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Abstract

Physics-informed neural networks (PINNs) have become a popular choice for solving high-dimensional partial
differential equations (PDEs) due to their excellent approximation power and generalization ability. Recently,
Extended PINNs (XPINNs) based on domain decomposition methods have attracted considerable attention due to
their effectiveness in modeling multiscale and multiphysics problems and their parallelization. However, theoretical
understanding on their convergence and generalization properties remains unexplored. In this study, we take an initial
step towards understanding how and when XPINNs outperform PINNs. Specifically, for general multi-layer PINNs
and XPINNs, we first provide a prior generalization bound via the complexity of the target functions in the PDE
problem, and a posterior generalization bound via the posterior matrix norms of the networks after optimization.
Moreover, based on our bounds, we analyze the conditions under which XPINNs improve generalization. Concretely,
our theory shows that the key building block of XPINN, namely the domain decomposition, introduces a tradeoff for
generalization. On the one hand, XPINNs decompose the complex PDE solution into several simple parts, which
decreases the complexity needed to learn each part and boosts generalization. On the other hand, decomposition leads
to less training data being available in each subdomain, and hence such model is typically prone to overfitting and
may become less generalizable. Empirically, we choose five PDEs to show when XPINNs perform better than, similar
to, or worse than PINNs, hence demonstrating and justifying our new theory.

1 Introduction
Deep learning has revolutionized numerous fields in computer science, such as computer vision and natural language
process. Recently, deep neural networks have also been employed to solve partial differential equations (PDEs) and
integrated into the field of scientific computing, thanks to their unique optimization [1–4] and generalization [5]
abilities. Physics-informed neural networks (PINNs) [6] are among the most popular approaches with a wide variety of
successful applications, including heat transfer problems [7], thrombus material properties [8], nano-optics [9], and
fluid mechanics [10, 11]. PINNs are used as surrogates of a target solution for solving PDEs, and a solution is found
by searching for the best parameters of PINNs that satisfy the physical laws governed by the PDEs. A more recent
work [12] proposed Extended PINNs (XPINNs), which improves on PINNs by employing a domain decomposition
method for partitioning the PDE problem into several sub-problems on subdomains, where each sub-problem can be
solved by individual networks called as sub-PINNs. In XPINNs, the continuity of the PINN functions between each
subdomain is maintained. XPINNs facilitate parallel computing, accelerate convergence, and improve generalization
empirically. Despite great progress in applications, currently no theoretical understanding exists on when and how
XPINNs are better than PINNs.

Recently, some works on theoretically understanding of PINNs have emerged [13–16]. For two-layer networks,
Luo and Yang [13] derived prior and posterior generalization bounds for PINNs based on Barron space and Rademacher
complexity, whereas Lu et al. [14] provided prior error estimates based on Barron spaces with the softplus activation.
For multi-layer networks, Mishra and Molinaro [15] introduced abstract formalism and stability properties of the
underlying PDEs to derive generalization bounds, and Shin et al. [16] used the Holder continuity constant to bound
the generalization of PINNs. While these previous bounds significantly advanced our theoretical understanding of
PINNs, we cannot rely on them to study the advantages and disadvantages of multi-layer XPINNs over PINNs. This
is because the previous studies focus on PINNs, and the previous bounds either only apply to two-layer networks or
depend on variables that are hard to be computed analytically or numerically. For example, the Holder continuity is
often difficult to compute efficiently and the assumption of Holder continuity regularization is not widely adopted
in practice. Accordingly, it is necessary to employ different approaches to derive new generalization bounds for the
multi-layer XPINN in order to understand its advantages and limitations.
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In this study, we provide an initial step towards understanding how and when XPINNs improve generalization
capabilities of PINNs by proving new generalization bounds for multi-layer XPINNs and PINNs. Specifically, we
first discuss the Barron space theory for multi-layer networks to define the function space of neural networks. We
then derive a prior generalization bound for PINNs with the complexity of a target function measured via its Barron
norm without any further assumption. Furthermore, we derive Rademacher complexity bounds of PINNs via capacity
controls based on the spectral norm and the (2,1) norm, which are then used for our posterior generalization bounds
for PINNs. We then extend these bounds of PINNs to those of XPINNs by applying the bounds to each of the
subdomains in XPINNs and combine them to form the final results. Overall, our theoretical results predict that in terms
of generalization, the advantages and disadvantages of XPINNs come from the tradeoff between the reduction in the
complexity of decomposed target functions (within each subdomain) and the increase in the over-fitting due to less
available training data (in each subdomain). That is, the domain decomposition of XPINNs can make a target function
in a subdomain to be less complex than the whole target function, resulting in a reduction in a complexity measure,
whereas each sub-network tend to utilize less than the entire available training data. To illustrate when and how
XPINNs improve generalization based on our theory, we first provide analytical examples, where we mathematically
compute and compare the prior bounds of XPINNs and PINNs. Furthermore, we adopt five PDEs to numerically
demonstrate our posterior bounds via experiments. Both analytical examples and experimental observations confirm
our theoretical prediction and deepen our understanding, demonstrating that the two factors in our generalization
bounds lead to a tradeoff, leading to different performances of XPINNs over PINNs on various tasks.

The remainder of this paper is arranged as follows. In Section 2, we provide properties, background and assumptions
on PDEs, PINNs, and the function space for multi-layer neural networks. In Section 3, our main generalization results
(both prior and posterior bounds) are presented. In Section 4, discussion on theoretical analysis as well as analytical
examples are introduced. In Section 5, extensive experiments are conducted to numerically demonstrate our theory.

2 Preliminaries
In this section, we present introductory facts for PDEs, neural networks, as well as PINNs and XPINNs. We use
bold-faced lowercase letters to denote vectors, and capital letters to denote matrices and network parameters. Given a
vector v, we denote its Euclidean norm by ‖v‖, while ‖ · ‖p refers to the p-norms. For matrix norms, we denote the
spectral norm by ‖ · ‖2 and lp,q norms by ‖W ‖p,q = (

∑
j(
∑
k |Wj,k|p)q/p)1/q . Following convention, we define inf

of a set S to be the infimum of the subset S of R (the set of affinely extended real numbers); e.g., the infimum of the
empty set is infinity.

2.1 PDE Problem
In this paper, we consider PDEs defined on the bounded domain Ω = (−1, 1)d. More specifically, the PDEs under
consideration are in the form of

Lu∗ = f in Ω, u∗ = g on ∂Ω, (1)

where L is the differential operator characterizing the PDE, ∂Ω is the boundary of the set Ω, f : x = (x1, . . . , xd) ∈
Ω 7−→ f(x) ∈ R and g : x = (x1, . . . , xd) ∈ ∂Ω 7−→ g(x) ∈ R are given functions, and the function u∗ : x =
(x1, . . . , xd) ∈ Ω 7−→ u∗(x) ∈ R is the unknown solution of PDEs with its domain Ω = Ω ∪ ∂Ω.

2.2 PINN and XPINN
In this subsection, we introduce neural network-based PDE solvers PINNs and XPINNs. Specifically, in PINNs we
optimize neural networks via gradient-based algorithms to enable the network functions to satisfy the data and the
physical laws governed by the PDEs. Given nb boundary training points {xb,i}nbi=1 ⊂ ∂Ω and nr residual training
points {xr,i}nri=1 ⊂ Ω, we approximate the true PDE solution u∗ : Ω→ R by the PINN function uθ parameterized by
θ via minimizing the empirical loss composed of the boundary loss and the residual loss, as given below.

RS(θ) =
1

nb

nb∑
i=1

|uθ(xb,i)− g(xb,i)|2 +
1

nr

nr∑
i=1

|Luθ(xr,i)− f(xr,i)|2, (2)

where the first term is included to force the network to satisfy boundary conditions, while the second term forces the
network to satisfy the physical laws described by the PDEs.

XPINN is an extension of PINN, obtained by decomposing the whole domain Ω into several subdomains, mapped
to several sub-PINNs. The continuity between each sub-nets is maintained via the interface loss function and the final
solution of XPINN is the combination and ensemble of all sub-nets, where each of them is responsible for prediction

2



on one subdomain. More specifically, the original domain Ω is decomposed into ND subdomains as Ω = ∪NDi=1Ωi.
The loss of XPINN contains the sum of losses for the sub-nets, which consist of boundary loss and residual loss, plus
the interface loss using points on ∂Ωi ∩ ∂Ωj , where i, j ∈ {1, 2, ..., ND} such that ∂Ωi ∩ ∂Ωj 6= ∅ to maintain the
continuity between the two sub-nets i and j. Mathematically, the XPINN loss for the i-th subdomain is

RiS(θi) + λI
∑

i,j:∂Ωi∩∂Ωj 6=∅

RI(θ
i,θj), (3)

where λI ≥ 1 is the weight controlling the strength of interface loss, θi is the parameters for subdomain i, and each
RiS(θ) is the PINN loss for subdomain i containing boundary and residual losses, i.e.

RiS(θi) =
1

nb,i

nb,i∑
j=1

|uθi(xib,j)− g(xib,j)|
2

+
1

nr,i

nr,i∑
j=1

|Luθi(xir,j)− f(xir,j)|
2
, (4)

where nb,i and nr,i are the number of boundary points and residual points in subdomain i respectively, xib,j and xir,j
are the j-th boundary and residual training points in subdomain i, respectively. Moreover, RI(θi,θj) is the interface
loss between the i-th and j-th subdomains based on several interface training points {xijI,k}

nI,ij
k=1 ⊂ ∂Ωi ∩ ∂Ωj

RI(θ
i,θj) =

1

nI,ij

nI,ij∑
k=1

[|uθi(x
ij
I,k)− {{uθavg}}|2+

|(Luθi(x
ij
I,k)− fi(xijI,k))− (Luθj (x

ij
I,k)− fj(xijI,k))|2],

(5)

where {{uθavg}} = uavg := (uθi(x
ij
I,k) + uθj (x

ij
I,k))/2, nI,ij is the number of interface points between the i-th and

j-th subdomains, while xijI,k is the k-th interface points between them. The first term is the average solution continuity
between the i-th and the j-th sub-nets, while the second term is the residual continuity condition on the interface given
by the i-th and the j-th sub-nets.

We also notice a recent paper on improving the training and generalization of XPINN [17], which includes the
following additional interface regularization term for XPINN:

RA(θi,θj) =
1

nI,ij

nI,ij∑
k=1

d∑
m=1

∣∣∣∣∣∂uθi(x
ij
I,k)

∂xm
−
∂uθj (x

ij
I,k)

∂xm

∣∣∣∣∣
2

, (6)

where d is the problem dimension, i.e., x ∈ Rd. The additional interface condition forces the continuity of the first
order derivatives between two sub-nets. In our experiment on the Poisson equation in section 5.4, which includes
residual discontinuity, we shall show how this additional term improves XPINN via decreasing errors near the interface.

For our discussion on generalization, besides the training losses above, the testing loss evaluating generalization
ability is defined as

RD(θ) = EUnif(∂Ω)|uθ(x)− g(x)|2 + EUnif(Ω)|Luθ(x)− f(x)|2, (7)

where Unif(A) is the uniform distribution on a set A. Note that in the definition of the population loss, the interface
losses of XPINNs are excluded to compare PINNs and XPINNs with the same quantity – the generalization bound
for the boundary and residual terms. The beneficial effect of the interface loss is in improving the generalization of
the boundary and residual terms instead of helping the generalization of the interface term itself. This is because
the interface allows the sub-net in the subdomain Ωi to implicitly use samples from other subdomain Ωj (i 6= j) for
regularization through the continuity.

Lastly, we denote the boundary empirical loss and the residual empirical loss byRS∩∂Ω and RS∩Ω, respectively,
and their population versions byRD∩∂Ω and RD∩Ω, inspired by the fact that boundary points are on ∂Ω and that
residual points are in Ω. Specifically, their mathematical definitions are:

RS∩∂Ω =
1

nb

nb∑
i=1

|uθ(xb,i)− g(xb,i)|2. RS∩Ω =
1

nr

nr∑
i=1

|Luθ(xr,i)− f(xr,i)|2.

RD∩∂Ω = EUnif(∂Ω)|uθ(x)− g(x)|2. RD∩Ω = EUnif(Ω)|Luθ(x)− f(x)|2.

(8)

2.3 Neural Networks
In this subsection, we define neural networks and their related properties.
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Definition 2.1. (Neural Network). A deep neural network (DNN) uθ : x = (x1, . . . , xd ) ∈ Ω 7−→ uθ(x) ∈ R,
parameterized by θ of depth L is the composition of L linear functions with element-wise non-linearity σ, is expressed
as below.

uθ(x) = WLσ(WL−1σ(· · ·σ(W 1x) · · · ), (9)

where x ∈ Rd is the input, and W l ∈ Rml×ml−1 is the weight matrix at l-th layer with d = m0 and mL = 1. The
parameter vector θ is the vectorization of the collection of all parameters. We denote h as the maximal width of the
neural network, i.e., h = max(mL, · · · ,m0).

We consider DNNs without bias because one can always set x ← [x, 1] to involve the bias term. Note that the
non-linearity σ is Lipschitz continuous with Lipschitz constant 1 in Ω. The widely adopted ReLU activation function
ReLU(x) = max(0,x) cannot be used in our setting due to its non-differentiability.

Because the neural network uθ is always differentiated with respect to its input in the residual losses in PINNs, we
introduce their expressions as follows:

∂uθ(x)

∂x
= WL ·ΦL−1WL−1 · · · · ·Φ1W 1 ∈ Rd, (10)

∂2uθ(x)

∂x2
= {

L−1∑
l=1

(WLΦL−1 · · ·W l+1)diag(Ψl · · ·Ψ1W 1
:,j)(W

l · · ·Φ1W 1)}1≤j≤d, (11)

where Φl = diag[σ′(W lσ(W l−1σ(· · ·σ(W 1x))))] ∈ Rml×ml , and Ψl = diag[σ′′(W lσ(W l−1σ(· · ·σ(W 1x))))] ∈
Rml×ml . In the Appendix, we provide detailed computation of the derivatives.

2.4 Generalized Barron Space
In this subsection, we introduce the generalized Barron space [18], which is a natural building block to construct a
function space of multi-layer deep networks. This will facilitate our study of their approximation and generalization
properties. We begin by presenting some mathematical background.

Let X be a Banach space such that X embeds continuously into the space C2,1(Ω) of functions on Ω. We further
assume that the closed unit ball BX in X is closed in the topology of C2(Ω).

Because X embeds continuously into the space C2,1(Ω), the Lipschitz constants of functions in BX and their
derivatives up to second order are bounded by the same constant and thus the subset BX is uniformly 2-equicontinuous
(see the supplementary for definition).

The subset BX is pre-compact, i.e., its closure is compact, in the separable Banach space C2(Ω), because Ω is
compact, and that C0(Ω) is separable. Since BX is C2-closed and pre-compact, it is compact and is a Polish space in
particular.

Let µ be a finite signed measure on the Borel σ-algebra of BX , with respect to the C0-norm. Then µ is a
signed Radon measure. We therefore consider the infinite-dimensional vector function version of the activation
σ : BX → C2(Ω) given by σ : g 7−→ (σ ◦ g) for each g ∈ BX , where (a ◦ b) represents the composition of
functions a and b. Then, the infinite-dimensional vector function σ is continuous due to the Lipschtiz continuity
of the dimensional wise version of σ. Thus, the infinite-dimensional vector function σ is strongly measurable (the
preimage of Borel sets in BX are Borel sets in C0(Ω)), and µ-integrable in the sense of the Bochner integral. The
above construction of new function class containing all σ ◦ g from the class of g in BX can be formalized as follows.

Definition 2.2. (Generalized Barron Space) The generalized Barron space modeled on X associated with the non-
linearity σ is a normed space (BX,Ω, ‖ · ‖X,Ω) with

BX,Ω =
{
f ∈ C2(Ω) : ‖f‖X,Ω <∞

}
, and

‖f‖X,Ω = inf
{
‖µ‖M(BX) : µ ∈M(BX) s.t. f = fµ on Ω

}
,

(12)

whereM(BX) denotes the space of Radon measures on BX and fµ =
∫
BX

σ(g)dµ(g). Here, the integral represents
the Bochner integral with g ∈ BX .

For example, if X is the space of linear functions from Rd to R (which is isomorphic to Rd+1), then the generalized
Barron space modeled on X is the (usual) Barron space for two-layer neural networks [19]. If X is the (usual) Barron
space of two-layer neural networks, then the generalized Barron space modeled on X is the space for three-layer
neural networks. That is, we can construct the generalized Barron space of L-layer networks from that of (L− 1)-layer
networks by recursively applying its definition. This recursive construction leads to the tree-like function space
(Definition 2.3), which is a function space of multi-layer neural networks (Theorem 2.1), as given below.
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Definition 2.3. (Tree-Like Function Space for Deep Networks) The tree-like function spaceWL(Ω) of depth L is
recursively defined byW l(Ω) = BWl−1(Ω),Ω for all l ∈ {2, 3, . . . , L} whereW1(Ω) is the space of linear functions
from Rd to R.

The term “tree like function space” is taken from one of the most related works [18], and a famous paper on neural
network approximation [20]. Intuitively, the neural networks resemble the tree structure, where each neuron in the
network is a node in the graph, and the edges of the graph connect the neurons in the previous and the present layers.
Our “tree like function space” has nothing to do with the tree functions in graph theory. Our definition contains a vast
function space covering the majority of PDE solutions.

Theorem 2.1. (Embedding of Finite Networks). The tree-like function spaceWL(Ω) contains all finite multi-layer
networks uθ(x) of depth L satisfying ‖W l‖1,∞ ≤ 1, 1 ≤ l ≤ L − 1, and the Barron norm of networks satisfies
‖uθ‖WL(Ω) ≤ ‖WL‖1,∞.

Theorem 2.1 shows that the tree-like function space constructed via the generalized Barron space indeed contains
the class of multi-layer neural networks, the norm of which is controlled by the 1,∞ matrix norm of their parameters.
The following is a list of basic properties of the generalized Barron space, which also holds for the tree-like function
space and justifies our recursive construction of the tree-like function space:

Theorem 2.2. (Property of Generalized Barron Spaces). The following two statements are true. (1) The generalized
Barron space is complete in the metric defined by the generalized Barron norm ‖ · ‖X,Ω: i.e., the generalized Barron
space is a Banach space. (2) BX,Ω embeds continuously into C2,1(Ω) and the closed unit ball of BX,Ω is a closed
subset of C2(Ω).

The last property indicates that BX,Ω satisfies the same properties, which we imposed on X during the construction,
i.e., we can repeat the construction and consider BBX,Ω , hence, ensuring the validity of the recursive construction
in the tree-like function space. As universal approximators, neural networks can also approximate arbitrary Barron
functions accurately.

Theorem 2.3. (Approximation Properties of Tree-Like Functions). Let P be a probability measure with compact
support in Ω, and Q be a probability measure with compact support in ∂Ω. Then for any L ≥ 1, f ∈ WL(Ω) and
m ∈ N, there exists a neural network uθ(x) of depth L, with width ml = mL−l+1, ∀l > 1 such that

‖uθ − f‖H2(P) ≤
3L‖f‖WL(Ω)√

m
,

‖uθ − f‖L2(Q) ≤
3CΩL‖f‖WL(Ω)√

m
,

(13)

where CΩ is a universal constant only depends on the domain Ω, and H2 = W 2,2 is the Sobolev space, and
‖θ‖P ≤ ‖WL‖1,∞ ≤ ‖f‖WL(Ω), where ‖ · ‖P is the path norm defined as

‖θ‖P =
∑
iL

· · ·
∑
i0

|WL
iL · · ·W

1
i1i0 |. (14)

The path norm is one type of complexity measure of neural networks correlated to generalization [21]. The above
theorem shows that the neural networks can approximate any target function in the generalized Barron space and its
derivatives well with complexities controlled by the Barron norm of the target functions, which shows the efficiency of
network approximation. Note that since Ω is fixed in this paper, the constant CΩ is actually universal. This is utilized
in the proof of our prior generalization bound in Theorem 3.1.

Actually, the theoretical result that neural networks can approximate a function and its derivative is not new [22, 23].
Their proof idea is two-step. First, they show that polynomials are dense in Ck(Ω). Second, they can approximate
polynomials in Ck-norm, using Taylor’s expansion. In our paper, we adopt a functional analysis approach to adapt to
the Barron space setting, i.e., to show additionally that such networks have low complexity measured by Barron norm,
which is indispensable to our prior bound.

3 Theory
In this section, we introduce our main generalization results, including a prior bound based on the Barron space and a
posterior bound based on the Rademacher complexity. For both of them, we use the following assumption adopted
from a closely related previous study [13].
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Assumption 3.1. (Symmetry and boundedness of L). Throughout the analysis in this paper, we assume the differential
operator L in the PDE satisfies the following conditions. The operator L is a linear second-order differential operator
in a non-divergence form, i.e., (Lu∗)(x) =

∑d
α=1,β=1Aαβ(x)u∗xαxβ (x)+

∑d
α=1 bα(x)u∗xα(x)+c(x)u∗(x), where

allAαβ , bα, c : Ω→ R are given coefficient functions and u∗xα are the first-order partial derivatives of the function
u∗ with respect to its α-th argument (the variable xα) and u∗xαxβ are the second-order partial derivatives of the
function u∗ with respect to its α-th and β-th arguments (the variables xα and xβ). Furthermore, there exists constant
K > 0 such that for all x ∈ Ω = [−1, 1]d, and α, β ∈ [d], we have Aαβ = Aβα and Aαβ(x), bα(x), c(x) are all
K-Lipschitz, and their absolute values are not larger than K.

Because multiplying the network functions by the coefficientsA, b, c and differentiation on them influence their
complexities, the universal bound on the coefficientsA, b, c and the restriction to second order PDEs are required for
our estimation on the Rademacher complexity of the hypothesis class of PINNs.

3.1 A Prior Generalization Bound (Theorem 3.1)
In this subsection, we introduce our prior bound based on the Barron space.

Theorem 3.1. (A prior generalization bound on PINN). Let the Assumption given in 3.1 holds, then for any δ ∈
(0, 1) and the depth L, suppose that the true solution u∗(x) lies in the tree-like function space WL(Ω), and set
λ = 3(2KCΩ + 1)L2/m. Let θ∗ = arg minθ RS(θ) + λ‖θ‖2P . Then, with probability at least 1− δ over the choice
of random samples S = {xi}nb+nri=1 ⊂ Ω with nb boundary points and nr residual points, we obtain the following
generalization bound

RD∩∂Ω(θ∗) ≤ RS∩∂Ω(θ∗) + 8‖u∗‖WL(Ω)
C(h) log nb√

nb
+ 2

√
log(2/δ)

nb
,

RD∩Ω(θ∗) ≤RS∩Ω(θ∗) + 8
(
‖u∗‖WL(Ω)

)3 C(h,K) log nr√
nr

+ 2

√
log(2/δ)

nr
,

(15)

where C(h) and C(h,K) are universal constants depending only on h and h,K, respectively.

In Theorem 3.1, the generalization bounds on the right-hand side of equation (15) (for both the boundary and the
residual points) contain three terms, where the first term is the empirical training loss, the second term is the complexity
of the model (original network for boundary loss and differentiated network for residual loss), and the third term is the
statistical term. Moreover, this theorem shows that under certain regularization of the path norm, the generalization
errors of PINNs are controlled by the Barron norm of the target function u∗. If the target function u∗ is more complex
(simpler), i.e., it has larger (smaller) Barron norm, the generalization error will be larger (smaller). This reflects a
data-dependent bound in which neural networks control their complexity based on those of target functions. The above
advantages are also summarized in the appendix to justify our choice of Barron space.

3.2 A Posterior Generalization Bound (Theorem 3.2)
We now provide a posterior generalization bound based on the optimized network parameters (which are obtained
after optimization). We begin by defining the Rademacher complexity [24], which is one of key notions in statistical
learning theory.

Definition 3.1. (Rademacher Complexity). Let S = {xi}ni=1 ⊂ Ω be a dataset containing n samples. The Rademacher
complexity of a function class F on S is defined as Rad(F ;S) = Eε

[
supf∈F

1
n

∑n
i=1 εif(xi)

]
, where ε1, . . . , εn are

independent and identically distributed (i.i.d.) random variables taking values uniformly in {−1, 1}.

Intuitively, Rademacher complexity measures the richness of function class F by studying its ability to fit random
labels of xi generated by εi. Since simpler function classes tend to generalize better on unseen testing data, we will
investigate the Rademacher complexities of PINNs and XPINNs, which begins with a key lemma on that of neural
networks.

Lemma 3.1. [25] For every L, and every set of n points S ⊂ Ω, the hypothesis class NNL
M,N given by the neural

networks

NNL
M,N :=

{
x 7→WLσ(WL−1σ(· · ·σ(W1x) · · · ) | ‖Wl‖2 ≤M(l),

‖Wl‖2,1
‖Wl‖2

≤ N(l)

}
, (16)
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satisfies the Rademacher complexity bound

Rad(NNL
M,N ;S) ≤ 4

n
√
n

+
18
√
d log(2h2) log n√

n

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

, (17)

where h is the maximal width of the neural network, i.e., h = max(mL, · · · ,m0).

This lemma controls Rademacher complexities of neural networks by the product of the spectral norms of the
network parameter matrices at each layer, i.e., M(l). The complexity depends on the network depth via the N(l) term
as we always have N(l) ≥ 1. We extend this result to the differentiated PINNs in the following lemma.

Lemma 3.2. (Rademacher Complexity of Differentiated Networks). For every L, and every set of n points S ⊂ Ω, the
hypothesis class

PINNL
M,N =

{
x 7→ Lu(x) | u(x) ∈ NNL

M,N

}
, (18)

satisfies the Rademacher complexity bound

Rad(PINNL
M,N ;S) ≤ 8K + 4d(L− 1)K

nr
√
nr

+
18K

√
d log(2h2) log nr√

nr
·

L∏
l=1

M(l)

(
L∑
l=1

N(l)2/3

)3/2
1 +

√
2L

L∏
l=1

M(l) +
√

2d(L2 − 1)

(
L∏
l=1

M(l)

)2
 . (19)

This lemma shows a similar Rademacher complexity bound for PINNs, where the main differences are due to
the first order and second order differentiation in PINNs, respectively. Using these lemmas, we derive the following
posterior generalization bound.

Theorem 3.2. (A posterior generalization bound on PINN). Let Assumptions 3.1 hold, for any δ ∈ (0, 1) and the
depth L, let the (not regularized) empirical loss function be θS = arg minθ RS(θ). Then, with probability at least
1− δ over the choice of random samples S = {xi}nb+nri=1 ⊂ Ω with nb boundary points and nr residual points, we
have the following generalization bound

RD∩∂Ω(θS) ≤ RS∩∂Ω(θS) +
32

nb
√
nb

+
144
√
d log(2h2) log nb√

nb
·

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

+ 2

√
log(2/δ(M,N))

2nb
,

(20)

RD∩Ω(θS)−RS∩Ω(θS)

≤ 64K + 32d(L− 1)K

nr
√
nr

+ 2

√
log(2/δ(M,N))

2nr
+

144K
√
d log(2h2) log nr√

nr
·

L∏
l=1

M(l)

(
L∑
l=1

N(l)2/3

)3/2
1 +

√
2L

L∏
l=1

M(l) +
√

2d(L2 − 1)

(
L∏
l=1

M(l)

)2
 .

(21)

where M(l) = d‖W l‖2e, and N(l) = d‖W l‖2,1/‖W l‖2e, in which dae of a ∈ R is the smallest integer that is
greater than or equal to a, and

δ(M,N) = δ/

[
L∏
l=1

M(l)(M(l) + 1)N(l)(N(l) + 1)

]
. (22)

The generalization bounds are mainly controlled by the complexity of networks measured by the spectral norm
{M(l)}Ll=1 and the (2,1) norm {N(l)}Ll=1, as well as the last statistical term. When compared to the prior bound in
Theorem 3.1, the posterior bound in Theorem 3.2 is easier to compute numerically, because it only involves terms
related to neural network parameters. Despite the difference, Theorems 3.1 and 3.2 are related. Concretely, Theorem 3.1
shows that if the target function u∗ is more complex (simpler), i.e., has larger (smaller) Barron norm, the generalization
error is larger (smaller), which implies that a complex (simple) neural network has been learnt to fit the target since
complex (simple) network generalizes worse (better). On the other hand, the complexity of neural networks can
also be reflected by the quantities {M(l), N(l)}Ll=1 in Theorem 3.2 since they are directly linked to Rademacher
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complexity in Lemmas 3.1 and 3.2. Hence, we can expect that PINNs learning more complex target functions have
larger {M(l), N(l)}Ll=1 quantities. And if a trained PINN has large {M(l), N(l)}Ll=1 quantities, which signifies higher
complexity, the target function fitted should also be complicated (i.e., it has a larger Barron norm) due to the implicit
regularization of network training, i.e., stochastic gradient training finds out complex (simple) solution given a complex
(simple) target.

3.3 Posterior L2 Error Generalization Bound
In this subsection, we will bridge the gap between the boundary + residual generalization error with the L2 generaliza-
tion error. In particular, we adopt the following assumption widely used in numerical PDE methods [26, 27] and PINN
theory [15–17, 28]. Intuitively, the assumption states that minimization of the boundary and residual errors contributes
to the minimization of L2 error.

Assumption 3.2. Assume that the PDE satisfies the following norm constraint:

C1‖u‖L2(Ω) ≤ ‖Lu‖L2(Ω) + ‖u‖L2(∂Ω), ∀u ∈ NNM
L ,∀L,M, (23)

where the positive constant C1 does not depend on u but on the domain and the coefficients of the operators L.

This is Assumption 2.5 in [29] and Assumption 2.1 in [15], which are two theory papers on PINN. In particular,
the function space (X, ‖ · ‖X) in [29] becomes the function space of all neural network functions with the L2

norm, (Y, ‖ · ‖Y ) becomes the L2 function space (Ω, ‖ · ‖L2(Ω)), and (Z, ‖ · ‖Z) becomes the L2 function space
(∂Ω, ‖ · ‖L2(∂Ω)).

Intuitively, Assumption 3.2 specifies the well-posedness of the PDE problem, and justifies the motivation of
minimizing the boundary and residual losses.

To show that Assumption 3.2 is realistic, various papers have proved that Assumption 3.2 holds for various PDEs.
[15] proves that our Assumption 3.2 holds for Poisson equation, heat equation, wave equation and Stokes equation.
[28] proves that Assumption 3.2 holds for Kolmogorov equations that include the heat equation and Black-Scholes
equation as special cases. [17] proves Assumption 3.2 holds for incompressible Navier-Stokes equations. Lastly, [14]
proves that optimization of the Deep Ritz Method objective contributes to L2 error, on Poisson equation and static
Schrödinger equation. Therefore, we refer the readers to [14, 15, 17, 28] for concrete PDE examples satisfying the
assumption.

From the practice side [6], the motivation of the boundary and residual losses is to embed the physical law governed
by the PDE and the data into the neural networks. Empirically, as long as the PDE problem is well-posed (i.e., it
satisfies Assumption 3.2) and that data are sufficient (which means the corresponding bound will be small), then PINNs
can solve the PDE problem with small error. Assumption 3.2 is basically the foundation of PINNs.

The following theorem bridges the boundary and residual losses with the L2 error.

Theorem 3.3. Let Assumption 3.2 holds, then for all neural networks parameterized by θ, we can connect their L2

generalization errors with the boundary + residual losses as follows:

‖uθ − u‖L2(Ω) ≤
√

2C−1
1 (RD∩Ω(θ) +RD∩∂Ω(θ))

1/2
. (24)

Here, we can use both the prior bound (Theorem 3.1) and the posterior bound (Theorem 3.2) to evaluate the L2

distance between solution of PINN or XPINN and the true solution of PDEs.

3.4 Comparing XPINN and PINN by Theorem 3.1
In this subsection, we compare PINNs with XPINNs by using the generalization bound in Theorem 3.1. We focus
on comparing PINN with XPINN on the residual loss, i.e. RD∩Ω and RS∩Ω, because it is more representative
of the differentiated nets in PINNs. The case for boundary loss is similar but simpler, which is included in the
Appendix. Specifically, the comparison is performed by computing their respective theoretical bounds. In particular,
the generalization performance of PINN depends on the upper bound in Theorem 3.1, which is: RS∩Ω(θ∗) +

8
(
‖u∗‖WL(Ω)

)3
C(h,K) log nr/

√
nr + 2

√
2(log(2/δ))/nr, where nr is the number of residual training points.

For XPINN’s generalization, we can apply Theorem 3.1 to each of the subdomains in the XPINN. Specifically,
for the i-th sub-net in the i-th subdomain of XPINN, i.e., the Ωi, i ∈ {1, 2, ..., ND}, its generalization performance is
upper bounded by RS∩Ωi(θ

∗) + 8
(
‖u∗‖WL(Ωi)

)3
C(h,K) log nr,i/

√
nr,i + 2

√
2(log(2/δ))/nr,i, where nr,i is the

number of training boundary points in the i-th subdomain.
Hence, since the i-th subdomain has nr,i training boundary points and is in charge of the prediction of nr,i

nr
proportion of testing data, we weight-averaged their generalization errors to get the generalization error of XPINN:
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∑ND
i=1

nr,i
nr

(RS∩Ωi(θ
∗) + 8

(
‖u∗‖WL(Ωi)

)3
C(h,K) log nr,i/

√
nr,i + 2

√
2(log(2/δ))/nr,i). If we omit the last term

and assume that their empirical losses are similar, i.e., RS∩Ω ≈
∑ND
i=1(nr,i/nr)RS∩Ωi , and

√
2 log(2/δ)/nr,i �

‖u∗‖WL(Ω), ‖u∗‖WL(Ωi), then comparing the generalization ability of PINN and XPINN reduces to the following:

‖u∗‖3WL(Ω)(PINN) versus
ND∑
i=1

log nr,i
√
nr,i

log nr
√
nr
‖u∗‖3WL(Ωi)

(XPINN), (25)

where the model having smaller corresponding quantity is more generalizable.
In the next section, we will present three analytic examples and adopt the above comparison method to illustrate

the circumstances under which XPINN is better or worse than PINN.

3.5 Comparing XPINN and PINN by Theorem 3.2
The comparison using Theorem 3.2 is also done via computing their respective theoretical bounds. The residual
loss is considered in the main text while the case for boundary loss is included in the supplementary material.
Concretely, we denote the upper bound of PINN testing loss as BPINN and those of the sub-net i in XPINN as Bi,XPINN,
i ∈ {1, 2, ..., ND}, which are provided by the right sides of Theorem 3.2, i.e., the bounds are

BPINN =
64K + 32d(L− 1)K

nr
√
nr

+ 2

√
log(2/δ(M,N))

2nr
+

144K
√
d log(2h2) log nr√

nr
·

L∏
l=1

M(l)

(
L∑
l=1

N(l)2/3

)3/2
1 +

√
2L

L∏
l=1

M(l) +
√

2d(L2 − 1)

(
L∏
l=1

M(l)

)2
 , (26)

and

Bi,XPINN =
64K + 32d(L− 1)K

nr,i
√
nr,i

+ 2

√
log( 2

δ(Mi,Ni)
)

2nr,i
+

144K
√
d log(2h2) log nr,i√

nr,i
·

L∏
l=1

Mi(l)

(
L∑
l=1

Ni(l)
2/3

)3/2
1 +

√
2L

L∏
l=1

Mi(l) +
√

2d(L2 − 1)

(
L∏
l=1

Mi(l)

)2
 . (27)

Specifically, we assume that all sub-PINNs as well as the PINN model use neural networks with depth L and
width h. In the bound of PINN, nr is the total number of residual training samples. M(l) = d‖W l‖2e, and
N(l) = d‖W l‖2,1/‖W l‖2e, where W l is the l-th layer parameter matrix in the PINN model. Moreover, in
the bound of XPINN, nr,i is the number of residual training samples in subdomain i. Mi(l) = d‖W l

i‖2e, and
Ni(l) = d‖W l

i‖2,1/‖W
l
i‖2e, where W l

i is the l-th layer parameter matrix of the i-th subnet in the XPINN model.
Because the i-th sub-net in XPINN is in charge of the prediction of nr,inr

proportion of testing data, we weight-averaged

their bounds to get that of XPINN, i.e., BXPINN =
∑ND
i=1(nr,i/nr)Bi,XPINN where BXPINN is the bound for XPINN.

Thus, we only need to compare BPINN with BXPINN, where the model having smaller corresponding quantity is more
generalizable. These quantities can be directly measured and calculated from the trained deep nets, which allows for
easy numerical validation. Thus, we validate this comparison method in computational experiments.

3.6 Comparing XPINN and PINN by Theorem 3.3
In this subsection, we compare PINNs with XPINNs on the L2 error by using the generalization bound in Theorem 3.3.
Specifically, the comparison is performed by computing their respective theoretical bounds. In particular, we have
already shown how to compare PINN and XPINN based on the boundary and residual losses. Denote the boundary and
residual bounds of PINN (XPINN) as Bboundary

PINN (Bboundary
XPINN ) and Bresidual

PINN (Bresidual
XPINN ). Then, we only need to compare the

following quantites:(
Bboundary

PINN +Bresidual
PINN

)1/2

(PINN) versus
(
Bboundary

XPINN +Bresidual
XPINN

)1/2

(XPINN). (28)

4 Analytical Examples Based on Theorem 3.1
In this section, we provide analytical examples to further analyze the prior generalization bound in Theorem 3.1.
The examples ensure analytical expressions of the Barron norm, which results in precise calculation of prior bounds.
Specifically, we show in what cases XPINNs are better than, similar to, and worse than PINNs in order to demonstrate
the tradeoff in XPINN generalization.
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due to decomposition
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Figure 1: Left: Decomposition causes simpler target in each part (red), but less training data leads to overfitting. Right:
Tradeoff between the two factors.

4.1 Case where XPINN Outperforms PINN
Let us consider the target function u∗(x, y) = 2 sinx+sin y, on the broken line Ω = Ω1∪Ω2 = [0, 1]×{0}∪{0}×[0, 1].
Obviously, we have ‖u∗‖W2(Ω) = 3, recall thatW2(Ω) is the natural function space of two-layer sine networks on Ω.
Interestingly, if we restrict u∗(x, y) to Ω1, we have u∗(x, y) = 2 sinx on Ω1, with a Barron norm ‖u∗‖W2(Ω1) = 2.
Similarly, if we restrict our observation to Ω2, we have ‖u∗‖W2(Ω1) = 1. Since the lines Ω1 and Ω2 have the same
length, it is natural to assume that the numbers of train residual data points on Ω1 and Ω2 are the same, i.e. nr,1 =
nr,2 = nr/2 in equation (25). In addition, we also assume that there is sufficient training data, with log nr � log 2.
We compare a PINN on Ω and an XPINN with two sub-nets on Ω1 and Ω2, respectively. Applying Theorem 3.1 and
our discussion in section 3.1, 27 = ‖u∗‖3W2(Ω) & (‖u∗‖3W2(Ω1) + ‖u∗‖3W2(Ω2))/

√
2 = (8 + 1)/

√
2 = 9/

√
2. Thus,

XPINN generalizes better than PINN.
The underlying reason is as follows: u∗ remains simple on Ω2, while being complex on Ω1. Since XPINN

optimizes several sub-nets at different subdomains, XPINN may learn a simple network on Ω2 where the solution is
simpler, (i.e., very small ‖u∗‖W2(Ω2) = 1). Also, it learns a complex network in other subdomains, where the solution
is relatively complicated, (i.e., relatively large ‖u∗‖W2(Ω1) = 2). Therefore, compared with PINN, which learns a
very complex network on the whole domain Ω (extremely large ‖u∗‖W2(Ω) = 3), XPINN tends to have lower overall
complexity, because it is complex on only part of the domain and remains simple on the rest of the domain, which
leads to better generalization.

4.2 Case where XPINN is Worse Than PINN
Let us consider the same target function u∗(x, y) = 2 sinx+ 1

2 sin y, on a different broken line Ω = Ω1 ∪ Ω2, where
Ω1 = [0, 1] × {0} and Ω2 =

{
(x, y)|y = x, x ∈ [0,

√
2/2]

}
. Obviously, we have ‖u∗‖W2(Ω) = 2.5. Moreover,

if we restrict u∗(x, y) to Ω1, we have u∗(x, y) = 2 sinx on Ω1, with a Barron norm ‖u∗‖W2(Ω1) = 2. However,
even if we restrict our observation to Ω2, we still have ‖u∗‖W2(Ω2) = 2.5. Since the lines Ω1 and Ω2 have the
same length, it is natural to assume that the numbers of train residual data points on Ω1 and Ω2 are the same, i.e.
nr,1 = nr,2 = nr/2 in equation (25). We compare a PINN on Ω and an XPINN with two sub-nets on Ω1 and Ω3

respectively. Applying Theorem 3.1 and following our discussion in section 3.1, we have 15.625 = ‖u∗‖3W2(Ω) .

(‖u∗‖3W2(Ω1) + ‖u∗‖3W2(Ω2))/
√

2 = (23 + 2.53)/
√

2 = 23.625/
√

2 ≈ 16.70. Thus, in this example XPINN is worse
than PINN.

Although XPINN decreases the target function complexity via decomposition, at least on Ω1 it decreases to 2 from
2.5, it cannot complement the overfitting of less available training data on generalization, which is reflected in the√

1/nr term in the bound, where nr is the number of residual training samples, i.e. the complexity grows with less
data. Unfortunately, in this example, the more complexity brought by overfitting due to less data exceeds the benefit of
simpler target function parts after decomposition. Hence, XPINN performs worse than PINN.

4.3 Illustration of a Tradeoff in XPINN generalization
In this section, we summarize the above two examples and derive a tradeoff in XPINN generalization, which is
illustrated in Figure 1. There are two factors that counter-balance each other to affect XPINN generalization, namely
the simplicity of decomposed target function within each subdomain thanks to domain decomposition, and the
complexity and inclination to overfit due to less available training data, which counter-balance each other as follows.
When the former is more dominant, XPINN outperforms PINN, as in our example in section 4.1. Otherwise, PINN
outperforms XPINN, as in our example in section 4.2. When the two factors reach a balance, XPINN and PINN
perform similarly.
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To make the idea clearer, we consider another analytical example. Let us consider the target function u∗(x, y) =
2 sinx+ q sin y, on the broken line Ω = Ω1 ∪Ω2, where Ω1 = [0, 1]×{0} and Ω2 =

{
(x, y)|y = x, x ∈ [0,

√
2/2]

}
,

where q ∈ R+ is a fixed constant to be decided. Obviously, we have ‖u∗‖W2(Ω) = 2+q. Further, if we restrict u∗(x, y)
to Ω1, we have u∗(x, y) = 2 sinx on Ω1, with a Barron norm ‖u∗‖W2(Ω1) = 2. However, even if we restrict our
observation to Ω2, we still have ‖u∗‖W2(Ω2) = 2+q. Because the lines Ω1 and Ω2 have the same length, it is natural to
assume that the numbers of train residual data points on Ω1 and Ω2 are the same, i.e. nr,1 = nr,2 = nr/2 in equation
(25). We compare a PINN on Ω and an XPINN with two sub-nets on Ω1 and Ω2, respectively. Applying Theorem 3.1
and following our discussion in Section 3.1, we need to compare the following quantities to determine when XPINN
outperforms PINN: (2 + q)3 = ‖u∗‖3W2(Ω) versus (‖u∗‖3W2(Ω1) + ‖u∗‖3W2(Ω2))/

√
2 = (8 + (2 + q)3)/

√
2. When

(2 + q)3 < 8/(
√

2− 1) ≈ 19.31, i.e., q < 0.683, PINN is better due to its more obvious effect with less data. When
q > 0.683, XPINN performs better due to the more obvious effect by decomposing complexity into simplicity.

In summary, inspired by the two analytical examples, we have shown in this section that there exists a tradeoff
in XPINNs, which results in their different performance when compared to PINNs. We further demonstrate these
phenomena in computational experiments for various PDEs in the next section.

5 Computational Experiments
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Figure 2: Data visualization for the KdV experiment. Left: exact solution of the KdV equation. Right: Training points.

Figure 3: Error visualization for the KdV experiment.

5.1 KdV Equation
5.1.1 Setup

In this experiment, we consider a one-dimensional KdV equation given by ut + uux = 0.0025uxxx, x ∈ [−1, 1], t ∈
[0, 1], with the boundary condition of u(x, 0) = cos(πx), x ∈ [−1, 1] and the periodic initial condition. The true
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Table 1: Computational results for KdV equation.
Train Loss Relative L2 error Complexity Bound

PINN 3.597e-3±7.194e-4 6.899e-1±8.015e-3 100.00% 100.00%
XPINN-R 5.619e-3±5.056e-3 6.955e-1±9.905e-3 101.31% 121.08%XPINN-L 28.50%

solution is visualized in Figure 2 left. The entire dataset for this PDE is provided by the paper of PINN [6] and CPINN
[30].

Following the KdV equation experiment in CPINN [30], the training dataset for PINN contains 18000 residual
points and 914 boundary points. The testing dataset for PINN contains 102400 points uniformly distributed within the
domain. The backbone model for PINN is a 10-layer neural network with 20 hidden units activated by sine as in our
theory. Adam [31] optimizer with 1e-3 learning rate is used for optimization. No regularization is used.

Moreover, from the solution of the KdV equation in Figure 2 left, we observe that it is complex, and that it fluctuates
when x ≥ 0 corresponding to the right part. In contrast, the left part is smoother and simpler. Hence, to reflect our
discussion on the prior bound and analytical examples, for XPINN we partition the whole domain into two subdomains,
including (1) the right domain, corresponding to sub-net named XPINN-R as x > −0.74 and (2) the left domain,
corresponding to sub-net named XPINN-L as x ≤ −0.74. Then, the target function in subdomain 1 is complicated and
it fluctuates significantly, while that in subdomain 2 is simpler and smoother.

For XPINN, it is given 646 and 268 boundary points, 14000 and 4000 residual points, in subdomain 1 and 2,
respectively. The number of interface points is 10000. The backbone models for XPINN are two 10-layer neural
networks with 20 hidden units activated by sine as in our theory. Two Adam [31] optimizers with 1e-3 learning rates
are used for optimizations. No regularization is used.

For fair comparison, we keep the same training procedure, i.e., training epochs, learning rate, model structure, and
weight decay, etc. We train each model for 5000 epochs, and the results reported in the table are those at the 5000-th
epochs. For both models, we use unity weight for the residual loss and zero weight for the residual continuity loss, and
also use unity weight for the boundary loss and the boundary interface loss. For reproducibility, we run each model for
5 times using fixed random seed 0, 1, 2, 3, 4.

Lastly, we need to pay attention to the choice of δ in the posterior bound. Because the bound in Theorem 3.2 holds
with probability 1− δ, in the computations we take δ = 0.1 so that the bound holds with probability 0.9. At the same
time, for XPINN, we need to take δ = 0.05 because there are two sub-nets for a union bound.

5.1.2 Results

We present the experimental results including train loss, and test relative L2 error, as well as the calculated theoretical
generalization bound in XPINN and PINN models in Table 1. Moreover, we also provide the product of norms of the
neural network parameter matrices, which is directly linked to the Rademacher complexity of neural networks and thus
their complexities (see Lemma 3.1). We compute this quantity to provide an intuitive observation on the complexities
of the optimized neural networks.

In addition, the products of norms of the weight matrices are presented in the columns “Complexity” where that
of PINN is denoted 100% for clear comparison. The complexity of PINN is similar to that of XPINN-R, while
XPINN-R is more complex than XPINN-L. XPINN-R corresponds to the domain x > −0.74, where the solution is
more complicated and XPINN-L corresponds to the simpler domain, validating the implicit regularization of gradient
descent, which learns simple (complex) function with simple (complex) neural networks. Although XPINN-R is
fitting a less complex function, the available data in its subdomain 1 is less than those of PINN, so overfitting causes
XPINN-R to be as complex as the PINN fitting the entire function.

Furthermore, the “Bound” columns in Table 1 are the theoretical generalization bounds for PINN and XPINN,
where that of PINN is denoted as 100% for clarity. The theoretical generalization bound of XPINN is 121.08%,
which is slightly larger than PINN and consistent with their testing performances, i.e., the error of PINN (6.899e-1)
is slightly better than that of XPINN (6.955e-1), justifying the effectiveness of our generalization bound. In Figure
3, we visualize the errors of PINN and XPINN. PINN and XPINN have similar error distributions, which justifies
their similar performances and bounds. In conclusion, for the KdV equation, the positive effect of simplicity of target
functions in every subdomain brought by the domain decomposition is similar to the negative overfitting effect caused
by less available data in each subdomain, which leads to similar performance of XPINN than PINN overall.
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Table 2: Computational results for the heat equation.
Train Loss Relative L2 error Complexity Bound

PINN 8.589e-5±2.218e-5 1.778e-3±2.195e-4 100.00% 100.00%
XPINN-T 2.585e-4±1.726e-4 4.490e-3±1.517e-3 156.24% 243.22%XPINN-B 75.75%

5.2 Heat Equation
5.2.1 Setup

In this subsection, we consider the heat equation, which is a second order linear PDE. The one-dimensional heat equation
under consideration is ut = uxx, x ∈ [−1, 1], t ∈ [0, 1], where its boundary conditions on (x, t) ∈ {−1, 1} × [0, 1],
and its initial conditions on (x, t) ∈ [0, 1]× {0}, are given by the ground truth solution

u(x, t) = e−π
2t cos(πx) + 0.6e−4π2t cos(2πx) + 0.3e4t−4 cosh(2x) + 0.1et−1 sinhx. (29)
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Figure 4: Data visualization for the heat experiment. Left: exact solution of the heat equation. Right: Training points.
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Figure 5: Error visualization for the heat experiment.

The solution is visualized in Figure 4. The training dataset for PINN contains 2000 residual points and 200
boundary points, whereas the testing dataset for PINN contains 160801 points within the domain. The backbone model
for PINN is a 9-layer neural network with 20 hidden units activated by tanh. LBFGS with 1e-1 learning rate is used.
No regularization is used.

For domain decomposition of XPINN, from Figure 4 left, we observe that the solution of heat equation is complex
near t = 0 and t = 1, due to the two nearby heat sources. The two heat sources are also dissimilar: at t = 0 the source
is generated by trigonometric functions, while at t = 1 it is generated by hyperbolic functions. To design a good
XPINN, we should partition the complexities of the two heterogeneous heat sources into different subdomains. Thus,
we partition the whole domain into a bottom domain t ≤ 0.5 containing trigonometric heat source, corresponding to
XPINN-B, and a top one t > 0.5 containing the hyperbolic source, corresponding to XPINN-T.
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For fair comparison, we keep the same training procedure, i.e., training epochs, learning rate, model structure, and
weight decay, etc. We train each model for 20000 epochs, which can train orders of magnitude to 1e− 4 to 1e− 5, and
the results reported in the table are those at the 20000-th epochs. For both models, we use unity weight for the residual
loss and the residual continuity loss, and use 20 weight for the boundary loss and the boundary interface loss, which
has been adopted in the original code of XPINN [12]. For reproducibility, we run each model for 5 times using fixed
random seed 0, 1, 2, 3, 4.

5.2.2 Results

Table 2 shows the experimental results for the heat equation. In the table, Train Loss denotes the training boundary
plus residual losses, Relative L2 denote the relative L2 error of the model, Complexity denotes the products of norms
of the weight matrices to quantify the network complexity, and Bound denotes the theoretical bound for the (relative)
L2 error.

PINN (1.778e-3) outperforms XPINN (4.490e-3) in relative L2 error, and its bound (100.00%) is also smaller than
that of XPINN (243.22%), i.e., our bound is consistent with numerical results. For complexity, the order is XPINN-T
(156.24%) > PINN (100%) > XPINN-B (75.75%). XPINN-T is the most complex because the top heat source is more
complicated than the bottom one, and XPINN-T only has half of the training data. In this case, the negative effect due
to overfitting caused by less data available is more obvious than the positive influence of less complex target function,
so PINN performs better than XPINN. In Figure 5, we visualize the errors of PINN and XPINN. The errors of both
models are distributed mainly in the bottom part of the domain, where XPINN-B performs much worse than PINN in
the corners of the bottom sub-domain, which may be due to limit data in this sub-domain, finally deteriorating the
performance in this part.

5.3 Advection Equation
5.3.1 Setup
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Figure 6: Data visualization for the advection experiment. Left: exact solution of the advection equation. Right:
Training points.

In this subsection, we consider the advection equation to show the difference between XPINN and PINN, which
is given by ut + 0.5ux = 0, x ∈ [−1, 1], t ∈ [0, 1], with the initial condition u(x, 0) = 1−0.2≤x≤0.2. The solution is
presented in Figure 6 left. The training dataset for PINN contains 2000 residual points and 200 boundary points. The
backbone model for PINN is a 6-layer neural network with 20 hidden units activated by tanh. Adam [31] optimizer
with 1e-3 learning rate is used for optimization. No regularization is used.

For XPINN, from Figure 6 left, we observe that the solution of the advection equation can be divided into the fol-
lowing two parts, {−0.2 < x− 0.5t}∩{x− 0.5t < 0.2} where u = 1 and {x− 0.5t ≥ 0.2} and {x− 0.5t ≤ −0.2}
where u = 0. Hence, in XPINN-LMR (left, middle, and right), we partition the domain into these three continuous
parts mentioned above. XPINN-LMR seems to be a good partition since in each subdomain the target function is
extremely simple constant function, while the whole function is complex and discontinuous. The visualization of
domain decomposition is provided in Figure 6 right.

For fair comparison, we keep the same training procedure. We train each model for 5000 epochs, and the results
reported in the table are those at the 5000-th epochs. For both models, we use unity weight for the residual loss and
zero weight for the residual continuity loss, and also use unity weight for the boundary loss and the boundary interface
loss. For reproducibility, we run each model for 5 times using fixed random seed 0, 1, 2, 3, 4.
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Figure 7: Error visualization for the advection equation.

Table 3: Computational results for advection equation.
Method Train Loss Relative L2 error Complexity Bound
PINN 1.387e-5±1.298e-5 2.052e-1±1.001e-1 100% 100%

XPINN-L
4.239e-3±2.385e-5 1.617e-1±3.582e-2

40.53%
66.59%XPINN-M 53.16%

XPINN-R 79.95%

5.3.2 Results

Table 3 presents all computational results for the advection equation. XPINN (2.052e-1) performs better than PINN
(1.617e-1) in relative L2 error, which is consistent with their theoretical bounds, i.e., the bound of XPINN (66.59%)
is also smaller than that of PINN (100%). The reason is revealed by the norms. All sub-nets in XPINN (40.53%,
53.16%,79.95%) are less complicated than PINN (100%), because in each subdomain of XPINN, the target function
is constant, whose positive influence is more obvious than the overfitting due to less data. In sum, in the experiment
of advection equation, since the target functions in every sub-domains are extremely simple constant functions, the
positive influence of less complex target functions is much stronger than the negative effect of overfitting due to less
available data in each sub-domains, thus, XPINN performs better than PINN. Lastly, in Figure 7 we visualize the errors
of PINN and XPINN. The error mainly concentrates in the areas near the discontinuity part, where XPINN has smaller
error than PINN.

5.4 Poisson Equation
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Figure 8: Data visualization for the Poisson experiment. Left: exact solution of the Poisson equation. Right: Training
points.
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Table 4: Weighting strategies for the Poisson equation.
Residual Interface R Additional I Boundary Interface B

PINN 1 NA NA 20 NA
XPINN1 1 20 0 20 20
XPINN2 1 20 30 20 20
XPINN3 1 20 30 80 20

Table 5: Computational results for the Poisson equation.
Train Loss Relative L2 error Complexity Bound

PINN 2.688e-4±3.411e-4 5.553e-2±2.936e-2 100.00% 100.00%
XPINN1-A 1.181e-2±4.319e-3 4.022e-1±1.648e-1 142.71% 122.56%XPINN1-M 297.91%
XPINN2-A 1.016e-2±3.713e-3 1.387e-1±7.030e-3 183.44% 108.57%XPINN2-M 292.93%
XPINN3-A 1.621e-2±5.222e-3 1.108e-1±1.561e-2 195.57% 106.28%XPINN3-M 300.47%

5.4.1 Setup

In this subsection, we consider a Poisson equation with residual discontinuity, which is also a second order linear PDE.
The equation under consideration is uxx + uyy = f , where (x, y) ∈ [0, 1]× [0, 1], and f is given by f(x, y) = 1 for
(x, y) ∈ [0.25, 0.75]× [0.25, 0.75], and f(x, y) = 0 for the rest of the domain. The boundary condition is zero.

The solution is visualized in Figure 8. The training dataset for PINN contains 400 residual points and 80 boundary
points, whereas the testing dataset for PINN contains 1,002,001 points within the domain. The backbone model for
PINN is a 9-layer neural network with 20 hidden units activated by tanh. LBFGS with 1e-1 learning rate is used. No
regularization is used.

The weighting strategies for PINN and XPINNs are summarized in Table 4. For PINN, we use unity weight for
residual and 20 weight for boundary. For XPINN1, i.e., the simplest XPINN model, we use 20 weight for boundary,
boundary interface, and residual interface, while using unity weight for residual. Due to the existence of residual
discontinuity, we need to give stronger constraint to maintain the residual continuity. So, we use 20 weight for residual
interface rather than unity weight used in the official XPINN code [12].

In addition, to test the effective of the newly proposed regularization in [17], we design the second XPINN2, which
builds upon XPINN1, i.e., it adopts the same weights as XPINN1 and use 30 weight for the additional regularization
on the first order derivatives near the interface.

For the last XPINN3, we shall see in the results that XPINN2 does not perform well on the boundary. So, we try to
remedy XPINN2 by XPINN3 through increasing the weight for the boundary loss, i.e., from 20 to 80 weight on the
boundary.

For domain decomposition of XPINN, sub-domain 1 contains the area (x, y) ∈ [0.25, 0.75]× [0.25, 0.75], while
sub-domain 2 contains the rest of the domain. Specifically, we partition the domain according to the discontinuity, to
force each sub-net in the XPINN to focus on one continuous part, rather than fitting the entire function containing
residual discontinuity by one network. The sub-net for the sub-domain 1 is called XPINN-M since it is in the middle
of the domain, while the sub-net for sub-domain 2 is called XPINN-A since it is around the entire domain.

For fair comparison, we keep the same training procedure, i.e., training epochs, learning rate, model structure, and
weight decay, etc. We train each model for 20000 epochs, and the results reported in the table are those at the 20000-th
epochs. For reproducibility, we run each model for 5 times using fixed random seed 0, 1, 2, 3, 4.

5.4.2 Results

Table 5 shows the experimental results for the Poisson equation. PINN (5.553e-2) outperforms XPINN3 (1.108e-1),
and XPINN3 outperforms XPINN2 (1.387e-1), and finally XPINN2 outperforms XPINN1 (4.022e-1), and their bounds
also point to the same result, i.e., PINN (100%) < XPINN3 (106.28%) < XPINN2 (108.57%) < XPINN1 (122.56%).
All sub-nets in the XPINNs (142.71%, 297.91%, 183.44%, 292.93%, 195.57%, 300.47%) are more complicated then
the PINN (100%), which is the reason accounting for the failure of XPINNs. In this case, the lack of available data
in each sub-domain of XPINNs impacts the generalization negatively, whose effect is much more obvious than the
reduction of target function complexity in each sub-domain.

To understand the failure of XPINNs, we visualize the error plots in Figure 9. For XPINN1, due to the lack of the
additional residual interface regularization on the interface [17], the error is extremely large near the interface, which
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Figure 9: Error visualization in the Poisson equation.

causes the largest error of XPINN1. For XPINN2, although the additional residual regularization does mitigate the
error near the interface, the boundary error becomes much larger, which is because the introduction of an additional
regularization decreases the importance of boundary loss during the optimization. To solve the problem, in XPINN3
we add more weight to the boundary loss. While the error on the boundary decreases, the error near the interface
increases, which is due to the tradeoff between different loss components, namely the tradeoff between the boundary
loss and the interface loss. To conclude, XPINNs perform worse than PINN since they perform bad either on the
boundary or on the interface, which justifies the necessity of XPINNs with adaptive weight adjustment.

5.5 Compressible Euler Equations
5.5.1 Setup

Next, we consider the nonlinear inviscid compressible Euler equations, which govern the physics of high-speed
compressible fluid flows. The inviscid compressible Euler equations admit discontinuous solutions called shock or
contact waves, which are difficult to capture with good accuracy. The two-dimensional steady-state Euler equations
are given as Fx(U) + Fy(U) = 0, (x, y) ∈ [0, 1]2, where fluxes in x and y directions are defined as Fx(U) =
(ρu, p+ ρu2, ρuv, pu+ ρuE) and Fy(U) = (ρv, ρuv, p+ ρv2, pv + ρvE), where ρ, u, v and p are density, velocity
components in x and y directions, and pressure, respectively. The total energy E is defined as E = p

ρ(γ−1) + 1
2 ||u||

2
2,

where u = (u, v). In this case, we are solving the oblique shock wave problem on a square domain [0, 1]2. The bottom
boundary is the wall where slip boundary conditions are applied, whereas left and top boundary are the inflow boundary
where Dirichlet boundary conditions are applied. The right boundary has extrapolation boundary conditions. A Mach
2 flow is at an angle of -10 degrees with respect to the bottom wall, which generates an oblique shock at an angle of
29.3 degrees with the bottom horizontal wall. The exact solution is given as

(ρ, u, v, p) =

{
(1.0, cos 10o,− sin 10o, 0.17857) before shock,
(1.4584, 0.8873, 0.0, 0.3047) after shock.

Among all the primitive variables, we have plotted the fluid density which accurately shows the position of an oblique
shock wave. Figure 10 shows the exact value of density (left) and domain decomposition (right) for XPINN-AM. From
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Figure 10: Two-dimensional compressible Euler equations: Exact solution (left) and domain decomposition for
XPINN-AM (right).

Table 6: Computational results for compressible Euler equations.
Method Train Loss Relative L2 error in ρ Norms Bound
PINN 1.819e-3±6.043e-4 3.4604e-2±7.385e-3 100.00% 100.00%

XPINN-A 9.210e-4±1.882e-4 1.048e-2±5.3793e-3 37.28% 81.09%XPINN-M 64.37 %
XPINN-T 1.067e-3±4.829e-4 3.5722e-2±4.290e-3 42.37% 137.63%XPINN-B 131.26%

the domain decomposition figure we observe that the solution of the Euler equations is divided into the following
two parts, {y ≥ 0.57x+ 0.1} ∪ {y ≤ 0.5222x− 0.0522}, where solution is constant (shown by blue points) and the
remaining strip (shown by red points), where oblique shock wave is present.

5.5.2 Results
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Figure 11: Two-dimensional compressible Euler equations: Point-wise errors for PINN (left) and XPINN (right).

We used a deep net with 10000 residual points, 5 hidden-layers with 20 neurons in each layer, and 8e-4 learning
rate. The activation function is hyperbolic tangent. Table 6 gives the computational results, and Figure 11 gives the
point-wise error for the density of the fluid. In this case, the XPINN-AM generalizes better than PINN. Furthermore,
the norms of XPINN-AM are much smaller than that of PINN (100%). We further divide the domain into top (y ≥ 0.5)
and bottom subdomains (y < 0.5) for XPINN-TB. The XPINN-TB does not generalize well compared to PINNs, and
the complexities of the two sub-nets are 42.37% and 131.26% for top and bottom subdomains, respectively. These
results prove that the norms and generalization bounds are good indicators for XPINN based domain decomposition,
and can be efficiently used to further decompose the subdomains.

6 Conclusion
In this study, we have investigated the generalization abilities of PINNs and XPINNs, as well as when and how XPINNs
improve generalization. For this purpose, we have provided both prior and posterior generalization bounds to explain
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this from different viewpoints, where for the former we have developed the Barron space for multi-layer networks,
while for the latter we have derived the complexity of norm-based Rademacher for PINNs.

Through our discussion on theoretical results, analytical examples, and extensive experiments, we conclude that
the domain decomposition method in XPINNs introduces a tradeoff on generalization. On the one hand, its advantage
is that it decomposes the complex target function into several simple parts, which lead to the phenomenon that the sum
of all parts is smaller than the whole. However, on the other hand, domain decomposition causes less available training
data in each subdomain, leading to higher empirical Rademacher complexity and makes models prone to overfitting.
When the complexity reduction brought by XPINN exceeds the increased complexity caused by less training data,
XPINN outperforms PINN, as in our experiment on KdV equation, heat equation, advection equation, compressible
Euler equation and the analytical example in Section 4.1. When the overfitting caused by insufficient data is more
dominant than the simplicity due to domain decomposition, PINN outperforms XPINN, as in our experiment on heat
equation, wave equation and our analytical example in Section 4.2. When the two factors reach a balance, XPINN and
PINN perform similarly, as shown in our experiment on advection equation and our analytical example in Section 4.3.

Our results can also provide a partial explanation for the following observation. For long-time integration of several
PDEs, it has been empirically observed that only XPINNs are applicable as PINNs tend to be inaccurate. According to
our theory, this is expected as we tend to have a very high complexity measured by the norms for a whole solution of a
long-time integration, which can be decomposed into less complex sub-solutions in XPINNs. Our proposed theory can
also be useful for adaptive domain decomposition. Specifically, after initialization of a decomposition, we can compute
the bound during optimization to know how the corresponding XPINN generalizes. If it does not generalize well, we
can diagnose the reason, e.g., the negative overfitting effect caused by less training points is more obvious than the
positive effect of less complex target function in each sub-domain, then we can restructure the decomposition by letting
the sub-domain(s) contain more training points. Overall, the present work provides the first theoretical understanding
on when and how to employ XPINN for better generalization performances over the vanilla PINNs.
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A Preliminary: Functional Analysis
Definition A.1. (Multi-Index) If k is a positive integer, and u ∈ Ck(Ω), then we define the multi-index α =
(α1, · · · , αd) of order |α| = α1 + · · ·+ αd = k, and the corresponding derivative is:

Dαu =
∂α1

∂xα1
1

· · · ∂
αn

∂xαdd
u. (30)

Definition A.2. (Holder space) The Holder space Ck,γ(Ω) consists of all functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,γ(Ω) :=
∑
|α|≤k

‖Dαu‖C(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω) (31)

is finite, where the norm and the semi-norm are defined as

‖u‖C(Ω) := sup
x∈Ω
|u(x)|.

[u]C0,γ(Ω) := sup
x,y∈Ω

{
|u(x)− u(y)|
|x− y|γ

}
.

(32)

Theorem A.1. The space of functions Ck,γ(Ω) is a Banach space.

Definition A.3. (Completeness) A metric space X is called complete if every Cauchy sequence in X has a limit that is
also in X .

Definition A.4. (Relative compactness) A relatively compact subspace Y of a topological space X is a subset whose
closure is compact.

Lemma A.1. Suppose (fn)n∈N is an equicontinuous sequence in C(Ω), then if (fn)n∈N converges to f pointwise,
then f ∈ C(Ω) and the convergence is uniform.

Proof. Suppose x ∈ Ω, since (fn)n∈N is an equicontinuous sequence in C(Ω), there exists Vx ∈ N (x), where N (x)
denotes the neighborhood of x, such that when y ∈ Vx, for all n ∈ N we have

|fn(y)− fn(x)| ≤ ε. (33)

Therefore,
|f(y)− f(x)| ≤ |f(y)− fn(y)|+ |fn(x)− f(x)|+ |fn(x)− fn(y)|

≤ |f(y)− fn(y)|+ |fn(x)− f(x)|+ ε.
(34)

Let n→∞, |f(y)− f(x)| ≤ ε. Thus, f is continuous.
Since the set Ω is compact, there exists x1, · · · , xm and their neighborhoods Vx1

, · · · , Vxm , such that

Ω = ∪mk=1Vxk . ∀x ∈ Ω,∃xk, x ∈ Vxk , |fn(x)− fn(xk)| ≤ ε, |f(x)− f(xk)| ≤ ε, (35)

where m is large enough for the given ε, and we consider the equicontinuity of fn and the continuity of f . For all
x ∈ Ω, there exists xk such that x ∈ Vxk . Given large enough n, due to the continuity of fn and f , we have

|fn(x)− f(x)| ≤ |fn(x)− fn(xk)|+ |fn(xk)− f(xk)|+ |f(xk)− f(x)| ≤ 3ε. (36)

Thus the convergence is uniform.

Theorem A.2. (Arzela-Ascoli theorem) Suppose the funciton classH ⊂ C(Ω), thenH is relatively compact in C(Ω)
if and only ifH is equicontinuous.

Proof. We shall only use the sufficiency part of this theorem. So, only that part will be proved.
We first prove thatH is complete in C(Ω). We select arbitrary Cauchy sequence (fn)n≥1 inH. Then for all x ∈ Ω,

(fn(x))n≥1 is a Cauchy sequence in the Euclidean space R, which is convergent. By Lemma A.1, (fn)n≥1 uniformly
converges to a continuous f . Thus,H is complete.

We only need to show that, for all ε > 0,H can be covered by finite balls of radius ε. SinceH is equicontinuous,
then for all x ∈ Ω and ε > 0, there exists open set Ox ∈ N (x), where N (x) denotes the neighbourhood of x, such
that for all y ∈ Ox, we have |f(y)− f(x)| ≤ ε for all f ∈ H. Since Ω is a compact set, there exists finite (Oxi)

n
i=1,

such that Ω = ∪ni=1Oxi .
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Since all f ∈ H are continuous, the set ∪ni=1H(xi) is compact, so there exists finite set Z ⊂ Ω, such that

∪ni=1 H(xi) ⊂ ∪z∈ZB(z, ε), (37)

whereH(x) := {f(x) : f ∈ H}. Now we consider the finite set Zn, for all z = (z1, · · · , zn) ∈ Zn. Let

Bz =

{
f ∈ C(Ω) : sup

1≤i≤n
sup
x∈Oxi

|f(x)− zi| < 2ε

}
. (38)

Then we can a finite number of open subsets (Bz)z∈Zn .
For all f, g ∈ Bz , we have

‖f − g‖C(Ω) ≤ sup
1≤i≤n

sup
x∈Oxi

(|f(x)− zi|+ |g(x)− zi|) ≤ 4ε. (39)

Thus diamBz ≤ 4ε. We want to showH ⊂ ∪z∈ZnBz .
For all f ∈ H, we know that for all 1 ≤ i ≤ n, f(xi) belongs to one of B(zi, ε) where zi ∈ Z, due to the fact that

∪ni=1H(xi) ⊂ ∪z∈ZB(z, ε). When x ∈ Oxi , then

|f(x)− zi| ≤ |f(x)− f(xi)|+ |f(xi)− zi| < ε+ ε = 2ε. (40)

Therefore,
sup

1≤i≤n
sup
x∈Oxi

|f(x)− zi| < 2ε. (41)

Lemma A.2. (Lebesgue’s dominated convergence theorem) Let (fn)n∈N be a sequence of measurable functions in the
space Ω with measure µ. Suppose that the sequence converges point-wise to a function f and is dominated by some
integrable function g in the sense that |fn(x)| ≤ g(x), for all numbers n in the index set of the sequence and all points
x ∈ Ω. Then f is integrable (in the Lebesgue sense) and

lim
n→∞

∫
Ω

|fn(x)− f(x)|dµ(x) = 0. (42)

Definition A.5. (Sobolev space) The Sobolev space W k,p(Ω) contains all locally summable functions u : Ω → R
such that for each multi-index α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω). Furthermore, if
u ∈W k,p(Ω), we define its norm to be

‖u‖Wk,p(Ω) :=

∑
|α|≤k

∫
Ω

|Dαu|p
1/p

. p ∈ [1,∞).

‖u‖Wk,p(Ω) :=
∑
|α|≤k

ess supΩ|Dαu|. p =∞.
(43)

Theorem A.3. When p = 2, the Sobolev space Hp(Ω) = W k,2(Ω) is a Hilbert space.

Theorem A.4. (Trace Theorem) Assume Ω is bounded and Ω is C1. Then there exists a bounded linear operator:

T : W 1,p(Ω)→ Lp(∂Ω) (44)

such that

• Tu = u|∂Ω if u ∈W 1,p(Ω) ∩ C(Ω).

• For each u ∈W 1,p(Ω) and a constant C depending only on p and Ω,

‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω). (45)
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B Proofs of the Barron Space

B.1 Proof of Theorem 2.2
Proof. (Proof of Theorem 2.2) Because X embeds continuously into C2,1(Ω), there exists constants C1, C2 > 0 such
that

‖Dαg‖C0(Ω) ≤ C1‖g‖X , [Dαg]C0,1(Ω) ≤ C2‖g‖X , ∀g ∈ X. (46)

Banach Space. By construction, BX,Ω is isometric to the quotient spaceM(BX)/NK where

NK =

{
µ ∈M(BX)|

∫
BX

ρ(g)dµ(g)) = 0,∀x ∈ Ω

}
. (47)

In particular, BX,Ω is a normed vector space with the norm ‖ · ‖X,Ω. Consider the mapping

M(BX)→ C2(Ω), µ→ fµ =

∫
BX

ρ(g)d(µ(g)). (48)

We prove that fµ ∈ C2(Ω). For the continuity, we have

|fµ(x)− fµ(y)| =
∫
BX
|ρ(g(x))− ρ(g(y))|d(µ(g))

≤
∫
BX
|g(x)− g(y)|d(µ(g)).

(49)

For the continuity at point x, consider arbitrary sequence (xn)n∈N → x. Consider the sequence of function hn :
BX → R, f 7→ f(xn) and h : BX → R, f 7→ f(x). We have that |hn(f)| = |f(xn)| ≤ ‖f‖C0(Ω), which is
integrable. By Lemma A.2,

lim
n→∞

|fµ(x)− fµ(xn)| ≤ lim
n→∞

∫
BX
|g(x)− g(xn)|d(µ(g))

= lim
n→∞

∫
BX
|h(g)− h(gn)|d(µ(g))

=

∫
BX

lim
n→∞

|h(g)− h(gn)|d(µ(g))

=

∫
BX

lim
n→∞

|g(x)− g(xn)|d(µ(g))

= 0,

(50)

due to the continuity of g. Since the sequence (xn)n∈N is arbitrary, we know that fµ is continuous at all points x ∈ Ω.
fµ is first order differentiable due to the following:

fµ(x)− fµ(xn)

x− xn
−
∫
BX

∂ρ(g(x))

∂xi
d(µ(g)) =

∫
BX

[
ρ(g(x))− ρ(g(xn))

x− xn
− ∂ρ(g(x))

∂xi

]
d(µ(g)), (51)

where xi is the i-th coordinate of x, (xn)i → xi as n→∞, and (xn)−i = x−i, i.e., other coordinates are the same.
Because X embeds continuously into C2,1(Ω), we have∣∣∣∣ρ(g(x))− ρ(g(xn))

x− xn

∣∣∣∣
≤
∣∣∣∣g(x)− g(xn)

x− xn

∣∣∣∣
≤ C2.

(52)

Since the activation function and its derivatives are bounded, we also have∣∣∣∣∂ρ(g(x))

∂xi

∣∣∣∣ =

∣∣∣∣ρ′(g(x))
∂ρ(g(x))

∂xi

∣∣∣∣
≤
∣∣∣∣∂ρ(g(x))

∂xi

∣∣∣∣
≤ C1.

(53)
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By Lemma A.2,

lim
n→∞

∣∣∣∣fµ(x)− fµ(xn)

x− xn
−
∫
BX

∂ρ(g(x))

∂xi
d(µ(g))

∣∣∣∣
≤
∫
BX

lim
n→∞

∣∣∣∣ρ(g(x))− ρ(g(xn))

x− xn
− ∂ρ(g(x))

∂xi

∣∣∣∣ d(µ(g))

= 0.

(54)

Thus
∂fµ(x)

∂xi
=

∫
BX

∂ρ(g(x))

∂xi
d(µ(g)). (55)

Then, by induction we can know that fµ is Ck continuous and

Dαfµ =

∫
BX

Dαgd(µ(g)). (56)

Back to the mapping

M(BX)→ C2(Ω), µ→ fµ =

∫
BX

ρ(g)d(µ(g)). (57)

It is continuous because∥∥∥∥∫
BX

ρ(g)d(µ(g))

∥∥∥∥
C2(Ω)

≤
∫
BX
‖ρ(g)‖C2(Ω)d(|µ|(g))

=

∫
BX

{
‖ρ(g)‖C0(Ω) +

d∑
i=1

‖ρ′(g)∂ig‖C0(Ω)

}
d(|µ|(g))

+

∫
BX


d∑

i,j=1

‖ρ′′(g)∂ig∂jg‖C0(Ω) +

d∑
i,j=1

‖ρ′(g)∂ijg‖C0(Ω)

 d(|µ|(g))

≤
∫
BX

1 +

d∑
i=1

‖∂ig‖C0(Ω) +

d∑
i,j=1

‖∂ig∂jg‖C0(Ω) +

d∑
i,j=1

‖∂ijg‖C0(Ω)

 d(|µ|(g))

≤
[
1 + (d+ d2)C1 + d2C2

1

]
‖µ‖M(BX),

(58)

by the definition of Brochner integrals and note that x ∈ Rd, i.e., d is the input dimension, and that ∂i denotes the first
order derivative with respect to the i-th coordinate, and ∂2

ij denotes the second order derivative with respect to the
i-th and the j-th coordinates. Due to the continuity, NK is the kernel of a continuous linear map. Therefore, NK is a
closed subspace ofMBX . By the theorem in functional analysis, we conclude that BX,Ω is a Banach space.
BX,Ω embeds continuously intoC2,1(Ω). In the proof of statement (1), we already have ‖fµ‖C2(Ω) ≤ 2C1‖µ‖M(BX).

By taking infimum over µ, we have ‖f‖C2(Ω) ≤ 2C1‖f‖BX,Ω . Furthermore, for any x 6= y ∈ Ω, we have

|fµ(x)− fµ(y)| ≤
∫
BX
|ρ(g(x))− ρ(g(y))|d|µ|(g)

≤
∫
BX
|g(x)− g(y)|d|µ|(g)

≤
∫
BX

[g]C0,1(Ω)|x− y|d|µ|(g)

≤ C2‖µ‖M(BX)|x− y|.

(59)
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For the derivative, we have the similar conclusion:

|∂ifµ(x)− ∂ifµ(y)| ≤
∫
BX
|∂i[ρ(g(x))]− ∂i[ρ(g(y))]|d|µ|(g)

≤
∫
BX
|ρ′(g(x))∂ig(x)− ρ′(g(y))∂ig(y)|d|µ|(g)

≤
∫
BX
{|ρ′(g(x))∂ig(x)− ρ′(g(x))∂ig(y)|+ |ρ′(g(x))∂ig(y)− ρ′(g(y))∂ig(y)|} d|µ|(g)

≤
∫
BX

{
[g]C1,1(Ω)|x− y|+ [g]C0,1(Ω)‖∂ig‖C0(Ω)|x− y|

}
d|µ|(g)

≤ (C2 + C1C2)‖µ‖M(BX)|x− y|,
(60)

where ∂i denotes the first order derivative with respect to the i-th coordinate. Also, for the second order derivatives, we
have

|∂ijfµ(x)− ∂ijfµ(y)| ≤
∫
BX
|∂ij [ρ(g(x))]− ∂ij [ρ(g(y))]|d|µ|(g)

≤
∫
BX

(I1 + I2)d|µ|(g).

(61)

where ∂2
ij denotes the second order derivative with respect to the i-th and the j-th coordinates, and we have

I1 = |ρ′′(g(x))∂ig(x)∂jg(x)− ρ′′(g(y))∂ig(y)∂jg(y)|
≤ |ρ′′(g(x))∂ig(x)∂jg(x)− ρ′′(g(x))∂ig(y)∂jg(y)|+ |ρ′′(g(x))∂ig(y)∂jg(y)− ρ′′(g(y))∂ig(y)∂jg(y)|
≤ |∂ig(x)∂jg(x)− ∂ig(y)∂jg(y)|+ C2

1 |ρ′′(g(x))− ρ′′(g(y))|
≤ |∂ig(x)∂jg(x)− ∂ig(x)∂jg(y)|+ |∂ig(x)∂jg(y)− ∂ig(y)∂jg(y)|+ C2

1 |g(x)− g(y)|
≤ 2C1C2|x− y|+ C2

1C2|x− y|
≤ (2C1C2 + C2

1C2)|x− y|.

(62)

and
I2 = |ρ′(g(x))∂i∂jg(x)− ρ′(g(y))∂i∂jg(y)|
≤ |ρ′(g(x))∂i∂jg(x)− ρ′(g(x))∂i∂jg(y)|+ |ρ′(g(x))∂i∂jg(y)− ρ′(g(y))∂i∂jg(y)|
≤ 2C2|x− y|.

(63)

In sum, we have
|∂ijfµ(x)− ∂ijfµ(y)| ≤ (2C1C2 + C2

1C2 + 2C2)|x− y|. (64)

After taking infimum over µ, we come to the conclusion.
The closed unit ball of BX,Ω is a closed subset of C2(Ω). We assume that (fn)n∈N is a sequence such that

‖fn‖X,K ≤ 1. Choose a sequence of measures (µn)n∈N such that fn = fµn and ‖µn‖ ≤ 1 + 1
n . These meansures

exist because fn are from the unit ball of B(X,Ω). By the compactness theorem of Radon meansures, there exists a
subsequence µnk and a Radon measure µ, such that µnk weak converge to µ with ‖µ‖ ≤ 1. Since all functions ρ(g)
are C2 continuous and bounded, we have all Dαfnk converge in the product topology (pointwise convergence) for all
|α| ≤ 2, since fn ∈ C2(Ω). In particular, if fµn → f̂ uniformly in the norm of C2, then f̂ = fµ ∈ BBX,Ω , i.e. the
unit ball of BX,Ω is closed in the C2(Ω) topology.

B.2 Proof of Theorem 2.1
Proof. (Proof of Theorem 2.1). This is immediate by the definition of generalized Barron space and that of neural
networks in Definition 2.1.

B.3 Proof of Theorem 2.3
To prove the approximation property, we first prove the following useful lemma.

Lemma B.1. Let G be a set in a Hilbert space H such that ‖g‖H ≤ R for all g ∈ G. If f is in the closed convex hull
of G, then for every m ∈ N and ε > 0, there exist m elements g1, · · · , gm ∈ G such that

‖f − 1

m

m∑
i=1

gi‖H ≤
R+ ε√
m

. (65)
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Proof. This lemma is proved by using the law of large numbers. See [32] for details.

Proof. (Proof of Theorem 2.3) Due to the choice ofW0 as linear functions, the constants of continuous embedding are
C1, C2 = 1. By the fact that C2,1(Ω) embeds continuously into H2(Ω), we have ‖f‖H2 ≤ 2‖f‖WL .

Recall that the unit ball ofWL is the closed convex hull of the classH = {σ(g) : ‖g‖WL = 1}. Thus by Lemma,
there exists g1, · · · , gm ∈ WL−1 and ε1, · · · , εm ∈ {−1, 1} such that

‖f − 1

m

m∑
i=1

εiσ(gi(x))‖H2 ≤ 3‖f‖WL√
m

. (66)

If L = 1, gi are linear functions and um(x) =
∑m
i=1

εi
mσ(gi(x)) is a two-layer neural netowrk. Thus the case L = 1

in the theorem is proved.
We prove the remain by induction. Assume that the theorem has been proved for the case of L− 1. Then we note

that ‖gi‖WL = 1, so for 1 ≤ i ≤ m we can find a finite L− 1-layer network ĝi such that

‖f − 1

m
εiσ(ĝi(x))‖H2 ≤ ‖f − 1

m
εiσ(gi(x))‖H2 +

1

m

m∑
i=1

‖gi − ĝi‖H2

≤ 3√
m

+
m

m

3(L− 1)√
m

=
3L√
m
.

(67)

We merge the m trees associated with ĝi into a single tree, increasing the width of each layer by a factor of m, and add
an outer layer of width m with coefficients W .

For the remaining part of the theorem, we only need to apply Theorem A.4.
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C Proofs of Rademacher Complexity
In this section, we provide proofs for Rademacher complexity. We first provide full details for the second order
derivatives of neural networks.

∂2uθ(x)

∂x2

(1)
=
∂vec(WL ·ΦL−1WL−1 · · · · ·Φ1W 1)

∂x

(2)
=

L−1∑
l=1

∂vec(WL ·ΦL−1WL−1 · · · · ·Φ1W 1)

∂vec(Φl)

∂vec(Φl)

∂x
,

(3)
=

L−1∑
l=1

(W l · · ·Φ1W 1)T ⊗ (WLΦL−1 · · ·W l+1)
∂vec(Φl)

∂x

(4)
=

{
L−1∑
l=1

(W l · · ·Φ1W 1)T ⊗ (WLΦL−1 · · ·W l+1)
∂vec(Φl)

∂xj

}
1≤j≤d

= {
L−1∑
l=1

(W l · · ·Φ1W 1)T ⊗ (WLΦL−1 · · ·W l+1)

∂vec(diag[σ′(W lσ(· · ·W 1x))])

∂xj
}1≤j≤d

= {
L−1∑
l=1

(W l · · ·Φ1W 1)T ⊗ (WLΦL−1 · · ·W l+1)

vec(diag[
∂σ′(W lσ(· · ·W 1x))

∂xj
])}1≤j≤d

= {
L−1∑
l=1

(W l · · ·Φ1W 1)T ⊗ (WLΦL−1 · · ·W l+1)

vec(diag[ΨlW l · · ·Ψ1W 1
:,j)])}1≤j≤d

(5)
=

{
L−1∑
l=1

(WLΦL−1 · · ·W l+1)diag(ΨlW l · · ·Ψ1W 1
:,j)(W

l · · ·Φ1W 1)

}
1≤j≤d

.

(68)

In (1), note that vec(WL · ΦL−1WL−1 · · · · · Φ1W 1) ∈ Rd,x ∈ Rd, thus the result of (1) is in Rd×d. In (2),
we apply the chain rule, with the first term ∈ Rd×m2

l and the second term ∈ Rm2
l×d. In (3) we use the formula

∂vec(AXB)
∂vec(X) = BT ⊗ A, and the first term ∈ Rd×ml , second ∈ R1×ml , third ∈ Rm2

l×d. In (4), we decompose the

calculation into dimensional-wise with ∂vec(Φl)
∂xj

∈ Rm2
l . In (5), we use the fact that BT ⊗Avec(X) = vec(AXB).

C.1 Spectral Norm for Complexity
In this subsection, we shall use a covering number approach to Rademacher complexity. The following lemma is the
key to connect them.

Lemma C.1. [25] Let F be a real-valued function class taking values in [0, 1], and assume that 0 ∈ F . Then

Rad (F ;S) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (FS , ε, ‖ · ‖2,2)dε

)
, (69)

where S is the dataset, and FS is the set containing the image of the dataset S under all mappings in F .

We note that this lemma requires that the hypothesis is in the interval [0, 1]. In practice, we can consider the class
of truncated neural networks. More specifically, if the class of neural network is denoted F , then we consider the
following class:

F̂ = F+ + F−, (70)
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where F+ = {f : f ∩ [0, 1], f ∈ F} and F− = {f : f ∩ [−1, 0], f ∈ F}. Then, the function class F̂ is bounded in
the interval [−1, 1], which is suitable for prediction of the target function u∗(x) which is bounded by 1. In addition,
their Rademacher complexity have the relationship: Rad(F̂) ≤ Rad(F+) + Rad(F−). Throughout this paper, we will
adopt the truncated neural network function class unless specified.

Definition C.1. (Matrix Covering) We use N (U, ε, ‖ · ‖) to denote the least cardinality of any subset V ⊂ U that
covers U at scale ε with norm ‖ · ‖, i.e.,

sup
A∈U

min
B∈V
‖A−B‖ ≤ ε. (71)

Lemma C.2. Consider the Hilbert spaceH with the norm ‖ · ‖H. Let U ∈ H has the reresentation U =
∑d
i=1 αiVi,

where all Vi ∈ H, and αi > 0. Then for any positive integer k, there exists a choice of non-negative integers
(k1, k2, · · · , kd), such that

∑d
i=1 ki = k, and

‖U − ‖α‖1
k

d∑
i=1

kiVi‖2H ≤
‖α‖1
k

d∑
i=1

αi‖Vi‖2H ≤
‖α‖21
k

max
1≤i≤d

‖Vi‖2H. (72)

Proof. See [25, 33] for details.

Lemma C.3. [25] Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals (a, b, ε),
and positive integer m. Let matrix X ∈ Rn×d be given with ‖X‖p,p ≤ b, where n is the number of training data, and
d is the input dimension. Then,

logN
({

XA : A ∈ Rd×m, ‖AT‖q,s ≤ a
}
, ε, ‖ · ‖2,2

)
≤ da

2b2m2/r

ε2
e log(2dm), (73)

where m can be interpreted as the hidden dimension of the model.

Proof. Fix the dataset matrix X , and construct Y ∈ Rn×d by Y:,j := X:,j/‖X:,j‖p. We set the following quantites:

N := 2dm ∈ N∗,

k := da
2b2m2/r

ε2
e ∈ N∗,

a := am1/r‖X‖p.

(74)

Then, we define the following matrix sets:

{V1, V2, · · · , VN} :=
{
gY eie

T:g∈{−1,1}
j , i ∈ {1, 2, · · · , d}, j ∈ {1, 2, · · · ,m}

}
,

C :=

{
c

k

N∑
i=1

kiVi : ki ≥ 0,
N∑
i=1

ki = k

}
=

{
c

k

N∑
i=1

kiVi : ki ≥ 0,
N∑
i=1

ki = k

}
.

(75)

We first note that since p ≤ 2,

max
i
‖Vi‖2 ≤ max

i
‖Y ei‖2 = max

i

‖Xei‖2
‖Y ei‖p

≤ 1, (76)

where we use the fact that the matrix eieT
j has only one non-zero entry at (i, j).

We then show that C is the desired cover. Due to the construction of C, its cardinal number |C| ≤ Nk, as we can
interpret its construction as choose one from Vi at each time and there are k such choices to form an element in C.

We consider a matrix ‖A‖q,s ≤ a, and construct a covering element in C as follows. Let the matrix α ∈ Rd×m,
whose elements in the j-th row are all equal to ‖X:,j‖p, then XA = Y (α�A).

‖α‖p,r =
∥∥∥(‖α:,1‖p , . . . , ‖α:,m‖p

)∥∥∥
r

=

∥∥∥∥(∥∥∥(‖X:,1‖p , . . . , ‖X:,d‖p
)∥∥∥

p
, . . . ,

∥∥∥(‖X:,1‖p , . . . , ‖X:,d‖p
)∥∥∥

p

)∥∥∥∥
r

= m1/r
∥∥∥(‖X:,1‖p , . . . , ‖X:,d‖p

)∥∥∥
p

= m1/r

 d∑
j=1

‖X:,j‖pp

1/p

= m1/r

 d∑
j=1

n∑
i=1

Xp
i,j

1/p

= m1/r‖X‖p.

(77)
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Define B := α�A, whereby using conjugacy of ‖ · ‖p,r and ‖ · ‖q,s gives

‖B‖1 ≤ 〈α, |A|〉 ≤ ‖α‖p,r‖A‖q,s ≤ m1/r‖X‖pa = ā. (78)

Consequently, XA is equal to

Y B = Y

d∑
i=1

m∑
j=1

Bijeie
>
j = ‖B‖1

d∑
i=1

m∑
j=1

Bij
‖B‖1

(
Y eie

>
j

)
∈ ā · conv ({V1, . . . , VN})

where conv ({V1, . . . , VN}) is the convex hull of {V1, . . . , VN}.
Combining the preceding constructions with Lemma A.6 there exist nonnegative integers (k1, . . . , kN ) with∑
i ki = k with∥∥∥∥∥XA− ā

k

N∑
i=1

kiVi

∥∥∥∥∥
2

2

=

∥∥∥∥∥Y B − ā

k

N∑
i=1

kiVi

∥∥∥∥∥
2

2

≤ ā2

k
max
i
‖Vi‖22 ≤

a2m2/r‖X‖2p
k

≤ ε2

The desired cover element is thus a
k

∑
i kiVi ∈ C.

We first revisite the definition of neural networks. Given weight matricesW = (W1, . . . ,WL), where L is the
network depth, we define the mapping FW , and more generally for i ≤ L defineWi

1 := (W1, . . . ,Wi) and

FW(Z) = WLσ (WL−1 · · ·σ (W1Z) · · · ) , (79)

FWi
1
(Z) := σ (Wiσ (Wi−1 · · ·σ (W1Z) · · · )) , (80)

with the convention F∅(Z) = Z, where Z is the input.
Define two sequences of matrix spaces V1, . . . ,VL andW2, . . . ,WL+1, where Vi has a norm | · |i andWi has norm

||| · |||i. Specifically, we choose all vector spaces as Euclidean spaces, and choose | · |i = ‖ · ‖2,2 and ||| · |||i = ‖ · ‖2,2.
The inputs Z ∈ V1 = Rd×n satisfy a norm constraint ‖Z‖∞.∞ ≤ 1, which means the absolute values of all entries in
all data is not larger than B. Specifically, we are using Z = XT.

The linear operators Ai : Vi → Wi+1 are associated with some operator norm |Ai|i→i+1 ≤ ci, where we use
|Ai|i→i+1 = ‖Ai‖2, which is the spectral norm and satisfies:

‖Ai‖2 = sup
‖Z‖2,2≤1

‖AiZ‖2,2 := ci. (81)

For the activation function, we consider the sine activation function, which is an 1-Lipschitz mappings σ :Wi+1 →
Vi+1, having the Lipschitz constant ρi = 1, measured with respect to norms | · |i = ‖ · ‖∞ and ||| · |||i = ‖ · ‖∞. In
other words, for any z, z′ ∈ Wi+1, we have

|σ(z)− σ(z′)|i+1 = ‖σ(z)− σ(z′)‖2,2 ≤ ‖z − z′‖2,2 = |||z − z′|||i+1. (82)

We will prove the following lemma on covering number.

Lemma C.4. Let the resolutions for covering (ε1, . . . , εL) be given, and given the operator norm bounds (c1, . . . , cL).
Suppose the matrices W = (W1, . . . ,WL) lie within the set B1 × · · · × BL, where Bi are arbitrary classes with
the property that each Wi ∈ Bi has |Wi|i→i+1 = ‖Wi‖2 ≤ ci. Lastly, let the dataset Z = XT be given with
|Z|1 = ‖Z‖∞,∞ ≤ 1. Then, letting

τ :=

L∑
j=1

εjρj

L∏
l=j+1

ρlcl =

L∑
j=1

εj

L∏
l=j+1

cl, (83)

then the neural net imagesHZ := {FW(Z) :W ∈ B1 × · · · × BL} have covering number bound:

N (HZ , τ, | · |L+1)

= N (HZ , τ, ‖ · ‖2,2)

≤
L∏
i=1

sup
Wj∈Bj ,∀j<i

N
({
WiFWi−1

1
(Z) : Wi ∈ Bi

}
, εi, ||| · |||i+1

)
=

L∏
i=1

sup
Wj∈Bj ,∀j<i

N
({
WiFWi−1

1
(Z) : Wi ∈ Bi

}
, εi, ‖ · ‖2,2

)
.

(84)
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Proof. In this paper, we consider the case when all c1 ≥ 1. We first denote Fi as the covering set of the image set of
all i-layer neural networks, which are inductively constructed as follows. Choose an ε1-cover F1 of the set of one-layer
neural networks {W1Z : W1 ∈ B1}, then its cardinality satisfies

|F1| ≤ N ({W1Z : W1 ∈ B1} , ε1, ||| · |||2) =: N1, (85)

by the definition of covering number. For every element F ∈ Fi, which is a covering vector, we construct an εi+1-cover
Gi+1(F ) of the set

{Wi+1σi(F ) : Wi+1 ∈ Bi+1} , (86)

where F is chosen and fixed. Since the covers are proper, i.e.,

F ∈ Fi ⊂
{
WiFWi−1

1
(Z) : Wj ∈ Bj ,∀j ≤ i

}
, (87)

meaning that F = WiFW i−1
1

(Z) for some matrices (W1, . . . ,Wi) ∈ B1 × · · · × Bi. Then, we obtain

|Gi+1(F )| ≤ sup
∀j≤i.Wj∈Bj

N ({Wi+1FW1,...,Wi
(Z) : Wi+1 ∈ Bi+1} , εi+1, ||| · |||i+2) =: Ni+1. (88)

Lastly we construct the cover
Fi+1 :=

⋃
F∈Fi

Gi+1(F ), (89)

whose cardinality satisfies

|Fi+1| ≤ |Fi| ·Ni+1 ≤
i+1∏
l=1

Nl. (90)

Define F := {σ(F ) : F ∈ FL}. By construction, F satisfies the desired cardinality constraint. To show that it is
indeed a cover, fix any (W1, . . . ,WL) satisfying the above constraints, and for convenience define recursively the
mapped elements

F1 = W1X ∈ W2, Gi = σ (Fi) ∈ Vi+1 Fi+1 = Wi+1Gi ∈ Wi+2. (91)

The goal is to show the existence of ĜL ∈ F satisfying:

|GL − ĜL|L+1 = ‖GL − ĜL‖2,2 ≤ τ (92)

To this end, inductively construct approximating elements
(
F̂i, Ĝi

)
as follows. The Base case: set Ĝ0 = X since

G0 = X . For other cases, choose F̂i ∈ Fi with |||WiĜi−1− F̂i|||i+1 ≤ εi, since Fi is an εi cover of the following set:{
WiFWi−1

1
(Z) : Wj ∈ Bj ,∀j ≤ i

}
. (93)

And set Ĝi := σ(F̂i). To complete the proof, it will be shown inductively that∣∣∣Gi − Ĝi∣∣∣
i+1
≤
∑

1≤j≤i

εjρj

i∏
l=j+1

ρlcl (94)

For the base case, ∣∣∣G0 − Ĝ0

∣∣∣
1

= 0 (95)

For the inductive step, we obtain∣∣∣Gi+1 − Ĝi+1

∣∣∣
i+2
≤ ρi+1|||Fi+1 − F̂i+1|||i+2

≤ ρi+1|||Fi+1 −Wi+1Ĝi|||i+2 + ρi+1|||Wi+1Ĝi − F̂i+1|||i+2

≤ ρi+1 |Wi+1|i+1→i+2

∣∣∣Gi − Ĝi∣∣∣
i+1

+ ρi+1εi+1

≤ ρi+1ci+1

∑
j≤i

εjρj

i∏
l=j+1

ρlcl

+ ρi+1εi+1

=
∑
j≤i+1

εjρj

i+1∏
l=j+1

ρlcl,

(96)

where we note that
∏i
l=i+1 ρlcl = 1.
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The whole-network covering bound in terms of spectral and (2, 1) norms now follows by the general norm covering
number and the matrix covering lemma.

Theorem C.1. Let spectral norm bounds (s1, . . . , sL), and matrix (2, 1) norm bounds (b1, . . . , bL) be given. Let
data matrix X ∈ Rn×d be given, where the n rows correspond to data points. LetHX denote the family of matrices
obtained by evaluating X with all choices of network FW , i.e.,

HX :=
{
FW

(
XT
)

:W = (W1, . . . ,WL) , ‖Wi‖2 ≤ si, ‖Wi‖2,1 ≤ bi
}
. (97)

Then for any ε > 0, we have the covering number bound:

logN (HX , ε, ‖ · ‖2,2) ≤
nd log

(
2h2
)

ε2

 L∏
j=1

s2
j

( L∑
i=1

(
bi
si

)2/3
)3

, (98)

where the network width is denoted h.

Proof. We set the matrix constraint sets as Bi =
{
Wi : ‖Wi‖2 ≤ si, ‖Wi‖2,1 ≤ bi

}
, and lastly the per-layer cover

resolutions (ε1, . . . , εL) set according to

εi :=
αiε

ρi
∏
j>i ρjsj

=
αiε∏L

j=i+1 sj
, where αi :=

1

ᾱ

(
bi
si

)2/3

, ᾱ :=

L∑
j=1

(
bj
sj

)2/3

. (99)

By this choice, it follows that the final cover resolution τ provided by Lemma satisfies

τ ≤
L∑
j=1

εj

L∏
l=j+1

sl =

L∑
j=1

αjε = ε (100)

To start, the covering number estimate from Lemma C.4 can be combined with Lemma C.3 with p = 2, s = 1 to get

logN (HX , ε, ‖ · ‖2,2)

=

L∑
i=1

sup
Wj∈Bj ,∀j<i

log
(
N
({
WiFWi−1

1
(Z) : Wi ∈ Bi

}
, εi, ‖ · ‖2,2

))
=

L∑
i=1

sup
Wj∈Bj ,∀j<i

log
(
N
({
FWi−1

1
(Z)TWT

i : Wi ∈ Bi
}
, εi, ‖ · ‖2,2

))
≤

L∑
i=1

sup
Wj∈Bj ,∀j<i

b2i ‖FWi−1
1

(Z)T‖22,2 log(2h2)

ε2i

(101)

We can bound the intermediate outputs of the neural network as follows:∥∥∥F(W1,...,Wi−1) (Z)
>
∥∥∥

2,2
=
∥∥F(W1,...,Wi−1) (Z)

∥∥
2,2

= ‖σ
(
Wi−1F(W1,...,Wi−2) (Z) ‖2,2

≤
∥∥Wi−1F(W1,...,Wi−2) (Z)

∥∥
2,2

≤ ‖Wi−1‖2
∥∥F(W1,...,Wi−2) (Z)

∥∥
2,2
,

(102)

which by induction gives

max
j

∥∥∥F(W1,...,Wi−1) (Z)
T
∥∥∥

2,2
≤ ‖Z‖2,2

i−1∏
j=1

‖Wj‖2 . (103)
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Combining all equations, and then expanding the choice of εi and collecting terms, we attain

logN (HX , ε, ‖ · ‖2) ≤
L∑
i=1

sup
(W1,...,Wi−1),j<i,Wj∈Bj

b2i ‖X‖22,2
∏
j<i ‖Wj‖22

ε2i
log
(
2h2
)

≤ ‖X‖22,2
L∑
i=1

b2i
∏
j<i s

2
j

ε2i
log
(
2h2
)

= ‖X‖22,2
log
(
2h2
)∏L

j=1 s
2
j

ε2

L∑
i=1

b2i
α2
i s

2
i

= ‖X‖22,2
log
(
2h2
)∏L

j=1 s
2
j

ε2

L∑
i=1

ᾱ2b2i
s2
i

·
(
s2
i

b2i

)2/3

= ‖X‖22,2
log
(
2h2
)∏L

j=1 s
2
j

ε2
ᾱ2

L∑
i=1

(
b2i
s2
i

)1/3

= ‖X‖22,2
log
(
2h2
)∏L

j=1 s
2
j

ε2
(
ᾱ3
)

≤ nd‖X‖2∞,∞
log
(
2h2
)∏L

j=1 s
2
j

ε2
(
ᾱ3
)

(104)

where we have used:

εi =
αiε∏L

j=i+1 sj
, αi =

1

ᾱ

(
bi
si

)2/3

, ᾱ :=

L∑
j=1

(
bj
sj

)2/3

. (105)

Lemma C.5. For every L, and every set of n points S ⊂ Ω, the hypothesis class NNL
M,N given by the neural

networks

NNL
M,N :=

{
x 7→WLσ(WL−1σ(· · ·σ(W1x))) | ‖Wl‖2 ≤M(l),

‖Wl‖2,1
‖Wl‖2

≤ N(l),∀l
}
, (106)

satisfies the Rademacher complexity bound

Rad(NNL
M,N ;S) ≤ 4

n
√
n

+
18
√
d log(2h2) log n√

n

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

, (107)

where h is the maximal width of the neural network, i.e.,

h = max(mL, · · · ,m0). (108)

Proof. Consider the covering number bound:

logN
(
(NNL

M,N )S , ε, ‖ · ‖2
)
≤
nd log

(
2h2
)

ε2

 L∏
j=1

s2
j

( L∑
i=1

(
bi
si

)2/3
)3

=:
R

ε2
. (109)

What remains is to relate covering numbers and Rademacher complexity via a Dudley entropy integral:

Rad(NNL
M,N ;S) ≤ inf

α>0

(
4α√
n

+
12

n

∫ √n
α

√
R

ε2
dε

)
= inf
α>0

(
4α√
n

+ log(
√
n/α)

12
√
R

n

)
. (110)

The inf is uniquely minimized at α := 3
√
R/n, but the desired bound may be obtained by the simple choice α := 1/n,

and plugging the resulting Rademacher complexity estimate:

Rad(NNL
M,N ;S) ≤ 4

n
√
n

+ log(n3/2)
12
√
R

n

=
4

n
√
n

+
18 log n

n

√
R

≤ 4

n
√
n

+
18
√
d log(2h2) log n√

n

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

.

(111)
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Recall the expressions of the differentiated PINNs:

∂uθ(x)

∂x
= WLΦL−1WL−1 . . .Φ1W1 ∈ Rd, (112)

∂2uθ(x)

∂x2
=

{
L−1∑
l=1

(WLΦL−1 · · ·Wl+1)diag(ΨlWl · · ·Ψ1(W1):,j)(Wl · · ·Φ1W1)

}
1≤j≤d

. (113)

where
Φl = diag[σ′(Wlσ(W l−1σ(· · ·σ(W 1x) · · · )] ∈ Rml×ml , (114)

Ψl = diag[σ′′(W lσ(W l−1σ(· · ·σ(W 1x) · · · )] ∈ Rml×ml . (115)

The forwards passes for one input xi ∈ Rd of the PINN model are:

WLΦL−1WL−1 . . .Φ1W1b(xi) ∈ R, (116)

d∑
j=1

L−1∑
l=1

WLΦL−1 · · ·Wl+1diag(ΨlWl · · ·Ψ1(W1):,j)Wl · · ·Φ1W1A:,j ∈ R. (117)

Now we begin to prove their Rademacher complexities.

Lemma C.6. The hypothesis class F2 given by

F2 =

{
x 7→WLΦL−1WL−1 . . .Φ1W1b(x) | ‖Wl‖2 ≤M(l),

‖Wl‖2,1
‖Wl‖2

≤ N(l),∀l
}
, (118)

satisfies the Rademacher complexity bound

Rad(F2;S) ≤ 4

n
√
n

+
18L

√
2d log(2h2) log n√

n

(
L∏
l=1

M(l)

)2( L∑
l=1

N(l)2/3

)3/2

. (119)

Proof. We only need to consider how to cover the set of PINNs. We first consider the first-order derivatives, i.e., how
to cover:

x ∈ Rd 7→WLΦL−1WL−1 . . .Φ1W1b(x) ∈ R. (120)

To do so, we consider the covering in Lemma C.4. Specifically, denote Fi as the εi covering of the following set:{
WiFWi−1

1
(Z) : Wj ∈ Bj ,∀j ≤ i

}
, (121)

which is the set of all i-layer neural networks, with weight matrices in the set Bj . In Lemma C.4, we have in-
ductively constructed covers F1, . . . ,FL. Specifically, F1 is an ε1-cover of the set of one-layer neural networks
{W1Z : W1 ∈ B1}, and its cardinality satisfies

|F1| ≤ N ({W1Z : W1 ∈ B1} , ε1, ‖ · ‖2,2) . (122)

For every element F ∈ Fi, which is a covering vector of the set of image of all i-layer neural networks, we construct
an εi+1-cover Gi+1(F ) of the set

{Wi+1σi(F ) : Wi+1 ∈ Bi+1} , (123)

where F is chosen and fixed. Then, we obtain

|Gi+1(F )| ≤ sup
∀j≤i.Wj∈Bj

N ({Wi+1FW1,...,Wi
(Z) : Wi+1 ∈ Bi+1} , εi+1, ‖ · ‖2,2) , (124)

where we note that the matrices W i
1 are fixed. Lastly we construct the cover

Fi+1 :=
⋃
F∈Fi

Gi+1(F ), (125)

whose cardinality satisfies

|Fi+1| ≤ |Fi| ·Ni+1 ≤
i+1∏
l=1

Nl. (126)
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We consider how to cover the term Φi within the PINN. We note that each Φi = Φi(Zj) for the j-th data is a diagonal
matrix:

diag(Φi(Zj)) = σ′(Wi · · ·σ(W1Zj)), (127)

where the operator diag means to take the diagonal of the matrix to form a vector, which is a i-layer neural network in
particular. Therefore, Fi can cover Wi · · ·σ(W1Z) with error not larger than

∑
j≤i εj

∏i
l=j+1 cl, and in particular the

function class σ′(Fi) can cover σ′(Wi · · ·σ(W1Z)) with error not larger than
∑
j≤i εj

∏i
l=j+1 cl, where we use the

fact that σ′ is 1-Lipschitz.
Then, we consider the

(∏i
k=1 ck

)
εi-cover of the following set of intermediate output of a PINN:{
WiGWi−1

1
(Z) : Wj ∈ Bj ,∀j ≤ i

}
, (128)

where
GWi−1

1
(Z) = [Φi−1(zj)Wi−1 . . .Φ1(zj)W1b(zj)]

n
j=1 ∈ Rmi−1×n. (129)

We stress that the image of PINN should be computed data-wise, as each Φi(Zj) is a matrix. More concretely, we
shall inductively construct covers G1, . . . ,GL. Specifically, G1 is an c1ε1-cover of the set of one-layer neural networks
{W1b(Z) ∈ Rm1×n : W1 ∈ B1}, and its cardinality satisfies

|G1| ≤ N ({W1b(Z) : W1 ∈ B1} , c1ε1, ‖ · ‖2,2) . (130)

For every element G ∈ Gi, and F ∈ Fi, we construct an
∏i+1
k=1 ckεi+1-cover of the set

H(F,G) =
{

[Wi+1diag(σ′ (F (Zj)))G]
n

j=1 ∈ Rmi+1×n : Wi+1 ∈ Bi+1

}
, (131)

where G and F are chosen and fixed. We denote

Gi+1 :=
⋃

F∈Fi,G∈Gi

H (F,G) . (132)

whose cardinality satisfies

|H(F,G)| ≤ sup
∀j≤i,Wj∈Bj

N

({
Wi+1GW i

1
(Z)
}
,

i+1∏
k=1

ckεi+1, ‖ · ‖2,2

)
:= Mi+1, (133)

where ∀j ≤ i,Wj ∈ Bj are fixed. Consequently, its cardinality can be bounded as follows

|Gi+1| ≤
i+1∏
l=1

MlNl. (134)

After the construction, we shall show that how the function class can cover the PINN before the l-th layer with an error
no larger than l

(∏l
k=1 ck

)∑l
j=1 εj

∏l
k=j+1 ck, which will be shown inductively. For the first layer, we have

‖G1 −W1b(Z)‖2,2 ≤ c1ε1, (135)

for some G1 ∈ G1, due to its definition. For general cases, consider the following inequalities:

‖Φ̂lĜl − Φl · · ·Φ1W1b(Z)‖2,2

= ‖
[
φ̂l(Zj)� Ĝl(Zj)− φl(Zj)�Wl · · ·Φ1(Zj)W1b(Zj)

]n
j=1
‖2,2

≤ ‖
[
(φ̂l(Zj)− φl(Zj))� Ĝl(Zj)

]n
j=1
‖2,2 + ‖

[
φl(Zj)� (Ĝl −Wl · · ·Φ1W1b(Zj))

]n
j=1
‖2,2

≤ ‖(φ̂l(Z)− φl(Z))‖2,2‖Ĝl(Z)‖∞,∞ + ‖φl(Z)‖∞,∞‖Ĝl −Wl · · ·Φ1W1b(Z))‖2,2

≤

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck + l

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck

= (l + 1)

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck,

(136)
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where Φ̂l ∈ Fl. Furthermore, consider the new Wl+1, we attain

‖Ĝl+1 −Wl+1Φl · · ·Φ1W1b(Z)‖2,2
≤ ‖Ĝl+1 −Wl+1Φ̂lĜl−1‖2,2 + ‖Wl+1Φ̂lĜl−1 −Wl+1Φl · · ·Φ1W1b(Z)‖2,2

≤

(
l+1∏
k=1

ck

)
εl+1 + (l + 1)

(
l+1∏
k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck

≤ (l + 1)

(
l+1∏
k=1

ck

)
l+1∑
j=1

εj

l+1∏
k=j+1

ck.

(137)

By the same logic, we have

logN (HX , τ, ‖ · ‖2,2)

=

L∑
i=1

sup
Wj∈Bj ,∀j<i

log
(
N
({
WiFWi−1

1
(Z)
}
, εi, ‖ · ‖2,2

))
+ sup
Wj∈Bj ,∀j<i

log

(
N

({
WiGWi−1

1
(Z)
}
,

i∏
k=1

ciεi, ‖ · ‖2,2

))

≤
L∑
i=1

sup
Wj∈Bj ,∀j<i

b2i ‖FWi−1
1

(Z)T‖22,2 log(2h2)

ε2i
+ sup
Wj∈Bj ,∀j<i

b2i ‖GWi−1
1

(Z)T‖22,2 log(2h2)(∏i
k=1 ck

)2

ε2i

.

(138)
Set Bi =

{
Wi : ‖Wi‖2 ≤ si, ‖Wi‖2,1 ≤ bi

}
, and set the per-layer cover resolutions (ε1, . . . , εL) as

εi :=
αiε

L
(∏L

k=1 sk

)∏
j>i sj

where αi :=
1

ᾱ

(
bi
si

)2/3

, ᾱ :=

L∑
j=1

(
bj
sj

)2/3

. (139)

By this choice, it follows that the final cover resolution τ provided by Lemma satisfies

τ ≤ L

(
L∏
k=1

sk

)
L∑
j=1

εj

L∏
k=j+1

sk

≤
L∑
i=1

αiε∏
j>i sj

L∏
l=j+1

sl

≤
∑
j≤L

αjε

= ε.

(140)

Therefore, the covering number bound can be written as:

logN (HX , ε, ‖ · ‖2)

≤
L∑
i=1

sup
Aj∈Bj ,∀j<i

b2i ‖FAi−1
1

(Z)T‖22,2 log(2h2)

ε2i
+ sup
Aj∈Bj ,∀j<i

b2i ‖GAi−1
1

(Z)T‖22,2 log(2h2)(∏i
k=1 ck

)2

ε2i

≤
L∑
i=1

b2ind log(2h2)

ε2i
+
b2i

(∏i
k=1 sk

)2

‖Z‖22,2 log(2h2)(∏i
k=1 sk

)2

ε2i

≤ 2nd log
(
2h2
) L∑
i=1

b2i log(2h2)

ε2i

≤ 2nd log
(
2h2
)
L2

(
L∏
k=1

sk

)2 L∑
i=1

b2i

(∏
j>i sj

)2

ε2

≤ 2nd log
(
2h2
)
L2

(
L∏
k=1

sk

)4 (
ᾱ3
)
/ε2.

(141)
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Consequently, the Rademacher complexity of the function class constructed by all first-order derivatives is bounded by

4

n
√
n

+
18L

√
2d log(2h2) log n√

n

(
L∏
l=1

M(l)

)2( L∑
l=1

N(l)2/3

)3/2

. (142)

Lemma C.7. The hypothesis class F1 given by

F1 =

x 7→
d∑
j=1

L−1∑
l=1

WLΦL−1 · · ·Wl+1diag(ΨlWl · · ·Ψ1(W1):,j)Wl · · ·Φ1W1A:,j(x)

 , (143)

where the weight matrices satisfy

‖Wl‖2 ≤M(l),
‖Wl‖2,1
‖Wl‖2

≤ N(l),∀l, (144)

satisfies the Rademacher complexity bound

Rad(F1;S) ≤ 4

n
√
n

+
18(L+ 1)

√
2d log(2h2) log n√
n

(
L∏
l=1

M(l)

)3( L∑
l=1

N(l)2/3

)3/2

. (145)

Proof. We consider the d(L− 1) terms one-by-one, and focus on the following term in particular:

WLΦL−1 · · ·Wi+1diag(ΨiWi · · ·Ψ1(W1):,j)Wi · · ·Φ1W1A:,j(Z), (146)

where we recall thatA:j is the j-th row of the fixed coefficient function andA:,j(Z) ∈ Rd×n. We consider the covering
in Lemma C.4. Specifically, denote Fi as the εi covering of the following set:{

WiFWi−1
1

(Z) : Wj ∈ Bj ,∀j ≤ i
}
, (147)

which is the set of all i-layer neural networks, with weight matrices in the set Bj . In Lemma C.4, we have in-
ductively constructed covers F1, . . . ,FL. Specifically, F1 is an ε1-cover of the set of one-layer neural networks
{W1Z : W1 ∈ B1}, and its cardinality satisfies

|F1| ≤ N ({W1Z : W1 ∈ B1} , ε1, ‖ · ‖2,2) . (148)

For every element F ∈ Fi, which is a covering vector of the set of image of all i-layer neural networks, we construct
an εi+1-cover Gi+1(F ) of the set

{Wi+1σ(F ) : Wi+1 ∈ Bi+1} , (149)

where F ∈ Fi is chosen and fixed. Then, we obtain

|Gi+1(F )| ≤ sup
∀j≤i.Wj∈Bj

N ({Wi+1FW1,...,Wi
(Z) : Wi+1 ∈ Bi+1} , εi+1, ‖ · ‖2,2) . (150)

Lastly we construct the cover
Fi+1 :=

⋃
F∈Fi

Gi+1(F ), (151)

whose cardinality satisfies

|Fi+1| ≤ |Fi| ·Ni+1 ≤
i+1∏
l=1

Nl. (152)

We consider how to cover the term Φi within the PINN. We note that Φi = Φi(Zj) ∈ Rmi×mi is a diagonal matrix:

diag(Φi(Zj)) = σ′(Wi · · ·σ(W1Zj)), (153)

where the which is a i-layer neural network in particular. Therefore, σ′(Fi) can cover σ′(Wi · · ·σ(W1Z)) with error
not larger than

∑
j≤i εj

∏i
l=j+1 cl. Similarly, since Ψi is also a i-layer neural net, we can do the same reasoning to it.

In these covering, we use the fact that σ′ and σ′′ are 1-Lipschitz functions.
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Then, we consider the
(∏i

k=1 ck

)
εi-cover of the following set of intermediate output of a PINN:{
WiGWi−1

1
(Z) : Wj ∈ Bj ,∀j ≤ i

}
, (154)

where
GWi−1

1
(Z) = [Φi−1(zj)Wi−1 . . .Φ1(zj)W1A:,(zj)]

n
j=1 ∈ Rmi−1×n. (155)

More concretely, we shall inductively construct covers G1, . . . ,GL. Specifically, G1 is an c1ε1-cover of the set of
one-layer neural networks {W1A:,(Z) ∈ Rm1×n : W1 ∈ B1}, and its cardinality satisfies

|G1| ≤ N ({W1A:,(Z) : W1 ∈ B1} , c1ε1, ‖ · ‖2,2) . (156)

For every element G ∈ Gi, and F ∈ Fi, we construct an
(∏i+1

k=1 ck

)
εi+1-cover of the set

H(F,G) =
{

[Wi+1diag(F (Zj))G]
n
j=1 ∈ Rmi+1×n : Wi+1 ∈ Bi+1

}
, (157)

where G and F are chosen and fixed. We stree that F (Zj) ∈ Rmi , and thus diag(F (Zj)) ∈ Rmi×mi . Since for each
input data, the matrix F (Zj) depends on itself, we cannot write the expression of the functions inH(F,G) as a direct
matrix multiplication. We denote

Gi+1 :=
⋃

F∈Fi,G∈Gi

H (F,G) . (158)

whose cardinality satisfies

|H(F,G)| ≤ sup
∀j≤i,Wj∈Bj

N

({
Wi+1GW i

1
(Z)
}
,

(
i+1∏
k=1

ck

)
εi+1, ‖ · ‖2,2

)
=: Mi+1. (159)

Consequently,

|Gi+1| ≤
i+1∏
l=1

MlNl. (160)

For the first layer, we have
‖G1 −W1A:,(Z)‖2,2 ≤ c1ε1, (161)

for some G1 ∈ G1, due to its definition. For general cases, consider the following inequalities:

‖Φ̂lĜl − Φl · · ·Φ1W1A:,(Z)‖2,2
= ‖φ̂l � Ĝl − φl �Wl · · ·Φ1W1A:,(Z)‖2,2
≤ ‖(φ̂l − φl)� Ĝl‖2,2 + ‖φl � (Ĝl −Wl · · ·Φ1W1A:,(Z))‖2,2
≤ ‖(φ̂l − φl)‖2,2‖Ĝl‖∞,∞ + ‖φl‖∞,∞‖Ĝl −Wl · · ·Φ1W1A:,(Z))‖2,2

≤

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck + l

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck

≤ (l + 1)

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck,

(162)

where Φ̂l ∈ Fi and φ = diag(Φ). More concretely, we only each data point one-by-one in the above reasoning, i.e.,

‖Φ̂lĜl − Φl · · ·Φ1W1A:,(Z)‖2,2

= ‖
[
φ̂l(Zj)� Ĝl(Zj)− φl(Zj)�Wl · · ·Φ1(Zj)W1A:,(Zj)

]n
j=1
‖2,2

≤ ‖
[
(φ̂l(Zj)− φl(Zj))� Ĝl(Zj)

]n
j=1
‖2,2 + ‖

[
φl(Zj)� (Ĝl −Wl · · ·Φ1W1A:,(Zj))

]n
j=1
‖2,2

≤ ‖(φ̂l(Z)− φl(Z))‖2,2‖Ĝl(Z)‖∞,∞ + ‖φl(Z)‖∞,∞‖Ĝl −Wl · · ·Φ1W1A:,(Z))‖2,2

≤

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck + l

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck

≤ (l + 1)

(
l∏

k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck,

(163)
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Furthermore, consider the new Wl, we attain

‖Ĝl+1 −Wl+1Φl · · ·Φ1W1A:,(Z)‖2,2
≤ ‖Ĝl+1 −Wl+1Φ̂lĜl−1‖2,2 + ‖Wl+1Φ̂lĜl−1 −Wl+1Φl · · ·Φ1W1A:,(Z)‖2,2

≤

(
l+1∏
k=1

ck

)
εl+1 + (l + 1)

(
l+1∏
k=1

ck

)
l∑

j=1

εj

l∏
k=j+1

ck

≤ (l + 1)

(
l+1∏
k=1

ck

)
l+1∑
j=1

εj

l+1∏
k=j+1

ck.

(164)

Consider the case when l = i, and in particular the term Ωi = diag(ΨiWi · · ·Ψ1(W1):,j), then the PINN can be
rewritten as

WLΦL−1 · · ·Wi+1ΩiWi · · ·Φ1W1A:,j(Z), (165)

where we note that the only difference between the first-order derivatives and the second-order ones is in the term Ωi.

‖Ω̂iĜi − Ωi · · ·Φ1W1A:,(Z)‖2,2

= ‖
[
ω̂i � Ĝi − ωi �Wi · · ·Φ1W1A:,(Zj)

]n
j=1
‖2,2

≤ ‖
[
(ω̂i(Zj)− ωi(Zj))� Ĝi(Zj)

]n
j=1
‖2,2 + ‖

[
ωi(Zj)� (Ĝi −Wi · · ·Φ1W1A:,(Zj))

]
‖2,2

≤ ‖(ω̂i − ωi)‖2,2‖Ĝi‖∞,∞ + ‖ωi‖∞,∞‖Ĝi −Wi · · ·Φ1W1A:,(Z))‖2,2

≤

(
i∏

k=1

ck

)
Approximate Error of Omega + i

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck.

(166)

Based on our discussions in the previous lemma on first-order derivatives, we know that the constructed function
class can cover the PINN before the i-th layer with an error no larger than i

(∏i
k=1 ck

)∑i
j=1 εj

∏i
k=j+1 ck, i.e., the

approximation error of Ωl should be that quantity. Thus, we proceed with our bound and attain:

‖Ω̂lĜl − Ωl · · ·Φ1W1A:,(Z)‖2,2

≤

(
i∏

k=1

ck

)
Approximate Error of Omega + i

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck

≤ i

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck + i

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck

≤ 2i

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck.

(167)

Then, we guess the approximation error after the l-th layer is:

2l

(
l∏

k=1

ck

)2 l∑
j=1

εj

i∏
k=j+1

ck. (168)

For l ≤ i, the above bound has already been shown. For the case when l = i+ 1, consider the new Wi+1, we attain

‖Ĝi+1 −Wi+1Ωi · · ·Φ1W1A:,(Z)‖2,2
≤ ‖Ĝi+1 −Wi+1Ω̂iĜi‖2,2 + ‖Wi+1Ω̂iĜi−1 −Wi+1Ωi · · ·Φ1W1A:,(Z)‖2,2

≤

(
i+1∏
k=1

ck

)
εi+1 + 2ici+1

(
i∏

k=1

ck

)2 i∑
j=1

εj

i∏
k=j+1

ck

≤ 2i

(
i+1∏
k=1

ck

)2 i+1∑
j=1

εj

i+1∏
k=j+1

ck.

(169)
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For the l-th layer after the i-th layer, there is no Ω terms any more, and we only need to focus on Φ:

‖Φ̂lĜl − Φl · · ·Φ1W1A:,(Z)‖2,2
= ‖φ̂l � Ĝl − φl �Wl · · ·Φ1W1A:,(Z)‖2,2
≤ ‖(φ̂l − φl)� Ĝl‖2,2 + ‖φl � (Ĝl −Wl · · ·Φ1W1A:,(Z))‖2,2
≤ ‖(φ̂l − φl)‖2,2‖Ĝl‖∞,∞ + ‖φl‖∞,∞‖Ĝl −Wl · · ·Φ1W1A:,(Z))‖2,2

≤

(
l∏

k=1

ck

)2 l∑
j=1

εj

l∏
k=j+1

ck + 2l

(
l∏

k=1

ck

)2 l∑
j=1

εj

l∏
k=j+1

ck

≤ 2(l + 1)

(
l∏

k=1

ck

)2 l∑
j=1

εj

l∏
k=j+1

ck.

(170)

And we consider the multiplication of Wl+1:

‖Ĝl+1 −Wl+1Φl · · ·Φ1W1A:,(Z)‖2,2
≤ ‖Ĝl+1 −Wl+1Φ̂lĜl−1‖2,2 + ‖Wl+1Φ̂lĜl−1 −Wl+1Φl · · ·Φ1W1A:,(Z)‖2,2

≤

(
l+1∏
k=1

ck

)
εl+1 + 2(l + 1)

(
l+1∏
k=1

ck

)2 l∑
j=1

εj

l∏
k=j+1

ck

≤ 2(l + 1)

(
l+1∏
k=1

ck

)2 l+1∑
j=1

εj

l+1∏
k=j+1

ck.

(171)

After covering the class of second-order derivatives in the PINN model, by the same logic, we have the Rademacher
complexity of the function class constructed by all second-order derivatives is bounded by

4

n
√
n

+
18(L+ 1)

√
2d log(2h2) log n√
n

(
L∏
l=1

M(l)

)3( L∑
l=1

N(l)2/3

)3/2

. (172)

C.2 Tree-Like Function Space
Barron space is an important pat in this paper. The spectral norm based bound can be connected with the Barron space,
and thus provide Rademacher complexity bound for tree-like functions in the Barron space.

To illustrate the idea, we use the original network,

NNL
M :=

{
x 7→WLσ(WL−1σ(· · ·σ(W1x))) | ‖Wl‖2 ≤M(l),

‖Wl‖2,1
‖Wl‖2

≤ N(l),∀l
}
, (173)

which satisfies the Rademacher complexity bound

Rad(NNL
M ;S) ≤

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2 log(2h2) log n

n1/2
, (174)

where h is the maximal width of the neural network, i.e.,

h = max(mL, · · · ,m0). (175)

In other words, the Rademacher complexity is related to the following quantity:
L∏
l=1

‖Wl‖2
( L∑
l=1

(
‖Wl‖2,1
‖Wl‖2

)2/3 )3/2 log(2h2) log n

n1/2
, (176)

which can be upper bounded by the path norm or (1,∞) norm related to the Barron space. Concretely, all matrix
norms are equivalent, which means there exists a constant C(h) that depends on the maximal width h, such that

L∏
l=1

‖Wl‖2
( L∑
l=1

(
‖Wl‖2,1
‖Wl‖2

)2/3 )3/2

≤ C(h)

L∏
l=1

‖Wl‖1,∞. (177)

These intuitions are summarized in the following theorem.
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Lemma C.8. (Rademacher Complexity of Tree-Like Functions). For every L, and every set of n points S ⊂ Ω, the
hypothesis class NNL

M given by the neural networks

NNL
M := {x 7→WLσ(WL−1σ(· · ·σ(W1x))) | ‖Wl‖1,∞ ≤M(l),∀l} , (178)

satisfies the Rademacher complexity bound

Rad(NNL
M ;S) ≤

(
L∏
l=1

‖Wl‖1,∞

)
C(h) log n

n1/2
, (179)

where h is the maximal width of the neural network, i.e.,

h = max(mL, · · · ,m0), (180)

and C(h) is a universal constant depending only on h.

Lemma C.9. (Rademacher Complexity of Tree-Like Functions). For every L, and every set of n points S ⊂ Ω, the
hypothesis class PINNL

M given by the neural networks

PINNL
M :=

{
x 7→ Luθ(x) | uθ ∈ NNL

M

}
, (181)

satisfies the Rademacher complexity bound

Rad(NNL
M ;S) ≤

(
L∏
l=1

‖Wl‖1,∞

)3

C(h,K) log n

n1/2
, (182)

where h is the maximal width of the neural network, i.e.,

h = max(mL, · · · ,m0), (183)

and C(h,K3) is a universal constant depending only on h,K.

D Proofs of Main Results

D.1 Proof of Theorem 3.1
Proof. (Proof of Theorem 3.1) Let uθ̂ parameterized by θ̂ satisfy the conditions in Theorem 2.3, i.e.,

‖uθ − f‖H2(P) ≤
3L‖f‖WL(Ω)√

m
,

‖uθ − f‖L2(Q) ≤
3CΩL‖f‖WL(Ω)√

m
,

‖ŴL‖1,∞ ≤ ‖u∗‖WL(Ω).

(184)

where ‖ŴL‖1,∞ is the L-th layer weight parameter matrix of θ̂, and take the probability measures P,Q as

P =
1

nr

∑
x∈S∩Ω

δx, Q =
1

nb

∑
x∈S∩∂Ω

δx, (185)

which means P contains the empirical distribution of residual points and Q contains the empirical distribution of
boundary points. Thus

RS(θ) =
1

nb

nb∑
i=1

(
uθ̂(xb,i)− g(xb,i)

)2
+

1

nr

nr∑
i=1

(
Luθ̂(xr,i)− f(xr,i)

)2
≤ ‖uθ − u∗‖H2(P) + 2K‖uθ − u∗‖L2(Q)

≤
3(2KCΩ + 1)L‖f‖WL(Ω)√

m

(186)
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Then, by the fact that θ∗ = arg minθ RS(θ) + λ‖WL‖21,∞ and λ = 3(2KCΩ + 1)L2/m, we have

RS(θ∗) + λ‖W ∗L‖21,∞ ≤ RS(θ̂) + λ‖ŴL‖21,∞

≤
3(2KCΩ + 1)L2‖u∗‖2WL(Ω)

m
+ λ‖u∗‖2WL(Ω)

= 2λ‖u∗‖WL(Ω).

(187)

In particular,

‖uθ∗‖WL ≤ ‖W ∗L‖1,∞ ≤
2λ‖u∗‖WL(Ω)

λ
= 2‖u∗‖WL(Ω). (188)

The Rademacher complexity of the neural network model used for the boundary points prediction is upper bounded by

‖WL‖1,∞
C(h) log nb√

nb
≤ 2‖u∗‖WL(Ω)

C(h) log nb√
nb

. (189)

Hence, consider the function class of the composition of the MSE loss function and the neural network model. Since
we have truncated the neural network function to [−1, 1], i.e.,

l(x,x′) =
1

2
‖x− x′‖22 ≤ 2, (190)

we know that the loss function is c-Lipschitz. Therefore, we can attain the following generalization bound for boundary
points prediction:

RD∩∂Ω(θ∗) ≤ RS∩∂Ω(θ∗) + 16‖u∗‖WL(Ω)
C(h) log nb√

nb
+ 2

√
2 log(2/δ)

nb
. (191)

Similarly, Rademacher complexity of the PINN used for residual points, i.e., the differentiated networks are upper
bounded by

(‖WL‖1,∞)
3 C(h,K) log nr√

nr
, (192)

This is due to the fact that for the neural networks in the tree-like function space section, we force ‖Wl‖1,∞ ≤ 1, for
all 1 ≤ l ≤ L− 1. Thus, only ‖WL‖1,∞ matters for its Rademacher complexity. Therefore, the generalization bound
for the residual loss is:

RD∩Ω(θ∗) ≤ RS∩Ω(θ∗) + 16
(
‖u∗‖WL(Ω)

)3 C(h,K) log nr√
nr

+ 2

√
2 log(2/δ)

nr
. (193)

In sum, we obtain the two generalization bounds on the boundary and in the residual, respectively.

D.2 Proof of Theorem 3.2
Proof. (Proof of Theorem 3.2). Consider the function class

HLM,N =

{
x 7→ l(u(x), uθ(x)) | ‖W l‖2 ≤M(l),

‖W l‖2,1
‖W l‖2

≤ N(l), l = 1, ..., L

}
, (194)

where M(1), ...,M(L) and N(1), ..., N(L) are positive integers, M and N are the collection of all M(1), ...,M(L)
and N(1), ..., N(L), respectively. And l(·, ·) is the mean square error (MSE) loss function, u(x) is the PDE solution,
andW l is the l-th layer weight matrix of neural network uθ(x). Then the class of composition of all L layers neural
networks and the loss function is

HL = ∪∞M(1)=1 · · · ∪
∞
M(L)=1 ∪

∞
N(1)=1 · · · ∪

∞
N(L)=1 H

L
M,N , (195)

where M = (M(1), · · · ,M(L)) and N = (N(1), · · · , N(L)). Therefore, we subdivide δ > 0 into

δ(M,N) =
δ[∏L

l=1M(l)(M(l) + 1)
] [∏L

l=1N(l)(N(l) + 1)
] , (196)
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such that
∞∑

M(1)=1

· · ·
∞∑

M(L)=1

∞∑
N(1)=1

· · ·
∞∑

N(L)=1

δ(M,N) = δ. (197)

By the result of Rademacher complexity of neural networks in Lemmas 3.1 and 3.2, for any given δ and any positive
integers M(1), ...,M(L) and N(1), ..., N(L) with probability at least 1− δ(M,N) over S, we have

RD∩∂Ω(θ)−RS∩∂Ω(θ) ≤ 8ESRad(NNL
M,N ;S) + 2

√
log(2/δ(M,N))

2nb

≤ 32

nb
√
nb

+
144
√
d log(2h2) log nb√

nb

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

+ 2

√
log(2/δ(M,N))

2nb
.

(198)

For any parameter θ minimizes the empirical loss, choose the integers M(1), ...,M(L) and N(1), ..., N(L) such that

M(l)− 1 < ‖W l‖2 ≤M(l),

N(l)− 1 <
‖W l‖2,1
‖W l‖2

≤ N(l),
(199)

and the integers are the smallest integers satisfying the above equations. Then we have

RD∩∂Ω(θ) ≤ RS∩∂Ω(θ) +
32

nb
√
nb

+
144
√
d log(2h2) log nb√

nb

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

+ 2

√
log(2/δ(M,N))

2nb
,

(200)
where we note that M(l) = d‖W l‖2e, and N(l) = d‖W l‖2,1/‖W l‖2e, in which dae of a ∈ R is the smallest integer
that is greater than or equal to a.

The above bound just holds with probability 1− δ(M,N) for any pair (θ,M,N) as long as θ satisfies M(l) =
d‖W l‖2e, and N(l) = d‖W l‖2,1/‖W l‖2e. Since

∑
M,N δ(M,N) = δ, the bound holds with probability 1− δ.

We have already proved the generalization bound of the boundary loss in PINN. That for residual loss is similar.
Specifically, let

GLM,N =

{
x 7→ l(f(x),Luθ(x)) | ‖W l‖2 ≤M(l),

‖W l‖2,1
‖W l‖2

≤ N(l), l = 1, ..., L

}
. (201)

Then the class of composition of the loss function and all L layers differentiated neural networks becomes

GL = ∪∞M(1)=1 · · · ∪
∞
M(L)=1 ∪

∞
N(1)=1 · · · ∪

∞
N(L)=1 G

L
M,N . (202)

Similarly, using our assumption of truncated neural network, we obtain:

Rad(GLM ;S) ≤ 4Rad(PINNL
M,N ). (203)

By the result of Rademacher complexity of neural networks in Lemma 3.2, for any given δ and any positive integers
M(1), ...,M(L) and N(1), ..., N(L) with probability at least 1− δ(M,N) over the training dataset S, we have

RD∩Ω(θ)−RS∩Ω(θ)

≤ 8ESRad(PINNL
M,N ;S) + 2

√
log(2/δ(M,N))

2nr

≤ 64K + 32d(L− 1)K

nr
√
nr

+ 2

√
log(2/δ(M,N))

2nr
+

144K
√
d log(2h2) log nr√

nr

L∏
l=1

M(l)

(
L∑
l=1

N(l)2/3

)3/2
1 +

√
2L

L∏
l=1

M(l) +
√

2d(L2 − 1)

(
L∏
l=1

M(l)

)2
 .

(204)

For any parameter θ minimizes the empirical loss, choose the integers M(1), ...,M(L) and N(1), ..., N(L) such that

M(l)− 1 < ‖W l‖2 ≤M(l),

N(l)− 1 <
‖W l‖2,1
‖W l‖2

≤ N(l),
(205)
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and the integers are the smallest integers satisfying the above equations. The above bound just holds with probability
1− δ(M,N) for any pair (θ,M,N) as long as θ satisfies M(l) = d‖W l‖2e, and N(l) = d‖W l‖2,1/‖W l‖2e. Since∑

M,N δ(M,N) = δ, the bound holds with probability 1− δ.

D.3 Proof of Theorem 3.3
Proof. We shall use Assumption 3.2 and the fact that

a+ b ≤ 2
p−1
p (ap + bp)

1
p . (206)

Specifically, specify p = 2, we have

‖uθ − u‖L2(Ω) ≤ C−1
1

(
‖Luθ − Lu‖L2(Ω) + ‖uθ − u‖L2(∂Ω)

)
≤
√

2C−1
1

(
‖Luθ − Lu‖2L2(Ω) + ‖uθ − u‖2L2(∂Ω)

)1/2

≤
√

2C−1
1 (RD∩Ω(θ) +RD∩∂Ω(θ))

1/2
.

(207)

E Related Work
In this section, we summarize related works. We focus on related works on PINNs, Rademacher complexity of neural
networks, and the theory of PINNs.

E.1 Physics-Informed Neural Networks
We first introduce some background on physics-informed neural networks (PINNs), which are the models we have
considered throughout this paper.

Due to its success in approximating high-dimensional functions while generalizing well, deep learning has been
used to solve partial differential equations (PDEs). Among them, PINNs [6] approximate the solutions of PDEs by
neural networks, and then optimize them by stochastic gradient descent for expectation minimization to let them satisfy
the physical rule described by the PDE. Later, the extended PINNs (XPINNs) [12] which adopt domain decomposition
methods show faster convergence and better generalization performances than vanilla PINNs, but the underlying reason
for this remains unknown. Prior to XPINN, CPINN [30] is also a domain decomposition-based PDE solver. However,
CPINN is only applicable to conservation laws and does not allow the general spatio-temporal domain decomposition.

To the best of our knowledge, the present work provides the first proof on generalization of PINNs and XPINNs,
and the first analysis on when and how XPINNs perform better than PINNs.

E.2 Rademacher Complexity of Neural Networks
In this subsection, we review the Rademacher complexity of neural networks, which plays a key role in our generaliza-
tion theory on PINNs and XPINNs.

In statistical learning theory, the Rademacher complexity measures the richness of a class of functions on which
the generalization error bound is based. In the literature, there have been various controls and estimations on the
Rademacher complexity of the class of neural network functions.

There are various ways to bound the Rademacher complexity of the class of neural networks, namely the norm-based
control (adopted in this study), and sharpness. For norm-based capacity control, [34] bounds Rademacher complexity
by product of Frobenius norms of parameter matrices. However, their bounds grow exponentially as the depth increases,
which contradicts the fact that deeper networks generalize better. To eliminate the exponential dependency on network

depth, [25] uses a covering number approach to show a bound scaling as O(
∏L
l=1 ‖W

l‖2(
∑L
l=1(

‖W l‖2,1
‖W l‖2

2
3

)
3
2 )/
√
m).

Although the explicit dependency on network depth L disappears, the bound still has polynomial dependency (L3) on
the depth due to the fact that ‖W l‖2,1 ≥ ‖W l‖. To derive size-independent sample complexity for neural networks,
[35] further proves several useful results. Firstly, [35] improves the dependency on depth from L3 in [25] to

√
L.

Secondly, [35] uses Shatten p-norms of matrices to derive bounds which totally remove any dependency on the depth.
[21] empirically validates the effectiveness of these norm-based capacity controls to explain the generalization mystery
of deep learning. Another line of work focuses on sharpness, which adopts robustness of the training error to the
perturbations in the parameters as a complexity measure for neural networks. [36] combines sharpness measure with
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PAC-Bayesian approach, providing a generalization bound scaling at O(

∏L
l=1 ‖W

l‖(
∑L
l=1(

‖W l‖F
‖W l‖√

m
), which is shown to

be similar to the bound in [25] when weights are sparse, and tighter than [25] when the weights are fairly dense and are
of uniform magnitude.

In this paper, we mainly consider [25] to control the Rademacher complexity of PINNs.

E.3 Theory on PINNs
Due to the success of PINNs in approximating high-dimensional complicated functions such as solutions of PDEs,
theoretical evidence accounting for the outstanding empirical performance has increasingly attracted considerable
attention.

The most related work is [13], where the authors consider Barron space for two-layer networks for prior and
posterior generalization bounds. [13] also leverages neural tangent kernel to show global convergence of PINNs. [15]
introduces an abstract formalism and the stability properties of the underlying PDE are leveraged to derive an estimate
for the generalization error in terms of the training error and number of training samples. By adapting the Schauder
approach and the maximum principle, [16] shows that as number of training samples go to infinity, the minimizer
converges to the solution in C0 and H1. [14] uses the Barron space for two-layer neural networks to provide a prior
analysis on PINN with softplus activation, via adopting the similarity between softplus and ReLU.

Our work extends existing results to multi-layer networks, which is more general and realistic, and considers
various kinds of capacity controls for PINNs, namely the Barron norm and the spectral norm. Extensive experiments
and analytical examples further validate the effectiveness of our theory. Our work is also the first to analyze when and
how XPINN is better than PINN.

F Why Barron Space?
This subsection is devoted to clarify why we choose Barron space theory for developing our prior bound. Overall, it
has the following two advantages.

Firstly, we should choose a theory that can measure complexity of both networks and target functions, which plays
a key role in the prior generalization bound in Theorem 3.1. In the Barron space, we are able to measure the complexity
of target functions easily via Barron norm, and we can further show that complexities of trained neural networks are
controlled by that of the target functions. Since the success of deep learning owns to its data-dependent training, i.e.
although the class of networks has huge complexity, gradient descent does find out a simple network, which is reflected
by the Barron space theory.

Secondly, the Barron space in high dimension neural networks resembles Sobolev and Besov space which are
indispensable building blocks for low dimension classical theory. A proper function space is essential in analyzing
PDEs. The class of network functions define a natural function space, i.e. the Barron space. By studying the target
function of the PDE problem in the Barron space by its norm, the generalization error of the trained network can be
obtained in terms of that norm. This reasoning resembles prior error analysis in classical finite element method where
the error is controlled by the Sobolev norm of the target. Therefore, the Barron space adopted is appropriate for PDE
analysis.

G Additional Comparison

G.1 Comparison of Boundary Loss via Theorem 3.1
The comparison will be done via computing their respective theoretical bounds. In particular, the generalization
performance of PINN depends on the upper bound in Theorem 3.1, which is

RS∩∂Ω(θ∗) + 8‖u∗‖WL(Ω)
C(h) log nb√

nb
+ 2

√
log(2/δ)

nb
. (208)

where nb is the number of boundary training points.
For XPINN’s generalization, we can apply Theorem 3.1 to each of the subdomains in XPINN. Specifically, for the

i-th sub-net in the i-th subdomain, i.e. the Ωi, i ∈ {1, 2, ..., ND}, its generalization performance is upper bounded by

RS∩∂Ωi(θ
∗) + 8‖u∗‖WL(Ωi)

C(h)
√
nb,i

+ 2

√
log(2/δ)

nb,i
. (209)
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where nb,i is the number of training boundary points in the i-th subdomain.
Hence, since the i-th subdomain has nb,i training boundary points and is in charge of the prediction of nb,i

nb
proportion of testing data, we weighted average their generalization errors to get the generalization error of XPINN

ND∑
i=1

nb,i
nb

(
RS∩∂Ωi(θ

∗) + 8‖u∗‖WL(Ωi)
C(h)
√
nb,i

+ 2

√
log(2/δ)

nb,i

)
, (210)

If we omit the last term and assume the empirical losses of PINN and XPINN are similar, i.e.

RS∩∂Ω ≈
ND∑
i=1

nb,i
nb

RS∩∂Ωi ,

√
2 log(2/δ)

nb,i
� ‖u∗‖WL(Ω), ‖u∗‖WL(Ωi), (211)

then comparing the generalization ability of PINN and XPINN reduces to the following comparison:

‖u∗‖WL(Ω)︸ ︷︷ ︸
PINN

versus
ND∑
i=1

√
nb,i
nb
‖u∗‖WL(Ωi)︸ ︷︷ ︸

XPINN

, (212)

where model having smaller corresponding quantity is more generalizable.

G.2 Comparison of Boundary Loss via Theorem 3.2
In this subsection, we compare PINN with XPINN by Theorem 3.2, where we focus on the boundary losses of PINN
and XPINN. we denote the upper bound of PINN testing loss as BPINN and those of the sub-net i in XPINN as Bi,XPINN,
i ∈ {1, 2, ..., ND} which are provided by the right sides of Theorem 3.2, i.e. the bounds are

BPINN = RS∩∂Ω(θ)+
32

nb
√
nb

+
144
√
d log(2h2) log nb√

nb

L∏
l=1

M(l)
( L∑
l=1

N(l)2/3
)3/2

+2

√
log(2/δ(M,N))

2nb
. (213)

Bi,XPINN = RS∩∂Ωi(θ)+
32

nb,i
√
nb,i

+
144
√
d log(2h2) log nb,i√

nb,i

L∏
l=1

Mi(l)
( L∑
l=1

Ni(l)
2/3
)3/2

+2

√
log(2/δ(Mi, Ni))

2nb,i
.

(214)
Specifically, we assume that all sub-PINNs as well as the PINN model use neural networks with depth L and
width h. In the bound of PINN, nr is the total number of residual training samples. M(l) = d‖W l‖2e, and
N(l) = d‖W l‖2,1/‖W l‖2e, where W l is the l-th layer parameter matrix in the PINN model. Moreover, in
the bound of XPINN, nr,i is the number of residual training samples in subdomain i. Mi(l) = d‖W l

i‖2e, and
Ni(l) = d‖W l

i‖2,1/‖W
l
i‖2e, where W l

i is the l-th layer parameter matrix of the i-th subnet in the XPINN model.
Because the i-th sub-net in XPINN is in charge of the prediction of nb,inb

proportion of testing data, we weight-averaged

their bounds to get that of XPINN, i.e., BXPINN =
∑ND
i=1(nb,i/nb)Bi,XPINN where BXPINN is the bound for XPINN.

Thus, we only need to compare BPINN with BXPINN, where the model having smaller corresponding quantity is more
generalizable.
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[33] Gilles Pisier. Remarques sur un résultat non publié de b. maurey. Séminaire Analyse fonctionnelle (dit, pages
1–12, 1981.

[34] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks. In
Conference on Learning Theory, pages 1376–1401. PMLR, 2015.

[35] Noah Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. In COLT,
2018.

[36] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-normalized
margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

46


	1 Introduction
	2 Preliminaries
	2.1 PDE Problem
	2.2 PINN and XPINN
	2.3 Neural Networks
	2.4 Generalized Barron Space

	3 Theory
	3.1 A Prior Generalization Bound (Theorem 3.1)
	3.2 A Posterior Generalization Bound (Theorem 3.2)
	3.3 Posterior L2 Error Generalization Bound
	3.4 Comparing XPINN and PINN by Theorem 3.1
	3.5 Comparing XPINN and PINN by Theorem 3.2
	3.6 Comparing XPINN and PINN by Theorem 3.3

	4 Analytical Examples Based on Theorem 3.1
	4.1 Case where XPINN Outperforms PINN
	4.2 Case where XPINN is Worse Than PINN
	4.3 Illustration of a Tradeoff in XPINN generalization

	5 Computational Experiments
	5.1 KdV Equation
	5.1.1 Setup
	5.1.2 Results

	5.2 Heat Equation
	5.2.1 Setup
	5.2.2 Results

	5.3 Advection Equation
	5.3.1 Setup
	5.3.2 Results

	5.4 Poisson Equation
	5.4.1 Setup
	5.4.2 Results

	5.5 Compressible Euler Equations
	5.5.1 Setup
	5.5.2 Results


	6 Conclusion
	A Preliminary: Functional Analysis
	B Proofs of the Barron Space
	B.1 Proof of Theorem 2.2
	B.2 Proof of Theorem 2.1
	B.3 Proof of Theorem 2.3

	C Proofs of Rademacher Complexity
	C.1 Spectral Norm for Complexity
	C.2 Tree-Like Function Space

	D Proofs of Main Results
	D.1 Proof of Theorem 3.1
	D.2 Proof of Theorem 3.2
	D.3 Proof of Theorem 3.3

	E Related Work
	E.1 Physics-Informed Neural Networks
	E.2 Rademacher Complexity of Neural Networks
	E.3 Theory on PINNs

	F Why Barron Space?
	G Additional Comparison
	G.1 Comparison of Boundary Loss via Theorem 3.1
	G.2 Comparison of Boundary Loss via Theorem 3.2


