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Abstract

For a certain scaling of the initialization of stochastic gradient descent (SGD), wide
neural networks (NN) have been shown to be well approximated by reproducing
kernel Hilbert space (RKHS) methods. Recent empirical work showed that, for
some classification tasks, RKHS methods can replace NNs without a large loss
in performance. On the other hand, two-layers NNs are known to encode richer
smoothness classes than RKHS and we know of special examples for which SGD-
trained NN provably outperform RKHS. This is true even in the wide network limit,
for a different scaling of the initialization.

How can we reconcile the above claims? For which tasks do NNs outperform
RKHS? If covariates are nearly isotropic, RKHS methods suffer from the curse of
dimensionality, while NNs can overcome it by learning the best low-dimensional
representation. Here we show that this curse of dimensionality becomes milder if
the covariates display the same low-dimensional structure as the target function,
and we precisely characterize this tradeoff. Building on these results, we present
the spiked covariates model that can capture in a unified framework both behaviors
observed in earlier works.

We hypothesize that such a latent low-dimensional structure is present in image
classification. We numerically test this hypothesis by showing that specific pertur-
bations of the training distribution degrade the performances of RKHS methods
much more significantly than NNs.

1 Introduction

In supervised learning we are given data {(yi,xi)}i≤n ∼iid P ∈ P(R × R
d), with xi ∈ R

d a

covariate vector and yi ∈ R the corresponding label, and would like to learn a function f : Rd → R

to predict future labels. In many applications, state-of-the-art systems use multi-layer neural networks
(NN). The simplest such model is provided by two-layers fully-connected networks:

FN
NN :=

{

f̂NN(x; b,W ) =

N
∑

i=1

biσ(〈wi,x〉) : bi ∈ R, wi ∈ R
d, ∀i ∈ [N ]

}

. (1)

FN
NN is a non-linearly parametrized class of functions: while nonlinearity poses a challenge to

theoreticians, it is often claimed to be crucial in order to learn rich representation of the data. Recent
efforts to understand NN have put the spotlight on two linearizations of FN

NN, the random features
[27] and the neural tangent [18] classes

FN
RF(W ) :=

{

f̂RF(x;a;W ) =

N
∑

i=1

aiσ(〈wi,x〉) : ai ∈ R, ∀i ∈ [N ]
}

, (2)
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FN
NT(W ) :=

{

f̂NT(x;S,W ) =
N
∑

i=1

〈si,x〉σ′(〈wi,x〉) : si ∈ R
d, ∀i ∈ [N ]

}

. (3)

FN
RF(W ) and FN

NT(W ) are linear classes of functions, depending on the realization of the input-layer
weights W = (wi)i≤N (which are chosen randomly). The relation between NN and these two linear

classes is given by the first-order Taylor expansion: f̂NN(x; b+ εa,W + εS)− f̂NN(x; b,W ) =

εf̂RF(x;a;W ) + εf̂NT(x;S(b);W ) + O(ε2), where S(b) = (bisi)i≤N . A number of recent
papers show that, if weights and SGD updates are suitably scaled, and the network is sufficiently wide

(N sufficiently large), then SGD converges to a function f̂NN that is approximately in FN
RF(W ) +

FN
NT(W ), with W determined by the SGD initialization [18, 13, 12, 3, 34, 25]. This was termed the

‘lazy regime’ in [9].

Does this linear theory convincingly explain the successes of neural networks? Can the performances
of NN be achieved by the simpler NT or RF models? Is there any fundamental difference between
the two classes RF and NT? If the weights (wi)i≤N are i.i.d. draws from a distribution ν on R

d, the

spaces FN
RF(W ), FN

NT(W ) can be thought as finite-dimensional approximations of a certain RKHS:

H(h) := cl
({

f(x) =

N
∑

i=1

ci h(x,xi) : ci ∈ R, xi ∈ R
d, N ∈ N

})

, (4)

where cl( · ) denotes closure. From this point of view, RF and NT differ in that they correspond
to slightly different choices of the kernel: hRF(x1,x2) :=

∫

σ(〈w,x1〉)σ(〈w,x2〉)ν(dw) versus

hNT(x1,x2) := 〈x1,x2〉
∫

σ′(wTx1)σ
′(wTx2)ν(dw). Multi-layer fully-connected NNs in the

lazy regime can be viewed as randomized approximations to RKHS as well, with some changes in
the kernel h. This motivates analogous questions for H(h): can the performances of NN be achieved
by RKHS methods?

Recent work addressed the separation between NN and RKHS from several points of view, without
providing a unified answer. Some empirical studies on various datasets showed that networks can
be replaced by suitable kernels with limited drop in performances [5, 21, 20, 24, 19, 10, 14, 29]. At
least two studies reported a larger gap for convolutional networks and the corresponding kernels
[4, 15]. On the other hand, theoretical analysis provided a number of separation examples, i.e.
target functions f∗ that can be represented and possibly efficiently learnt using neural networks,
but not in the corresponding RKHS [32, 6, 17, 16, 1, 2]. For instance, if the target is a single
neuron f∗(x) = σ(〈w∗,x〉), then training a neural network with one hidden neuron learns the
target efficiently from approximately d log d samples [22], while the corresponding RKHS has test
error bounded away from zero for every sample size polynomial in d [32, 17]. Further even in the
infinite width limit, it is known that two-layers neural networks can actually capture a richer class
of functions than the associated RKHS, provided SGD training is scaled differently from the lazy
regime [23, 7, 28, 30, 8].

Can we reconcile empirical and theoretical results?

1.1 Overview

In this paper we introduce a stylized scenario – which we will refer to as the spiked covariates model
– that can explain the above seemingly divergent observations in a unified framework. The spiked
covariates model is based on two building blocks: (1) Target functions depending on low-dimensional
projections; (2) Approximately low-dimensional covariates.

(1) Target functions depending on low-dimensional projections. We investigate the hypothesis that
NNs are more efficient at learning target functions that depend on low-dimensional projections of
the data (the signal covariates). Formally, we consider target functions f∗ : Rd → R of the form
f∗(x) = ϕ(UTx), where U ∈ R

d×d0 is a semi-orthogonal matrix, d0 ≪ d, and ϕ : Rd0 → R is a
suitably smooth function. This model captures an important property of certain applications. For
instance, the labels in an image classification problem do not depend equally on the whole Fourier
spectrum of the image, but predominantly on the low-frequency components.

The code used to produce our results can be accessed at https://github.com/bGhorbani/
linearized_neural_networks.
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Figure 1: Test accuracy on FMNIST images perturbed by adding noise to the high-frequency Fourier
components of the images (see examples on the right). Left: comparison of the accuracy of various
methods as a function of the added noise. Center: eigenvalues of the empirical covariance of the
images. As the noise increases, the images distribution becomes more isotropic.

As for the example of a single neuron f∗(x) = σ(〈w∗,x〉), we expect RKHS to suffer from a curse of
dimensionality in learning functions of low-dimensional projections. Indeed, this is well understood
in low dimension or for isotropic covariates [6, 17].

(2) Approximately low-dimensional covariates. RKHS behave well on certain image classification
tasks [4, 21, 24], and this seems to contradict the previous point. However, the example of image
classification naturally brings up another important property of real data that helps to clarify this
puzzle. Not only we expect the target function f∗(x) to depend predominantly on the low-frequency
components of image x, but the image x itself to have most of its spectrum concentrated on low-
frequency components (linear denoising algorithms exploit this very observation).

More specifically, we consider the case in which x = Uz1 + U⊥z2, where U ∈ R
d×d0 ,

U⊥ ∈ R
d×(d−d0), and [U |U⊥] ∈ R

d×d is an orthogonal matrix. Moreover, we assume

z1 ∼ Unif(Sd0−1(r1
√
d0)), z2 ∼ Unif(Sd−d0−1(r2

√
d− d0)), and r21 ≥ r22 . We find that, if

r1/r2 (which we will denote later as the covariates signal-to-noise ratio) is sufficiently large, then
the curse of dimensionality becomes milder for RKHS methods. We characterize precisely how
the performance of these methods depend on the covariate signal-to-noise ratio r1/r2, the signal
dimension d0, and the ambient dimension d.

Notice that the spiked covariates model is highly stylized. For instance, while we expect real images
to have a latent low-dimensional structure, this is best modeled in a nonlinear fashion (e.g. sparsity in
wavelet domain [11]). Nevertheless the spiked covariates model captures the two basic mechanisms,
and provides useful qualitative predictions. As an illustration, consider adding noise to the high-
frequency components of images in a classification task. This will make the distribution of x more
isotropic, and –according to our theory– deteriorate the performances of RKHS methods. On the
other hand, NN should be less sensitive to this perturbation. (Notice that noise is added both to train
and test samples.) In Figure 1 we carry out such an experiment using Fashion MNIST (FMNIST)
data (d = 784, n = 60000, 10 classes). We compare two-layers NN with the RF and NT models.
We choose the architectures of NN, NT, RF as to match the number of parameters: namely we used
N = 4096 for NN and NT and N = 321126 for RF. We also fit the corresponding RKHS models
(corresponding to N = ∞) using kernel ridge regression (KRR), and two simple polynomial models:

fℓ(x) =
∑ℓ

k=0〈Bk,x
⊗k〉, for ℓ ∈ {1, 2}. In the unperturbed dataset, all of these approaches

have comparable accuracies (except the linear fit). As noise is added, RF, NT, and RKHS methods
deteriorate rapidly. While the accuracy of NN decreases as well, it significantly outperforms other
methods.

1.2 Notations and outline

Throughout the paper, we use bold lowercase letters {x,y, z, . . .} to denote vectors and bold

uppercase letters {A,B,C, . . .} to denote matrices. We denote by S
d−1(r) = {x ∈ R

d : ‖x‖2 =
r} the set of d-dimensional vectors with radius r and Unif(Sd−1(r)) be the uniform probability
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distribution on S
d−1(r). Further, we let N(µ, τ2) be the Gaussian distribution with mean µ and

variance τ2.

Let Od( · ) (respectively od( · ), Ωd( · ), ωd( · )) denote the standard big-O (respectively little-o, big-
Omega, little-omega) notation, where the subscript d emphasizes the asymptotic variable. We denote
by od,P( · ) the little-o in probability notation: h1(d) = od,P(h2(d)), if h1(d)/h2(d) converges to 0
in probability.

In section 2, we introduce the spiked covariates model and characterize the performance of KRR, RF,
NT, and NN models. Section 3 presents numerical experiments with real and synthetic data. Section
4 discusses our results in the context of earlier work.

2 Rigorous results for kernel methods and NT, RF NN expansions

2.1 The spiked covariates model

Let d0 = ⌊dη⌋ for some η ∈ (0, 1). Let U ∈ R
d×d0 and U⊥ ∈ R

d×(d−d0) be such that [U |U⊥] is an

orthogonal matrix. We denote the subspace spanned by the columns of U by V ⊆ R
d which we will

refer to as the signal subspace, and the subspace spanned by the columns of U⊥ by V⊥ ⊆ R
d which

we will refer to as the noise subspace. In the case η ∈ (0, 1), the signal dimension d0 = dim(V) is
much smaller than the ambient dimension d. Our model for the covariate vector xi is

xi = Uz0,i +U⊥z1,i, (z0,i, z1,i) ∼ Unif(Sd0−1(r
√

d0))⊗Unif(Sd−d0−1(
√

d− d0)).

We call z0,i the signal covariates, z1,i the noise covariates, and r the covariates signal-to-noise ratio
(or covariates SNR). We will take r > 1, so that the variance of the signal covariates z0,i is larger
than that of the noise covariates z1,i. In high dimension, this model is –for many purposes– similar

to an anisotropic Gaussian model xi ∼ N(0, (r2 − 1)UUT + I). As shown below, the effect of
anisotropy on RKHS methods is significant only if the covariate SNR r is polynomially large in d.

We shall therefore set r = dκ/2 for a constant κ > 0.

We are given i.i.d. pairs (yi,xi)1≤i≤n, where yi = f∗(xi) + εi, and εi ∼ N(0, τ2) is independent
of xi. The function f∗ only depends on the projection of xi onto the signal subspace V (i.e. on the
signal covariates z0,i): f∗(xi) = ϕ(UTxi), with ϕ ∈ L2(Sd0−1(r

√
d0)).

For the RF and NT models, we will assume that input layer weights to be i.i.d. wi ∼ Unif(Sd−1(1)).
For our purposes, this is essentially the same as wij ∼ N(0, 1/d) independently, but slightly more
convenient technically.

We will consider a more general model in Appendix C, in which the distribution of xi takes a more
general product-of-uniforms form, and we assume a general f∗ ∈ L2.

2.2 A sharp characterization of RKHS methods

Given h : [−1, 1] → R, consider the rotationally invariant kernel Kd(x1,x2) = h(〈x1,x2〉/d). This
class includes the kernels that are obtained by taking the wide limit of the RF and NT models (here
expectation is with respect to (G1, G2) ∼ N(0, I2))

hRF(t) := E{σ(G1)σ(tG1 +
√

1− t2G2)} , hNT(t) := tE{σ′(G1)σ
′(tG1 +

√

1− t2G2)}.

(These formulae correspond to wi ∼ N(0, Id), but similar formulae hold for wi ∼ Unif(Sd−1(
√
d)).)

This correspondence holds beyond two-layers networks: under i.i.d. Gaussian initialization, the NT
kernel for an arbitrary number of fully-connected layers is rotationally invariant (see the proof of
Proposition 2 of [18]), and hence is covered by the present analysis.

Any RKHS method with kernel h outputs a model of the form f̂(x;a) =
∑

i≤n aih(〈x,xi〉/d),
with RKHS norm given by ‖f̂( · ;a)‖2h =

∑

i,j≤n h(〈xi,xj〉/d)aiaj . We consider kernel ridge

regression (KRR) on the dataset {(yi,xi)}i≤n with regularization parameter λ, namely:

â(λ) := arg min
a∈RN

{

n
∑

i=1

(

yi − f̂(xi;a)
)2

+ λ‖f̂( · ;a)‖2h
}

= (H + λIn)
−1y,
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where H = (Hij)ij∈[n], with Hij = h(〈xi,xj〉/d). We denote the prediction error of KRR by

RKRR(f∗, λ) = Ex

[(

f∗(x)− yT(H + λIn)
−1h(x)

)2]

,

where h(x) = (h(〈x,x1〉/d), . . . , h(〈x,xn〉/d))T.

Recall that we assume the target function f∗(xi) = ϕ(UTxi). We denote P≤k : L2 → L2 to be the
projection operator onto the space of degree k orthogonal polynomials, and P>k = I− P≤k. Our
next theorem shows that the impact of the low-dimensional latent structure on the generalization error
of KRR is characterized by a certain ‘effective dimension’, deff.

Theorem 1. Let h ∈ C∞([−1, 1]). Let ℓ ∈ Z≥0 be a fixed integer. We assume that h(k)(0) > 0 for

all k ≤ ℓ, and assume that there exists a k > ℓ such that h(k)(0) > 0. (Recall that h is positive

semidefinite whence h(k)(0) ≥ 0 for all k.)

Define the effective dimension deff = max{d0, d/r2} = dmax(1−κ,η). If ωd(d
ℓ
eff log(deff)) ≤ n ≤

dℓ+1−δ
eff for some δ > 0, then for any regularization parameter λ = Od(1), the prediction error of

KRR with kernel h is
∣

∣

∣
RKRR(f∗;λ)− ‖P>ℓf∗‖2L2

∣

∣

∣
≤ od,P(1) · (‖f∗‖2L2 + τ2) . (5)

Remarkably, the effective dimension deff = dmax(1−κ,η) depends both on the signal dimension

dim(V) = dη and on the covariate SNR r = dκ/2. Sample size n = dℓeff is necessary to learn a
degree ℓ polynomial. If we fix η ∈ (0, 1) and take κ = 0+, we get deff ≈ d: this corresponds to
almost isotropic xi. We thus recover [17, Theorem 4]. If instead κ > 1− η, then most variance of xi

falls in the signal subspace V , and we get deff = dη = dim(V): the test error is effectively the same
as if we had oracle knowledge of the signal subspace V and performed KRR on signal covariates
z0,i = UTxi. Theorem 1 describes the transition between these two regimes.

2.3 RF and NT models

How do the results of the previous section generalize to finite-width approximations of the RKHS? In
particular, how do the RF and NT models behave at finite N? In order to simplify the picture, we
focus here on the approximation error. Equivalently, we assume the sample size to be n = ∞ and
consider the minimum population risk for M ∈ {RF,NT}

RM,N (f∗;W ) := inf
f̂∈FN

M
(W )

E
{[

f∗(x)− f̂(x)
]2}

. (6)

The next two theorems characterize the asymptotics of the approximation error for RF and NT
models. We give generalizations of these statements to other settings and under weaker assumptions
in Appendix C.

Theorem 2 (Approximation error for RF). Assume σ ∈ C∞(R), with k-th derivative σ(k)(x)2 ≤
c0,ke

c1,kx
2/2 for some c0,k > 0, c1,k < 1, and all x ∈ R and all k. Define its k-th Hermite coefficient

µk(σ) := EG∼N(0,1)[σ(G)Hek(G)]. Let ℓ ∈ Z≥0 be a fixed integer, and assume µk(σ) 6= 0 for all

k ≤ ℓ. Define deff = dmax(1−κ,η). If dℓ+δ
eff ≤ N ≤ dℓ+1−δ

eff for some δ > 0 independent of N, d, then
∣

∣RRF,N (f∗;W )− ‖P>ℓf∗‖2L2

∣

∣ ≤ od,P(1) · ‖P>ℓf∗‖L2‖f∗‖L2 . (7)

Theorem 3 (Approximation error for NT). Assume σ ∈ C∞(R), with k-th derivative σ(k)(x)2 ≤
c0,ke

c1,kx
2/2, for some c0,k > 0, c1,k < 1, and all x ∈ R and all k. Let ℓ ∈ Z≥0, and assume

µk(σ) 6= 0 for all k ≤ ℓ + 1. Further assume that, for all L ∈ Z≥0, there exist k1, k2 with
L < k1 < k2, such that µk1

(σ′) 6= 0, µk2
(σ′) 6= 0, and µk1

(x2σ′)/µk1
(σ′) 6= µk2

(x2σ′)/µk2
(σ′).

Define deff = dmax(1−κ,η). If dℓ+δ
eff ≤ N ≤ dℓ+1−δ

eff for some δ > 0 independent of N, d, then
∣

∣RNT,N (f∗;W )− ‖P>ℓ+1f∗‖2L2

∣

∣ ≤ od,P(1) · ‖P>ℓ+1f∗‖L2‖f∗‖L2 . (8)

Here, the definitions of effective dimension deff is the same as in Theorem 1. While for the test error
of KRR as in Theorem 1, the effective dimension controls the sample complexity n in learning a
degree ℓ polynomial, in the present case it controls the number of neurons N that is necessary to
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Figure 2: Finite-width two-layers NN and their linearizations RF and NT. Models are trained on
220 training observations drawn i.i.d from the distribution of Section 2.1. Continuous lines: NT;
dashed lines: RF; dot-dashed: NN. Various curves (colors) refer to values of the exponent κ (larger
κ corresponds to stronger low-dimensional component). Right frame: curves for RF and NT as a
function of the rescaled quantity log(pMeff)/ log(deff).

approximate a degree ℓ polynomial. In the case of RF, the latter happens as soon as N ≫ dℓeff, while

for NT it happens as soon as N ≫ dℓ−1
eff . If we take η ∈ (0, 1) and κ = 0+, the above theorems,

again, recover Theorem 1 and 2 of [17].

Notice that NT has higher approximation power than RF in terms of the number of neurons. This
is expected, since NT models contain Nd instead of N parameters. On the other hand, NT has less
power in terms of number of parameters: to fit a degree ℓ+ 1 polynomial, the parameter complexity

for NT is Nd = dℓeffd while the parameter complexity for RF is N = dℓ+1
eff ≪ dℓeffd. While the

NT model has p = Nd parameters, only pNT
eff = Ndeff of them appear to matter. We will refer to

pNT
eff ≡ Ndeff as the effective number of parameters of NT models.

Finally, it is natural to ask what are the behaviors of RF and NT models at finite sample size.
Denote by RM,N,n(f∗;W ) the corresponding test error (assuming for instance ridge regression,
with the optimal regularization λ). Of course the minimum population risk provides a lower bound:
RM,N,n(f∗;W ) ≥ RM,N (f∗;W ). Moreover, we conjecture that the risk is minimized at infinite
N , RM,N,n(f∗;W ) & Rn(f∗;hM). Altogether this implies the lower bound RM,N,n(f∗;W ) &
max(RM,N (f∗;W ), Rn(f∗;hM)). We also conjecture that this lower bound is tight, up to terms
vanishing as N,n, d → ∞.

Namely (focusing on NT models), if Ndeff . n, and dℓ1eff . Ndeff . dℓ1+1
eff then the ap-

proximation error dominates and RM,N,n(f∗;W ) = ‖P>ℓ1f∗‖2L2 + od,P(1)‖f∗‖2L2 . If on the

other hand Ndeff & n, and dℓ2eff . n . dℓ2+1
eff then the generalization error dominates and

RM,N,n(f∗;W ) = ‖P>ℓ2f∗‖2L2 + od,P(1)‖f∗‖2L2 .

2.4 Neural network models

Consider the approximation error for NNs

RNN,N (f∗) := inf
f̂∈FN

NN

E
{[

f∗(x)− f̂(x)
]2}

. (9)

Since ε−1[σ(〈wi + εai,x〉) − σ(〈wi,x〉)] ε→0−→ 〈ai,x〉σ′(〈wi,x〉), we have ∪WFN/2
NT (W ) ⊆

cl(FN
NN), and RNN,N (f∗) ≤ infW RNT,N/2(f∗,W ). By choosing W = (w̄i)i≤N , with w̄i = Uv̄i

(see Section 2.1 for definition of U ), we obtain that FN
NT(W ) contains all functions of the form

f̄(UTx), where f̄ is in the class of functions FN
NT(V ) on R

d0 . Hence if f∗(x) = ϕ(UTx),
RNN,N (f∗) is at most the error of approximating ϕ(z) on the small sphere z ∼ Unif(Sd0−1) within
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the class FN
NT(V ). As a consequence, by Theorem 3, if dℓ+δ

0 ≤ N ≤ dℓ+1−δ
0 for some δ > 0, then

RNN,N (f∗) ≤ RNT,N/2(f∗,W ) ≤ (1 + od,P(1)) · ‖P>ℓ+1f∗‖2L2 .

Theorem 4 (Approximation error for NN). Assume that σ ∈ C∞(R) satisfies the same assumptions

as in Theorem 3. Further assume that supx∈R
|σ′′(x)| < ∞. If dℓ+δ

0 ≤ N ≤ dℓ+1−δ
0 for some δ > 0

independent of N, d, then the approximation error of NN models (3) is

RNN,N (f∗) ≤ (1 + od(1)) · ‖P>ℓ+1f∗‖2L2 . (10)

Moreover, the quantity RNN,N (f∗) is independent of κ ≥ 0.

As a consequence of Theorem 3 and 4, there is a separation between NN and (uniformly sampled)
NT models when deff 6= d0, i.e., κ < 1− η. As κ increases, the gap between NN and NT becomes
smaller and smaller until κ = 1− η.

3 Further numerical experiments

We carried out extensive numerical experiments on synthetic data to check our predictions for RF,
NT, RKHS methods at finite sample size n, dimension d, and width N . We simulated two-layers
fully-connected NN in the same context in order to compare their behavior to the behavior of the
previous models. Finally, we carried out numerical experiments on FMNIST and CIFAR-10 data to
test whether our qualitative predictions apply to image datasets. Throughout we use ReLU activations.

In Figure 2 we investigate the approximation error of RF, NT, and NN models. We generate data
(yi,xi)i≥1 according to the model of Section 2.1, in d = 1024 dimensions, with a latent space
dimension d0 = 16, hence η = 2/5. The per-coordinate variance in the latent space is r2 = dκ,

with κ ∈ {0.0, . . . , 0.9}. Labels are obtained by yi = f∗(xi) = ϕ(UTxi) where ϕ : Rd0 → R is a
degree-4 polynomial, without a linear component. Since we are interested in the minimum population
risk, we use a large sample size n = 220: we expect the approximation error to dominate in this
regime. (See Appendix A for further details.)

We plot the normalized risk RRF,N (f∗,W )/R0, RNT,N (f∗,W )/R0, RNN,N (f∗)/R0, R0 :=
‖f∗‖2L2 , for various widths N . These are compared with the error of the best polynomial ap-

proximation of degrees ℓ = 1 to 3 (which correspond to ‖P>ℓf∗‖2L2/‖f∗‖2L2). As expected, as
the number of parameters increases, the approximation error of each function class decreases. NN
provides much better approximations than any of the linear classes, and RF is superior to NT given the
same number of parameters. This is captured by Theorems 2 and 3: to fit a degree ℓ+ 1 polynomial,

the parameter complexity for NT is Nd = dℓeffd while for RF it is N = dℓ+1
eff ≪ dℓeffd. We denote the

effective number of parameters for NT by pNT
eff = Ndeff and the effective number of parameter for RF

by pRF
eff = N . The right plot reports the same data, but we rescale the x-axis to be log(pMeff)/ log(deff).

As predicted by the asymptotic theory of Theorems 2 and 3, various curves for NT and RF tend to
collapse on this scale. Finally, the approximation error of RF and NT depends strongly on κ: larger κ
leads to smaller effective dimension and hence smaller approximation error. In contrast, the error of
NN, besides being smaller in absolute terms, is much less sensitive to κ.

In Fig. 3 we compare the test error of NN (with N = 4096) and KRR for the NT kernel (corresponding
to the N → ∞ limit in the lazy regime), for the same data distribution as in the previous figure.
We observe that the test error of KRR is substantially larger than the one of NN, and deteriorates
rapidly as κ gets smaller (the effective dimension gets larger). In the right frame we plot the
test error as a function of log(n)/ log(deff): we observe that the curves obtained for different κ
approximately collapse, confirming that deff is indeed the right dimension parameter controlling the
sample complexity. Notice that also the error of NN deteriorates as κ gets smaller, although not so
rapidly: this behavior deserves further investigation. Notice also that the KRR error crosses the level
of best degree-ℓ polynomial approximation roughly at log(n)/ log(deff) ≈ ℓ.

The basic qualitative insight of our work can be summarized as follows. Kernel methods are effective
when a low-dimensional structure in the target function is aligned with a low-dimensional structure
in the covariates. In image data, both the target function and the covariates are dominated by the
low-frequency subspace. In Figure 1 we tested this hypothesis by removing the low-dimensional
structure of the covariate vectors: we simply added noise to the high-frequency part of the image. In
Figure 4 we try the opposite, by removing the component of the target function that is localized on
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Figure 3: Left: Comparison of the test error of NN (dot-dashed) and NTK KRR (solid) on the
distribution of the Section 2.1. Various curves (colors) refer to values of the exponent κ. Right: KRR
test error as a function of the number of observations adjusted by the effective dimension. Horizontal
lines correspond to the best polynomial approximation.
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Figure 4: Compartison between multilayer NNs and the corresponding NT models under perturtba-
tions in frequency domain. Left: Fully connected networks on FMNIST data. Right: Comparison of
CNN and CNTK KRR classification accuracy on CIFAR-10. We progressively replace the lowest
frequencies of each image with Gaussian noise with matching covariance structure. Right: Accuracy
for FMNIST.

low-frequency modes. We decompose each images into a low-frequency and a high-frequency part.
We leave the high-frequency part unchanged, and replace the low-frequency part by Gaussian noise
with the first two moments matching the empirical moments of the data.

In the left frame, we consider FMNIST data and compare fully-connected NNs with 2 or 3 layers (and
N = 4096 nodes at each hidden layer) with the corresponding NT KRR model (infinite width). In
the right frame, we use CIFAR-10 data and compare a Myrtle-5 network (a lightweight convolutional
architecture [26, 29]) with the corresponding NT KRR. We observe the same behavior as in Figure 1.
While for the original data NT is comparable to NN, as the proportion of perturbed Fourier modes
increases, the performance of NT deteriorates much more rapidly than the one of NN.

4 Discussion

The limitations of linear methods —such as KRR— in high dimension are well understood in the
context of nonparametric function estimation. For instance, a basic result in this area establishes that

estimating a Sobolev function f∗ in d dimensions with mean square error ε requires roughly ε−2−d/α

samples, with α the smoothness parameter [31]. This behavior is achieved by kernel smoothing and
by KRR: however these methods are not expected to be adaptive when f∗(x) only depends on a

low-dimensional projection of x, i.e. f∗(x) = ϕ(UTx) for an unknown U ∈ R
d0×d, d0 ≪ d. On

the contrary, fully-trained NN can overcome this problem [6].
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However, these classical statistical results have some limitations. First, they focus on the low-
dimensional regime: d is fixed, while the sample size n diverges. This is probably unrealistic
for many machine learning applications, in which d is at least of the order of a few hundreds.
Second, classical lower bounds are typically established for the minimax risk, and hence they do not
necessarily apply to specific functions.

To bridge these gaps, we developed a sharp characterization of the test error in the high-dimensional
regime in which both d and n diverge, while being polynomially related. This characterization
holds for any target function f∗, and expresses the limiting test error in terms of the polynomial
decomposition. We also present analogous results for finite-width RF and NT models.

Our analysis is analogous and generalizes the recent results of [17]. However, while [17] assumed the

covariates xi to be uniformly distributed over the sphere S
d−1(

√
d), we introduced and analyzed a

more general model in which the covariates mostly lie in the signal subspace with dimension d0 ≪ d,
and the target function is also dependent on that subspace. In fact our results follow as special cases
of a more general model discussed in Appendix C.

Depending on the relation between signal dimension d0, ambient dimension d, and the covariate
signal-to-noise ratio r, the model presents a continuum of different behaviors. At one extreme, the
covariates are fully d-dimensional, and RKHS methods are highly suboptimal compared to NN. At
the other, covariates are close to d0-dimensional and RKHS methods are instead more competitive
with NN.

Finally, the Fourier decomposition of images is a simple proxy for the decomposition of the covariate
vector x into its low-dimensional dominant component (low frequency) and high-dimensional
component (high frequency) [33].

Broader Impact

This paper focuses on theoretical aspects of modern machine learning. While we expect the results
of this paper to be illuminating for the theory community, we do not anticipate any direct societal
impact of our work.
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