and hepatitis B and C viruses

Viral hepatitis is associated with increased morbid-
ity in PLHIV. End-stage liver disease is most com-
mon in patients with hepatitis B virus hepatitis C
virus (HCV) HIV co-infection, then in dual infec-
tions, and much less common in HIV monoinfec-
tion [18

&&

]. Viral hepatitis is also associated with
extrahepatic complications in PLHIV such as
increased risk of non-Hodgkin lymphoma [19

&

],
kidney disease [20,21

&

], osteoporosis and fractures
[21

&

], and more severe cognitive impairment [22].
Hepatitis virus co-infection also slows immunologi-
cal recovery in pregnant women [23

&

] and children
[24

&

] with HIV, and HCV contributes to an ongoing
immune activation and immune dysfunction even
in controlled HIV infection [25

&

,26,27].
Directly acting antivirals now allow more than

95% HCV cure rates, regardless of HIV co-infection
[28,29,30,31

&

,32
&

,33], and HCV eradication reduces
mortality, HIV progression, liver-related events, and
diabetes mellitus [21

&

,34
&&

]. Well tolerated and effec-
tive regimes for PLHIV on ART are now achievable
[35,36,37

&&

,38].

BEYOND HIV

Chronic co-infections with HIV clearly demonstrate
many potentially harmful impacts, but the evidence

can be much less clear when acute infections are
considered.

Ebola–malaria co-infection

The 2014–2015 West African Ebola virus disease
(EVD) epidemic ravaged countries which already
suffered a high burden of malaria and bacterial
infections. Differentiating EVD from other causes
of febrile illness and identifying co-infections was
problematic so pragmatic guidelines advised empir-
ical antimalarial and antibiotic treatment [39]. Sub-
sequent studies have tried to characterize the
burden and consequences of co-infection. Of four
large studies (albeit employing quite different meth-
odologies), three concluded that malaria co-infec-
tion resulted in increased mortality in individuals
with EVD [40

&

,41
&&

,42], whereas one study con-
cluded the opposite [43

&

]. These discordant findings
highlight some key challenges for studying acute co-
infections.

Malaria-associated co-infections are particularly
difficult to study because Plasmodium can cause
repeated acute, chronic, and asymptomatic infec-
tions, and individuals in endemic countries develop
a degree of naturally acquired immunity which
accumulates over many years. Asymptomatic infec-
tion with Plasmodium falciparum is common in
highly endemic settings, but in a febrile individual
coinfected with an additional potential pathogen it
is almost impossible to know whether P. falciparum
detected in blood is the sole cause of illness, con-
tributing to illness, or just a bystander. Higher para-
site load and younger age generally associate with
greater likelihood of symptomatic disease, allowing
the attributable fraction of febrile illness because of
malaria to be calculated at a population level by
comparison with parasite loads detected in appro-
priately matched healthy community controls [44].
In contrast to Plasmodium infection, it is assumed
that almost all individuals with Ebola virus infection
will manifest EVD, and it remains controversial
whether Ebola virus infection may produce minimal
or no symptoms [39]. It is conceivable that presymp-
tomatic EVD may be detected in an individual with
malaria, particularly when there is active surveil-
lance for febrile illness in EVD contacts. None of
the four studies of EVD and P. falciparum co-infec-
tion had appropriate control groups to determine
malaria attributable fractions of febrile illness, so
they are all likely to be confounded by relationships
between parasite load, age, and coincidence of expo-
sure and comorbidities. However, the apparent pro-
tective effect of P. falciparum in one study led to the
suggestion that malaria therapy might be used to
treat EVD [45]. Although the other studies would
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caution against this, the urgent need for effective
treatments against EVD makes it important to
resolve the controversy and explore possible under-
lying biological mechanisms.

Helminths and tuberculosis

Helminths are among the most prevalent pathogens
globally. As they stimulate a type 2 helper T cell
(Th2)-biased immune response, whereas protection
from tuberculosis requires a type 1 helper T cell
(Th1) response, the question has arisen whether
co-infection may compromise defence against
tuberculosis. In latent tuberculosis, co-infection
with Strongyloides stercoralis reduced systemic and
tuberculosis antigen-stimulated type 1 and type 17
cytokines, and increased systemic type 2 and regu-
latory cytokines [46

&

]. Following treatment for
Strongyloides stercoralis, type 1 and type 17 cytokine
responses increased, along with increases in Myco-
bacterium tuberculosis-specific immunolgobulin M
and immunoglobulin G [46

&

,47
&

]. However, real-
world evidence that helminth-tuberculosis interac-
tions are clinically important is less convincing. A
large cross-sectional study of tuberculosis patients
and uninfected household contacts in Tanzania,
showed that tuberculosis infection was associated
with Schistosoma mansoni infection, though this was
just one of many helminths studied and the signifi-
cance was borderline [48

&

]. Interesting, and of
greater statistical significance, was the finding that
tuberculosis patients who did have S. mansoni infec-
tion had lower sputum bacterial loads, hinting at
more complex interactions than those predicted
from the Th1/Th2 paradigm. Consistent with this,
Mycobacterium bovis bacterial loads were also
decreased in cattle by co-infection with the fluke
Fasciola hepatica, and co-infection was associated
with reduced phagocytosis of mycobacteria [49

&

].
Another practical concern is whether the pres-

ence of helminths may influence immune-based
diagnostic tests for tuberculosis infection. Although
there is some evidence that helminth infection
reduces reactivity to purified protein derivative and
increases the proportion of indeterminate interferon-
g release assay results in human tuberculosis, findings
are far from conclusive [50]. However, in experimen-
tal bovine tuberculosis, co-infection with Fasciola
hepatica reduced interferon-g responses [49

&

], consis-
tent with earlier discovery of reduced intradermal
purified protein derivative positivity, and estimates
of a one-third reduction in ascertainment [51].

Helminths and other co-infections

A recent public health success story in dealing with
the challenge of co-infections comes from two

neglected tropical infections: Loa loa and Onchocer-
cha volvulus. Onchocerciasis is a common cause of
blindness (so-called, river blindness), and the bur-
den of disease can be reduced by mass administra-
tion of ivermectin. Yet mass treatment can cause
severe encephalopathy in communities where there
is also a high-burden of Loa loa filarial infections
[52]. As a result, some of the worst affected com-
munities have been excluded from mass-treatment
programmes because of excessive risks. Automated
video microscopy screening of blood samples to
detect and quantitatively measure Loa loa burden
allowed just over 2% of individuals to be excluded,
and ivermectin treatment to be reintroduced with-
out serious adverse events [53

&&

].
Helminth infection has also revealed an inter-

esting perspective on the complexity of interactions
occurring during co-infections. Rather than mediat-
ing its effects directly through modulation of the
host immune response, Heligmosomoides polygyrus
was found to modify colonization and virulence
of Salmonella Typhimurium by modulating the
mouse gut metabolome [54

&

]. This suggests an inter-
mediary role for the microbiota in the interaction
between pathogens, and implies that current
approaches to studying co-infections may be far
too simplistic.

Gastrointestinal and respiratory co-infections

Molecular diagnostics have increased pathogen
detection, particularly in gastrointestinal and respi-
ratory samples, and inevitably this has increased the
detection of co-infections. In many cases the clinical
implications of these co-infections have been hard
to establish. Reanalysis of the Global Enteric Multi-
centre study, using molecular detection and quan-
tification by qRT PCR, found that half of cases had
more than one pathogen detected at a diarrhoea-
associated load [55

&&

]. Shigella spp. and rotavirus,
were most frequently detected as sole pathogens
in diarrhoea-associated quantities, meaning that
they were often true pathogens. Many other patho-
gens were not detected in diarrhoea-associated
quantities or were associated with diarrhoea only
in combination with other pathogens with stronger
causal relationships. Therefore, simple detection of
co-infection is not enough to understand its con-
sequences, and even with quantification attribution
is difficult.

Similar results come from studies of respiratory
viruses in children: multiple viruses are often
detected but few are consistently associated with
disease. In a recent study of children with acute
respiratory infection, 82% had a respiratory virus
detected, 59% had a single virus, and 23% had co-
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infections [56
&

]. Detection of multiple respiratory
viruses was not associated with any difference in
severity or outcomes compared to monoinfections
in this population. However, in longer follow-up
studies asthma features were more common in 6–8-
year-old children with a previous admission with
multiple respiratory viruses when compared with
those with single respiratory viruses, even when
accounting for age at previous admission [57]. We
do not yet know whether co-infection causes later
asthma symptoms or acts as a marker of those who
are susceptible.

Despite limited evidence that co-infections
between different respiratory viruses are important,
there is a well established association between respi-
ratory viral and bacterial co-infection which corre-
sponds with more severe illness [58

&&

]. Beyond
simple additive effects, mechanistic evidence comes
from studying influenza and pneumococcal co-
infections. Influenza often precedes pneumococcal
pneumonia, at least partly because it causes a deple-
tion alveolar macrophages which allows a smaller
inoculum of bacteria to establish productive infec-
tion [59

&&

]. Interestingly, the extent of depletion of
alveolar macrophages and consequent severity of
the bacterial co-infection may be exacerbated by
preexisting host factors such as obesity [60

&

].

Pathogen as host for co-infections

Co-infection usually implies two or more pathogens
infecting the human (or animal) host, but nature is
full of surprises and one clinically important type of
co-infection turns out to involve viral infection of
the principal pathogen. Leishmania parasites
infected with endosymbiont Leishmania RNA virus
1 are more virulent in rodent models [61] and
human patients [62

&

,63
&

] because the virus induces
type 1 interferon production in host macrophages,
impairing intracellular killing of Leishmania [64

&&

].
Targeting viral clearance improves cure in mice
suggesting a potential therapeutic avenue for
humans with this disease [65

&&

,66
&

].

CONCLUSION

Accumulating evidence indicates that co-infections
frequently do matter, but it is often difficult to
predict how and when they matter. The examples
highlighted in this review illustrate the potential
complexity of interactions between infections and
their effects on the host. It is also clear that studying
co-infections is challenging, particularly in the con-
text of natural infection. Conflicting results and
conclusions from the study of the same infections
serve to illustrate that there must be many as yet

unknown factors involved. The interactions
between the blurred boundaries of infection and
colonization will undoubtedly need to be consid-
ered in the future. Perhaps a complete understand-
ing of the relevance of co-infections will only come
when large-scale unbiased approaches like metage-
nomic sequencing are applied longitudinally and in
conjunction with other omics approaches which
characterize the host and microbiome, and are inter-
preted with machine-learning strategies rather than
standard clinician classifications. For now, animal
models and human challenge studies may offer an
intermediate step for identifying specific pathogen–
pathogen interactions.
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