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The COVID-19 pandemic has infected over 200 million people worldwide and killed more than 4 million as of August 2021. Many
intervention strategies have been utilized by governments around the world, including masks, social distancing, and vaccinations.
However, officials making decisions regarding interventions may have a limited time to act. Computer simulations can aid them by
predicting future disease outcomes, but they also have limitations due to requirements on processing power or time. This paper ex-
amines whether a machine learning model can be trained on a small subset of simulation runs to inexpensively predict future disease
trajectories very close to the original simulation results. Using four previously published agent-based models for COVID-19, this pa-
per analyzes the predictions of decision tree regression machine learning models and compares them to the results of the original sim-
ulations. The results indicate that accurate machine learning meta-models can be generated from simulation models with no strong
interventions (e.g., vaccines, lockdowns) using small amounts of simulation data. However, meta-models for simulation models that
include strong interventions required much more training data to achieve a similar accuracy. This indicates that machine learning
meta-models could be used in some scenarios to assist in faster decision making.

1 Introduction

As of August 2021, COVID-19 was directly responsible for an estimate of over 4 million deaths and over
200 million cases [1]. Taking the USA as an example, these numbers translate to almost 650,000 deaths
from about 40 million cases [2], while noting that fatality may be under-estimated [3] and differs across
sub-groups based on factors such as socio-economic status or race and ethnicity [4]. Although reports
previously considered that “transition toward normalcy in the United States remains most likely in the
second quarter of 2021” [5], the delta variant has effectively triggered a ‘new phase in the pandemic’ [6]

as can be seen with a rebound of over 100,000 new cases per day in the USA [2]. Similar phenomena can
be observed worldwide and continue to require action by government officials to limit the spread of dis-
ease [7]. For example, France has implemented a COVID-19 ‘health pass’ while Italy has a similar ‘Green
Pass’; mandates for masks or vaccines are on the agenda across several US states; and lockdown as well
as travel curbs are making a come-back in China. A broad set of intervention strategies is available to
policymakers [8, 9, 10, 11], including vaccines, preventative care (e.g., masks and social distancing), or lock-
downs (e.g., remote work and travel restrictions). Implementing one of these strategies involves several
logistical parameters: for instance, testing requires capacity for contact tracing and policies for quaran-
tine (e.g., is a negative test required to leave quarantine? is a number of days required?); similarly, vac-
cination involves a complex logistical chain from shipping to administering doses [12].
In addition to the many possible combinations of interventions and parameter values, the ‘right set’ of
interventions can vary across places (e.g., based on disease incidence and hospital capacity), across time
(e.g., in response to a new wave of infections), and across individuals (e.g., priority for vaccination to
those most at risk). This results in a very large search space of possible interventions [13]. Although the
necessity of immediate actions in the early days of the pandemic may have resulted in choosing an inter-
vention based on minimal insight, there is now evidence for serious consequences in rolling a sub-optimal
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1 INTRODUCTION

intervention: lives may be lost, the cost of future interventions may be heightened, or the adherence (hence
the impact) of future interventions may be lowered [14, 15, 16].
Computer simulations using Agent-Based Models (ABMs) can aid officials in making these decisions, by
modeling the effects of specific interventions in specific places (e.g., small towns [17], educational institu-
tions [18, 19], supermarkets [20]), populations (e.g., targeted vaccinations [21]), or time windows (e.g., dur-
ing a yearly mass pilgrimage [22]). Several modeling frameworks are available to quickly run simulations
for specific interventions, while accounting for individual heterogeneity in risk factors and contact pat-
terns (e.g., by embedding agents across multiple networks such as community and work). However, sig-
nificant computing resources are required to perform detailed simulations that track individual transmis-
sions and evaluate various interventions [23, 24]. Our analysis across six projects showed that cloud com-
puting or high performance computing clusters were frequently needed [25]. This is exemplified by the
model from Chang et al., which ran on 4,264 compute cores [23].
So far, the primary solution to perform resource-intensive agent-based COVID-19 simulations has been
to find more computing power. For example, the COVID-19 High-Performance Computing Consortium
(covid19-hpc-consortium.org) was created to make private computing resources available to COVID-19
researchers [26]. Similarly, the Partnership for Advanced Computing in Europe (PRACE) offered a fast-
track mechanism for access to supercomputers (prace-ri.eu/hpc-access/hpcvsvirus), and national labora-
tories issues calls for rapid-response research [27]. These computing requirements can be limiting in the
context of pandemic responses, because officials are forced to wait for results before acting to prevent the
spread of the disease. It also stresses inequities in simulation research, as some groups may struggle to
perform their simulations in a timely manner due to the lack of resources at smaller research organiza-
tions [28].
In this paper, we examine whether massive computations are an absolute requirement to support decision-
makers in comprehensively examining the expected consequences of various intervention scenarios in the
context of COVID-19. Specifically, we assess whether a machine learning model can be trained on few
expensive simulations and predict the remaining results inexpensively. In other words, we evaluate the
feasibility of using machine learning models as computationally inexpensive proxies (or meta-models) to
expensive COVID-19 simulations. Our approach consists of generating data from four previously pub-
lished and validated agent-based models (ABMs) for COVID-19 [12, 24, 29, 30] and using the data to train
machine learning regression meta-models. By varying the amount of data used to train these meta-models,
we characterize the relationship between how much data is used to train the meta-model and how accu-
rate that meta-model is. Our specific contributions are as follows:

• We develop machine learning regression meta-models for four COVID-19 agent-based models to pre-
dict the total proportion of the population that will become infected, in response to the interven-
tion scenarios captured by the model’s parameters.

• We examine the affects that different amounts of training data have on the overall accuracy of those
meta-models, thus establishing the situations under which a COVID-19 ABM may require comput-
ing power to achieve accurate results.

The remainder of this paper is organized as follows. In section 2, we summarize the key features of COVID-
19 and interventions that are available in the four ABMs used in this study. Our background also briefly
explains how agent-based models are created for COVID-19 and how machine learning can be used to
generate simulation meta-models. Then in section 3, we cover our methods starting with the implemen-
tation and verification of the selected agent-based models, and then detailing how we performed our ma-
chine learning regressions. In section 4, we analyze the results produced by the verification data for our
agent-based models and the machine learning regressions. Next in section 5, we discuss the interpreta-
tion and limitations of our results. Finally in section 6, we provide concluding remarks and suggest fu-
ture work that could be undertaken based on our results.
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2 BACKGROUND

2 Background

In this section, we will examine key details of COVID-19 and available interventions, as well as how agent-
based models are created for it. Then, we summarize how machine learning has been used previously to
create meta-models for simulations.

2.1 COVID-19

COVID-19, caused by the SARS-CoV-2 virus, was first reported in Wuhan, China in December, 2019 [31]

with newer studies suggesting a first case as far back as mid-November, 2019 [32]. The virus spreads through
droplets that are released when an infected individual coughs or sneezes. As a respiratory disease, the
primary mode of transmission is thus via exposure to droplets, either indirectly (e.g., via contact through
contaminated objects or hands) or directly (air borne) [33, 34]. The virus infects cells in an individual’s
lungs, interfering with the lungs’ ability to function properly [35]. Symptoms for the disease include fever,
loss of smell, or cough [36, 37]. A systematic review of 45 studies reported that 73% of individuals expe-
rience at least one persistent symptom [38]. Most commonly, symptoms such as fatigue, sleep disorders,
or loss of smell can be experienced for months [39]. Less common consequences include multi-organ dam-
age [40], for example in the the cardiovascular system [41], kidneys [42], nervous system [43], or immune sys-
tem [44].
Prior to the development of vaccines, all interventions for COVID-19 were necessarily non-pharmaceutical.
These interventions included the use of masks, social distancing, regional lockdowns, and contact trac-
ing. Masks reduce the spread of COVID-19 by lowering the potential for infected particles from enter-
ing the environment, and higher mask compliance leads to more effective disease mitigation [45]. Social
distancing and the closing of restaurants, gyms, and other public locations led to a statistically signifi-
cant reduction in the spread of COVID-19 as well [46]. Contact tracing, which helps officials control the
spread of the virus by tracking who may have been in contact with an infected individual, has also been
found to be effective [47].
In December of 2020, the first pharmaceutical intervention (i.e. vaccine) for COVID-19 became avail-
able [48]. The messenger RNA (mRNA) vaccines for COVID-19 contain a small piece of the SARS-CoV-
2 virus’s mRNA that triggers the immune system to start producing an immune response to the virus.
The FDA found that the Pfizer vaccine was 95% effective against COVID-19 [48], but effectiveness may
be reduced by mutations [49]. Mutations known as ‘variants of concern’ impact aspects such as transmis-
sibility and vaccine effectiveness [50]. In particular, some variants can evade antibodies caused by infec-
tion and current vaccines [51], which calls for the development of next-generation vaccines and antibody
therapies [52]. The existence of repeat infections [53] as well as breakthrough infections [54, 55] (i.e., infec-
tion of a fully vaccinated person) have led to question the possibility of herd immunity [56], that is, the
assumption that most transmission would be blocked if a given threshold of the population gains immu-
nity.

2.2 Agent-Based Models For COVID-19

In early 2020, given the urgency of the COVID-19 pandemic and the scarcity of data, the first genera-
tion of COVID-19 models was based on a compartmental approach in which individuals are aggregated
into groups (e.g., susceptible, infected) and a simulation proceeds by applying flow equations between
groups. These classic compartmental epidemiological models focused on estimating key epidemiological
quantities such as R0, the number of new cases generated by each infected individual [57, 58]. Although
these models were imperfect in different ways [59, 60, 61], expert predictions have still outperformed the
general public [62] and their models “have influenced public health policies and increased the familiar-
ity of the general public as well as policy-makers with the modeling process, its value, and its limita-
tions” [25]. The most commonly used epidemic models categorized the population into susceptible, in-
fected, and recovered (SIR) or added an intermediate stage for exposure (SEIR) [63]. A review of mod-
els produced between January and November 2020 found that the SIR and SEIR approaches represented
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2.2 Agent-Based Models For COVID-19 2 BACKGROUND

Figure 1: Flow diagram describing the possible journey of an agent, in the study of Li and Giabbanelli [12]. Additional
model logic is governed by algorithms, to identify agents who will be vaccinated or infected.

46.1% of all models, whereas Agent-Based Models (ABM) only accounted for 1.3% of studies at the time [64].
As the evidence-base progressed, modelers realized that the assumptions of compartmental models (e.g.,
treating individuals as part of homogeneous groups) were limiting. In the words of Tolk and colleagues,
“As the pandemic unfolded, it quickly became evident these were not valid assumptions: the virus does
not impact all populations evenly, and the interaction among different groups is far from even.” [65] The
rationale for the use of individual-level simulation models such as ABM thus centers on the notion of
heterogeneity : heterogeneity of risk factors for individuals (e.g., age and underlying or ‘pre-existing’ con-
ditions that increase the risk of severe illness conditions [66, 67]), heterogeneity of behaviors (e.g., interest
in vaccination [68], compliance with mask policies [69, 70]), heterogeneity in socio-ecological vulnerability
across places (e.g., lower access to resources in rural counties [71], urban sub-populations at risk [72]), and
heterogeneity in contact patterns [73, 74]. Although the need was clear, the development of ABMs was
initially challenged by a lack of data, limited understanding of the disease, and occasionally a limited
skillset [25]. The situation has changed with the growing evidence-base on COVID-19, the availability of
mobility data, and the development of reusable frameworks to instantiate ABMs specifically for COVID-
19 (e.g., COVASIM [75], OpenABM-Covid19 [76], various modeling pipelines [77]).
An Agent-Based model represents individuals (as agents) and their interactions with the environment as
well as other agents. Each agent can have a state along with additional characteristics such as age or po-
sition within social networks. States in several ABMs are inspired by classic compartmental epidemiolog-
ical models, hence it is common to use a SEIR model to represent the progression of each agent [29, 78, 79].
Although earlier models may have relied on only four stages (SEIR), newer ones have introduced new
stages to account for vaccination in two doses, disease severity, and the difference between asympatomatic
and symptomatic individuals (Figure 1). In contrast with their mathematical predecessors, ABMs in-
clude the movements of agents over a space (e.g., a grid) and interactions with other agents or their en-
vironment (e.g., contamined surfaces), which leads to the spread of the simulated disease. One of the
factors that makes ABM agents unique is their ability to model individual characteristics such as age or
other risk factors in the context of infectious disease.
States and characteristics found in the four chosen models for our study are expanded in Table 1. Al-
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Characteristic Li [12] Shamil [24] Silva [29] Badham [30]

Model States
Healthy (Susceptible) Yes Yes Yes Yes

Infected (Not Contagious) Yes Yes Yes
Infected (Contagious, Asymptomatic) Yes Yes Yes
Infected (Contagious, Symptomatic) Yes Yes Yes Yes

Hospitalized Yes Yes
Mild Infection Yes

Severe Infection Yes Yes
Critical Infection Yes Yes

Recovered (Immune) Yes Yes Yes Yes
Dead Yes Yes Yes Yes

Vaccinated (First Dose) Yes
Vaccinated (Waiting) Yes

Vaccinated (Second Dose) Yes
Fully Vaccinated Yes

Model Characteristics
Time Resolution Days Hours Hours Days
Work Network Yes Yes Yes
School Network Yes Yes

Community Network Yes Yes Yes Yes
Home Network Yes Yes Yes

Number of Agents 656,000 10,000 Varies 20,172

Table 1: Characteristics of the agent-based models.

Model Wallclock time per simulation run (seconds) Hardware setup

Li [12] Between 900 and 1,200 Cloud computing (Azure)
Shamil [24] 32,492.86 on average High Performance Computing cluster
Silva [29] 727.12 on average High Performance Computing cluster

Badham [30] 34.63 on average Personal computer

Table 2: Examples of wallclock time across hardware configurations for the four COVID-19 ABMs considered here.

though each model has been previously published with a detailed technical description, we provide a
succinct overview of each model in the subsequent subsections to keep this manuscript self-contained.
Since a key motivation for our approach (and the use of meta-modeling in general) is to create a cheaper
proxy to a computationally expensive model, we exemplify the wallclock time typically required by the
four chosen models, across platforms (Table 2). These platforms show the diversity of hardware that
end-users of models can access, from cloud-computing services (Microsoft Azure with AMD EPYC plat-
form for Li and Giabbanelli [12]) and High-Performance Computing clusters (Intel Xeon processors with
96 Gb of memory for Shamil et al. [24] and Silva et al. [29]) to personal computers (AMD Ryzen with 16
Gb of memory for Badham et al. [30]).

2.2.1 Li and Giabbanelli Model [12]

The ABM developed by Li and Giabbanelli [12] is built on the Covasim framework, by including several
modifications that introduce vaccination. This ABM uses 656,000 agents and simulates the spread of
COVID-19 for 180 days. This model contains states for susceptible agents, as well as several different
states of infection, including asymptomatic infection, and three other levels of infection from mild to
critical (Figure 1). It also includes the ability to simulate two vaccine doses for agents, which can re-
move them from the pool of susceptible agents. In addition to vaccine support, the model also inherits
the ability to handle quarantines and contact tracing from Covasim. Finally, the Covasim platform em-
beds agents across different networks (e.g., community, work, school) to model how interventions have
different impacts across settings (e.g., social distancing in the community, face masks at work).
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2.3 Simulation Meta-Modeling 2 BACKGROUND

2.2.2 Shamil et al. Model [24]

The ABM created by Shamil et al. [24] includes two possible agent configurations for different cities in
the United States. One such configuration is a simplified representation for New York City, which con-
tains 10,000 agents simulated for 90 days. It contains states representing different states of contagion
and symptoms, with agents initially healthy and transitioning through a non-contagious state into a con-
tagious asymptomatic state, then into a contagious symptomatic state, and finally into a recovered or
dead state. This model includes representations of large-scale gatherings and various other day-to-day
activities that could spread the virus, such as attending work or school. This ABM provides support for
contact tracing and quarantines.

2.2.3 Silva et al. Model [29]

The ABM released by Silva et al. [29] models agents in infected states, as well as different levels of virus
severity and hospitalization. Age and risk factors are also included for each agent, and these can be used
when determining a lockdown policy. This simulation models the interactions of different agents from
different home environments as well, and allows for lockdowns that prevent agents from traveling and
interacting. This ABM provides support for quarantines, lockdowns, and masks.

2.2.4 Badham et al. Model [30]

The ABM built in Badham et al. [30] models agents in infected states, and contains states for hospital-
ization and critical infection. Community spread is represented as the agents move around their environ-
ment, although movement of agents can be restricted by several policies. This ABM provides support for
social distancing, hospital simulation, isolation, and movement restrictions.

2.3 Simulation Meta-Modeling

Meta-models, also known as surrogate models, are approximations of a more complex model [80]. Al-
though an approximation may be less accurate, this is usually tolerated in exchange for a significant im-
provement (i.e., reduction) in computational cost such as wallclock time [80]. For example, a meta-model
for hydrodynamic and thermal simulation reduced compute time by 93% while only reducing accuracy
by 4% [81]. In another simulation of social networks, simplifications resulted in an 85% decrease in run-
time and a 32% decrease in memory requirements [82].
As the notion of ‘models’ can be broadly conceptualized across fields, it is important to distinguish two
settings. In pure mathematics, meta-models are mathematical functions that approximate the output
of another, more complex mathematical function. In the simulation of interest here, meta-models are
models that predict the results of a simulation with less computational requirements. Machine learning
is one approach to create simulation meta-models. One common type of machine learning meta-model
is a regression model [83][84][85], which is appropriate when the output of the simulation model (which we
seek to approximate) is a discrete value based on its input parameters. Another common type of ma-
chine learning meta-model is a classification model, which produces produce a class (i.e. a group with
similar characteristics) based on input parameters [86]. In this paper, we focus on regressions, whereby
the objective is to provide a accurate but faster proxy to the final result of an expensive simulation.

Gather Data
Train Meta-

Model
Evaluate

Meta-Model

Figure 2: Flowchart for the process of training a meta-model.

Figure 2 provides a high-level illustration for the process for constructing a simulation meta-model via
machine learning. Gathering data for a meta-model involves running the simulation multiple times with
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3 METHODS

varying input parameters. The parameters that should be varied during simulation runs are the desired
meta-model input parameters [87]. For example, to train a clinically-relevant meta-model of the Human
Immunodeficiency Virus (HIV), a HIV simulation model may be run for several values of clinically-relevant
parameters such as the start and expected efficacy of treatment [88]. The data produced by the simu-
lation model then becomes the input or training data for the meta-model. The number of data points
gathered for training depends on the computational requirements of the simulation itself [89]. Once the
meta-model has been trained, its results are compared against the simulation itself using an error met-
ric such as the mean-square error (MSE), root-mean-square error (RMSE) [87], or normalized root mean
square error [90].
Several sampling methods or ‘designed experiments’ allow to produce the training data for the meta-
model, that is, select values of the simulation parameters. Such techniques include random sampling,
factorial sampling, and Latin hypercube sampling. Random sampling picks a certain number of entries
or parameter values at random, which may lead to a cluster of points (i.e., over-sampling in some areas)
or an absence of points (i.e., under-sampling). Factorial sampling explores every value of a parameter
combined with every value of every other parameter [91]. For example, if two different parameters could
be either 0 or 1, the factorial set would be (0, 0), (0, 1), (1, 0), and (1, 1). Latin hypercube sampling
uses each value for a parameter only once, but ensures an even spread over the domain of parameter val-
ues [92].

3 Methods

In this section, we explain how we used each agent-based models to perform the machine learning regres-
sions. A table is provided to list the parameter values used in generating data from each model. When
the parameter values require further explanations, a secondary table is also included; additional details
can be found in the peer-reviewed manuscripts corresponding to each model. Apart from the Li and Gi-
abbanelli model for which we already had data (as it was produced by our group), we accessed the pub-
lic implementations for each of their other models, verified the code vis-a-vis the corresponding publica-
tion, and then produced the simulation data. A flowchart of the overall process is provided in Figure 3.

3.1 Data Generation & Collection

The datasets generated based on the following procedures can all be openly accessed by readers from our
third-party repository, https://osf.io/d7vqa/.

3.1.1 Li and Giabbanelli Model [12]

This model was produced by our research group and utilized as part of a factorial analysis (in the ab-
sence of vaccines) [13] or via a grid search (with vaccines) [12]. It was thus the only case in which we had
an existing and extensive simulated dataset to rely upon. For our meta-modeling purposes, we split the
original dataset into three separate sets based on their vaccine plans: no vaccines in Table 4 and the
two vaccination plans in Table 3. The first subset of data captured simulations that did not include a
vaccine, the second subset contained the simulations that used one vaccine plan (under the Trump ad-
ministration), and the third subset contained was formed of vaccine simulations under the other vaccine
plan (from the current Biden administration). These three sets of data were used to train three different
meta-models, since the two vaccine datasets contained vaccination while the first, non-vaccine dataset
was limited to non-pharmaceutical interventions. The number of simulation runs per combination of
parameter values varies, as it was set to automatically spawn new runs until a 95% confidence interval
would be reached (in contrast with a pre-determined fixed number of runs). The dataset had a total of
n = 727, 706 data points, which are approximately evenly divided between the vaccine subsets (n =
209, 042 for the Trump plan and n = 207, 990 for the Biden plan) and the non-pharmaceutical subset
(n = 310, 674).
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Data Generation
& Collection

Normalization &
Model Training

Model
Evaluation

Measure root-
mean-square error

Cross-Fold
Validation

Nested 10-fold by 10-
fold cross-validation

Hyper-
Parameter

Optimization

Latin hyper-
cube sampling of
hyper-parameters

Model Testing

Test outer folds using
best hyper-parameter

combination

Verify ABMs

Replicate a fig-
ure from the
original paper

Run Simulations

Use factorial design
to select parame-
ter combinations

Data Sampling

Randomly sam-
ple training data

Figure 3: Our process for training a machine learning regression meta-model, detailing data generation from simulations
(top) and machine learning (bottom).

Parameter Values Used

Vaccination
Trump plan: 20 million vaccines in January’21, 30 in February’21, 50 million monthly thereafter
Biden plan: 1 million vaccines every day

Non-pharmaceutical
interventions

6 scenarios, including a no-intervention case. The dataset in Table 4 explores the scenarios.
(For a complete description of the six scenarios, see Table 2 in Li & Giabbanelli [12])

% of population
seeking vaccines

From 20% to 60%. Intermediate values are automatically determined to maximize information.

Vaccine efficacy From 88% to 99%. Intermediate values are automatically determined to maximize information.

Table 3: Parameters and values used by Li and Giabbanelli. The two intervention settings (Biden, Trump) are run sepa-
rately. Each intervention setting is run with all combination of the other parameter values.

Parameter Values Used
Mask wearing In all networks, work and school only, community only

Reduction in social contacts At work and in schools: 5%, 30%. In the community: 10%, 30%
When to test quarantined individuals Start of quarantine, end of quarantine, both

Test sensitivity 55%, 100%
Delay in contact tracing None, 1 week

% of contacts of a positive case that can be traced 20%, 100%
When to start contact tracing for an exposed individual Immediately, upon confirmation from a positive case

Table 4: Parameters and values explored by Li and Giabbanelli in the absence of vaccines. When vaccines are present, only
6 combinations to provide broadly different scenarios in Table 3.
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3.2 Normalization & Model Training 3 METHODS

Parameter Values Used
Days required for contact tracing 1, 3, 5, 7

Percentage of contacts that can be traced 0.5, 0.6, 0.7, 0.8
Percentage of the population who own a smartphone 0.85

Days required in quarantine 14

Table 5: Parameters and values used in the Shamil et al. model dataset.

Parameter Values Used
Population size 500, 750, 1000

Grid size 500, 750, 1000
Type of lockdown none, total, half, conditional, vertical (explanations in Table 7)
Masks required? True, False

Contagion distance 0.05, 0.25, 0.5, 0.75, 1

Table 6: Parameters and values used in the Silva et al. model dataset.

3.1.2 Shamil et al. Model [24]

For the Shamil model, we ran the New York city configuration with 4 different values for 2 parameters
using a factorial design, where every possible combination is used. We also performed 10 replications on
each combination. The parameters we used are explained in Table 5. The 85% smartphone ownership
level is based on a survey by the Pew Research Center from February 8, 2021 [93]. The 14-day quaran-
tine is based on the recommendations of the CDC at a time close to when the model was developed, in
December 2020 [94]. In total, we generated n = 240 data points from this model.

3.1.3 Silva et al. Model [29]

For the Silva model, we ran the model with a factorial design on 5 different parameters, running each for
60 days in the model. We also performed 30 replications on each combination. The parameters we used
and their values are listed in Table 6. To verify that we used this model correctly, we replicated Figure
5a from the original paper [29] that used tracked agent states over 60 days with no interventions and a
population and grid size of 300. In total, we generated n = 13, 500 data points from this model.

3.1.4 Badham et al. Model [30]

For the Badham model, we ran the model with a factorial design on 4 different parameters, performing
30 replications. All other settings are set to the default values for the model’s 1.1 version. The parame-
ters we altered are explained in Table 8. To verify that we used this model correctly, we replicated Fig-
ure 4 from the original paper [30] that tracked daily hospital admissions per day. In total, we generated
n = 2, 430 data points from this model.

3.2 Normalization & Model Training

To perform our regressions, we used TreeLearner regressors from the Orange data mining library (orange3
version 3.26.0) running on Python (version 3.8.3). When we loaded our datasets, we converted their cu-
mulative infection numbers to proportions of the total population, so that the results from the four dif-

Lockdown Type Description
none No lockdown
total Lockdown required for everyone
half Lockdown required for random 50% of the population

conditional Lockdown required for anyone in a contagious environment
vertical Lockdown required for anyone in an at-risk category or in a contagious environment

Table 7: Explanations of values for the lockdown type parameter (c.f. Table 6).
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3.3 Model Evaluation 3 METHODS

Parameter Values Used
Social distancing policy None, AllPeople, ByContact (explanations in Table 9)

Contact reduction 0.2, 0.4, 0.6
Short movement reduction 0, 0.25, 0.5

Longer movement reduction 0, 0.25, 0.5

Table 8: Parameters and values used in the Badham et al. model dataset.

Distancing Policy Description
None No distancing

AllPeople Everyone reduces their contacts by the “contact reduction” amount
ByContact Probability of contact is reduced by the “contact reduction” amount

Table 9: Explanations of values for the social distancing policy parameter (c.f. Table 8).

ferent models are comparable. Then, we used a 10-fold cross-validation method to actually train our
meta-models. Cross-validation involves separating data into 10 different “folds.” One by one, these folds
are used as testing data for our model, while the other nine folds are used to train the model. We also
needed to optimize the parameters of our regressor, so we used hyper-parameter optimization to maxi-
mize our meta-model accuracy.
Hyper-parameter optimization ensures that the regressor is using the most accurate set of model param-
eters, and it does this by performing a second set of cross-validations, which is known as a nested cross-
fold validation design. The training data from the first set of folds is divided into a further 10 folds, where
one fold at a time is used as a validation set. Then, the remaining nine folds are used to train a model
using the different combinations of parameters to select the best combination. To select our parameters,
we used a Latin hypercube design, which ensures that the sample space for parameters is covered effec-
tively. We optimized the two parameters that have the most impact on the decision tree regressor:

• the maximum depth of the tree. A smaller depth forces the meta-model to be simplified. We consid-
ered values from 5 to 50 by steps of 5.

• the minimum number of samples to split a node . The machine learning algorithm stops sooner and
delivers a simpler model if we raise the minimum number of samples. We examined values from 10
to 100 by steps of 10.

For details on the impact of these parameters on a decision tree, we refer the reader to two recent ex-
amples of optimization [95, 96]. The optimization process was conducted using a Latin hypercube with 10
different samples (Figure 4).

3.3 Model Evaluation

Once the hyper-parameter optimization selected the most accurate set of parameters, these parameters
were used to build the model for the outer folds. Then, we were able to analyze how the accuracies of
the models changed in comparison with the amount of data that was used to train them by calculating
the root-mean-square error for their predicted infected proportions (Equation 1). RMSE is a common
error metric for regression models [97, 98, 99] and it is useful because the units for RMSE are the same as
the units for the simulation output (i.e. our errors for this paper are measured in proportions of the pop-
ulation).

RMSE =

√

∑

n

k=0(ŷk − yk)2

n
(1)
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4 RESULTS

Figure 4: Latin hypercube for TreeLearner hyper-parameters.

4 Results

The ABMs used for this study were chosen as we could access their code and verify our use of the model
vis-a-vis published figures in peer-reviewed manuscripts. The first subsection focuses on this verifica-
tion effort, by contrasting the results that we obtained from the model with the authors’ published re-
sults; figures were all reproduced with the authors’ permission. The second subsection is centered on the
machine learning results. To provide full transparency and support replicability efforts regarding ma-
chine learning, the training data used in this subsection is openly accessible on the third-party repository
https://osf.io/d7vqa/, provided by the Open Science Framework.

4.1 Agent-Based Model Verification

As noted in section 3.1.1, the model by Li and Giabbanelli [12] was not subject to verification, since we
directly used data produced by the model. That is, we already had access to its full simulation results.
In contrast, the other two models had to be verified since we did not have a spreadsheet of results to use
and hence we ran the code provided by the authors. The verification sought to replicate the published
work of the authors, to ensure that we were using their model adequately.
For the Shamil model, we replicated Figure 5a from Shamil, et al. [24] at six different contact tracing lev-
els (0, 0.6, 0.7, 0.75, 0.8, and 0.9). Qualitatively, we note that shapes and trajectories of the infections
are similar in our replication (Figure 5). However, values occasionally differ and some of the curves for
the higher trace levels also overlapped in our replication, which is not something found in the original.
Based on previous attempts at replicating simulation models [100], a possibility is that the high variabil-
ity in the model’s output results in noticeable differences across individual runs and only a large num-
ber of runs (e.g., to achieve a 95% confidence interval) would allow to create comparable curves. In other
words, the discrepancies are a likely consequence of output variability in the published work.
For the Silva model, we replicated Figure 5a from Silva, et al. [29] using a population size and grid size of
300 (Figure 6). The state counts in our replication closely follow the average state counts in the origi-
nal figure.
For the Badham model, we replicated Figure 4 from Badham, et al. [30] using the model’s atJul13 sce-
nario (Figure 12). The shape and values in our replication closely follow the original figure.

4.2 Machine Learning Results

The root-mean-square error for the Li and Giabbanelli model [12] without vaccines is shown in Figure

8. The RMSE is around 0.0795 regardless of the sample size, which shows that running as little as 5%
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4.2 Machine Learning Results 4 RESULTS

Figure 5: Figure 5a from Shamil, et al. [24] (left) with our replication (right) using 5 repetitions. The left figure is repro-
duced with permission from the authors.

Figure 6: Figure 5a from Silva, et al. [29] (left) with our replication (right) using 10 repetitions. The left figure is repro-
duced with permission from the authors.
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4.2 Machine Learning Results 4 RESULTS

Figure 7: Figure 4 from Badham, et al. [30] (top) with our replication (bottom) using 1000 repetitions. The left figure is
reproduced with permission from the authors.
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5 DISCUSSION

Figure 8: Graph of the root-mean-square error of the predicted proportion of the population that was infected at different
sample sizes for the Li and Giabbanelli dataset without vaccines.

of the experiments from the ABM suffices to then infer the rest via machine learning. However, we note
that the error margins do benefit from an early increase in data, of up to 30% of the sample size. The
situation changes when vaccines are introduced. For both the Trump administration’s vaccine plan and
the Biden administration’s plan, we see that the RMSE strictly decreases as the sample size increases
(Figure ??). The error can be as low as 0.0034, while noting that the decrease is essentially from a low
initial error (RMSE of about 0.0041 to 0.0043 at 5% of the sample size) to a slightly lower error.
Different situations are observed among the other three models. For the Shamil et al. model [24], results
show an error around 0.065 when using most of the data (Figure 10). Most interestingly, the error has
a non-monotonic relation with the sample size: it is lowest at the smallest sample size (0.1%) and at
about half of the sample (0.45%), but higher in between. For the model by Silva et al. [29], we see a de-
crease in RMSE as th sample size increases. Again, we note that the gains should be contextualize given
the small range of the RMSE: 10% of the dataset suffices to achieve and error of 0.028 and even taking
the full dataset only brings it down to 0.0225 at the best. Finally, the model by Badham et al. [30] shows
a decrease of RMSE as the sample size increases up to 50% of the dataset, and then the error plateaus.
Relative to its scale, we emphasize that the total decrease in RMSE between the 5% and 100% sample
sizes is only around 0.01.

5 Discussion

While machine learning and simulations have both been independently used to model COVID-19 [65],
our study is the first to combine these techniques to examine whether access to COVID-19 Agent Based
Models could be democratized by making them more computationally affordable for end users. Specif-
ically, we analyzed how the amount of data used to train a regression meta-model affects its accuracy
and differentiated situations where more data is required from situations where small amounts of data
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5 DISCUSSION

Figure 9: Graph of the root-mean-square error of the predicted proportion of the population that was infected at different
sample sizes for the Li and Giabbanelli dataset using the Trump administration vaccine plan (a; left) and Biden adminis-
tration vaccine plan (b; right).

Figure 10: Graph of the root-mean-square error of the predicted proportion of the population that was infected at different
sample sizes for the Shamil, et al. dataset.
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5 DISCUSSION

Figure 11: Graph of the root-mean-square error of the predicted proportion of the population that was infected at different
sample sizes for the Silva, et al. dataset.

are sufficient. This analysis contributes to the broader literature on assessing and simplifying COVID-19
models, which has already established that the number of parameters could be decreased significantly [59].
Our results shows that models which do not have strong interventions like lockdowns or vaccines do not
require as much training data, hence it is possible to run few computationally expensive simulations and
then switch to an inexpensive metamodel. The Covasim model with no vaccines and the Shamil model
showed no discernible downward trend in their root-mean-square error values, so adding more training
data would not guarantee an increase in model accuracy. While the Badham model showed a slight de-
crease in RMSE, it only decreased by 0.01 from 5% to 100% sample size. Conversely, the models which
did have strong interventions showed a strong downward trend in their RMSE values. Both Covasim
models that used vaccines only began to stabilize after 60% of the data was used in training, and while
the Silva model stabilized slightly faster, it took around 45% of the data to do so. Note that the RMSE
values were low to start with (e.g., less than 0.0045 for Covasim with vaccines), so the initial error may
already be tolerable for some end users as part of a tradeoff between accuracy and computational needs.
There are three main limitations to our work. First, we focused on peer-reviewed COVID-19 ABMs that
we could run to obtain data and for which we could verify our use of the model vis-a-vis published re-
sults. As shown in previous calls for transparency in COVID-19 modeling, modelers do not systemati-
cally provide their code [101]. In a transparency assessment, Jalali and colleagues found that most models
do not share their code [102], which echoes similar observations about practices in Agent-Based Model-
ing across application domains [103, 104]. Our criteria thus meant that we could only assess a subset of
existing models and it is possibly that different trends or initial error levels are observed in other mod-
els. Second, several key parameters and assumptions regarding COVID-19 continue to change. For ex-
ample, a study on almost 100,000 volunteers in July 2021 found a vaccine effectiveness of 49%, which is
less than the lowest value assumed in some of the previous modeling studies [12, 105]. Other studies have
shown that vaccinated individuals have a comparable viral load to unvaccinated ones within the first few
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5 DISCUSSION

Figure 12: Graph of the root-mean-square error of the predicted proportion of the population that was infected at different
sample sizes for the Badham, et al. dataset.

days [106, 107], whereas the flow diagrams used in many models have considered that vaccinated individ-
uals were fully removed from the population. Our conclusions are limited to COVID-19 ABMs devel-
oped so far, since future models may exhibit markedly different dynamics. In particular, bifurcation may
be present in future models, which would require an analysis of models by clusters of trajectories rather
than average dynamics [108]. Finally, the size of the datasets that we generated were limited by the high
computationally needs of the COVID-19 ABMs. For example, the Shamil model required around 8 hours
per run on a node of a high-performance computing cluster. Given this limitation, our conclusions fo-
cus on the trend (e.g., is there a reduction in error as more simulations are used?) rather than on a pre-
cise point-estimate of the error (e.g., exactly how many simulations are required to achieve a given error
level).
There are several potential avenues for future work. We focused on predicting the final result of the sim-
ulation, but there would also be merit to predicting the time series of outputs. Although the use of meta-
modeling of simulations for time series is more common for financial simulations [109], there could also be
an opportunity for future studies to apply these techniques in the case of COVID-19 ABMs. In particu-
lar, several such ABMs (e.g., COVID-Town [110]) have been developed to perform a joint analysis of eco-
nomic and epidemic dynamics, hence they are particularly interested in the shape [111] of the economic
recovery over time (i.e., the time series).
Another possibility would be to explore the prediction of multiple outputs. Indeed, various stakeholders
may be interested in the effects of a COVID-19 intervention on different outcomes ranging from epidemi-
ological (e.g., number of new cases) to logistical (e.g., spare capacity in intensive care units) and eco-
nomical (e.g., loss in productivity or revenues). While we may expect that more simulations are nec-
essary to train an accurate metamodel able to predict several partially correlated outputs, the specific
relationship is still a question. That is, we still need to establish how the number of predicted outputs
raises the need for simulation data.
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6 Conclusion

In this paper, we analyzed how the amount of data used to train a simulation meta-model affected the
accuracy of the model. We found that for models with no strong interventions such as vaccines or lock-
downs, a small amount of data could generate a model with similar accuracy to one trained on a much
larger amount of data. However, models which had strong interventions took large amounts of data to
train a model that achieved a stable accuracy. These results indicate that modeling the spread of COVID-
19 without strong interventions can be done with very little data, but when stronger interventions are
considered, much more data is required to train an accurate model.
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M. Schomaker, I. Stojkov, D. Schmid et al., “Targeted covid-19 vaccination (tav-covid) considering
limited vaccination capacities—an agent-based modeling evaluation,” Vaccines, vol. 9, no. 5, p. 434,
2021.

[22] A. M. Al-Shaery, B. Hejase, A. Tridane, N. S. Farooqi, and H. A. Jassmi, “Agent-based modeling of
the hajj rituals with the possible spread of covid-19,” Sustainability, vol. 13, no. 12, p. 6923, 2021.

[23] S. L. Chang, N. Harding, C. Zachreson, O. M. Cliff, and M. Prokopenko, “Modelling transmission
and control of the covid-19 pandemic in australia,” Nature communications, vol. 11, no. 1, pp. 1–13,
2020.

[24] M. S. Shamil, F. Farheen, N. Ibtehaz, I. M. Khan, and M. S. Rahman, “An agent-based modeling
of covid-19: Validation, analysis, and recommendations,” Cognitive Computation, pp. 1–12, 2021.

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.21262694doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21262694


REFERENCES REFERENCES

[25] P. Giabbanelli, J. Badham, B. Castellani, H. Kavak, V. Mago, A. Negahba, and S. Swarup, “Oppor-
tunities and challenges in developing covid-19 simulation models: Lessons from six funded projects,”
in Proceedings of the 2021 Annual Modeling and Simulation Conference (ANNSIM). Society for
Modeling & Simulation International, 2021.

[26] J. J. Hack and M. E. Papka, “The us high-performance computing consortium in the fight against
covid-19,” Computing in Science & Engineering, vol. 22, no. 6, pp. 75–80, 2020.

[27] T. L. Bauer, W. E. Beyeler, P. D. Finley, R. F. Jeffers, C. D. Laird, M. Makvandi, A. V. Outkin,
C. Safta, and K. M. Simonson, “Sandia’s research in support of covid-19 pandemic response:
Computing and information sciences.” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep., 2020.

[28] N. Ahmed and M. Wahed, “The de-democratization of ai: Deep learning and the compute divide in
artificial intelligence research,” arXiv preprint arXiv:2010.15581, 2020.

[29] P. C. Silva, P. V. Batista, H. S. Lima, M. A. Alves, F. G. Guimarães, and R. C. Silva, “Covid-abs: An
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J. A. Cohen, P. Selvaraj, B. Hagedorn et al., “Covasim: an agent-based model of covid-19 dynamics
and interventions,” PLOS Computational Biology, vol. 17, no. 7, p. e1009149, 2021.

[76] R. Hinch, W. J. Probert, A. Nurtay, M. Kendall, C. Wymant, M. Hall, K. Lythgoe, A. Bulas Cruz,
L. Zhao, A. Stewart et al., “Openabm-covid19—an agent-based model for non-pharmaceutical
interventions against covid-19 including contact tracing,” PLoS computational biology, vol. 17, no. 7,
p. e1009146, 2021.

[77] J. C. Lemaitre, K. H. Grantz, J. Kaminsky, H. R. Meredith, S. A. Truelove, S. A. Lauer, L. T.
Keegan, S. Shah, J. Wills, K. Kaminsky et al., “A scenario modeling pipeline for covid-19 emergency
planning,” Scientific reports, vol. 11, no. 1, pp. 1–13, 2021.

[78] T. Kano, K. Yasui, T. Mikami, M. Asally, and A. Ishiguro, “An agent-based model of the interrelation
between the covid-19 outbreak and economic activities,” Proceedings of the Royal Society A, vol.
477, no. 2245, p. 20200604, 2021.
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