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WHEN DOES ALMOST FREE IMPLY FREE? 
(FOR GROUPS, TRANSVERSALS, ETC.) 

MENACHEM MAGIDOR AND SAHARON SHELAH 

O. INTRODUCTION 

We say that a (Abelian) group is almost free if every subgroup of smaller 
cardinality is free. Suppose that G is an almost free (Abelian) group. Is G 
free? For Abelian groups a counterexample was given by R. Baer [Fu]. For 
groups, Higmann in [Hi] constructed a nonfree group of cardinality N, such 
that every countable subgroup of it is free; hence it is almost free. For abelian 
groups the problem of "when does almost free imply free?" can be considered to 
be a generalization ofPontryagin's theorem (see [FuD, claiming that a countable 
Abelian group is free if and only if every subgroup of it of finite rank is free. 
An excellent reference to most of the results mentioned in this introduction is 
the book by Eklof and Mekler [Ek-Me]. 

The Baer and Higmann counterexamples are of size N, . Work by Hill [Hill], 
Eklof [Ek] (for Abelian groups), and Mekler (for groups) [Me] showed that one 
can have such construction for Nn (n < w) . Eklof (and independently Gregory 
and Shelah) actually proved a "pump up" lemma, by which a counterexample of 
cardinality K (K regular) can be pushed up to A (A regular), provided there 
exists a stationary subset of A, E, of points of co finality K which does not 
reflect; namely, 'Va < A, En a is nonstationary in a. 

Since in the constructible universe (by a theorem of Jensen [JenD at every 
regular cardinal A, which is not weakly compact, one can find a nonreflecting 
stationary set whose points are of any given cofinality K < A , it follows that in 
L there is an almost free nonfree group (Abelian or not) at any regular cardinal 
which is not weakly compact. (As shown by Eklof "almost free" implies "free" 
for K which is weakly compact.) 

What about singular cardinals? Can one find an almost free nonfree group 
of cardinality K when K is singular? The problem for Abelian groups was 
attacked by Hill who proved in [Hil2] that if K has cofinality No then every 
almost free Abelian group of cardinality K is free. (In [Hil3] he extended it to 
the case where the co finality of K is N, .) 

The major step was taken by Shelah in [Shl] (see also [HoD. Shelah realized 
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770 MENACHEM MAGIDOR AND SAHARON SHELAH 

that Hill's theorem can be generalized to all singular cardinals, but more impor-
tantly the cases of groups and Abelian groups are just special cases of a much 
more general phenomenon. Shelah considers a general notion of "freeness"; 
namely, given a set A, one can consider a notion of "freeness" as a collection 
!F of pairs of the form (B, C) where B, C ~ A, where (B, C) E!F means 
intuitively" B is free over C". (Being free means being free over the empty set.) 
!F has to satisfy a certain set of axioms (which are very natural in the context 
of algebra on A, where (B, C) E!F if the subalgebra generated by B, B* is 
free over the subalgebra B* n C* where C* is the subalgebra generated by C; 
"free" means free in the appropriate variety). This set of axioms has a cardinal 
parameter X which for the example of free groups and free Abelian groups, etc. 
is No. (For this set of axioms see §2 of this paper.) 

Shelah proved a general compactness theorem for singular K; namely, say 
that A (with respect to the notion of "freeness" !F) is K free if every B ~ 
A of cardinality less than K is free. Shelah showed that if !F satisfies the 
required axioms with some parameter X < K, then K free implies K + free. 
(In particular, if IAI = K, then A is free if it is "almost free".) In particular if a 
group (Abelian group) is almost free and of cardinality K, where K is singular, 
then it is free. This theorem is called the compactness theorem because it is 
the kind of theorem where properties of a "small" substructure of a structure 
imply a global property for the whole structure. Following this terminology we 
shall call a cardinal K A compact if K free implies A+ free for any notion of 
freeness satisfying the set of axioms described in §2 of this paper with parameter 
X < K. K is fully compact if it is A compact for all A ~ K , and K is compact 
if it is K + compact. Hence by Shelah's theorem any singular K is compact. 

There are many more examples satisfying Shelah's axioms than indicated by 
the examples of free varieties. For instance suppose that A carries a graph 
structure, and let A < K, K singular. Define (B, C) E !F if B, C E A 
and B - C can be well ordered so that every element is connected to less 
than A many elements preceding it in this well order. This notion of freeness 
satisfies Shelah's axioms; hence we get as a corollary that if every subgraph of 
A of cardinality < K can be well ordered as above (= has coloring number 
A), then A has coloring number A. Similarly let us consider the problem of 
transversals. Suppose that A is a family of sets, each of them of cardinality 
< X where X < K. A transversal for A is a one-to-one choice function on A. 
For B, C ~ A we say (B, C) E !F if there is a one-to-one choice function 
on B whose range is disjoint from U B. !F satisfies Shelah's axioms with 
parameter X; hence if IAI = K and K is singUlar, and every subfamily of A of 
cardinality < K has a transversal, then A has a transversal. Since this property 
will be important in this paper we define PT(K, A) to mean: Given a family of 
K sets, each of which is of cardinality < A such that every subset of cardinality 
< K has a transversal, then the whole family has a transversal. If PT(K, A) 
fails (i.e., there is a counterexample) we denote this fact by NPT(K, A) . 

In [Sh4] it is shown that NPT(K, N,) is equivalent to the existence of an 
almost free nonfree Abelian group of cardinality K. Also NPT(K, N,) implies 
the existence of an almost free nonfree group of cardinality K. (The inverse 
direction is open.) 
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Which regular cardinals can be compact in our sense? We already know that 
Nn (0 < n < w) are not compact (since we have counterexamples which are 
Abelian groups). Similarly in L no regular cardinal except weakly compacts is 
compact in our sense. As noted by Eklof, a weakly compact cardinal is compact 
in our sense, so if one accepts the consistency of weakly compact cardinals, one 
gets the consistency of a regular compact cardinal. (A much larger cardinal, 
supercompact, gives a fully compact cardinal.) But even a weakly compact 
cardinal is very large (strongly inaccessible, etc.). Can smaller regular cardinals 
be compact? The first cardinal we have to consider is Nw+l . Shelah [Sh2) has 
shown that if i'~o < Nw' then NPT(Nw+I ' NI ); hence Nw+1 is not compact 
under this cardinal arithmetic assumption. It will follow from the results of 
§ 1 of this paper that one can eliminate any cardinal arithmetic assumptions, so 
Nw+1 is never compact. By Eklofs pumping up lemma (or alternatively using 
the Milner-Shelah pumping up for NPT [Mi-Sh), claiming that NPT(K, A) 
implies, for regular K, NPT(K+, A)), one can show that Nw+2 ' Nw+3 ' ••• are 
not compact. Our arguments in §1 generalize to Nw.n+l . (This was done in 
[Sh2) under the assumption that Nw. n is a strong limit.) Hence for every 
regular cardinal K less than NW2 we have NPT(K, NI ), and so we have an 
Abelian group of cardinality K which is almost free but not free. Since the 
corresponding notions of freeness satisfy the axioms from [Sh 1), we get that 
there is no compact cardinal below NW2. 

Thus the next regular cardinal we have to consider is NW2+1. In §3 of this 
paper we shall show that assuming the consistency of infinitely many supercom-
pact cardinals, one can get a model of ZFC + G. C. H. +"NW2+1 is compact". In 
particular in this model an almost free (Abelian) group of cardinality NW2+1 is 
free. The method of §3 can be easily adapted to show that (under the same 
assumption) for a < WI one can get a model of ZFC+G.C.H.+"Nw2 free 
implies Na free". (In particular, NW2+1 is Np compact for P :$ a.) 

Can Nw +1 be fully compact? If not, which cardinal can be the first fully 
2 

compact cardinal? In § 1 we show that NW2+1 cannot be fully compact. There 
we prove that NPT(Nw +1 ' NI ). (Also NPT(Nw +n' NI ) for 0 < n < w.) In 

1 1 
general we show that if K is regular, K < NK ' then NPT(NK+I ' K). We are more 
interested in NPT(NK+I , NI ), but, if we can show that NPT(K, NI ) holds, we 
can get NPT(NK+I ' NI ) . As usual [Sh4) implies that if K carries an almost free 
nonfree Abelian group, then one can get such a group of cardinality NK+I . So 
we get that Nw +1 is not compact (and the counterexample can be assumed to 

1 

be an Abelian group). Similarly if we define inductively KO = WI ' Kn+1 = NK +1 
we get that each Kn is not compact. So there is no fully compact cardinal bel~w 
sUPn<w Kn. sUPn<w Kn is the first cardinal fixed point, i.e., the first K such that 
K = NK • Again, the counterexample to compactness is an Abelian group, so 
below the first cardinal fixed point we get arbitrarily large cardinals carrying an 
almost free nonfree Abelian group. 

So which cardinal can be the first fully compact? In §4 we show (under 
the assumption of infinitely many supercompacts) that one can have a model 
of ZFC + G. C. H. + "the first cardinal fixed point is fully compact". So the 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



772 MENACHEM MAGIDOR AND SAHARON SHELAH 

first cardinal fixed point is the smallest cardinal which can consistently be fully 
compact. In particular (assuming the consistency of OJ many supercompacts), 
one cannot prove in set theory that there are almost free nonfree Abelian groups 
whose cardinality is above the first cardinal fixed point. 

The structure of the paper should be clear by now, except for §2, where 
sufficient conditions are given for A. compactness (or full compactness). These 
sufficient conditions will be used in §§3 and 4 to verify, in the appropriate 
models, that Noht and the first cardinal fixed point are compact and fully 
compact respectively. In §2 we introduce two reflection principles ~/C' and 
~: which will be used to prove the full compactness of K. ~/C is a stronger 
principle, and in some sense it is more natural; however, when in §4 we get a 
model in which the first cardinal fixed point is fully compact, we are not able 
to prove that ~/C holds in that model (though the weaker ~: is heavily used). 
We think that ~/C is of independent interest. By a construction which is similar 
to the construction of §4 we are able to get a model in which the first cardinal 
fixed point of second order (namely, the first K having K many fixed points 
below it) satisfies ~/C. This modified construction will be published in a later 
paper. 

Our notation and terminology are (hopefully) standard (see [Je]). vP is a 
generic extension of the model V, using P as the forcing notion. The cor-
responding generic filter will be Gp . We also assume familiarity with basic 
facts about supercompact cardinals and normal ultrafilters on P/C(A.) (see [S-
R-K] or [K-M]). (Actually no forcing or large cardinals are needed for reading 
§§1 and 2. Especially for §2 the set theoretical requirements are minimal.) For 
iterated forcing terminology see [Sh3] or [Ba2]. Each section will have its own 
numbering for theorems, lemmas, etc., where cross-reference will be denoted by 
"Theorem 2.1", etc. 

1. MORE CASES OF INCOMPACTNESS 

In this section we prove in ZFC that many cardinals are not compact. In 
particular, we show that the cardinals for which our theorem applies carry an 
almost free nonfree Abelian group. Some of the results we give here were known 
before under some cardinal arithmetic assumptions (for instance, for Nw+t) as-
suming that 2No < Nw ; see [Sh2], and here we prove it without any assumptions. 
For other cardinals their incompactness was not known before. Actually in the 
first version of this paper these incompactness results were proved using some 
weak version of G. C. H. (For instance in Theorem 4 below we had to assume 
2/C < A., so in Definition 2 below we did not have to worry about case III. 
When the second author made progress in PCF theory (see [ShS]) the cardinal 
arithmetic assumptions could be eliminated.) 

Recall from the introduction that NPT(A., K) means that there is a sequence 
of sets indexed by A., each of them of cardinality less than K such that the 
family is almost free but not free. Namely, every subfamily of cardinality less 
than A. has a transversal, but the whole family does not have a transversal. For 
instance we have NPT(No' Nt). (Take as the family .!T = {{n}ln E OJ} U {OJ}.) 
By [Sh4] NPT(A., Nt) is equivalent (for A. > No) to A. carrying an almost free 
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nonfree Abelian group. The main theorem of this section is 
Theorem 1. Let ~ be the smallest set of cardinals containing the regular car-
dinal 0 and closed under taking successor cardinals and under the operation 
(A., K) ---- A.+K+l. Assume that NPT(o, N1) holds. Then for every A. E ~ we 
have NPT(A., N1). 

Corollary 2. For every n, m < OJ, m > 0 we have NPT(Nw ' n+m)' Hence we 
have an almost free nonfree Abelian group in every uncountable regular cardi-
nality below Nw2+1 . In particular, there is no regular compact cardinal below 
Nw2+ 1 • 

Proof. We have NPT(No' N1). All the cardinals mentioned in the corollary are 
in ~N • o 
Corollary 3. If there is an almost free nonfree Abelian group of cardinality K, 
then there exists one of cardinality NK +1 • Hence there are arbitrarily large almost 
free nonfree Abelian groups below the first cardinal fixed point. In particular, there 
is no fully compact cardinal below the first cardinal fixed point. 
Proof. The first claim follows immediately from Theorem 1 for A. = Nl and K. 
The second claim follows from the first by defining by induction a sequence of 
cardinals Kn for n < OJ. 

KO = Nl ' Kn+l = NK . 
n 

By the first claim each Kn carries an almost free nonfree Abelian group, and 
clearly the supremum of the Kn'S is the first cardinal fixed point. 0 

For the sequel we need the following generalization of NPT(K, A.): 
Definition 1. Let A be a set and I an ideal on A. A family of sets (Bala E A) 
is said to be I free if for every C ~ A, eEl, the family (Bala E C) has a 
transversal. NPT(A, I, K) holds if there exists a family of sets of cardinality 
less than K, indexed by A, which is I free but not free. In case that the set A 
1s clearly fixed by the ideal I, we shall write NPT(I, K) for NPT(A, I, K). 

Note that NPT(A., K) is exactly NPT(A., I d , K), where Id is the ideal of 
sets of cardinality less than A.. Note also that an example for NPT(A., I, K) is 
also an example for NPT(A., ], K) for every ideal] included in I. 

If S is a stationary subset of A., we let NSs be the nonstationary ideal 
restricted to S. If S is a finite sequence of sets and K = KO ... Kn is a finite 
sequence of regular cardinals such that Sj is a stationary subset of K j , we denote 
by Is the ideal on I1 K which is the product of the ideals N S s . Recall that the 
product I x] of two ideals I and ] , where I is on A and J is on B , is the 
ideal defined on AxB by Z ~ AxB, Z E Ix] iff {bl{al(a, b) E Z} E I} E ]. 

The main technical tool for proving Theorem 1 is the following theorem, 
which is of interest by itself. 

Theorem 4. Let K, A. be regular cardinals, K < A.. Let 'l" = A.+K+l. Then there 
exist a stationary subset of 'l" , S, of points of co finality A. and a sequence of 
sets (A"lo E S) such that, for 0 E S, A" is a subset of A.+K of order type K 
such that for every nonstationary subset of S, T, one can find (D" 10 E T) and 
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(BOlio: E T) such that, for 0: E T, Dais a closed unbounded subset of 0: and 
Ba is a subset of Aa satisfying IAa - BOll < K and the sets (Ba x Dalo: E T) are 
mutually disjoint. 

Theorem 4 immediately gives examples of the failure of the transversal prop-
erty. As an example we have 

Corollary 5. Let K and A be as in Theorem 4; then NPT(A+/C+' , A+). 
Proof. Let S, (Aalo: E S) be the witnesses to Theorem 4. For each 0: E S pick 
E a which is a closed unbounded subset of 0: of order type cf( 0:) = A. The 
family of sets (Ea x Aalo: E S) is an example of NPT(A+K+' , A+). This family 
is clearly of cardinality A+/C+' and every member of it is of cardinality A. This 
family does not have a transversal because such a transversal will be essentially 
a function F defined on S such that, for 0: E S, F(o:) E 0: X A+/C. Easy 
application of Fodor's lemma shows that F is constant on a stationary subset 
of S , so F cannot be one-to-one. Every subfamily of smaller cardinality does 
have a transversal. Without loss of generality the smaller cardinality subset is 
(Ea xAalo: E Snp) for some p < A+K+' . Let (Dalo: E Snp) and (BOlio: E Snp) 
be as in the conclusion of Theorem 4. If we let F(o:) , for 0: E Snp , be any pair 
of the form (y, 15), where 15 E Ba and y E Ea n DOl.' then F is a one-to-one 
choice function on the given subfamily. 0 

Proof of Theorem 1 from Theorem 4. Let ~ = ~ . By induction on the cardinals 
r E ~ we prove the following strengthening of Theorem 1. 
Claim. Assume NPT(t5, N,). For every finite increasing sequence of cardinals 
in ~ - {t5}, ji, there exists another finite increasing sequence in ~ - {t5}, p, 
containing all the members of ji and having the same maximum, and there 
exists a sequence of sets S such that Si is a stationary subset of Pi such that 
we have NPT(I, N,), where I is the ideal 1<6 x Is. 

The proof of the claim is by induction on the maximal member r of {t5} u ji. 
The initial case r = 15 is vacuously true since we assumed NPT(t5, N,). If 
r = p, + , where p, E ~ , then we can invoke [Mi-Sh]. In that paper one starts with 
an example for NPT(p" N,) and "pumps it up" to an example for NPT(r, N,). 
The particular example constructed in [Mi-Sh] is indexed by the set of pairs 
T = {( 0:, P) 10: < r, cf( 0:) = p" p < p,}. Their proof actually shows that if the 
example for p, is actually an example for NPT(p" I, N,) for some ideal I on 
p, , then, for every subset of T, U such that 

{o: < rl{p < p,1(0:, P) E U} ¢ I} 
is not stationary in r, the subfamily of sets with indices in U has a 
transversal (which by our terminology means that this is an example for 
NPT(p" I x N S s' N,) where S is the stationary subset of r of points of cofi-
nality p,). 

Given a finite sequence of cardinals in ~, r;, all of them less than rand 
above 15, we shall verify the claim for the sequence r; ~ { r}. One can assume 
without loss of generality that p, appears in r;, and, by the induction assump-
tion, we have a sequence of stationary sets S (Si a stationary subset of tli such 
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that we have NPT{l, N1), where I is the ideal 1<,5 x Is). I can be considered 
to be an ideal on f.l, so applying the Milner-She1ah construction to this example, 
we get an example of NPT(I* , N1), where 1* is the ideal NS{ala<'f,cf(a)=.u} x I; 
thus we proved the claim for this case. 

The second case is when r = 2+K+l where the induction assumption was 
already verified for K and 2. Without loss of generality we can assume that 
K < 2, because if 2 < K we can replace 2 by K + . The value of r will not be 
changed by it. (Note that all the cardinals in our set %' are less than the first 
cardinal fixed point above 0.) We are also given a finite sequence of cardinals 
below r, iJ; all of the members are in %' - {o} . Again without loss of generality 
we can assume that K appears in iJ (or K = 0) and that 2 is the maximal 
member of iJ by replacing 2 with the maximal member of iJ, if necessary. By 
the induction assumption we can also assume that for some sequence of sets 
S, such that Sj is a stationary subset of Pi' we have NPT(I, N1) where I 
is Is x I<t5. Fix a sequence of countable sets (X,;lff E 0 x OS) which is an 
example of NPT{l, N1). Let Sand (Aala E S) be witnesses to the truth of 
Theorem 4. Let a(a, y), for y E K, be the yth member of Aa. We shall verify 
that if we extend S by the stationary subset of r, S, we will be able to prove 
NPT(I* , N1), where 1* is the ideal I x NSs ' and our claim will be verified 
also in this case. 

For each a E S fix a closed unbounded subset of a of order type 2, Ea. 
For a E Sand y E 2 let e(a, y) be the yth member of Ea in the monotone 
enumeration of Ea. 

The family of countable sets that will witness NPT( r , 1* , N1) is Y,;' where 
ff EO x 0 S x S. For ff E 0 x 0 S x S , let 2(ff) , r(ff) , and K(ff) be the members 
of ff corresponding to 2, r , and K, respectively, and let ff* be ff with its last 
coordinate (namely, the coordinate corresponding to r) omitted. We define 

Y,; = X;;- x {r(ff)} U {(( , a(r(ff) , K(ff)) , e(r(ff) , 2(ff)))}. 

We assume, without loss of generality, that the members of X;;- are not a 
finite sequence of ordinals, so that the union in the definition of Y,; is a disjoint 
union. Y,; is clearly a countable set. The family of sets Y,; has no transversal, 
because if gr is such a transversal, then for every a E S there exists ffa with 
r(ffa ) = a such that 

gr(ffa) = (( , a(r(ff) , K(ff)) , e(r(ff) , 2(ff))). 

(Otherwise one can use gr to define a transversal for (X,;lff EO x OS).) But 
an easy application of Fodor's lemma for the stationary set S will get a and 
a' in S (a i- a') such that 

gr(ffa) = gr(ffa') ' 
which is of course a contradiction. 

We are left with the task of verifying that W is a set in the ideal 1*; then 
the family (Y,;lff E W) has a transversal. For a E S put 

Wa = {(Iff E W, r(ff) = a}. 
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By definition of 1* the set 

T = {ala E S, Wa rt I} 
is not stationary in r. We are ready to use the fact that S and the sequence 
(Aala E S) witness the truth of Theorem 4. Hence we can find (Bala E T) and 
(Dala E T) such that all the clauses of Theorem 4 are satisfied. Without loss of 
generality we can assume that, for a E T, Da ~ Ea. By definition of the ideal 
I it is clear that, for a E T, 

Qa = {(I,y E Wa , a(a, K(7J)) rt Ba , or e(a, A(7J)) rt Da} E I. 

For a E S - T put Qa = Wa ' so that we have Qa E I for every a E S. Since 
(Xele EO x TIS) was a witness to NPT(I, N\), we can find for each a E S a 
transversal g;: for (Xele E Qa). The transversal g- for the set {Y"I,y E W} 
will be defined by (where a = r(7J)) 

g-(7J) = (g;:(() , a} 

for 11' E Qa and 
g-(7J) = (( , a(a, K(7J)) , e(a, A(7J))} 

if 11' rt Qa • Note that in the second case we must have a E T and g-(7J) E 
{ ,y*} x B a X D a. It can now be easily verified that g- is a one-to-one choice 
function on W, using the facts that g;: is one-to-one on Qa and that the 
family of sets {Ba x Dala E T} is a family of mutually disjoint sets. 0 

Proof of Theorem 4. Let A, K , and r be as in the statement of Theorem 4. Our 
main tool will be the study of reduced products of sequences of regular cardinals 
done by the second author ("The PCF theory"; see [Sh5, B-M]). It follows easily 
from the PCF theory (for instance using Theorem 2.1 in [Sh5] or Corollaries 
2.2 and 4.4 in [B-M]) that there is a sequence (Aili < K) of regular cardinals 
cofinal in A +K (all of them above A) such that the reduced product TIi<K Ai / I <K 
has true cofinality r. Namely, there is an increasing sequence (Iala < r) , in 
TIi<K AJ I<K ' which is also cofina1. Recall that a function f in TIi<K Ai is the 
least upper bound of B ~ TIi<K AJ I <K if g < [ f for every g E B, and if 
g <[ f, then, for some h E B, g <[ h. (For the rest of this proof I stands 
for I <K .) Without loss of generality we can assume that, for all a < r , if there 
is a 1.u.b. for {fplP < a}, then Ia is this 1.u.b. (It is unique up to equivalence 
modulo I.) 

We shall classify the limit ordinals a E r according to the behavior of the 
sequence (fplP < a) . 

Definition 2. I. a < r is good (or of the first kind) if Ia is the 1. u. b. of (fp I P < 
a) and the function g(i) = cf(fa(i)) is constant modulo I, where this constant 
value is greater than K. (Note that in this case every 1.u.b. for (fplP < a) has 
a fixed cofinality modulo I.) 

II. a < r is bad (or of the second kind) if there is a sequence of sets of 
ordinals (sili < K) and an ultrafilter D on K such that, for i E K, ISil < A, D 
is disjoint from I (i.e., D is uniform), and TIi<K Si cuts (fplP < a) cofinally. 
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(Namely, for every P < a there exist g E Ilk/C Sj and P < )' < a such that 
fp <n g <n fy. Note that without loss of generality we can assume that for all 
i < K we have Sj ~ ioU).) 

III. a < 'f is chaotic (or of the third kind) if it is not bad and there exists 
a function g E Ilj</C AJ I </C such that the sequence of sets t P = {il i < K, 

fpU) < gUn is positive modulo I for P < a, but it is not fixed modulo I. 
(We clearly have, for P < )' < a, tp ~[ tl' since the fp's are increasing modulo 
I, but in this case we also have that for every P < a there is }' < a such that 
tpc[tl'.) 

The following lemma is a slight variation of Claim 1.2 of [Sh5, Chapter 2]. 
Lemma 5. I. For every a E 'f, cf( a) > A, a is either good or bad or chaotic 
(and exactly one of these cases holds). 

II. For a E 'f, cf(a) = A; then, if a is good, a is neither bad nor chaotic. 
III. If a < 'f has co finality bigger than A, then, if a is good (respectively, 

bad, chaotic), there is a closed unbounded subset of a, C, such that for P in 
C, cf(P) > K, P is good (respectively, bad, chaotic). 
Proof. A basic observation that will be used also later is 
Lemma 6. If a < 'f, cf( a) > K ; then a is good iff there exist a cofinal subset of 
a, B , and A E I such that for i ¢ A, P < }' in B, we have 

fpU) < fyU). 
Proof of Lemma 6. Assume that a < 'f is good. Let f./, be such that cf(Ia (i)) 
is constantly f./, modulo I. By definition of "good" we have f./, > K. Without 
loss of generality assume that, for all i E K, cf(IaU)) = f./,. For each i E K fix 
a cofinal subset of ioU) of order type f./, and de~ote it by E j • For J E f./, let 
hJ E Ilj</C AJ I</C be defined by 

hJU) = the Jth member of E j . 
We claim that if g E Ilj</C AJ I</C satisfies g <[ 10 ' then there is J < f./, such 
that g <[ hJ . Without loss of generality we can assume that gU) < fU) for 
every i < K. For each i < K let Pj be an ordinal less than f./, such that gU) 
is less than the pjth member of E j • Let P < f./, be an upper bound for Pj , 

i < K. Clearly we have g <[ hp • Since also the set {fplP < a} is cofinal in 
the set {g E Ilk/C AJ I</Cig <[ Ia} , we get f./, = cf(a) . 

By the previous remark, for each P < a we can find J(P) < f./, such that 
fp <[ hJ(p). Also 10 is the l.u.b. of (fplP < a); hence for every J < J.l we 
can find P < a such that hJ <[ f p . Using the last two observations, one can 
define by induction an increasing sequence (Pjli < f./,) , cofinal in a, such that 
for i < j < f./, 

fpj <[ hJ(pj) <[ f pJ . 
For i E f./, let B j be the set in I such that for k ¢ B j 

fpj(k) < hJ(pj)(k) < f pj+, (k). 
The ideal I is generated by K sets and f./, > K; hence we can find A E I 

such that the set D = {i + Iii < f./" B j+! ~ A} is unbounded in f./,. We claim 
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that the set A and the set {Pi+1Ii + 1 E D} are witnesses to the claim of the 
present lemma. If i + 1 < j + 1 are two members in D, then for k ~ A we 
have 

f pi+1 (k) < hJ(Pi+1)(k) :::; hJ(Pj)(k) < fpj+l (k) 

where for the second inequality we used the fact that if tJ < )I then hJ(k) < 
h.)k) for every k. We have verified one direction of the lemma. 

For the other direction of the lemma, let A E [ and B s:;;; a be as in the 
statement of the lemma. Without loss of generality the order type of B is 
f.l = cf(a). Let f E I1i<K A.J [<K be defined by f(i) = sup{fp(i)IP E B}. 
By assumption, for i ~ A, cf(f(i)) = f.l. We claim that f is a l.u.b. for 
(fplP < a). It is clearly a bound for every fp for P E B. Hence it is an upper 
bound for (fplP < a), since B is cofinal in a. Let g <[ f. Without loss of 
generality g(i) < f(i) for every i E K. By definition of f, for every i ~ A, 
we can find Pi E B such that g(i) < fpY)' Let P = sup{Pili < K}. Since 
f.l > K , we have P < a and by the assumption about A and B we have, for 
i ~ A, 

g(i) < fp(i) 

which proves that f is the least upper bound for (fplP < a). Since fa was 
picked to be a l.u.b. for (fplP < a) , if one exists, 10 is such a l.u.b., and it 
must be equivalent to f modulo [; hence cf(Ia) is the constant f.l modulo 
[ , and we have verified that a is good. 0 

Lemma 7. Let a < 1: be such that fa is the l.u.b. of (fplP < a). Let f.l = cf(a). 
Then 

{i < KI cf(f(i)) > f.l} E [. 

Proof of Lemma 7. If the statement of the lemma fails, then the set 

A = {i < KI cf(f(i)) > f.l} 
is not in [ (it is positive with respect to [). Let B be a co final set in a of order 
type f.l. Define g E I1i<K A.J [<K by g(i) = sup{fp(i)IP E B, fp(i) < fa(in 
if i E A and g(i) = 0 otherwise. Clearly g <[ 10, so by 10 being the l.u.b. 
for (fplP < a), we get P < a (and without loss of generality we may assume 
P E B) such that g <[ fp . But from the definition of g, for every i E B 
satisfying fpU) < 10 (i) , we have fp(i) < g(i). We get a contradiction since 
fp is less than g on a set which is positive with respect to [. 0 

The next lemma can be considered to be a converse of Lemma 7. 

Lemma 8. Let a and f.l be as in Lemma 7 where f.l > K • Assume that for some 
tJ > K the set B = {i < KI cf(IaU)) = tJ} is noUn l. Then f.l = tJ. 
Proof of Lemma 8. The argument in the proof of Lemma 6 shows that if [* is 
an ideal generated by K sets and if fa is the least upper bound of (fplP < a) 
modulo [* such that, modulo [* , cf(Ia (i)) is constant, then this constant must 
be cf( a). The assumptions of the lemma can be rephrased to say that if we put 
[* to be the ideal generated by [ and K - B , then [* is a proper ideal and 
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!a is the l.u.b. for (fplP < a) modulo [*. Also, modulo [* , the cofinality 
of faU) is the constant J. Hence by the first part of the proof of Lemma 6, 
Il=J. 0 

We can now resume the proof of Lemma 5(1). The main tool is Claim 1.2 
from [Sh6]. (In the sequel we shall refer to it as the main fact.) Let a be as 
in the statement of the lemma (I). In particular cf(a) > K+. If (fplP < a) has 
no least upper bound, then by the main fact either a is bad (actually the s/s 
witnessing it satisfy Isjl ::; K) or a is chaotic. So assume that there is a l.u.b. 
for (fplP < a). (Hence !a is such l.u.b.) We distinguish two cases: 

Case 1. The set 
A = {i < KI cf(faU)) ;::: A} E [. 

Recall that T = A+K+I, cf(a) = Il; hence Il = A+<5+1 for some J < K. By 
Lemma 7 we know that the set 

B = {i < KI cf(fa(i)) > Il} 
is in [. Consider the set 

C = {i < KIA::; cf(!aU)) < Il}. 
If C ~ [ then, since there are less than K cardinals between A and Il and [ 
is K complete, for some A::; tI < Il the set 

{i < KI cf(fa(i)) = tI} ~ I. 
(This is, by the way, the only place in the proof where we use the fact that T = 
A +K+ 1 .) But this contradicts Lemma 8. So C E [ , but then D = Au B u C E [ , 
and, for i ~ D, cf(faU)) = Il. We have proved that the cofinality of !aU) is 
constant modulo I, which shows that a is good. 

Case 2. Case 1 fails. For i ~ A let Sj be a cofinal subset of faU) of order 
type cf(faU)), hence of cardinality less than A. For i E A let Sj be any subset 
of fa (i) of cardinality less than A. Let D be any ultrafilter on K disjoint from 
!. Clearly I1i<K sj D is cofinal in I1i<K fa (i) / D. We have shown that in this 
case a is bad. 

This concludes the proof that a < T of cofinality greater than A is either 
good, bad, or chaotic. The fact that a can satisfy only one of these three 
possibilities is exactly as in the proof of the main fact. The same argument also 
works in the case cf( a) = A , so we have verified parts (I) and (II) of the lemma. 

For the proof of part (III), assume that a is good. Use Lemma 6 and get a 
cofinal subset of a, B, and a set A E I , such that for i ~ A, P < y in B, 
fp(i) < fy(i) . The closed unbounded C will be the set of limit points of the set 
B. Any such limit point J of cofinality greater than K satisfies the claim of 
Lemma 6, using the same A and B n A for B . So in this case we have verified 
(III) of the lemma. 

Now assume that a is bad. Let Sj for i < K be sets of ordinals of cardinality 
less than A such that for some ultrafilter on K, D disjoint from I, I1 i<K Si / D 
cuts (fp IP < a) cofinally. Namely, for every P < a there is g E I1 i<K sj D 
and y(P) < a such that 
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One can easily get a closed unbounded subset C of a such that, for P < 0 in 
C, yep) < o. If P is a limit point of C ,then P is clearly bad, as witnessed 
by the same sequence of sets Sj. 

The last case is that a is chaotic. Let g E Ilj<K AJ [<K be the witness to the 
fact that a is chaotic. Namely, if we define for P < a 

tp = {i < KlfpU) < gU)}, 

then the t p 's are positive modulo [, but they are not fixed modulo [. Hence 
for every P < a there is P < yep) < a such that t p and ty(P) are different 
modulo [. As in the previous case, get a closed unbounded subset of a, C , 
such that, for P < 0 in C, yep) < o. Any limit point of C will be chaotic 
using the same function g. This proves Lemma 5. 0 

So far we did not use the fact that the sequence (fala < r) is cofinal in 
IlkK AJ [<K· This will playa major role in the next lemma. 
Lemma 9. The set 

S = {a < rl cf(a) = A, a is good} 
is stationary in r. 
Proof of Lemma 9. Let C be a closed unbounded subset of r. We shall produce 
a member of S n C. Let a = (2't and consider the structure .s;t' = (Hq, E) 
where Hq is the set of all sets hereditarily of cardinality less than a. Let 
(Njli < A) be an increasing sequence of elementary substructures of .s;t' , each 
of cardinality A such that for i < j Nj E N j • We also assume that (fala < r) 
and C as well as all the members of K are in No. Let N be the union of the 
N/s. For i < A. let a j be sup(Njnr) and let a be sup(Nnr) = sup{ajli < A}. 
Clearly cf(a) = A (The a/s are increasing!) and since C E N we have a E C. 
If we show that a is good, we shall show that S n C =j:. 0 . 

We shall show that a is good by verifying the condition which is claimed by 
Lemma 6 to be equivalent to it. For i < A let ej be the function defined on K 

by C;j(m) = sup(Nj n Am). Note that C;j is a member of Ilm<K Aj and since C;j 
is definable from Nj' we have for i < j C;j E N j . Since K C Nj' we get that 
all the values of C;j are in Nj' so that C;j(m) < c;/m) for every mE K. 

Since (fala < r) are cofinal in Ili<K AJ [<K ' for every i < A there is Pj such 
that C;j <] f pi . Note that we must have a j ~ Pj because otherwise we shall 
have, for some y E Ni n r, Pj ~ y , but since all the values of f.y are in Ni we 
get for all m < K that f.y(m) < C;j(m) , so 

f pi ~] f.y <] C;j , 
which is a contradiction. Also by elementarity, if k < j , then Pj is in Nj' so 
we get 

Pi < a j ~ Pj , 

so that the sequence (Pjli < A) is increasing and cofinal in a. We clearly have 
f pi E Nj . Again, it implies that all the values of f pi are in Nj' so that, for 
every m < K, fp/m) < C;/m). For i < A, let 

Aj = {m < Klfpi(m) ~ C;j(m)}. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WHEN DOES ALMOST FREE IMPLY FREE? 781 

By definition of Pi' Ai E I for all i < A. Since I is generated by K sets, we 
can find a set A E I such that the set 

B = {i < AlAi <; A} 

is unbounded in A. Let B* = {Pili E B}. We know that B* is cofinal in a. 
We claim that the pair A and B witnesses, through Lemma 6, the fact that a 
is good. Let Pi < Pj be two members of B* . (Of course i < j.) For m i A 
we have 

f p/ m ) < ~im) < f p/ m ) 

(where the first inequality holds for every m < K and the second one holds for 
every m i A j , but A j <; A .) The last inequality proves that a is good. 0 

We are ready to define the stationary set S and the sequence (Aala E S) 
that will witness the truth of Theorem 4. Let S be the set {a < _I cf( a) = A, 
a is good}. By Lemma 9 S is a stationary subset of _. Each fa is a subset of 
K x A +K of cardinality K. By simple coding we can consider it to be a subset of 
A+K of cardinality K. Denote the coded version of fa by Aa. We claim that 
Sand (Aala E S) satisfy the statement of Theorem 4. This will follow from 

Lemma 10. Let y < 0 < To Let S: = {a E Sly < a::; a}. Thenfor a E S: 
we can define B a <; Aa and D a' a closed unbounded subset of a, such that 
IAa - Bal < K and Da n y = 0, and for a, PES:, a =f:. P, we have that 
Box D a and B p x D p are mutually disjoint. 

Theorem 4 follows easily from Lemma 10, because if T is a nonstationary 
subset of S, we can pick C, which is a closed unbounded subset of _ disjoint 
from T. If y < 0 are two adjacent members of C, we can apply Lemma 
10 to the S: and get Ba' Do for a E S: as in Lemma 10. Note that every 
member of T is in S: for some two adjacent members of C, y < 0 . Putting 
together the choices of B 's and D 's for the different St5 gives witness to the o a y 
truth of Theorem 4. The main point is that if a < PET and y < 0 are two 
adjacent points of C such that y < P < 0 , then if a is in S: the disjointness 
of Ba x Da and Bp x Dp follows from Lemma 10. If a i S: (which is 
equivalent to a < y) , then Do and D p are disjoint since D p n y = 0, and so 
Ba x Do is disjoint from Bp x Dp. 

Proof of Lemma 10. The proof of Lemma 10 is by induction on o. We first 
deal with the case that cf(o) ::; A or cf(o) > A and 0 is not good. In this case 
we can find a closed unbounded subset of 0, C, disjoint from S: . We get such 
a C because if cf(o) ::; A we can assume that every point in C has co finality 
< A (hence it is not S), and if 0 is not good (hence bad or chaotic), we can 
use Lemma 5 to get a closed unbounded C such that every point in C is not 
good, hence not in S. We can also assume that the first point in C is y. Each 
a E S: (except maybe 0, if 0 E S) belongs to a unique S; where p < J1 < 0 
are two adjacent points in C. Using the induction assumption for J1, we can 
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get a choice of B a ' D a for 0: E S; which will satisfy the requirements of our 
lemma. Combining the choices of B a's and D a's made by different pairs of 
adjacent points of C, p < p, gives the required choice for s: by an argument 
similar to the argument above, deriving Theorem 4 from Lemma 10. We still 
have to define B6 and D6 if 0 E S. But in this case we put B6 = A6 and 
D6 = C. This choice does not conflict with the choices of Band D for 
0: E S; , 0: < 0 , because by our construction Dais disjoint fro~ C = D 6 ~ 

The interesting case is the case when cf(o) > A. and 0 is good. We use 
Lemma 6 and get a set D cofinal in 0 and a set A in the ideal [ such that 
for p < p, in D and v i A we have f,(v) < Ip,(v). We are assuming the first 
point of D is above y. Let C be the closed unbounded subset of 0 formed 
by the limit points of D with the additional point y. Every point in s: is 
either a limit point of C (hence a limit point of D) or is a member of S; for 
a unique pair p < p, of adjacent points of C. If P < P, are adjacent points 
in C, we use the induction assumption for p, and fix sequences (Balo: E S;) 
and (Dalo: E S;) satisfying the requirements of our lemma. So we get Ba and 
Da defined for every 0: E s: which is not a limit point of C. We still have to 
define Ba and Da for 0: which is a limit point of C and belongs to S. (We 
do not have to deal with 0 because cf(o) > A., and hence 0 is.) 

Fix an 0: < 0 such that 0: E Sand 0: is a limit point of C. For p < 0: let 
Ep = {v < Klv E A or Ip(v) ~ .t:,(v)}. Note that Ep E [. By definition of D 
and A the sequence of sets (Ep I P E D no:) is an increasing sequence of subsets 
of K. D is cofinal in 0: and cf( 0:) = A. > K ; hence this sequence is eventually 
constant. Let Fa be subset of K such that, for large enough P E D no:, 
Ep = Fa' Of course we have Fa E [. Let 1] (0:) be the first member of D 
above 0:. Note that 1](0:) is smaller than the first member of C above 0:. We 
have that la <[ I,,(a) ; hence the set 

IS 10 [. Ba is the set of members of Aa coding the pairs (v, .t:,(v)} for 
v i Ha' Since [ is the ideal [</C and Ha E [, we have IAa - Bal < K. 
We also define Da = en 0:. This completes the definition of Ba and Da 
for 0: E S; . We claim that it satisfies the conclusion of our lemma. The only 
nontrivial fact is the mutual disjointness of B a X D a and B p x D p for 0: < P , 
both in S; . If both 0: and P are not limit points of C , then the disjointness 
is argued as above. If one of them, say 0:, is a limit point of C where the other 
one is not, then note that D p is disjoint from C , hence disjoint from D a' The 
last (and interesting) case is when both 0: and P are limit points of C . In this 
case we claim that B a and B p are disjoint. In view of the definition of B a 
and B p the claim amounts to the fact that if v E K and v i Ha U Hp , then 
.t:,(v) =f:. Ip(v). Let 1] = 1](0:) as above. We have 1] < p. Let c; be a member 
of D, 1] < c; < p, such that Et = Fp. If v < K is not in Ha U Hp ' we have 
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v ¢ A and v ¢ Et . Hence (using '1, e E D) 

fa(v) < f,,(v) < ~(v) < fp(v). 

Therefore, fa(v) =I- fp(v) and Ba is disjoint from Bp. 0 

This completes the proof of Theorem 4. 0 

2. SUFFICIENT CONDITIONS FOR COMPACTNESS 

783 

In this section we formulate a sufficient condition for a cardinal K to be 
compact. The general framework is an abstract notion of freeness as introduced 
by Shelah ([Shl]; see also [Sh4]). We are given a set H, and we have a family of 
pairs of subsets of H,!T. Intuitively, (A, B) E!T means" A is free over B". 
As an example, if H is an Abelian group, then (A, B) E!T if G(AuB)/G(B) is 
free where G( C) , for C ~ H , is the subgroup of H generated by C . Following 
this example we say in the abstract setting that AlB is free if (A, B) E !T . 

There are natural requirements one can impose on our notion of freeness. We 
reproduce those axioms from [Sh4] we need. (Note that the set of axioms has 
one cardinal parameter X.) We follow the notation for the individual axioms 
used in [Sh4]; hence the numbering ofthe axioms is not consecutive. (We do not 
need some of the axioms of [Sh4], so we skip them.) Also we use for instance 
Axiom 1** , which is a version of Axiom I in [Sh4]. For stating the axioms we 
need 
Definition. I. We say that for the X majority of subsets of H a certain property 
holds if there exists an algebra on H with X operations such that for every 
subalgebra the property holds. 

II. A sequence of sets (Aala < A) is said to be continuous if, for limit a < A, 
Aa = UP<aAp. 

Axiom 1** . If AlB is free, A* ~ A, then A* IBis free. 
Axiom II. (a) AlB is free iff A uBIB is free. 

(b) AI A is free. 
Axiom III. If AlB is free, C ~ B, and BIC is free, then AIC is free. 
Axiom IV. If Aj (i < A) is increasing and continuous, AolB is free, and, for 
all i < A, Aj+,IAj U B is free, then U Ad B is free. 
Axiom VI. If AlB U C is free, then, for the X majority of X ~ A U B, A n 
XI(B n X) U C is free. 
Axiom VII. If AlB is free, then, for the X majority of X ~ A, AI X U B is 
free. 
(Note that for the Abelian group example Axioms VI and VII hold for X = No.) 

Axiom A. Suppose AIBuC is not free. If 0 = IAI+x, then, for the 0 majority 
of X ~ B, AI X U C is not free. 
(For instance, in the Abelian group case if AlB U C is not free, it is enough to 
have an X ~ B such that G(A) n G(B U C) is included in G(X U C).) 
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Definition. Given a notion of freeness Y, A/ B is A free with respect to Y 
if for every subset C of A of cardinality < A, C, C / B is free. 

Shelah in [Shl] proved that if A is singular and our notion offreeness satisfies 
Axioms II, III, IV, VI, VII (for X < A), and A/B is A free, then A/B is A+ 
free. (See subsequent work in [Bd] and [Ho].) Note that under Axiom 1** if 
A/ B is free, then it is A free for all A. Also if A is a regular cardinal > X 
and A = Uj<J. Aj with IAjl < A and AJ B free, then A/ B is free if and only if 
S = {i < AlA/Ai U B is not A free} is nonstationary in A. The "if' direction of 
the last claim follows from Axiom IV since we have a closed unbounded subset 
of A, C, such that for a E C and P > a, Ap/Aa U B is free. So we can write 
Ua <;. Aa as a continuous increasing union as required by Axiom IV. The other 
direction follows from Axiom VI (where in the axiom we take B = 0, C = B). 
We get the algebra witnessing Axiom VI. The set {a < AIAa is a subalgebra} is 
a closed unbounded subset of A disjoint from S. 

We shall now formulate several reflection principles which will help us get 
compactness results. 

(.1K,;.) For every No ~ J.l < K, S ~ A such that S is stationary in A, and 
such that tJ E S implies cf(tJ) < K, and for every algebra A on A with J.l 
operations, there is a subalgebra A' whose order type (as a subset of A) is a 
regular cardinal '1, '1 < K, and such that S n A' is stationary in sup(A'). 

(.1K ) For every regular A ~ K, .1K ,;. holds. 
The main theorem of this section is 

Theorem 1. Let Y be a notion of freeness satisfying Axioms 1**, II, III, IV, VI, 
VII, and A for some X < K. Let A * be a cardinal ~ K such that for all regular 
A, A ~ A* , we have .1K ;.; then every pair (A, B) which is K free with IAI ~ A* 
is free. ' 
Proof. We start by proving 
Lemma 2. Let Y be as in the hypothesis of the theorem. Assume C / BuD is 
not free, while D/B free. Then there exists E ~ D, lEI ~ ICI + X, such that, 
for all E ~ Y ~ D, C / BuY is not free. 

Thus E can be considered to be the "evidence" of the nonfreeness of C / B U 
D, in the sense that once a subset Y of D contains this evidence then C / Bu Y 
is not free. 
Proof. By Axiom A, if we put tJ = ICI + X, for the tJ majority of X ~ D 
C / B U X is not free. Also by Axiom VI for the X majority of X ~ D D / Xu B 
is free. Hence we can find E which is closed under the operations of both 
algebras where lEI ~ tJ. Hence D/E U B is free, and C/B U E is not free. 
E is the required set because if E ~ Y ~ D, then by Axiom 1** Y / E U B is 
free. Hence Y U B / E U B is free. If we had C / Y U B free, then by Axiom III 
C / E U B is free, contradiction. 0 

For future applications we need a weaker version of the reflection principle. 
(.1~,;.) For every No ~ J.l < K, S ~ A such that S is stationary in A, and 

such that tJ E S implies cf(tJ) < K, and for every algebra A on A with J.l 
operations and for every sequence of sets (DJltJ E S) such that, for tJ E S, 
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D J ~ rJ, ID J I ~ f.l, there is a subalgebra A' whose cardinality is a regular 
cardinal rf, rf < K , and such that A' can be written as a continuous increasing 
union A' = Uiq Ai' where the cardinality of each Ai is less than rf, each 
Ai is bounded in sup(A/) , and the set T = {i < rflrJ = sup(A;) implies rJ E 
S n A' , DJ ~ AJ is stationary in rf. 

It follows easily that if A' is the subalgebra of A witnessing ~~). for the 
stationary set S, then S n A' is stationary in sup(A/); hence it follows that 
for every S a stationary subset of A whose points have cofinality less than K, 

there exists p < A such that S n p is stationary in P ("S reflects"). 

Claim. ~",). implies ~~,).. 

Proof. If A, S, and (DJlrJ E S) are as in the statement of ~~,)., we can assume 
without loss of generality that for every subalgebra of A, B , if rJ E B n S then 
D J ~ B . Let A' be a subalgebra of A witnessing the truth of ~" ).. The order 
type of A' is rf, which is a regular cardinal. So let f be an order-preserving 
function from rf onto A' . The set 

Q = {i < rflf"i is a subalgebra} 
is a closed unbounded subset of rf. Similarly using the fact that S n A' is 
stationary in sup(A/) , we get that 

R = {i < rflsup(f"i) E SnA'l 

is stationary in sup(A/). For i E R, sup(f") = f{i) , but, for i E R, D !(i) ~ 
f{i) n A'; hence D !(i) ~ f" i. Let g be an increasing enumeration of the 
closed unbounded set Q. For i < rf let Ai = f" g(i). A' = Uiq Ai is a 
representation of A' as a continuous union as required by ~~ ).. The set T in 
the statement of ~~ ). contains g-I(R), and hence it is stati~nary in rf. 0 

Theorem 1 will now follow immediately from 
Theorem 3. Let !T be a notion offreeness satisfying Axioms 1**, II, III, IV, VI, 
VII, and A for some X < K. Let A * be a cardinal ~ K such that for all regular 
A, A ~ A* , we have ~~ ).. Then every pair (A, B) which is K free with IAI ~ A* 
is free. ' 
Pmof of Theorem 3. Assume A/ B is K free but not free with IAI minimal. 
We distinguish two cases: 

Case I. IAI = A > K • 
In order to simplify notation we assume that A = A. Note that by mini-

mality of IAI, if IAI = A, then A/ B is A free. By Shelah singular cardinal 
compactness, A is regular. Write A = Ui<.l. Ai as an increasing continuous 
union where IAI < A. (Note that A;/ B is free by assumption.) By a remark 
we made above, {iii < A, A/Ai U B is not A free} is stationary in A; hence 
there is Ci ~ A, I Ci I < A ,and Ci / Ai U B is not free. Pick Ci to be of minimal 
cardinality. By minimality of IAI we know that C;/Ai U B cannot be K free, 
and hence, by minimality of Ci , ICil < K. By Lemma 2, since C;/Ai U B is 
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not free, whereas Ad B is free, we can find Di ~ Ai' IDil :::; X + ICil , and if 
Di ~ Y ~ Ai then CdY U B is not free. 

We claim that without loss of generality we can assume that for 0 E S, the 
cofinality of 0 is less than K; otherwise {olo E S cf(o) < K} is nonstationary. 
Note that IDil < K and that, for most i E S, cf(i) 2: K; hence for most 
members of S, i, we can find h(i) < K such that Di ~ Ah(i)' By Fodor's 
lemma there is a stationary subset of S, S*, such that h is constant on it, 
say h(i) = jo for i E S*. Let j 2: jo' We claim that A/Aj U B is not A 
free. Pick i E S*, j < i, Di ~ Ah(i) = Ajo ~ Aj ~ Ai' By a property of Di' 
CdAj U B is not free, and hence A/Aj U B is not A free. By definition of S 
we get that if j 2: jo then j E S. Hence S contains a tail of A; in particular, 
stationary many points in Shave cofinality less than K, a contradiction. So 
we can assume that we have a stationary S such that, for i E S, cf( i) < K 

and A/Ai uB is not K free. Without loss of generality we can assume that, for 
i E s, IDil, ICil :::; f..l < K for some fixed f..l. 

Using the fact that IDil, ICil :::; f..l we can easily define an algebra with f..l 
operations such that if X is a subalgebra of it then 

(a) f..l + 1 ~ X; 
(b) if i E X then sup(A) EX; 
(c) if Q E X then the minimal i such that Q E Ai is in X; 
(d) if iEXnS then DiUCi~X, 
Now we use il- , for our algebra and the stationary set S. We get a sub-K,A 

algebra A' such that the cardinality of A' is a regular cardinal '1 < K (note 
that by f..l + 1 ~ Xo' f..l < '1) and such that A' can be written as a continuous 
increasing union Ujq Xj where Xj (for j < '1) is a subalgebra of cardinality 
less than '1, and the set 

T = U < '11 sup(X) E S n A', Dsup(X) ~ X) 
] 

is stationary in '1. Fix j < '1 and let 0 = sup(X). By the properties of the 
algebra A (recall that Xj is a subalgebra), we know that Xj ~ Ao' Ao/ B is 
free, and hence X) B is free (by Axiom 1**). It follows that A' / B is free iff 
the set 

T* = U < '1IA'/Xj uB is not '1 free} 

is non stationary in '1. But if JET we have that 0 E SnA' and that Do ~ Xj . 
Also Co ~ A' . By definition of Do we get Col Xj U B is not free, so A' / Xj U B 
is not '1 free, so we have proved T ~ T*. Since T is stationary in '1, we 
conclude that A' / B is not free, so A/ B is not K free. We get a contradiction 
to our assumption that A/ B is K free but not free. 

Case II. IAI = K. 
Of course in this case (in view of Shelah singular compactness) K is regular. 
We follow the proof of Case I and define Ai'S, Ci , and Di as in Case I. As 

in Case I we assume without loss of generality that A = K • The only difference 
is that now we cannot assume without loss of generality that, for some f..l < K 

and for i E s, IDil, ICil :::; f..l. Note that if, for a stationary subset S* ~ Sand 
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i E S*, ICil < i, then IDil < i and by Fodor's lemma we can find S** S;;; S* , 
S** stationary, and ICil for i E S** constant, and we can conclude the proof 
as in Case I, so without loss of generality we assume that, for i E S, i:::; ICil. 
Since ICil < K, we get that K is a limit, hence inaccessible, cardinal. Hence 
we can assume without loss of generality that, for i E S, Ai= IAil = i. Using 
Shelah singular compactness again, and the minimality of ICil, ICil is regular. 
We claim 

Claim. For i E s, if X < i then ICil = i. 
Proof. By Axiom A, Ci u Ad B is free since ICi U Ail < K. (Recall that AlB 
is K free.) By Axiom VII, for the X majority of X S;;; Ai U Ci ' Ci U AdX U B 
is free. 

Let A; be the closure of Ai under the relevant X operations; hence Ci U 
AdA; U B is free. If we had A; U BIAi U B free, then Ci U AdAi UBi is free, 
which is a contradiction to the definition of Ci ; hence A; uB I Ai UB is not free. 
But for X < i, IA;I = i, and hence, by minimality of ICil, ICil :::; IA;I :::; i. 0 

It follows from the claim that if i E S then i is regular. By ~~ K we get 
that the set T = {PISnp is stationary in P} is a stationary subset Or'K. (Note 
that if PET then P is regular.) 

By T being stationary, we can find PET such that if i < P then Ci S;;; P . 
For such a p, IApl = P and as in Case I we can show (using S n P stationary 
in P) that AplB is not free. Hence we get a contradiction to AlB being K 

free but not free. This completes the proof of Theorem 3, which was needed to 
finish the proof of Theorem 1. 0 

For future applications we need an equivalent form of ~K ,,'. : 

Lemma 4. Assume ~K ,J. holds. Then for every algebra .91' = (A, fa, 1;. , ... ) 
with less than K many operations such that A S;;; A and every stationary subset 
of S S;;; A such that, for a E S, cf( a) < K there is a subalgebra of .91', ~, of 
cardinality less than K such that ~ n A has an order type which is a regular 
cardinal and S n ~ is stationary in sup(~ n A) . 
Proof. Without loss of generality assume that the operations in .91' are closed 
under composition. Let .91' r A = (A, fa r A, 1;. r A, ... ) (where fa r A means that if 
fa(P I , ••• , Pk) ¢ A, PI'···' Pk < tt, then (frA)(PI' ... , Pk) = 0). Use ~K ,J. 

for .91' rA and S, and get C?f a subalgebra of .91' Itt of cardinality < K such that 
the order type of C?f is a regular cardinal and S n C?f is stationary in sup(C?f). 
Let ~ be the closure of C?f under the operations of .91'; ~ is the required 
subalgebra of .91' . (Note that ~ n A = C?f because the operations of .91' were 
assumed to be closed under composition.) 0 

3. Na/+ I CAN BE COMPACT 

Definition. A cardinal K is compact if, for every notion of freeness satisfying 
Axioms 1**, II, III, IV, VI, VII, and A, K free implies K + free. 

The main theorem of this section is 
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Theorem 1. Assuming the consistency o/infinitely many supercompact cardinals, 
there is a model 0/ ZFC + G. C. H. in which ~al+1 is compact. (The model will 
be obtained by getting a model O/..1N N .) 

(1)2, ClJ2+ 1 

In our ground model we fix a sequence (Knln < w) of supercompact cardi-
nals. Using the construction of Laver in [La] we can assume that our supercom-
pacts satisfy the following assumption: 

(*) If P is a Kn directed closed forcing notion (i.e., every directed subset 
of P of cardinality < Kn has a lower bound), then vP 1= Kn is supercompact. 
By looking at the proof of the consistency of (*) in [La] one can easily verify 
that we can get (*) to hold together with 2"n = K; (for n < w) or even 

+k k 
2"· = K; +1 for k < w. Also since the truth of (*) is not changed by a 
K~ directed closed forcing, we can assume without loss of generality that, for 
A ~ Kw ' i" = A+ . Also we can assume that G. C. H. holds below ~w. 

For a pair of regular cardinals A, p" A < p, , denote by Col(A, < p,) the Levy 
collapse of all cardinals less than p, to A. (Namely, Col(A, < p,) is the set of all 
partial functions of cardinality < A from A x p, into p, where /(J, a) E a for 
a E p, - A and a a cardinal, partially ordered by inverse inclusion.) Recall that 
Col(A, < p,) is A directed closed and if p, is strongly inaccessible, it satisfies 
the p, chain condition. Denote by Sn = I1m>n Col(K!2 , < Km+1). Note that 
Sn is Kn directed (actually even K;2 direc~d closed); hence V S• 1= Kn is 
supercompact. Also standard arguments show that in V S• Kw = sUPm<w Km is 
K;w. Let F n be a term denoting in V S• a normal ultrafilter on PIC (K~). (It 

exists since Kn is supercompact in Vs.; see [K-M] for definition ~f normal 
ultrafilters, etc.) F n has a natural projection to a normal ultrafilter on Kn 
(namely, A E Un +-+ {PIP n Kn E A, PEP" (K~)} E Fn). Recall that we 
assumed that 2"· = K; , and that forcing with Sn does not introduce new 
sets which are hereditarily of cardinal ~ K;; hence Un E V. So we get a 
normal ultrafilter in V, Un' such that some condition in Sn forces it to be the 
projection of some normal ultrafilter on PIC (K~). Since Sn is a homogeneous 
forcing notion, we get that the empty condition in Sn (hence any condition in 
Sn) forces that Un is the projection of some normal ultrafilter on PIC (K~). 

Let Mn be the transitive collapse of the ultrapower V"n / Un. j:'V --+ Mn 
will be the corresponding elementary embedding. Members of Mn are of the 
form [flu ' which is the equivalence class of the function / E V"· mod-
ulo Un. Consider the forcing notion T = CoIM'(K;w+2, < jn(Kn)) (where 
CoIM •..• means the collapse forcing notion defined in Mn). Recall that Mn 
has the property that every sequence of its members of length Kn is in Mn , that 
Mn 1= j(Kn) is inaccessible, and Mn 1= T satisfies the jn(Kn) chain condition. 
Therefore M 1= there are exactly jn(Kn) dense subsets of T. On the other 
hand, V 1= Un(Kn)1 = K;; hence we can enumerate (in V) the dense subsets of 
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T which lie in Mn in a sequence of length K;. Every initial segment of this 
sequence is in Mn' and also Mn F T is K; closed; hence one can easily define 
(in V) a T generic filter over Mn by inductively meeting each dense set in 
Mn . Fix such a generic filter G n . 

We are at last ready to define our forcing notion .9 , such that in V.9' F L\K + 
w,Kw 

and V.9' F Kw = Nw2. Also V.9' will satisfy the G. C. H., so it will be the 
required model for proving Theorem 1. The definition of the forcing uses 
ideas of Foreman-Woodin [F-W], Woodin [Cu-Wo], and Gitik [Gi], modifying 
the original construction of [Ma], of models violating the singular cardinals 
hypothesis. 

The idea is to use the sequence of the normal ultrafilters (Vnln < w) to 
get a generalized Prikry sequence (ajli < w) such that Kj_1 < a j < Kj (for 
simplicity put K_I = WI)' and then collapse all cardinals in the intervals 
( ) ( +w+2 ) (+2 ) (+w+2) h w3 ' aD ' aD ' KO ' KO ' a l ' a l ' KI ' etc., so t at aD becomes N4 , 
KI becomes Nw+3 ' a l is Nw+6 (Kn is Nw(n+I)+3)' Kw will be NW 2. 

Definition of the forcing notion. .9: The forcing notion .9 is made up of all 
sequences of the form 

P = (aD, ... , an_I' (Ajln ~) < w), go' gl' ... , gn' 10 , •.• , In-I' 

(Fjln ~) < W), (gjln <) < W)) 

such that 
(a) Kj_1 < a j < Kj , a j inaccessible (recall K_I = WI) for 0 ~ i ~ n; 
(b) A j E Vj for n ~ } < w, every a E A j is inaccessible; 
(c) 1; E Col(a7w+2, < KJ (i < n); 
(d) gj E Col(K7_~ , < aJ (i < n); 
(e) gj E Col(K;~I' < K), } 2: n, such that gj E Col(K;~1 ' < a) for a E Aj . 

(Note that (e) implies that (gjl) > n) E Sn .) 
(f) For} 2: n, Fj is a function defined on Aj such that, for a E A j , Fia) E 

Col( a +w+2 , < K j) and such that the equivalence class of Fj as a member of 
the ultrapower VKj / Vj is in Gj . 

n is the length of the condition p. Its a-part is (aD, ... , an_I). Its A 
part is (AjlJ 2: n); similarly the I-part of p is (10, ... , In-I)' and the 
g-part of p is (go, ... , gn). Its S-part is (g)} > n), and its F -part is 
(Fjl) 2: n). The lower part of p is (the a-part of p, the I-part, the g-part). 
(Note that there are at most Kn different lower parts of conditions of length 
n.) For a condition p as above we put aj(p) = a j . Similarly we define 
Aj(p), 1;(p), gj(p), and Fj(p). pfk, the restriction of p to k (k ~ n), is 
((aD, ... , ak_I ), (go' ... , gk)' (10, ... , Ik-I))· Note that the lower part of p 
is exactly p f n . 

Intuitively aD, ... , an is an initial segment of the "generalized Prikry se-
quence". A j is the set of possible candidates for being a j. gj and 1; are part 
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of the Levy collapse, making sure that there are no cardinals in the intervals 
(1e~1' a j ), (atClH2 , le j ), respectively. Fj(a) is a commitment that if a E Aj 
will be picked in the future as a j , then the corresponding fj will have to ex-
tend F/a). gj for j> n is a commitment about the possible value of gj in 
the future. (Note that if gj E Col(Ie;~I' < Ie), then, for large enough a < lej , 
gj E Col(lej _ 1 ' < a), so gj is implicitly also the commitment to pick a j so 
large that gj E Col(lej _ 1 ' < a).) 

These intuitive remarks should motivate the definition of the partial order 
on P, where the formal definition is 

p = (ao ' ... , an_I' (A)j ~ n), go' ... , gn' 10, ... , In-I' 
(Fjlj ~ n), (gjlj > n)) 

extends 
p* = (a~, ... , a:_ I , (A;U ~ m), g~ , ... , g:, 10* , ... , f;_I' 

(Fj*U ~ m), (g;U > m)) 

(p ~ p*) if 
(a) m ~ n and for i < m, a j = a; , and I; extends 1;* as a member of 

Col(atw+2 , < Ie;) ; 
(b) for i < (J), gj extends gt; 
(c) for n ~ j, Aj ~ A; and, for all a E Aj' F/a) extends Fj*(a) (as a 

member of Col(a +cJJ+2 , < Ie)); 
(d) for m ~ i < n, a j E A; and I; 2 Ft(a;). 
p is a length-preserving extension of p * if n = m. p is a k-Iength-

preserving extension (for k ~ m) if p is a length-preserving extension of p* 
and pfk = p*fk. We shall denote it by p ~k p*. We say that p is a triv-
ial extension of p * if they have the same lower part. (It is the same as being 
m-Iength-preserving.) Being a k-Iength-preserving extension means that we did 
not change the information p* was giving below a k . 

Lemma 2. Let (Polc5<l1) bea ~k decreasing sequence all of them of length n, 
where 11 ~ ak(Po) if k < nand 11 < len if k = n. Then the sequence has a ~k 
lower bound. 
Proof. We define q, which is going to be the ~k lower bound of the sequence, 
by making the a-part of q equal to the common a-part of the conditions in 
the sequence. For i < n, I;(q) = Uo<l'/ I; (Po) . (For i < k we get I;(q) = 

I; (Po) , and for i ~ k I;(q) E Col(atw+2 , < Ie;) by the Col(atw+2 , < Ie) 
being at closed.) Similarly we put gj(q) = Uoq gj(po). For j ~ n, Aj(q) = 
noqAj(po) - 11· Here we use 11 < len to get that A/q) E Uj . For j ~ n 
and a E A/q) we define F/q)(a) = U,,<o F/po)(a). F/q)(a) is easily seen 
to be in Col(a +w+2 , < lej ). We have only to verify that the equivalence class 
of F/ q) is in G j. But M j is closed under sequences of length 11. Hence 
since Gj is a generic filter for a forcing notion considered to be 11 closed by 
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M j (which means that it is rJ closed in V), we get that UJq[F/PJ)]u is in 
J 

Gj , but the last union is exactly [Fj(q)]u.' 0 

The dual notion to k-Iength-preserving extension is the notion of k-direct 
extension, where we do not add any information on the collapse maps above 
a k , but we may change the information below a k • Formally p is a k-direct 
extension of p* (for k ::; n) if in (a) we have 1; = 1;* for m> i ~ k, in (b) we 
have g; = g; for i > k, in (c) we have Aj = A; ,except for the case k = m = n 
where we make An = {a E A~lgn E COI(K;~I' < a)}. (We needed this special 
case in order to satisfy clause (e) in the definition of the forcing conditions.) 
Fj(a) = F/(a) for j ~ n, a E Aj' and in (d) 1; = Ft(a;) for i ~ m, k. (Note 
that if p is a k-direct extension of p* then p is determined by p* ,prk, and 
(am' ... , an-I); hence there are at most K(J) k-direct extensions of p.) p is 
a direct extension of p * if it is a O-direct extension and we also have go = g; . 
Note that if p is an extension of p* and given k ::; n, then we can get p from 
p* by taking a k-direct extension of p* , s, such that p is a k-Iength-preserving 
extension of s. s can be easily shown to be unique, and it will be called "the 
k interpolant of p* and p", denoted by Int(k, p* ,p). 

The following lemma is typical for this class of forcing notion. It is known as 
the "Prikry Lemma". (See for instance [Gi], Claims 2, 3, 4 in §3 of this paper, 
or the main technical lemma in [Ma].) The proof is essentially along the lines 
of the quoted papers. At the insistence of the referee we include the proof. 

Lemma 3. Let D be an open subset of .9. Let p E.9 be a condition of length 
nand k ::; n; then there exists a k-Iength-preserving extension of p, q, such 
that 

(a) if q* ::; q and q* ED, then Int(k, q, q*) ED. 
(b) If q* ::; q, q* ED, and the length of q* is m, then any q** satisfying 

q** ::; q, length(q**) = m, and q** rk = q* rk is in D. 
(c) If D is the set of conditions deciding a given statement <1>, we can assume 

that q* II- <I> iff q** II- <I> (q* and q** as above). 

q satisfying the statements in Lemma 3 is said to be in D modulo k-direct 
extensions. If D is the dense set of conditions deciding the value of some term 
r, which is forced to denote an ordinal, then q as above is said to determine 
r up to k-direct extensions. If D is the dense set of conditions deciding the 
tmth value of some statement <I> in forcing language, then q as above is said 
to decide <I> modulo k-direct extension. Note that in this case if q* ::; q q* 
decides <1>, then any r which extends q and satisfies rrk = q* rk decides <I> 
in the same way. In particular the unique r which is a k-Iength-preserving 
extension of q and satisfies rrk = q* rk decides <1>. Namely for deciding <I> 
below q we have only to change q r k . 

Proof of Lemma 3. We first prove a restricted version of Lemma 3, in which 
we get the conclusion for q* of fixed length. 

Lemma 4. Let p, n, and D be as in the statement of Lemma 3. Let I be a 
natural number. Then there exists a k-Iength-preserving extension of p, q, such 
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that for every extension of q, q * of length n + I , if q * E D then Int( k , q , q *) E 
D. 
Proof. We prove the lemma for every p and n by induction on I. There is a 
slight difference in the proof between the case k < n and the case k = n. We 
shall deal with both cases simultaneously. 

We start with the proof for I = O. The set {qfklq $ p} has cardinality 
a k = ak(P) if k < n and cardinality len if k = n. Define " = a k if k < n 
and " = len if k = n. Let (rJIJ < '1) be an enumeration of this set. Put 
rJ = (ao' ... , a k _ l , gg, ... , gt, to, ... , Jt-I)' Without loss of generality 
we can assume that the enumeration is such that for 15 inaccessible then gt E 

Col(";~1 ' < 15) iff P < J. (Namely the enumeration restricted to 15 enumerates 
exactly those r p mentioning only cardinals below 15 .) 

By induction on 15 < " we define a $k decreasing sequence of conditions 
(qJIJ < ,,) where % = p and 

qJ = (ao ' ... , an_I' (A~1i ~ n), go' ... , gk' gt+I' ... , g!, 

10, ... , ik-I' it, ... , ~-I' ([<iii ~ n), (gJIi > n)). 

Note that this notation does not conflict with the notation we had above for the 
components of rJ • The notation uses the fact that qJ is a k-length-preserving 
extension of p. For limit 15, qJ is a $k lower bound for (qplp < 15). In order 
to define qJ+I we "merge" rJ and qJ to form 

sJ = (ao' ..• , an_I' (A~lj ~ n), gg, ... , g! ' to, ... , ~_I' 
(F:lj ~ n), (gJlj > n)). 

If there is a k-length-preserving extension of S,s of length n, t,s, such that 
tJ ED, we define qJ+I by putting, for k $ i, 11+1 = !;(tJ)' For k < j < w 
we put g1+ 1 = gj(tJ) , and for n $ j < w we put F:+I = Fit,s) and A~+I = 
Aj(tJ) . If no such tJ exists, we define qJ+I = qJ . 

The condition q, witnessing the truth of the present lemma, will be a $k 
lower bound of (qJIJ < ,,) , if k < n. In the case k = n, q is a "diagonal" $k 
lower bound to (q,sIJ < ,,) . 

q = (ao ' ... , an-I' (A;lj ~ n), go' ... , gk' g;+1 ' '" , g; , 

10, .. , , f k- I , J; , ... , f:_ 1 ' (Fj*lj ~ n), (g;1i > n)) 

where, for k $ i < n, 1; = UJ<17 11· For k < j, g; = UJ<17 g1. For 
j > n, A; = nJ<17 A~. A: is the diagonal intersection of the A~'s. Namely, 
A: = {P < "niP E nJ<p A~}. For a E A; and j> n, Fj*(a) = UJ<17 F:. F; 
is defined by F;(a) = UJ<o F:(a). 

This definition can be easily verified to give q E g. The proof that [F/1u E 
J 

Gj is as in Lemma 2, using the fact that Gj is closed under unions of length 
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~ Kj . q is the required condition for the case 1 = O. If q* ~ q, q* of length 
n, and q* ED, then q* rk = r6 for some J < 11. q* is a k-length-preserving 
extension of S6 which is in D. Hence t6 exists. But Int(k, q, q*) extends t6; 
hence it is in D. The fact that Int(k, q, q*) ~ t6 is straightforward in the case 
k < n. In the case k = n we need that An (Int(n , q, q*)) ~ An(t6) = A~+I , but 
if f.l is the sup of the inaccessibles below J, g! must mention some cardinal 
above f.l, by our assumption about the enumeration (r61J < 11) , so that every 
member of An (Int(n , q, q*)) is above J. Since it is in A~ and it is a limit 
ordinal, it is in An(t6)' Similarly for a E An (Int(n , q, q*)), Fn(t6)(a) ~ 
Fn(Int(n, q, q*))(a) . 

We now deal with the induction step from I to 1 + 1 . The set {(a, f)la E 
An' f E Col(a +co+2 , < Kn)} has cardinality Kn' Enumerate this set in a se-
quence of length Kn: «(a6 , ~)IJ < Kn)' By induction on J < Kn we define 
an increasing sequence in Sn' (g1U ~ n + 1), where gJ = gj(p), For limit J 
(g1U ~ n + 1) is a lower bound of {(gJU ~ n + 1)111 < J}. For defining g1+ 1 

we consider the condition 
P6 = (ao' ... , an_I' a6 , (AjU ~ n + 1), 

go' ... , gn' g!+i' 10, ... , fn-i'~' (FjU ~ n+ 1), (g~U > n+ 1)). 
P6 has length n + 1. By the induction assumption for I applied to P6 ' we can 
find q6' which is a k-length-preserving extension of P6 such that q6 satisfies 
the conclusion of our lemma with respect to all q* ~ q6 provided the length of 
q* is (n+ 1)+1 = n+(/+ 1). We define, for j ~ n+ 1, g1+ 1 = g/q6)' We also 
denote ~* = fn(q6)' f/ clearly extends ~. Given the inductive definition, 
we define, for j ~ n + 1, g; = U6<lCn g1. Clearly 

* +2 gj E Col(K j _ 1 ' < Kj ). 

Fix a E An' Let DOl be the set of all conditions h E Col(a +w+2 , < Kn) such 
that there is a condition in .9' of the form 

h . h h * 
(ao' ... , an_I' a, (Aj IJ ~ n + 1), go' ... , gk' gk+I' ... , gn ' gn+I' * 

10, ... , ik-i' .r: ' '" , 1:-1' h, (FjhU ~ n + 1), (g;U > n + 1)) 

satisfying the conclusion of our lemma with respect to q * of length n + (I + 1) . 
Fix h E Col(a +w+2 , < Kn)' For some J < Kn we have (a, h) = (a6 , ~). 
By our construction ~* extends h, and it is in DOl' So we have shown that 
DOl is dense in Col(a +w+2 , < Kn)' It is clearly open. Consider the function 
H(a) = DOl on An' Since An E Un' the equivalence class of H modulo Un' 
[H] Un ' represents a member of Mn which is (in the sense of Mn) a dense subset, 
D* , of Col(K+w+2 , < jn(Kn))' Gn is generic over Mn , so D* n Gn =j:. 0. Let 
[F]u E D* n Gn ,and [F]u extends [Fn]U . Without loss of generality we can 
assu~e that, for every a E nAn' F (a) extends Fn (a) and it is in DOl' 
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For a E An let 

ra = (ao' ... , an_I' ... , (A;1i ~ n + 1), go' ... , gk' g;+1 ' ... , g: ' g; , 

fo, ... , fie-I' J; , ... , 1:-1' (F;1i ~ n + 1), (g;1i > n + 1» 

be a witness to the fact that F(a) E Da. Namely for every q* :::; ra of 
length n + I + 1, if q* E D then Int(k, ra , q*) ED. The sequence Xa = 
(J; , ... , .r:-I' g;+I' ... ,g:) can be coded as a bounded subset of a. Hence 
by the normality of Un we get C ~ An' C E Un' such that this bounded set 
is fixed for 0: E C; namely for a E C, Xa = (fie* , ... , 1,,*-1' g;+1 ' ... , g;) 
for some fixed sequence (fie* , ... , 1,,*-1' g;+I' ... , g;) . For a E C and j > n 
we also have Fja E Gj . Gj is Kj closed, so we can find [F/1u E Gj such that 

) 

[Fj*1u :::; [Fja1u for every a E C. We can also assume that [Fj*1u :::; [F)u . 
) ) ) ) 

We also define F: = F . For j > n we define 

Aj = n A; n n {P E AjIFj*(P) :::; Fja(pn n {P E AjIF/(P) :::; Fj(pn· 
aEC aEC 

Clearly Aj E Uj . We also define A~ = C. We are ready to define the k-
length-preserving extension of p that will satisfy the present lemma for 1+ 1 . 
It is 

q = (ao' ... , an_I' (A; Ii ~ n), go' ... , gk' g;+I' ... , g; , fo, ... , fie-I' 
fk* , ... , 1,,*-1' (F/Ii ~ n), (g;lj > n». 

q satisfies the lemma for 1+ 1 because, if q* :::; q, q* ED, and the length of 
q* is n + I + 1. Let a = an(q*). Of course a E C. q* can be easily seen 
to be an extension of ra , so, by the definition of ra , Int(k, ra , q*) ED, but 
Int(k, q, q*) is an extension of Int(k, ra , q*) , so it is in D. This concludes 
the proof of Lemma 4. 0 

Lemma 3 follows from Lemma 4 by applying Lemma 4 w times; namely 
we construct a :::;k-decreasing sequence (qklk < w) such that qo = p and q/+I 
satisfies Lemma 4 for extensions of q/+I of length n + I. Let r be a :::;k lower 
bound for the sequence. It satisfies clause (a) of Lemma 3. We shall find a 
trivial extension of r that will satisfy (b). Let (Bjli ~ n) be the A-part of 
r. Let T = {q*rklq*:::; r}. If k < n then ITI < Kn. If k = n we put, for 
aEAn , Tra={q*rnlq*:::;r, an(q*):::;a}. In this case ITral=a. We define 
a partition of U/~n n~=n Bj' !T, where 

!T(an ; ... , a/) = {s E Tithe k-direct extension of r determined by s 

and an ' ... , a/ is in D} . 

Note in the case k = n, !T(an , ... , a/) ~ Tran, so we can consider 
!T(an , ... , a/) to be essentially a subset of an. Standard partition arguments, 
like Rowbottom's theorem, using the normality of the Uj for j ~ n, give a 
sequence of sets (Cjlj ~ n) such that Cj E Uj (for j ~ n) and such that 
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I I for sET and (an' ... , a/) E I1 j=n Cj , (Pn , ... , PI) E I1 j=n Cj (in the case 
k = n we also assume S E Tr an n Tr Pn) 

SE9'(an , ... , al) iff sE9'(Pn , ... , PI)' 

Let q be the condition which is exactly like r except that its A-part is (Cjlj 2: 
n). q clearly satisfies both (a) and (b) of Lemma 3. In order to get (c) (namely 
we are in the case that D is the set of conditions deciding a sentence <1» we 
replace D by D* , the set of conditions forcing <1>. A condition q satisfying 
(a) and (b) for D* will satisfy (a), (b), and (c) for D. 0 

Note that if p and k are as in Lemma 3 (k < n) and we have a collection 
of < a k _ 1 (p) open subsets of .9 , we can find q satisfying Lemma 3 simulta-
neously for all the dense sets in our collection. Given a term r which is forced 
to denote a subset of 1'/ for some 1'/ < a k _ 1 (p), we can apply this observation 
to the collection of open subsets of .9, {DpIP < 1'/}, where Dp = {r E .9lr 
decides "P E r"}. We get that an extension of p forces that the realization of 
r lies in V[Grk] , where Grk = {rrklr E G, the length of r > k}. Grk is 
essentially a generic filter in 

k k-I II +2 II +w+2 Col(wl' < ao) x Col(Kj _ l , < a) x Col(aj , < K) 
j=1 j=O 

where (ao ' a l ' •.• ) is the union of all the a-parts of conditions in the generic 
filter. As usual it follows from this remark that in the generic extension obtained 
by using .9 no cardinals below Kw are collapsed, unless we specifically provided 
for their collapse in our forcing notion. So the sequence of infinite cardinals 
below Kw is 

+ +w +w+1 +w+2 + ++ 
W, WI' a o ' a o ' ... ,ao ,ao ' a o ' KO' KO ,KO ' 

+ +w +w+1 +w+2 
ai' a l ' ••• ,a l ,a l ' a l ' K2 · 

Clearly Kw in the extension is ~W2 • 

Since our forcing notion does not satisfy the A chain condition, where .it = 
K ~ , we have to prove 

Lemma 5. In vP F.it is a cardinal. 
Proof. We shall prove that V9',.it is still regular. Assume otherwise, and let 
p E.9 be a condition and r a term such that 

p If- "r: f.l -+.it cofinally where f.l = cf(.it)" (where f.l < .it). 
Since K w is singular, f.l < K w' Since the sequence (a j Ij < w) is cofinal in K w ' 
f.l < a k for some k. Without loss of generality we can assume that the length 
of p > k. Using Lemma 3 for the collection of (DpIP < f.l) where Dp is the 
collection of conditions deciding the value of r(p), we get q ~ p such that, 
for P < f.l, q determines r( a) up to k-direct extensions. Since every possible 
value of r(p) is determined by some k-direct extension of q, and since there 
are at most Kw such direct extensions, there are at most Kw possible values for 
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r(p). Hence once we are below q there are at most KQJ possible values for 
r(p) for all P < Jl. Since this set of possible values is bounded in A., 

q II- the range of r is bounded in A. , 
which is a contradiction to q ::; P . 0 

We are now left with the main task of the proof of Theorem 1, namely 
showing 

Let i, S be terms, Jl < KQJ' and p E.9 be a condition such that p II- r is an 
algebra on A. with Jl operations and S is a stationary subset of A.. Since, for 
0: < A., cf(o:) < KQJ and since forcing the conclusion of AK K+ for a subset of 
S instead of S is enough, we can assume without loss of g~n~rality that 

p II- 0: E S -. cf(o:) < K, 
for some I < OJ. We can assume without loss of generality that also Jl < K, 
and that the length of p is n, where I::; n - 1 . 

The main idea of the rest of the proof is to argue in V S', where we assume 
that the S part of p is in the Sn generic filter G(Sn). Recall that in V S• 

~n is still supercompact. In VS• we shall get a "fake" version of i and of 
S, and then use the supercompactness of Kn to get an elementary substructure 
of the "fake" i~, of a regular order type less than Kn , such that S n g is 
stationary in sup(g). This seems almost a proof of L\ ;.' except that g is a 
substructure of the "fake" i, not the real i as realized'" in V9", but the "fake" 
i and ~ will be similar enough to their "real" counterparts that we will be able 
to extend p to a condition in .9 forcing that g is an elementary substructure 
of the real i and that the "fake" S n g is a subset of the real S. 

Before we start defining the "fake" Sand i, we have to normalize S some-
what. So for a little while let us argue inside V9". For every member P E.S 
there exists some condition qp in the generic filter G(.9) such that qa II- 0: E S. 
Since there are less than A. many possible lower parts of q p , there is a stationary 
subset of S, T, such that for PET, the lower part of qp is fixed. Without 
loss of generality we can assume that the lower part of p extends this fixed part; 
hence 

P II- T = {PIP < A., there is some q E G(.9) , 
q trivial extension of p , q II- PES} 

is stationary in A.. The nice feature of T is that if q ::; p and q II- 0: E T for 
some 0: < A., then, for some n-length-preserving extension of p, q* , q::; q* ::; 

* . p, q II- 0: E T . 
We now move to V S'. In V S• define .9* to be the set of q E.9 such that 

length(q) ~ n and its Sn part belongs to G(Sn). Partially order .9* as in .9 . 
(Note that, by our assumption about G(Sn) , p E .9* . We are slightly sloppy 
here, since if the length of q is k > n then its S-part formally does not belong 
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to Sn but to Sk' but we can naturally consider Sk to be embedded into Sn if 
k > n in such a way that G(Sn) naturally induces an Sk generic filter.) 

Lemma 6. Let D E V be a dense subset of ,9. Then 
(a) VSn 1= D n,9* is a dense subset of ,9* . 
(b) If q E ,9*. k ~ length(q). then there is a k-Iength-preserving extension 

of q. q*. q* E,9* • such that q* satisfies the conclusions of Lemma 3. 

This lemma implies that if we force with ,9* over VSn we introduce a V 
generic filter for ,9 , so we can consider V9" to be a submodel of VSno9"° 

Proof. (a) Let r = (gjln -1 < i < ro) be a member of Sn such that r I~ q E,9* 
but no extension of q is in D n,9* . 

Let q* be an extension of q, such that the length of q* is I ~ n, such that 
its S-part extends (gjll < i < ro). (It can be done since r I~ q E ,9* .) Let q** 
be an extension of q* in D of length m. Let (hjlm < i < ro) be its S-part. 
Let r* = (g;ln < i < ro) where g; = gj for i ~ m and g; = h j for i > m. 
Clearly r* I~ q** E,9* n D, which is a contradiction since r* ~ r. 

(b) Let r be as above, r I~ q E,9* . Let m = length(q). Find an m-length-
preserving extension of q, q* , such that if the S-part of q* is (hjlm < i < ro) 
then gj ~ hj . Apply Lemma 3 to q* to get q** , a k-length-preserving extension 
of q** , which is in D modulo k-direct extensions. Let (h;lm < i < ro) be 
the S-part of q**. Define g; = gj for n - 1 < i ~ m, g; = h; for i > m . 
r* = (g; In - 1 < i < ro) extends r and forces q** to be in ,9*. 0 

We are now ready to define in VSn our "fake" version of the stationary set 
T, T*. 

T* = {ala < A., some trivial extension of p, which is in ,9*, forces a E 'h. 
Let qa E ,9*(a E T*) be a trivial extension of p forcing a E T. qa has of 
course the same lower part as p. Let (Ak(a)lk > n), (Fk(a)lk > n), (gk(a)lk > 
n) be qa's A-part, F-part, and S-part respectively. For a ¢ T* make qa = p. 

Lemma 7. VSn 1= T* is a stationary subset of A.. 
Proof. Assume otherwise, and let C be an Sn term forced by r E Sn to be 
a closed unbounded subset of A. disjoint from T*. Define an equivalence 
relation ::::: on Sn by (gjln - 1 < i < ro) ::::: (hjln - 1 < i < ro) if, for large 
enough i, gj = h j . For r E Sn let [r] be its equivalence class. Let V. be 
V[{[r]lr E G(Sn)}]. Clearly V ~ V. ~ VSn. Clearly V. is obtained from V 
by forcing, where the forcing notion is Snl:::::, namely {[r]lr E Sn}' where the 
partial order is defined by [(gjln - 1 < i < ro)] ~ [(hjln < i < ro)] if, for large 
enough i, h j ~ gj . 

Claim. VSn is obtained from V. by a A. c.c. forcing. Hence in V. there is a 
closed unbounded subset of A. included in c. 
Proof of the Claim. Let G* = ([r]lr E G(Sn)}. Clearly V. = V[G*] and G* is 
Snl::::: generic over V. VSn is obtained by forcing with SnIG* = {rlr E Sn[r] E 
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G*} 0 So we really claim that Vi F SnIG* satisfies the A. CoCo Let D be a term 
forced by [r] (over Sn/~) to be a maximal antichain in SnIG* 0 Let Qm be 
iln- 1<;<m Col("72 , < "i+l) 0 Note that the cardinality of Qm is "m; hence we 
can enumerate Un-l<m<w Qm in a sequence of order type "w' (PpiP < "w)' 
where, for n ~ i, lei < P < ";+1 ' Pp E Q;+1 0 Also, for q E Sn' P E Qm define 
q * P to be the element of Sn' q* ,where q*U) = pU) for n - 1 ~ i < m, and 
q*U) = q(i) for i ~ m 0 

We now define by induction a decreasing sequence of elements of Sn' (r piP < 
"w)' such that if lei < p, }' then, for n < j ~ i, rpU) = r .. ;<j) 0 (Namely, above 
lei we "freeze" the coordinates of rp below i + 10) ro is r 0 For limit P de-
fine rpU) = U,.<p r,.U) 0 It is a member of Sn since if "j < P ~ "j~1 then if 
j < i then Col("72 < ";+1) is closed under unions of cardinality ~ lei and, for 
i ~ j, r,.(i) is eventually constant below po For defining the successor stage, 
namely rp+1 where rp is given, c~nsider the following statement: 

<I> p: There exists a member of D, q , such that q is compatible with r p * P p , 
where, if Pp E Qm' qrm = Pp 0 

(Note that if Pp E Qm' then P < "m 0) Define rp+1 to be a condition such that 
[rp+1] decides the truth of <l>p, [rp+d ~ [rp] , and moreover if [rp+d I~ <l>p 
then, for some qp' qprm = PP' qp compatible with rp * Pp 0 

[rp+d I~ qp E SnIG* /\ qp ED 0 

Since [rp+d I~ [qp] E G* , we must have [rp+1] ~ [qp] 0 Since we can replace 
rp+1 by an equivalent condition and since, for j > m, qpU), rpU) are com-
patible, we can assume that, for j ~ m, rp+1 U) = rpU) (hence since P < "m 
our inductive assumption is satisfied) and, for j> m, rp+1 U) ;2 qpU) 0 

Let r ooU) = Up<Kw rpU) 0 As before, it is easily checked that roo E Sn 0 Let 
E = {roo * pip E U n- 1<m<w Qm} 0 We claim tha~ [roo] I~ Snl::>:: 'Every element of 
D can be extended to an element of E' 0 Since D is supposed to be an antichain 
in SnIG* and since lEI ~ lew (note that [roo] I~ E ~ SnIG*) , this will prove 
that IDI ~ lew 0 Assume our last clai~ fails; hence we can find s such that 
[s] ~ [roo] and q such that [s] I~ qED but q does not have an extension in 
Eo Without loss of generality we can assume s ~ roo 0 Also [s] I~ [q] E G* , 
and hence [s] ~ [q] 0 Hence there exists m such that, for m ~ i, sU) ;2 qU) 0 

Consider q r m 0 It appears in our enumeration as some P p (P < "m) 0 Consider 
the statement <l>p 0 q clearly witnesses its truth; hence since [s] ~ [rp+d, we 
must have that [rp+d I~ <l>p 0 Hence we also get [rp+d I~ qp ED, where, for 
j ~ m, qpU) = ppU) and, for j > m, rpU) ;2 qP+l U) 0 Since, for j > m, 
sU);2 roo U);2 rp+1U) and sU);2 qU), we get that HPp ~ q, HPp ~ qp (as 
members of Sn)' but [s] F s * Pp E SnIG* ; hence 

[s] F q and qp are in D and are compatible 0 

Since D is an antichain, we must have q = qp' but then roo * Pp ~ rp+1 * Pp ~ 
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qp = q. Hence q E E, which is a contradiction and proves the claim. 

We resume the proof of Lemma 7. In view of the claim we can assume that 
the closed unbounded subset of A., C, disjoint from T* lies in V;. We force 
over V Sn with .9* . By Lemma 6 we get a .9 generic filter over V, G(.9). In 
particular we have a realization of the set T, which in V9" is supposed to be 
stationary. By the definitions of T and T* it is clear that T ~ T* . We claim 
that V; c V9" . It is enough of course to show that ([r]lr E G(SnH E V9" . Note 
that if g E.9 then its S-part determines a unique element of Snl ~, denote 
it by q, and since G(.9) is included in .9* , {qlq E G(.9H ~ ([r]lr E G(SnH . 
A simple genericity argument also shows that if [r] E G(Sn) then, for some 
q E G(.9) , q $ [r]. (Assume otherwise; hence there is q E G(.9) , 

q Ir for no q* E G(.9) [q*] $ [r]. 

But q E .9* , and hence q is in ([r]lr E G(Sn)}. In particular q and [r] are 
compatible. One can easily extend q to q* such that q $ [r], which is a 
contradiction.) Hence {[r]1 for some q E G(.9) , q $ [r]} = ([r]lr E G(SnH. 
Therefore this set is in V9". In particular C E V9" , but C n T* = 0 ; hence 
C n T = 0. We showed that V9" 1= T is not stationary in A., which is a 
contradiction. 0 

So we already get in VSn our version of the stationary set T, namely T*. 
We are now going to construct our version of the algebra r. This algebra will 
be defined not in VSn but in a forcing extension of it. Let R~ be 

+w+2 ++ ++ X Col(O:i ' Ki ) x ~ Col(Ki_ l , < 0:;) X Col(Kn _ 1 ' < Kn) 
OS/<n OS/<n 

(where (0:0 , .•. , O:n-I) is the o:-part of p). For technical simplicity we re-
place R~ by an isomorphic partial order Rn = {(o:o' ... , O:n_l)} X R~ (where 
((0:0 , .•• , O:n), r) $ ((0:0 , ... , O:n) ,r') if r $ r' as members of R~); the ad-
vantage of using Rn is that if q is of length n then the lower part of q is in 
Rn ' and for the rest of this section, whenever we shall refer to an Rn generic 
filter, we shall assume that it contains the lower part of p as a member. 

Recall that in V Sn we have defined .9* ~ .9. In V Sn xRn we shall define 
.9** ~.9*. q E.9** if q E.9* , q of length n, and the lower part of q is in 
G(Rn). Note that, by our assumptions on G(Sn) and G(Rn) , p E .9** . Note 
th~,t any two members of .9** are compatible. (If ql' q2 E ,9** then their 
lower parts are compatible since both of them belong to G(Rn). Their S-parts 
are compatible because they belong to G(Sn). Any two A-parts and F-parts 
are compatible. It is obvious for the A-part. For the F -part use the fact that 
the equivalence class of Fk(ql) and Fk(q2) modulo Uj belongs to the generic 
ultrafilter Gk • Hence 

Bk = {o:IFk(ql)(O:) is compatible with Fk(q2)(0:)} E Uk 
which lets us find a joint extension of the A-part and F -part of ql and q2 
respectively.) Actually using the countable closure of Sn x Rn one can show 
that if qi' i < OJ, are in .9** , then they have a joint extension in .9** . 
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Lemma 8. (a) Let <I> be a statement in the forcing language (over V) for ,9'; 
then there exists r E ,9'**, r ~ p , such that r decides <1>. 

(b) Let D ~,9' be dense, D E V; then there is r E ,9'**, r ~ p, such that 
r is in D modulo direct extensions, and there exists m such that any direct 
extension of r of length m is in D. (Note that, by the remarks above, any two 
r's in ,9'** which decide <I> assign to <I> the same truth value.) 
Proof. Let ((hili> n), t) E Sn x Rn force that the lemma fails, where we 
assume that (hili> n) extends the S-part of p and t extends its lower part. 
Let p* ~ p be defined by specifying it to have t as its lower part. Its A-
part and F-part are like p, and its S-part is (hili> n). Use Lemma 2 for 
p* and get q* ~ p* having the same lower part as p* , deciding <I> up to n-
direct extensions. Let r ~ q* decide <1>. By the remarks after Lemma 3 we can 
assume the length of r is n. Let (h;li > n), t* be, respectively, the S-part and 
the lower part of r; ((h; Ii> n), t*) clearly force that r E ,9'** and r decides 
<1>. Hence we get a contradiction since ((h;li> n), t*) extends ((hili> n), t). 
The proof of (b) is similar, using Lemma 3. 0 

We are now ready to define the algebra r* in VSnxRn. Without loss of 
generality we assume that the type of r, namely the sequence of the cardinals 
specifying for each n < w how many n-ary operations are in r, is in V. 
(We can achieve it, for instance, by assuming that r has Il n-ary operations 
for each n < w.) The algebra r* will be generated by the ordinals < A., so 
each member of it will be a term (in the language appropriate for the type of 
r) to a finite sequence of members of A.. r* will be completely determined 
if we specify for each two terms whether they denote the same member of the 
algebra (thUS the elements of r* are essentially equivalence classes of terms). 
If P and 71 are terms and p, Y sequences of ordinals < A., then p(P) = 71(Y) 
if some q E,9'** forces p(P) = 71(Y). (p(P) can be interpreted in r to be 
some ordinal less than A., similarly for 71(Y) , so they are considered to be the 
same element in r* if some q E,9'** forces these two ordinals to be the same.) 
Note that by Lemma 6 either there is q E ,9'** forcing p(P) = 71(Y) or there is 
q E,9'** forcing p(P) =f:. 71(Y) , and these two possibilities are exclusive. 

* -We shall also define a well ordering of the elements of r . Namely p(p) < 
71(1) if, for some q E ,9'** , q Ir- p(P) < 71(1) as ordinals. 

Lemma 9. r* is well ordered by the relation just defined. 
Proof. Transitivity, antisymmetry, and reflexivity follow easily from the defi-
nition and from the fact that if ql' q2 E ,9'** then ql' q2 are compatible in 
,9'** . Given p(P) and 71(Y) , if there is q E ,9'** , q Ir- p(P) =f:. 71(Y) , then there 
is r E ,9'** , r Ir- p(P) < 71(Y) or r Ir- 71(Y) < p(P) (we cannot have r forcing the 
negation of these two statements since such r will be compatible with q). It is 
a well ordering because if qi E ,9'** (i < w) forces Pi+1 (Pi+l ) < Pi(Pi) , then 
there is qoo E ,9'** extending all qoo and then qoo Ir- Vi(Pi+1 (Pi+l ) < Pi(P)) , 
which is a contradiction. 0 . 

We implicitly assumed that A. is a subset of r* , by having a trivial term p 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WHEN DOES ALMOST FREE IMPLY FREE? 801 

which is identified with the ordinal p. Our next lemma shows that they are 
cofinal in 1" * . 

Lemma 10. For each term pCP) there is y < A. such that, in T, pCP) < y. 
Proof. Note that .9* satisfies the A. c.c. (Any two conditions in .9* agreeing 
on their lower part are compatible.) Hence the set {JIJ < A. some q E .9* 
forces pCP) = J} is bounded in A.. Let y < A. be such a bound. If q E .9** 
then we cannot have q If- pCP) > y, because then by Lemma 6 there is q* ~ q, 
q* E .9*, q If- pCP) = J. By definition of y we must have 15 < y, hence a 
contradiction. 0 

We shall now show that the order type of T under the well ordering we have 
defined is A.. In view of Lemma 10 it will be enough to show that if Ay is the 
initial segment of T determined by y < A., then IAyl ~ Kw. 

Lemma 11. IAyl ~ Kw. 

Proof. In V y is an ordinal < A. = K;; hence there is a function in V, 

f: y !:! Kw· Recall that Kw = Un<w Kn; hence if q E .9**, q If- pCP) < y, 
then q If- f(p(P)) E Ul<w K,. For each / < (j) consider the statement CI>, = 
"f(p(P)) E K/'. We have q, E .9**; q, decides the truth value CI>,. We 
cannot have, for all / < (j), q, If- --,CI>, because then we can find qoo ~ q, q, 
for / < (j) but qoo If- f(p(P)) E Ul<w K, 1\ V/(f(p(P)) ¢ K,), which is clearly 
a contradiction. Hence, for every term in Ay' p(P) , we can find some / < (j) 

and q E.9** such that q If- f(p(P)) < K,. SO Ay = Ul<w Ay" where 

Ay " = {p(P)lp(P) E Ay' some q E.9** forces f(p(P)) < K,}. 

It will be enough to show lAy) ~ Kw. Assume otherwise. Let {pJ(PJ)IJ < 
K;} be a list of K; different terms in A y". For each 15 < Kw let DJ be 
the dense subset of .9 of those members of .9 which force PJ(PJ) = , for 
some ordinal' . By Lemma 6 we can find qJ E.9** ,% as in DJ up to direct 
extensions. (Note that then there is an n ~ mJ < (j) such that any direct 
extension of qJ of length mJ is in DJ .) Without loss of generality we can 
assume that 

qJ If- PJ(PJ) < y 1\ f(py(PJ)) < K,. 
Also without loss of generality we can assume that mJ is some constant m 

~ + + (otherwise pass to a subset of {pJ(PJ)IJ < Kw} of cardinality Kw). 
Given 151 , 152 < K; let qJ, ,J2 be in .9** : 

Without loss of generality we can assume that qJ J ~ qJ and qJ J ~ qJ . Let 
" 2' , 2 2 

q; J be any direct extension of qJ J of length m. q; J clearly is in .9* . 
, 2 , 2 , 2 
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Note that any two conditions in ,9* having the same lower part are compat-
'bl Al C ;=6. ,62 ...J. ;=6. ,62 * IL (P~) ;=6.62 1\ (P~) ;=6.62 1 e. so, lor some ~1 ,. ~2 ' q66 .- P6 6 = ~1 P6 6 = ~2 . • 2 •• 2 2 
Now define in V S.+. xR. a partition on [Al: the two member subsets of l. For 
c51 < c52 ' 

g( {c51 ' c52}) = (lower part of q; 6 ) . 
• 2 

Since q; 6 is of fixed length m, we have at most Km many possible lower parts 
• 2 

of q; 6 • So the range of g( {c51 ' c52}) is at most of cardinality Km' which is 
• 2 

less than Kw' (Note that since Rn is of cardinality < Kn in V S• x Rn' Kw 
is still a strong limit cardinal.) By the Erdos-Rado theorem (see [E-R)) we can 
find A S;; l, IAI > K[, with the order type of A a limit ordinal such that g 
is constant on [A]2. For c51 , c52 E A, q; 6 are in ,9* , and they all have the 

• 2 

same lower part; hence any two are compatible. So if c51 < c52 E A, ~6.62 does 
not depend on c52 , so denote it by ~6 •. Also, clearly ~6. < y and f(~6.) < K[ . 
It is also clear that if c52 < 61 then ~g.6. = ~6. ; therefore, for c51 =I- c52 in 
A, ~6. =I- ~62, but then f(~6.) =I- f(~62) (f is 1-1), and we get more than K[ 
different elements of K[ , which is an obvious contradiction. So IAy,Ii :=; Kw' 0 

We now step back to VS., where .* will now be considered to be a Rn term 
for an algebra on l forced to be well ordered by < in order type l. Abusing the 
notation we can also consider r to be a term in VS• for the forcing Rn • The 
main reason for moving down to Vs• is that, in VS., Kn is still supercompact; 
hence we can find a normal ultrafilter U* on P" (l). By the choice of Un we 
can assume that U* projects to Un' In V S• co~sider the structure 

~ ( * 17ll* *} 
.::;if} = Ve' l, T ,.:;r , p , Rn ' • 

for () large enough. A standard use of the supercompactness of Kn (see for 
instance [S-R-K] or [K-M)) will prove 
Lemma 12. The set 

E ~ { PEP, (A) I for some elementary substructure of g . g' . P ~ g' n A • 

1P1=lfB**l, PE n A} 
AEU'n~' 

is in U*. 
T* is a stationary subset of l, all of its points having cofinality less than 

Kn' Also, in VS., l = K;W+1 . Another standard supercompactness argument 
shows that the set 

El = {P E Pk(l)IP n Kn is an inaccessible cardinal, the order type of P 

is (P n Kn)+W+1 , T* n P is stationary in sup(P)} 
is in U*. 
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Lemma 13. Let PEE n EI nAn (p). Let [B* be an elementary substructure of 
[B witnessing the fact that PEE. Then there is a condition q E g;* of length 
n + 1, such that an(q) = P n Kn and such that q extends every trivial extension 
of p which is in g;* n [B* . 
Proof. Let an = P n Kn' We define q as 

(0'.0' ... , an' (A;ln < j), go' ... , gn' g:+1 ' fo, ... , In-I' I:, 
(Fj*ln < j), (g;ln + 1 < j)). 

(We have used the superscript * for every component of q which is different 
than the corresponding component of p.) 

A; is the intersection nAEUn9?* A. It is in Uj (for j > n) since the 
] 

cardinality of [B* is less than Kn < Kj . (Note that [B* is in VSn, but since 
Sn is Kn closed, [B* n V is in V; hence we intersect a family of sets in V.) 
Similarly g; for j > n is defined to be the union of the jth components of 
G(Sn) n [B* . Again the fact that Sn is Kn closed guarantees that this union is 
in V, and it is in Col(K;~I' < K) . 

f.n* is defined to be U{F(a )IF E [B* , [Flu E G }. We have to show that n n n 
In* is in Col(a;w+2, < Kn)' We assumed that for every A E U; n[B* we have 
PEA; hence, since Un is the projection of U; , we get that, for A E Un n [B* , 
P n Kn = a EA. If F and F* are in [B* and [Flu' [F*lu E G ,we get n n n n 

X = {P < KnlF(P) , F*(P) E Col(p+w+2, < Kn), F(P), F*(P) are compatible} 
E Un' If F, F* E [B* , we have X = Un n [B* , so an EX. Therefore In is 
the union of I[B*I mutually compatible conditions in Col(a:w+2, < K n ), and 
as before this union is in V. I[B*I = IPI = a;w+I; hence this union is in 
Col(a;w+2, < Kn) . 

By the way, this is the point that blocked us from collapsing any cardinals 
between an and a;w+I , and it is the reason that the proof of Theorem 1 does 
not work for cardinals less than NW 2+1 . 

For j > nand P E A* we define F*(P) = U{F(P)IF E [B*, [Flu E G.}. 
} } j } 

An argument exactly like the one for In shows that F/(P) E Col(pw+2 , < K) 
and that [F/lu E Gj . We have proved that q is a condition. The fact that 

] 

q extends every trivial extension of p in g;* n [B* follows immediately from 
the definition of q. 0 

We are now ready to verify ~N N is in V9". Let PEE n EI ' and let 
Q}' oi+l 

[B* witness that PEE. Let 0'.= pnKn = [B* nKn . Let q be as in Lemma 13. 
We claim that q forces that the subalgebra of T generated by P has the same 
order type as P and P is co final in it. Note that q forces that the order type 
of P is a regular cardinal in V9", since an(q) = P n Kn , the order type of P 
is (P n Kn)+W+I , and no cardinals are collapsed between an and a;W+2. Also 
note that, for P E T* n P, some trivial extension of p in g;* forces PET, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



804 MENACHEM MAGIDOR AND SAHARON SHELAH 

but by g* being an elementary substructure of g , such an extension is in 
g* , so q extends it; hence q forces that pET. Since we have PEEl' 
P n T* is stationary in sup(P), we get that q forces that Tn P is stationary 
in sup(P). So if we verify the claim, we get that q forces that the subalgebra 
generated by P is a witness to AN N • Note that we use the fact that, 

CJJ2, 0)2+1 

while the argument takes place in VS., P and q are in V so the witnesses 
are in V. 

Claim. q forces that the subalgebra of • generated by P has order type IPI 
and P is cofinal in it. 
Proof of the claim. Let .s;t' be the subalgebra of • generated by P. • * is an 
algebra in (VS.)R. of order type A., so let h be an Rn term in V S• forced 
to be an order-preserving map from .. onto A.. Rn satisfies Kn C.C. Hence 
for every term p(ii) there is a set of cardinality less than K n , X = Xp(ff) , 

such that every condition in Rn forces that h(p(ii)) EX. If if E P then 
by P n A. = g* we get that X ~ P. We have shown that the subalgebra of .* generated by P has order type IPI. A similar argument shows that P is 
cofinal in it. Also, using again the Kn C.C. of Rn , we get that the subalgebra 
of .. generated by P (we denote it by .s;t'*) is in (VS.)R~, where R~ is 
X O<i<n Col(a7w+2 , K;) x X o<j<n(Kt!1 ' < a j) x COI(Kn_ l , < a). Since Sn is 

Kn ~losed, .s;t'* is in VR:. F~rcing with .9 (provided q E G(.9)) introduces 
a generic filter for R~. (We denote this generic filter by G(R~).) Hence we 
can assume that .s;t' * is in V.9. Our claim will be finished if we show that q 
forces that .s;t' is isomorphic (including the order) to .s;t'* by an isomorphism 
which is the identity on P. The isomorphism is quite clear. A member of .s;t' 
has the form p(ii) where P is a term in the signature of • and if is a sequence 
of members of P. We map p(ii) to the equivalence class of this term in ... 
In . order to show that this is a well-defined map which is an isomorphism we 
have to show that if PI' P2 are two terms in the signature of • applied to 
some members of P (we do not mention these members of P explicitly) and 
if PI = P2 (PI < P2) in the sense of .s;t'* then PI = P2 (PI < P2) in the sense 
of .s;t'. But PI = P2 (in the sense of .s;t'*) means that for some r which is 
a trivial extension of p and some t E G(R~), if r* is the condition which is 
like r except that its lower part is t, then r forces PI = P2' By g* being 
an elementary substructure of g we know that we can assume that r E g* ; 
hence q extends r. Hence r E G(.9). By definition of G(R~) in V.9 we 
know that r E G(.9); hence PI = P2 in the sense of •. The argument in the 
case PI < P2 (in the sense of .s;t'*) is similar. 0 

This completes the proof of Theorem 1. 0 

For future references in the next section we need to consider the problem 
of modifying our forcing construction, so as to get Ale"" p for all regular J.l 2: 
P > K~ for some J.l. Essentially the only facts specific to K~ in the proof 
of Theorem 1 were that Un (n < w) was forced by Sn to be the projection 
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of a normal ultrafilter on PK (K;) , in the forcing extension VS., Fn , and that 
{PIP E PK (K;) , the order ;ype of P = IP n KI+w+'} E Fn. (Note that {PI 
order type· (P) :::; IP n KI+w+'} E F is enough for the proof of Theorem 1.) 
So suppose that we are given a cardinal /1 > Kw and a sequence of ultrafilters 
(Unln < w) and a sequence of functions (hnln < w), hn: Kn --+ Kn , such that 
every condition in Sn forces that Un is the projection of a normal ultrafilter 
Fn ' on PK (/1) , such that . 

{PIP E PK (/1), the order type of P :::; hn(P n KnH E Fn . . 
(Note that Un is then forced to be the projection of a normal ultrafilter on 
PK (p) for all p :::; /1.) We can then define an analogue of our forcing no-
ti~n .9, where the only difference in the definition is that we require J; E 

Col(hi(ai)+ , < K) (in our previous argument hi(Q) = atW+1) , and similarly 
Fi(J) E Col(hi(J)+ , < K). The proofs of Lemmas 2-4 are as before; Lemma 
5 should now read "All cardinals p :::; /1, P > K w ' are preserved". The proof 
for p > K; simply follows from the fact that, since we assume G. C. H. above 
Kw' the cardinality of .9 is K;. (We cannot claim now that Kw is NW2. The 
index of Kw in the N sequence depends of course on the functions (hili < w), 
because they determine how many cardinals we leave uncollapsed.) 

We claim that in V9' we have L\., p for all regular p :::; /1. So again we are 
given terms i, S for an algebra i on p and a stationary subset of p, S. We 
are also given a condition p of length n. We assume that if p = rt, where 
1'/ is singular of cofinality less than Kw ' then cf(rf) < K n_ l • The definitions of 
T, T* in Vs• and the proof that T* is stationary in Vs• go as before. (They 
are actually simpler if p > K; , because 1.91 = K;.) Also the definition of the 
algebra r* in Vs• xR. is as in the proof of Theorem 1. The only proof that 
requires modification is the proof of Lemma 11, namely showing that 

Lemma 14. In our modified situation lAy I < P (for y < p) . 
Proof. We distinguish two cases. 

Case I: p is inaccessible or it is the successor of a cardinal whose co finality is 
> Kw. Note that by G. C. H. holding above Kw' lyK", I < p. As in the proof of 
Lemma 9 let {po (.80 ) IJ < p} be a sequence of terms, such that, for J1 ' J2 < p, 

For J < p let qo E .9** be in Do up to direct extensions (where Do are the 
dense subsets of those members of .9 which force Po (ft 0) = , for some , < p) , 
and without loss of generality assume qo Ir- Po (po) < y. Every direct extension 
of qo is determined by some an+I , ••• , am < Kw. So define Ho: K~w --+ y 
by Ho(an+I , ••• , am) = the unique ,+ 1 such that the direct extension of 
qo determined by an+l , ••• ,am forces Po(Po) = , if such a direct extension 
exists, and 0 otherwise. Ho is essentially a function from Kw into y; hence 
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by our assumption we have less than p such functions. Therefore we can find 
t5, ' t52 < p, t5, =f. t52 , such that Ht5 = Ht5 . It immediately follows that every 

1 2 

condition extending qt5 and qt5 forces p 15 (Pt5 ) = P 15 (Pt5 ) , which contradicts 
1 2 1 1 2 2 

the fact that qt5 ' qt5 ' and qt5 15 are compatible. 
1 2 I' 2 

Case II: p = '1+ where cf('1) < K(J)' Hence cf('1) < K[ for some I, and 
we assume that we have I < n. As in the proof of Lemma 11 we pick a one-
to-one function f, f: y ~ '1. Also let '1 = sup('1,I' < cf('1)). Again let 
(pt5(Pt5 )lt5 < p) be a counterexample to the fact we are trying to prove. 

Claim. For each t5 < p, 3qt5 E ,9** and ((t5) < cf('1) such that qt5 II- f(pt5(Pt5 )) 
E '1'(15)' 

Proof. Assume otherwise; let ((hili> n), t) E Sn xRn force that the claim fails, 
where we assume that (hili> n) extends the S-part of p and t extends the 
lower part of p. Let p* have t as a lower part, (hili> n) as its S-part, and 
be otherwise like p. Let <1>, (( < cf('1)) be the statement "f(pt5(Pt5 )) E '1,", 
By the remarks following Lemma 3 (using cf('1) < K n_,) we can get an n-
length-preserving extension of p* , q, such that q decides <1>, modulo n-direct 
extension for all ( < cf( '1) and satisfies (c) of Lemma 3 with respect to each 
<1>,. Since we must have "f(pt5(Pt5 )) E '1," for some ( < cf(r!) , let q* be an 
extension of q forcing" f(pt5(Pt5 )) E '1," for some « cf('1). By the properties 
of q, q* can be assumed to be an n-direct extension of q of length n. Let 
(h;li> n) be the S-part of q* and t* its lower part. Clearly ((h;li> n), t*) 
extends ((hili> n), t) and forces q* E ,9** , but q* can serve as qt5 in the 
claim and ( as ((15)' a contradiction. 0 

Without loss of generality we can assume that ((t5) is the constant ( for 
t5 < p. Now the proof is like the proof of Lemma 11; namely for t5 < p we 
pick qt5 E ,9** , 

qt5 II- Pt5(pt5 ) < y 1\ f(pt5(Pt5 )) < '1" 
and qt5 is in D 15 up to direct extensions (where D 15 is the dense set of members 
of P forcing a specific value to Pt5(pt5 )) , and such that getting into Dt5 we 
have simply to take a direct extension of qt5 of length mt5 (which without loss 
of generality we can assume is a constant m.) Again we pick for t5" t52 < p, 

** - -qt5 15 E,9 ,qt5 15 extending qt5 ,qt5 and forcing Pt5 (Pt5 ) =f. Pt5 (Pt5 ) . 
12 12 1 2 1 1 2 2 
Defining the partition g(t5" t52 ) = lower part of qt5 15 and using the Erdos-

1 2 
Rado theorem again (remember that '1 is strong limit) to get a homogeneous 
set for g of cardinality> '1, yield a contradiction as in the proof of Lemma 
11. 0 

From now on, the proof of ~/(w, p is exactly as in the proof of Theorem 1. 
Thus we proved 

Theorem 15. Assume (Knln < OJ) is a sequence of cardinals. K(J) = sup(Knln < 
OJ), J.l > K(J)' Assume that G. C. H. holds above K(J) and 2/(· = K; . Assume also 
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that Kn is f.l supercompact if we force with Sn' Let (f"ln < ro) be a sequence of 
functions f,,: Kn -+ Kn and (Un In < ro) a sequence of ultra filters such that every 
condition in Sn forces that there is a normal ultrafilter in PK (f.l), Fn , such that 
Fn projects to Un' and • 

{PIP E PK (f.l), order type of P $ fn(P n KnH E Fn' 
• 

Then if we define .9 as in Theorem 1 (except that we use COl(f(o:;)+, < Ki ) 

instead of Col(0:7w+2 < Ki )), then V9" F I1Kw ,P for all regular Kw < p $ f.l. 

The reason we were so particular to enumerate all our assumptions again is 
that we are going to apply Theorem 15, not in V, but in some generic extension 
of V, V Q , and so we shall have to verify that all our assumptions are satisfied. 
Note that if Q is K; closed forcing and that we define .9 in VQ as above 
(using (Unln < ro) and (f"ln < ro)), we get that .9 E V. (This does not mean 
that V9" F I1Kw ,P for Kw < p $ f.l, because the assumptions about (Unln < ro) 
and (f"ln < ro) are satisfied only over V Q , so we only get V Q"9" = V9"x Q F 
I1Kw ,P for Kw < p.) 

4. THE FIRST CARDINAL FIXED POINT CAN BE FULLY COMPACT 

In this section we prove 
Theorem 1. Assume the consistency of infinitely many supercompacts; then there 
is a model of set theory in which the first cardinal fixed point (namely the first 
0: such that 0: = Na ) is fully compact (i.e., for every notion of freeness satisfying 
Axioms I .... , II, III, IV, VI, VII, and A for a cardinal X < K, if (A, B) is K 
free then it is free, where K is the first cardinal fixed point). Also G. C. H. holds 
in the model. (Note that, in view of§l, we cannot have a smaller fully compact 
cardinal.) 

The main tool for the construction will be the principle 11~,J!' where for 
many cardinals, f.l, we shall get also 11K , J! to hold in our model, where K is the 
first cardinal fixed point. We do not know how to get a model in which 11K ,J! 
holds for all regular f.l > K where K is the first cardinal fixed point (we actually 
suspect that it is actually false). The first cardinal for which we can construct a 
model in which 11 holds for all regular f.l > K, where K is the first cardinal K,J! 
fixed point of second order, namely the first K such that {0:10: = Na , 0: < K} 
has cardinality K. The last construction is a variation on the proof of Theorem 
1, and we shall omit it in the present paper. 

As in §3 we start with a sequence of ro many supercompact (Knln < ro), 
where Kw = sUPn<w Kn G. C. H. holds above Kw' as well as Kn' We also assume 
that, for each n, Kn directed closed forcing does not destroy the supercompact-
ness of Kn' 

Recall that Col(o:, < P) is the partial ordering for collapsing all cardi-
nals strictly between 0: and p to 0:; namely it is the set of all partial func-
tions of cardinality less than 0: whose domain is a subset of {yly a cardinal, 
0: < y < P} x 0:. In particular, note that if P = 0+ then Col(o:, < P) has 
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cardinality 0, and if P = a + then Col(a, < P) is the trivial forcing no-
tion. For regular a < P let Col*(a, < P) be the Easton support product 
of Col(y, < P) for successor y, a :$ y < p, where if there are no cardi-
nals between a and P we assume that Col*(a, < P) and Col(a, < P) are 
the trivial forcing. (In the presence of G.C.H.Col*(a, < P) is essentially the 
same as Col(a, < P), if P is a successor cardinal.) The advantage of using 
Col* (a, < P) is that if a :$ y < 0 :$ P then Col*{y, < 0) is neatly embedded 
in Col* (a, < P) (namely forcing with Col*(a, < P) introduces a generic object 
for Col* (y, < 0)). Col* (a, < P) is a closed. If G. C. H. holds between a 
and p, it has cardinality :$ p. If P is regular and G. C. H. holds between 
a and p, then Col*(a, < P) satisfies the P chain condition, unless P is a 
successor of a singular cardinal or if P is an inaccessible which is not Mahlo. 

Let B be a set of cardinals. We shall try to define a forcing notion S(B) that 
will collapse as many cardinals as possible in the open interval (inf(B), sup(B» 
while trying to preserve the cardinals in B. We cannot always succeed in pre-
serving all the cardinals in B, the problematic cases being singular cardinals, 
successors of singulars, and inaccessible cardinals which are not Mahlo, so in 
order to have some concrete information about which cardinals are preserved 
we shall assume that no member of B is singular, the successor of a singular, 
or non-Mahlo inaccessible. We also assume that if 17 is a limit point of B 
which is less than the sup of B (in the sequel 17 will always be singular) then 
17 ++ is in B. B satisfying all the above properties shall be called a "good" set 
of cardinals. If B is good, let B* be B without its last element (if B has a 
last member). For 0 E B* let J be the first element of B > o. S(B) will be 
defined as the Easton product of Col*(o, < J) for 0 E B* . Formally 

S(B) = {flf is a partial function on B*, for a E Dom(f) 
f(a) E Col* (a, < a) and all regular p" If f(B n p,)1 < p,} . 

S(B) is clearly inf(B) directed closed. Also if B ~ C and C is good and 
has the same inf and sup as B, then forcing with S(B) introduces a generic 
object for S( C). (If 0 E C* and J is the corresponding element of C, then 
for some a E B, a :$ 0 < J :$ a (where a is the corresponding element of 
B and then Col* (a, < a) pick a generic object for Col* (0, < J)). Combining 
these generic objects yields a generic object for S( C) .) If P, E B, then S(B) is 
isomorphic to S(B n (p, + 1» x S(B - p,). Note that, in VS(B) , every cardinal 
between inf(B) and sup(B) is in the closure of B, so there are at most IBI 
many cardinals between inf(B) and sup(B). If G. C. H. holds between inf(B) 
and sup(B), a E B, then a is still a cardinal in VS(B). (Here of course we use 
the fact that B is good; namely no member of B is successor of a singular or 
a non-Mahlo inaccessible.) 

Definition 1. A set of cardinals B is adequate if B is good, inf(B) = K~+ , and 
IBI :$ K~ ; and if a is singUlar, a ++ E B, and cf(a) :$ K~ , then B n a is cofinal 
in a. 

Note that if A. is a regular cardinal which is not a successor to a singular or 
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a non-Mahlo inaccessible, A > Kw' there exists an adequate set B such that 
A E B. Also the class of adequate sets is K~ directed; namely for every subset 
of it of cardinality :5 K~, there is an adequate B containing all the members 
of it. 
Definition 2. Let A be a regular cardinal A > Kw. A stationary subset of A, 
S, is called bad if, for all adequate sets B with sup(B) > A, VS(B) 1= S is not 
stationary in A and, for all a E S, cf(a) < Kw. 

Bad stationary sets cause us trouble in the construction below, so before we 
start our forcing construction we would like to make sure that there will be no 
bad stationary sets. So we shall start by iterating a forcing that destroys bad 
stationary sets. Note that by our assumptions bad stationary sets can occur 
only at the successor of a singular cardinal of cofinality less than Kw' because 
if A, which is not the successor of a singular of cofinality less than Kw' A > 
Kw' satisfies, for p < A, pIC", < A (we use here G. C. H. above Kw)' then an 
argument of Baumgartner [Ba 1] shows that a stationary subset of A of points 
of cofinality less than Kw is not destroyed by a forcing notion which is < Kw 

closed. If B is an adequate set of cardinals, S(B) is K~ closed. Note also 
that if A = 17+15+1 where 0 < Kw' 17 > Kw' then there are no bad stationary 
subsets of A for the trivial reason that we can take B = {17+ p+2Ip < o} U {A++} 
and B is an adequate set such that S(B) is trivial, so it does not destroy any 
stationary subsets of A. 

It is easily seen that the definition of bad stationary subset of A can be 
formulated as follows: For every adequate B ~ A - , B cofinal in A - , VS(B) 1= S 
is not stationary. (By the previous remark we can consider only A'S which are 
successors of singular cardinals of co finality < Kw; hence A - , the predecessor 
of A, is defined.) The reason is that if S ~ A is not bad, then for some adequate 
C with sup( C) > A, A E C, VS(C) 1= S is stationary. Then for every adequate 
D containing C and having the same sup, we have VS(D) 1= S is stationary. 
(Recall that S(C) neatly embeds S(D).) So we can assume, without loss of 
generality, that A + is in C. Hence C n A - is cofinal in A -. (Recall that we 
are assuming that the cofinality of r is less than K w .) S(C) is isomorphic to 
S(C n (A+ + 1)) x S(C - A+). Hence Vs(cn(.l.+ +1)) 1= S is stationary, but since 
C is cofinal in r , S((C n A+ + 1)) = S(C n r). C n r is clearly adequate, 
so we have found an adequate B ~ A - , co final in A - , such that VS(B) 1= S is 
stationary. 

We are now ready to introduce a forcing notion that will kill all bad stationary 
sets. (Killing a stationary set means shooting a closed unbounded subset through 
its complement.) So let A. > Kw be a singular cardinal of cofinality < Kw. We 
shall define p.l. to be a forcing notion that kills all the bad stationary subsets 
of Xi -. p.l. will be defined by iteration of length A++, (P:ly < ,1.++) (we shall 
omit the superscript A because it will be fixed for a while). For limit y, Py 
will be the limit of (PpiP < y) with supports of size :5,1. (namely if cf(y) :5 A 
we take the inverse limit; for cf(y) > A we take the direct limit). For successor 
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A, say y = P + 1 , we pick a Py term 'y forced in V Py to be a bad stationary 
subset of A+ (if there are none, make Py+! = Py) and Ry (in V Py ) to be the 
forcing notion for introducing a closed unbounded subset of A+ disjoint from 
'y; namely a member of Ry is a closed bounded subset of A+ disjoint from 
'y. One such closed subset extends the other if it is an end extension of it. Py+! 
will be Py * Ry; p A will be P;++ . It will follow later that Py has a dense subset 
of cardinality ~ A + ; hence p A satisfies the A ++ chain condition, and therefore 
any subset of A+ in Vr is already in VPy for some y < A++. Also we shall 
prove later that p A is distributive enough so that if a subset of A + is bad in 
Vr , it is bad in some V Py for some y < A++ . So as usual we shall "dovetail" 
picking the terms 'y (y < A++) such that every bad subset of A+ in V Py will 
be picked at some point, y, and hence in VPY+I it is not stationary. A forcing 
notion P is called P + 1 strategically closed if player II has a winning strategy 
in the game of length p, where players I and II alternate picking a smaller and 
smaller element of P, (PylY < P) , where at limit stage it is player Irs tum to 
play. Player II wins the game if (PylY < P) has a lower bound. (See [Sh3] for 
basic facts.) 

Lemma 2. p A is A + 1 strategically closed. 
Proof. Since A + 1 strategically closed, forcings are closed under iteration with 
supports ~ A. It is enough to show (for y < A++) V Py 1= Ry is strategically 
closed, where we also carry an induction assumption that Py is A + 1 strategi-
cally closed. Hence V Py has the same subsets of A as V; therefore, in V PY , A 
is still a singular cardinal of cofinality < Kw. We now argue in V Py . 

Pick any adequate subset cofinal in A, B (we can have an adequate subset 
cofinal in A since cf(A) < KJ. 'y is a bad subset of A+ . Hence VS(B) 1= 'y is 
not stationary; hence let p be an S(B) term such that VS(B) 1= P is a closed 
unbounded subset of A+ disjoint from 'y. For p, E B* , P E S(B) , let prp, be 
the restriction of the condition p to cardinals less than or equal to p,. Recall 
that p is a function defined on B* so p r p, is actually p r B* n (p, + 1). Note 
that if (PJlo < ,,) is a decreasing sequence of members of S(B) , such that, for 
all p, E B* , P, ~ ", P J r p, is eventually constant (below ,,), then the sequence 
(PJll ~ 0 < ,,) has a lower bound in S(B), q, such that, for p, ~ ", qrp, is 
eventually equal to PJrp,. (Note we start indexing moves in the game by 1.) 

We now describe a winning strategy for player II in the game witnessing 
the strategic closure of R y • Player II, besides playing the required elements 
in Ry ' (Pu 11 ~ 0 < A), also plays (on the side) a decreasing sequence of 
elements of S(B) , (qulo < A), such that if 0 < 0' then qurp(o) , where 
P(o) is the minimal member of B* above o. He makes sure that always 
qu If-- sup(pu) E p. Suppose we are at successor stage, player II played as 
his last move Pu (and qu on the side), and player I responded by playing 
Pu+! ~ pu· We have to specify player Irs answer. Since p is a term for an 
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unbounded subset of A + , he can extend q20 to qU+2 such that, for some ordinal 
Il > sup (P20+ 1 ), qU+2 If- Il E p. He can even do it such that q20+2 r P* = qo r P* 
where P* is P(2J + 2) (which is the same as P(15)). The reason he can 
do it is that S(B) is isomorphic to S(B n (P* + 1» x S(B - P*), where the 
first argument in the Cartesian product is of cardinality less than A; hence by 
standard arguments VS(B) F {ada: < A+ , some q E G(S(B -P*)), q F a: E p} 
is closed unbounded in A+ . (By G(S(B - p*)) we mean the canonical generic 
filter in S(B - p*) introduced by forcing with S(B).) Therefore it is enough 
to extend qu above P* to force an element of p above SUP(PU+l)' Player II 
now plays P20+2 = P20+ 1 U {Il}. It is an element of R"I because it is a closed 
subset of A + and Il ¢ 't'. (If we had Il E 't' we could not have a condition in 
S(B) forcing Il E P because p was forced to be disjoint from 't'.) 

For limit l5 let qo be a lower bound of (qu,I15' < 15). Such a lower bound 
exists because if Il E B* , Il < l5 then, for Il < 15', P(15') > Il. Hence qo' r Il is 
constant for 15' > Il. If l5 = Il E B* , then l5 is a successor cardinal; hence, for 
large enough 15' < 15, P(15') = l5 , and hence qo' r l5 is eventually constant. So 
by the above remarks (q20,115' < 15) has a lower bound qu (actually 2J = 15) 
satisfying that qu r Il is eventually equal to q20' r Il for 15' < l5 if Il ::::; l5 . Player 
II plays qo = Uo' <0 PU' U {suP(Uo' <0 PU' )} ; Po is clearly closed (each P20' end 
extended the previous pu') . The only problem in showing Po E R"I is to show 
that a: = sup(Uo' <0 pu') ¢ 't', but, for each 15' < 15, qu' If- suP(P20') E p, and 
hence qu If- sup(Pu') E p. Since p is forced to be closed, 

qu If- a: = sup((sup(Pu,)I15' < 15) E p. 
Hence we must have a: ¢ 't'. A similar argument shows that if player II was 
following this strategy through A many steps, then (Pol15 < A) has a lower 
bound. 0 

Note that in Lemma 2 we did not use any special properties of V except the 
G. C. H. above Kw' So it holds in appropriate forcing extensions of V. 

Lemma 3. p A satisfies A ++ -c.c. 
Proof. p A is the direct limit of the P"I for y < A ++ where, for y of cofinality 
A + , P"I is the direct limit of Po for l5 < y. By a standard argument it is enough 
to show that P"I satisfies A ++ C.c. This will follow easily if we show that P"I has 
a dense subset of cardinality A + . A member of P"I can be considered to be a 
sequence (110115 < y) , where, for l5 < y, 110 is a term forced by every condition 
in Po to be a member of Ro' Also the set {15 < YI110 =F 0} has cardinality::::; A. 
By Lemma 2, Po is A + 1 strategically closed, Po introduces no new bounded 
subsets of A+ , and hence every member of Ro is in V. (We are not claiming 
that Ro is in V.) Let P; be the set of all members of P"I' (110115 < y) , such 
that, for all l5 < y, 110 = Co for some Co E V. Co is a bounded subset of A+ , 
so using G. C. H. we can show that the cardinality of P; is A+ . Using Lemma 
2 again we can show that P; is dense in P"I' 0 
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It follows from Lemma 3 that every subset of .-t + in vP' is already in V Py 

for some y < .-t++ . Note also that in view of Lemma 2, forcing with pA does 
not change the collection of adequate subsets of .-t or the definition of S(B) for 
an adequate B ~ .-t. Hence if 'l' is a bad subset in VP', we can find 0 < .-t++ 
such that Il is already bad in V Py for every y ~ O. (Pick 0 large enough so 
that 'l' E Vp~.) Also make sure that, for every adequate B ~ .-t, in VP~ we 
can find an S(B) term, forced by S(B) to be a closed unbounded subset of .-t+ 
disjoint from 'l'. We can find such a 0 because there are at most .-t+ adequate 
B ~.-t and an S(B) term for a subset of .-t+, rJ(B) , can be coded by a subset 
of .-t+; hence it belongs to some VP~ for 0 <.-t++ large enough. (We can also 
verify that once this term belongs to VP~; we have that VP~ F S(B) II- "rJ(B) is 
a closed unbounded subset of .-t + disjoint from 'l'.") The above remarks show 

" that we can pick the terms 'l'y for y <.-t++ such that every 'l' E v P which 
is a bad subset of .-t+ will be the realization of some 'l'y' and hence it will be 

" nonstationary in vP • We have proved 
Lemma 4. Under appropriate choice of the terms 'l' y for y < .-t ++ , 

p" + V F there are no bad stationary subsets of.-t . 

Now we are going to iterate the forcing notions pA through all the singular 
cardinals .-t > "w' So the steps of the iteration will be denoted by Q", (0 
an ordinal), where Qo is the trivial forcing notion, and if 0 is not a singular 
cardinal bigger than "w or cf(o) > "w' Q",+I = Q", * (the trivial forcing) . 
The only case in which we do something interesting is when 0 is a singular 
cardinal greater than "w but whose co finality is less than "w' In this case 
Q",+I = Q", * p'" (P'" is of course taken in the sense of VQa ). At limit 0 we 
take Q", to be the inverse limit of (QpIP < 0), where for regular 0 we take 
Q", to be the nonstationary limit; namely the support must be a nonstationary 
subset of o. Note that this assumption is meaningful only for inaccessible 0 

since, for successor 0, say 0 = p+ , we iterate the trivial forcing between P 
and o. The final forcing we shall use is Q = U Qp' which is a class forcing. 
Note that, for each singular .-t, Q = QA * pA* (the iteration of pA' for A.' >.-t). 
This last iteration will be denoted by Q';'. (The iteration between 0 and P 
will be denoted by Q!.) pA' for A.' > .-t is by Lemma 4 (applied in V Q" ) 

a .-t+3 strategically closed forcing, and hence Q';' is .-t+3 strategically closed. 
(We use the fact that we were using inverse limits at singulars.) This can be 
used, by the usual arguments, to show that VQ is a model of set theory (see 
for instance Jech's book [Je] where we replace the completeness argument by 
strategic closure). We can use it to show that VQ F G. C. H. above "w' Also 
all subsets of .-t + in VQ are already in VQA+l. So S ~ .-t + is bad in VQ iff it 
is bad in VQ,,+l = (VQ,,)p' (PA is taken in the sense of VQA). Using Lemma 4 
in VQ" we get that in VQ there are no bad stationary sets. 
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From now on our ground model is going to be VQ. Our main problem now 
is that the Kn for n < OJ are probably not supercompact. The following lemma 
will allow us to recover some of their supercompactness. 
Lemma 5. Let A be a singular cardinal, B adequate such that ..1,= sup(B) ; then 
QA+! *S(B) is essentially J1 = K~ directed closed (where a forcing notion is said 
to be essentially J1-directed closed if it has a dense subset which is J1-directed 
closed). 

Note that S(B) is taken in the sense of V QA+ 1 , but it is the same as S(B) in 
the sense of VQ or of VQA (since pA does not introduce new subsets of A). 
The lemma is easy for the A which is the first cardinal such that ..1,+ carries 
a bad stationary set, because by forcing with S(B) first (it is the same in V 
and V QA+1 ) we get that all the "stationary" sets we try to kill are already killed 
by S(B) , so QA+! is a < ..1,+ closed forcing, so the lemma follows in this case. 
This is the main idea behind the proof of the lemma, except that in the general 
case we need much more elaborate bookkeeping of portions of S(B)'s (taken 
in different models of set theory). 
Proof. Recall that in the definition of pr (as an iteration of the length y ++) 
we used a sequence of terms (r~lJ1 < y++) (r~ was essentially a Qr * p; term 
for a bad subset of y+). Since r~ is bad it is destroyed by any S(C) where 
C ~ y, C adequate, and C cofinal in y. For every y (limit singular cardinal 
of cofinality < Kw )' y ~ A, we shall define Cr ~ y, Cr adequate and cofinal 
in y, and a neat embedding of S( Cr ) into S(B) (namely a way of getting a 
generic filter of S( Cr) from one for S(B)). Since S( Cr) in the sense of VQA 

is the same as in the sense of V Qy , which is the same as S( C,) in the sense of 
VQy*P: (J1 < y++), 

V Q *py*S(C ) 1- r· . 
y P Y r- r Jl IS not statIOnary . 

Therefore in VQy*P: there is an S( Cr ) term P~ such that it is forced by S( Cr ) 
that P~ is a closed unbounded subset of y + disjoint from <. Since we will 
have an embedding of S( Cr ) into S(B) , we can consider P~ to be an S(B) 
term (in VQA+l) denoting, of course, a closed unbounded subset of y + . 

Cr will be defined as follows. If B n y is cofinal in y, then Cr = (B n y) ; 
otherwise, B n y is bounded in y and by B being good B n y has a maximal 
element J1. In this case we put Cr = (B n y) U Dr' where Dr is an adequate 
unbounded subset of y whose minimum is above J1. (We use the fact that 
cf(y) < Kw ') In case B n y is unbounded in y, there is a natural way to embed 
S(Cr) into S(B) (for f E S(B) , fr(B n y) is in S(Cr)). In case B n y is 
bounded in y, we identify a condition f E S(C) with f* in S(B) as follows. 
Let J1 be sup(B n y). The domain of f* will be (domain(f) n B) U {J1}. If 
6 E C, 6 < J1, then 6 E B and we put f*(6) = f(6). (Note that j*(6) 
belongs to the right set, namely Col* (6, < "J) , because."J in the sense of B is 
the same as (f in the sense of C.) For 6 = J1 we want to define f * (J1) as 
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a partial function in X Jl9</i Col(p, < Ji) where II is the next member of B 
above J.l. f*(J.l)(p) will be defined only if p is a successor cardinal between 
J.l and y such that, for some 17 E Cy' 17 ~ P < r;, where r; is the minimal 
member of Cy above 17. In this case we put f*(J.l)(p) = f(17)(P). Note that 
f*(J.l)(p) belongs to the right set, since it belongs to Col(p, < r;) which can 
be considered to be a subset of Col(p, < Ji), since r; < ll. It can be easily 
checked that the map we defined is a neat embedding of S( Cy ) into S(B). 

For f E S(B), y ~ A, y a limit cardinal, we define fry as follows (we are 
not assuming y E B). If B n y is unbounded in y, then fry is fr(B* n y). If 
it is bounded and J.l = sup(B n y), then fry is fr(B nJ.l) U {(J.l, f*(J.l)}} where 
f*(J.l)(p) = f(J.l)(p) if P < y, and is undefined otherwise. fry is essentially 
the information f gives about collapses where the target cardinals are below 
y. Note that if (fala: < p) (p ~ y) is a decreasing sequence of elements of 
S(B) such that, for all J.l < y, fa r J.l is eventually constant, then this sequence 
has a lower bound in S(B). Also a decreasing sequence of length ~ J.l (J.l limit 
cardinal), with fa r J.l constant, has a lower bound. 

S(B) r y will be {fr ylf E S(B)}. Of course, forcing with S(B) , we introduce 
a generic filter to S(BHy. If Cy is defined as above and S(Cy) embedded as 
above into S(B) , then actually VS(Cy ) ~ VS(BHY. Also S(BHy E VQy (because 
~+1 is y distributive and any element of S(BHy can be coded as a sequence 
of y ordinals). 

The elements of QA+l *S(B) are ofthe form (q, r) where r is a QA+l term 
for a member of S(B). We would like to use the fact that, for y < A, rry is 
in V Qy , to get a simpler form of terms. 

Definition 3. (a) A QA+l term, r, forced to denote an element of S(B) is 
called canonical if for every limit cardinal y, y ~ A, r r y is essentially a Qy 
term. Namely whether x E VQy is in r r y or not depends only on conditions in 
Qy. More formally if q E Q;., x a Qy term, q II- x E rry iff q ry II- x E rry, 
and similarly for the statement "x ¢. rry". (Recall that members of Q;. are 
functions, q, where q(y) is a Qy term for an element of Py so qry makes 
sense.) 

(b) A term as in (a) is called X canonical (X ~ A) if (a) holds for X ~ y. 

Note that if y is a limit cardinal and, for all P < y, rr P is a Qp term, 
then r r y is a Qy term. 

Lemma 6. Let (q, r) E Q;. * S(B); then there exists a canonical r' and q' ~ q 
such that q' II- r' = r . 
Proof. QA+l is obtained by iteration of forcings, which is either a trivial forcing 
notion or is of the form Py. In either case at the yth stage we use a forcing 
which is y + 1 strategically closed. So for each y ~ A = 1 let Fy be a Qy 

term for a winning strategy for player II in the game of length y + 1 in Py 
(where Py can be the trivial forcing notion in case y is not a limit cardinal 
> Kw of cofinality < Kw or there are no bad stationary subsets of y+). Fy 
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applies to decreasing sequences of elements of pY of length ::; y and gives II's 
response in case that the previous play is the given sequence. We define Fy on 
a sequence which is not a legitimate play of the game or a sequence in which 
player II was not following his strategy arbitrarily. We can assume without loss 
of generality that the strategy is such that as long as I plays the trivial condition, 
II's responses are trivial. 

Given a decreasing sequence of conditions in QJ.+l' (qala < y), we define 
our master strategy as follows: F((qaIO < a < y}) = q* where, for p < y, q*(p) 
is some term forced to be below (qa(p)IO < a < y) if such a lower bound exists 
and the trivial condition otherwise. (In case qa(P) is eventually constant we 
define q*(p) to be this constant.) For y ::; p, q*(p) is the Qp term denoting 
Fp((qa(P)IO < a < y}). q* is not clearly in Qp because it does not necessarily 
have the right support, but we have the following: 

Claim. Let (qalO < a < y) be a decreasing sequence of elements of QJ.+1 where, 
for 0 < y, qa (0) is constant for a > o. Also the set {o Iqa (0) is nontrivial for 
some a but for a < 0 it is trivial} is not stationary in any regular cardinal 
J.l. For y ::; 0 we assume qro I~ "The sequence (qa(o)IO < a < y) is an initial 
segment of a play of the game for pJ in which the strategy FJ was followed'~ 
Then q* = F((qaIO < a < y}) is in QJ.+l' it is below each qa (a < y), and for 
each y::; 0, q*ro I~ (qa(o)IO < a < y}~(q*(o)} is an initial segment of the play 
of the game for pJ in which the strategy FJ was followed. 
Proof. The proof of the claim is rather obvious. The only point that should be 
elaborated on is to show that, for all regular J.l, {ala < J.l, q*(o) is nontrivial} 
is nonstationary in J.l. Assume that A = {o 10 < J.l, q * (0) is nontrivial} is 
stationary in J.l. Note that if q*(o) is nontrivial there is a(o) < 0 such that 
qa(J)(o) is nontrivial. By our assumption, except for nonstationarily many 0 < 
J.l, we can assume a(o) < 0 but then a(o) is essentially a pressing down 
function on A, hence it is constant on a stationary subset of A, A* , but if a 
is this constant value it means that A* ~ {ala < J.l, qa(o) is nontrivial}, which 
is a contradiction to qa E QJ.+l. 0 

We resume the proof of Lemma 6. We define by induction a decreasing 
sequence of elements of Q)'+1 of length A. + 1, (qalO < a < A. + I), and a 
sequence of terms 'a' a < A., a a limit cardinal such that 'a is a Qa term 
and qa+l I~ ,ra = 'a. % will be our given q. For even ordinal a define qa+l 
to be qa' unless a is a limit cardinal, in which case we know that ,ra is forced 
to be in V Q". Hence there is an extension of qa' qa+l' and a Qa term 'a 
such that qa+lra =qra and qa+ll~'ra='a· If possible we pick qa+l =qa· 
(Note that if a is a limit cardinal which is a limit of limit cardinals, then we 
can pick qa+l = qa because we can find a Qa term 'a such that for p < a it 
is forced by qa' 'arp = 'p.) For odd a let qa+l = F((qpIO < p ::; a}). For 
limit a, qa=F((qpIO<p<a}). 

By induction it is easy to see that, for y ::; A., (qala < y) satisfies all the 
requirements of the claim and that, for a < a' , qa' r a = qa r a. (We use the fact 
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that 0: is a limit and qp(O:) is trivial for P < 0:; then q,,(o:) is trivial. The only 
way we can get qa+1 (0:) nontrivial while q,,(o:) is trivial is when 0: is a limit 
cardinal which is not the limit of limit cardinals but the set {0:10: :S A, 0: a limit 
cardinal but not limit of limit cardinals} is never stationary.) Thus using the 
claim we show that (ql'ly:S A) are really decreasing. Now we can easily define 
a term " such that r' r 0: = '". Clearly,' is canonical and qA If- " = ,. 0 

We resume the proof of Lemma 5, and at last we are ready to define the 
dense set of elements of Ql+ 1 * S(B), which will be Ie~ closed. 

This set, to be denoted by R, is the set of all elements of Ql+1 * S(B) of the 
form (q, ,) where, is canonical and for every limit cardinal y for which Pl' 
is not trivial: 

qry If- "VtJtJ < y++If q(y)(tJ) is not trivial, then 

q(y)ftJlf-PI Try If-S(BHl' supq(y)(tJ) E p~' . 

Explanation. q(y) is a Q l' term denoting an element of Pl', and q(y)(tJ) is 
a p] term denoting an initial segment of the closed unbounded subset of y + 
we are trying to force in the complement of ,~. Since , is canonical, ,r y is 
essentially a Q l' term for an element of S(B)fy. S(B)fy (via S(Cl' ), which it 
embeds) introduces a closed unbounded subset of y+ , disjoint from ,~, when 
we force over (VQy / l . We denoted this set by p~. So our requirement is that 
the information we have about the generic filters on Ql" p] , and S(B)fy will 
force the sup of the initial segment of the set avoiding ,~ to be in p~. 

The fact that R is the required subset of QA+I * S(B) naturally breaks into 
two sublemmas. 

Sublemma 7. R is Ie~-directed closed. 
Proof. Let D ~ R be a directed set. IDI:S lew. We want to show that D has 
a lower bound in R. Let D* = {qlq E Ql+ 1 ' for some" (q, ,) E D} and 
D** = {,I for some q E Ql+I' (q, ,) E D}. Clearly D* is easily seen to be 
directed; also if we manage to get a lower bound for D*, q* (which we shall 
do in a minute), then q* If- D** (as a subset of S(B)) is directed. We denote 
by D** both the set of terms in V and the set of their realizations in VQJ.+1 • 

We now define q* , which is assumed to be a lower bound for D* . Of course 
if y :S A is such that Pl' is trivial, then q(y) is trivial. If pY is nontrivial, 
then q * (y)( tJ) (tJ < y ++) is defined to be a Qy * p] term denoting the union 
of {q(y)(tJ)lq E D}, together with its sup. For any tJ for which q*(y)(tJ) is 
nontrivial, q*(tJ) is the union of at most lew sets of cardinality :S y; hence it 
is of cardinality :S y . 

Now we prove by induction on y :S A + 1 that q* ry E Qy , and that 

q * r y If- q * (y) E Pl' 

and 
q* ry If- q*(y) is a lower bound for {q(y)lq E D*} = D; . 
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(D; is a set in V Qy , where we assume qoOry E G(Q,.).) The only interesting 
case of the induction is when p,. is nontrivial. (In particular y is a limit 
cardinal > K(J)') The fact that q* ry E Q,. follows easily from the inductive 
assumption, since for y' < y, q* r y' If- q* (y') E p,.' , and if J.l is regular, 
K(J) < J.l < y, then the support of q*ry is in J.l is the union of K(J) supports of 
qED; hence it is the union of less than J.l nonstationary subsets of J.l, and 
therefore it is a nonstationary subset of J.l. (Note that if J.l < K(J) then the forc-
ing up to Il is trivial.) Also the inductive assumption gives that qoO ry extends 
{qrylq E D*}. Since D is directed it follows that q*ry If- D,. is directed. Bya 
remark above, the support of qoO(y) is of cardinality::; y. In order to simplify 
notation assume that we argue over V Qy , where q* ry E G(Q,.). (It will then 
follow that whatever we prove about VQy will be forced by qoO ry.) 

By induction on 0 < y++ we show that qoO(YHo E pJ . The crucial inductive 
step is that 

q*(YHo If-py q*(y)(o) is a closed bounded subset disjoint from .~. 
J 

We also need by induction that qoO(yHo is below {q(yHq E D*}. If we have 
it for 0, then D;,J = {q(y)(o)lq E D*} is forced by qoO(yHo to be a directed 
subset of the forcing shooting a closed unbounded subset through the comple-
ment of .~. qoO(y)(o) is clearly forced by q*(YHo to be a closed bounded 
subset of y+ which extends each element in D;,J' The only problem is to 
show that it is forced to be disjoint from .~, and the only point which is prob-
lematic is the sup of qoO(y)(o), which we denote by fl. So we have to show that 
qoO(yHo If-py Il ~ .~. 

J 

The fact that q*ry is below {qrylq E DoO} implies that {.ryl. E D*oO} is 
forced by qoO ry to be a directed subset of S(BHy. (Each. E D*oO is canonical; 
therefore .ry is a Q,. term.) Since S(BHy is forced to be K~ directed closed, 
there is a Q,. term .; forced by q*ry to be the maximal lower bound to 
{.ryl. E DoO*}. r; extends each .ry for. ED··; therefore by definition of R 

qoO ry If-Qy qoO(yHo If-Pl.; If-S(BH,. {sup(q(y)(o))lq E D·} ~ p~. 

Since p~ is forced to be a closed unbounded subset of y + , we get in (VQr ) 

(*) qoO(YHo If- .; If-S(BH,. sup{sup(q(y)(o))lq ED·} E p~, 

but this last sup is really Il. Now p~ is supposed to be disjoint from .~. If 
in VQy*Pl some condition is S(BHy forces Il to be in p~, we must have that 
Il ~ .~, which concludes the proof that qoO (y) E p,. . 

We have shown that q* is in Q;'+I' and it is below all the conditions in 
DoO . So DoO* is directed in S(B), and hence it has a least upper bound, which 
we denote by r. If one recalls the definition of .; above, one sees that 
qoO If- .oO ry = .,. so that r is canonical. Now (qoO, r) is in R because the 
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statement (*) above exactly proves that 

q* (y) II-Qy q* (yH 0 II-PJ ,* ry II-S(BHy sup(q* (y)(o)) E p~ . 0 

We need a claim whose proof is a slight variation of the proof of Sublemma 
7, but it is similar enough that we omit it. 

Soblemma 8. Let ((qn' 'n)ln < w) be a decreasing sequence of elements of 
QJ.+1 * S(B) where, for each n < w, '2n+l is canonical and for each y < A. such 
that P). is nontrivial 

q2n+lry II-Q Vo < y++Ufq2n(Y)(o) is nontrivial 
y 

then q2n+l (yHo II-PJ '2n+l ry II-S(B)Il' sup(q2n(Y)(o)) E p~), 

then there exists (q* , ,*) in R below the sequence ((qn' 'n)ln < w). 

(The proof is like the proof of Sublemma 7. Define q* as there, and similarly 
for ,* .) 

We now start the proofthat R is dense in QJ.+1 *S(B). We need two technical 
lemmas. 

Soblemma 9. X < yare cardinals such that Py is nontrivial. (Hence y is a 
limit cardinal.) Suppose we are in V Qy given p E p Y , and, E S(BHy; then we 
can find Un VQy) a p* :::; p, ,* :::;" such that ,*rX = ,rX andfor 0 < y++, if 
p*(o) is nontrivial, p* ro II-PJ ,* Il-s(B)rl' sup(p*(o)) E p~. 

Proof. pJ is obtained by iteration of length y ++ . We shall prove Sublemma 9 
by proving by induction on 11 :::; Y ++ that P; satisfies the sublemma. (Of course 
now we just have the claim for 0 < 11 rather than 0 < y ++ .) For successor 11, 
say 11 = , + 1, we argue as follows. Consider p('); if p(') is trivial, then p 
is essentially in P{ , and we can use the induction assumption for ,. If p( ') 
is nontrivial, then it is a p{ term denoting a bounded closed set forced to be 
disjoint from ,~. Let P = supp('). (p is actually a P{ term.) In VQy*P[, 

S(BHy forces that P~ is unbounded in y+ . Hence we can find an extension of 
" r', which forces some member of p~, p', above p (p' is also a term for 
an ordinal), but p' is clearly forced to be outside of ,~. We claim that we can 
assume that r'r X = ,r X. Recall that the term P~ was really an S( Cy ) term, 
and let v be a member of Cy above x. S(Cy) = S(Cy n v + 1) x S(Cy - v), 
but S(Cy n (v + 1)) is of cardinality less than y. Therefore in S(Cy) we can 
extend any condition, without changing its projection, to S(Cy n v + 1) and 
force an ordinal in P~ above Il. If we consider the particular way in which we 
embedded S(Cy) into S(BHy, this translates into: a condition in S(BHy can 
be extended to force a member of P~ without changing its restriction to x. 

Our next problem is that we want ,* to be in V Qy , not a V P[ term as r' 
is. Since it is forced by p{ that S(BHy E V Qy , we can find an extension of 
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pr' such that, for some i' E S(B)fy, P' If- i' = i'. (Clearly i' ~ i'.) We now 
I h ·d . . r' d' d "p'Y" , app y t e m uctIOn assumptIOn to .. , P ,an T an get P E "p ~ P , 

T" ~ i' such that the sublemma holds for T", p" . Define T* = T" , p* r' = p" , 
and p*(') = a term denoting p(') U {il}. It can be easily checked that all the 
requirements are satisfied. 

For limit '1, if cf( '1) > y then p is actually in P~ for some , < '1 , and we 
can use the induction assumption for'. If cf('1) ~ y then of course cf('1) < 
y. Then since p'Y is nontrivial, we can find some y > x' > X + cf( '1). Let 
'1 = sup('1,J:r < cf('1») where '10. are increasing and continuous. By induction 
on a ~ cf( '1) we define a decreasing sequence of conditions Po. in P; and a 
decreasing sequence of elements of S(B) (T ala ~ cf( '1» such that To. r x' is fixed, 
and Po.+l r'1o. and To.+l satisfy the sublemma with respect to P;a' where, for 
'10. ~ J, Po.(J) = po(J). Po and TO are our given p and T. For limit a, To. 
will be a lower bound of (Tala < cf('1»), which exists since the T~'S satisfy that 
the Tarx' are fixed and a < x'. Po.(J) for J ~ '10. is po(J). (It still extends 
pp(J) for P < a since pp(J) was constantly equal to po(J).) For J < '10. we 
let Po.(J) be a term denoting the union of pp(J) , P < a, together with its sup. 
By induction on J ~ '1 we should prove that Po. r J is in P; where the only 
nontrivial point is to show as usual that, for J < '10.' sup(UP<o.Pp(J» = Il is 
forced to be outside of T~ , but by our construction To. extends T p for P < a 
and, for P successor and J < '1P' Tp forces sup(Pp(J» to be in p~. p~ is a 
term for a closed set; hence To. forces Il to be in p~ (we use the fact that the 
pp(J) are forced by PafJ to be increasing subsets of y+). As before we getthat 
Il is forced by po.rJ to be out of T~. For a < cf('1) we define Po. + 1 , To.+l to be 
an extension of Po.' To. such that Po.+ 1 r'1o.' To.+! satisfy the requirements of the 
sublemma with respect to '10.' po.r'1o.' To.' and, for J ~ '10.' Po.+ 1(J) =Po(J)· 
(We use the induction assumption.) This concludes the inductive definition, 
and it is easily seen that PCf(TO' Tcf('1) witness the truth of the sublemma for 
'1. 0 

Sublemma 10. For y, X limit cardinals let X < y ~ A.. Let (q, T) E Q;'+1 *S(B) 
such that r is X canonical. Then there exist q* ~ q and a y canonical term 
T * such that 

(a) For y + 1 < y' or y' ~ X, q*(y') = q(y'). 
(b) q* If- T* rX = rrX 1\ T* ~ T (hence (q* , T*) ~ (q, r». 
(c) For X < '1 ~ Y + 1 if p'1 is not trivial, then 

q*ry If-Q TlJ < '1++(ifq*('1)(J) is not trivial 
r 

then q*('1) If- J If-PJ T* r'1 I1-S(BH'1 sup(q*('1)(J» E p1). 

(Note that we assume in (c) that q* ry forces the statement, not the natural 
q* r'1. The reason is that T* is not assumed to be canonical, so while we know 
that T* r'1 E VQ~ we do not have a Q'1 term forced to be equal to T* r'1. Hence 
we need the information q* ry.) 
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Proof. The proof is by induction on )I where the inductive assumption is that 
the statement of the sublemma holds for all X < )I. Sublemma 9 clearly takes 
care of the case where )I is the minimal where pY is nontrivial. (In this case 
Qy is trivial, so the whole argument is taking place in V.) If )I is a successor 
limit cardinal, say )I = '1+00 , '1 limit, then pY is trivial, and the truth of the 
sublemma follows from the induction assumption for '1. For )I which is a limit 
of limit cardinals we distinguish two cases: 

Case I: )I is singular. Let )I = sup()lo:lo: < cf()I)} (for simplicity we also 
put )lcf(y) = )I), where the )lo:'s are increasing and continuous where X < )10' 

cf()I) < )10' and each )10: is a limit cardinal. Let (qo' 'l"o) :S (q, 'l") satisfy the 
sublemma with respect to X, and )10. We are going to define by induction on 
0: :S cf()I) a decreasing sequence (qo:, 'l"o:) such that 'l"o: is )10: canonical, and 
qo:(o) is modified only once (when )10: :S 0 < )10:+1). We shall have 'l"o:f)lo = 
'l"of)lo. For successor o:=P+l, (qo:, 'l"o:) is defined as an extension of (qp' 'l"p) 
satisfying the sublemma for )I P+1 for )I, )I P for X. (Note that the only changes 
in qp(o) when we pass to qP+1 (0) are for )I p < 0 :S )I P+1.) For limit 0:, let 
< be the term which is forced to be the minimal lower bound of 'l" P' P < 0: • 

Note that it satisfies <f)lo = 'l"of)lo. It exists since 0: :S cf()I) < )10. q;(o) 
will be the limiting value of qp(o) , P < 0: (qp(o) actually obtains only two 
values, and one of them is eventually obtained). Also note that since each 'l" p 

for P < 0: was )lp canonical, it was )10: canonical. We get that < is )10: 

canonical, and q;(o) and < are almost what we need for '1 < )10:. We still 
have to handle )10: itself. So if pYa is trivial we put qo: = q;, 'l"o: = <. If 
pYa is nontrivial, we consider p = q;('1o:) = qo('1o:) as an element of VQqa, 

where we assume that q*f'1o: E G(Qt/) and apply Sublemma 9 to p and <f)l 
(replace X by )10). Note that 'l": is a QYa term, so Lemma 9 is applicable. We 
get p* and 'l"** which we can consider now (coming back to V) as Qy terms 
forced to denote a pair satisfying the requirements of Sublemma 9. Define qo: 
by qo:f)lo: = q*f)lo:, qo:()lo:) = p*, qo:(o) = q;(o) = qo(o) for 0 > )10:. 'l"o: is 
the term denoting the member of S(B) whose restriction to )10: is 'l"**, and 
above '\J it is like 'l"*. It is obvious that 'l" iS)l canonical. We can easily 

fa a a a 
show that, for 0: :S cf()I), (qo:, 'l"o:) satisfy the sublemma for )10:. In particular 
(qef(y) , 'l"ef(Y)) , is the required pair for )I. 

Case II: )I is regular. In this case we know that the support of q is non-
stationary in )I, so let ()I 0: I 0: :S )I) be a continuous increasing sequence of limit 
cardinals, where )ly = )I, X < )10' and q()lo:) is the trivial condition of pYa. 

We define by induction for 0: :S )I a decreasing sequence (qo:, 'l"o:) all below 
(q, 'l") such that (qo:, 'l"o:) satisfies the sublemma with respect to )10:' and if 
o:<P then 'l"pf)lo:='l"o:f)lo:. (%,'l"o) is any extension of (q,'l") satisfying the 
sublemma with respect to X and )10. For successor 0: = P + 1, (qP+1' 'l"P+1) 
is an extension of (q p , 'l" p) satisfying the lemma for )I p (instead of X) and 
)lP+1. For limit 0: we let 'l"o: be the maximal lower bound of ('l"pIP < o:). It 
exists since 'l" p f)l It is eventually constant for J.l < 0:. (Note that Col()I 0: ' < C) 
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never appears as a component in S(B) even if Ya is regular; hence for any 
Col(,u, < ') appearing in S(B) we have ,u < Ya or Ya < ,u, in which case we 
have enough completeness because a ~ Ya .) qa(c5) is defined to be qp(c5) for 
P large enough below a. T a can be easily picked to be Ya canonical, using 
the fact that for P < a, T p is Y p canonical. (Note that q p (c5) is changed only 
once when Yp ~ c5 < yp+I .) Note that qa(Ya) is still the trivial condition (we 
never changed it), and hence (qa' Ta) clearly satisfies the sublemma for X and 
Ya ' Considering (qy' Ty) establishes this inductive step. 0 

Sublemma 11. R is dense in QM1 * S(B) . 
Proof. By induction define a decreasing sequence of conditions in QM1 *S(B)· 
((qn' Tn)ln < co). Suppose we are given (q, T), where by Lemma 6 we can as-
sume that T is canonical. Let (qo' TO) satisfy Sublemma 10 where Y = A" 
X = 0 for (q, T). In general, given (q2n' T2n ) , let (q2n+I' T2n+l ) be such 
that q2n+1 ~ q2n' T2n+1 is canonical, and q2n+1 I~ T2n = T2n+l . (Hence 
we have (q2n+I' T2n+l ) ~ (q2n' T2n )·) (q2n+2' T2n+2) will be an extension of 
(q2n+I' T2n+l ) satisfying Sublemma 10 with Y = A" X = 0 with respect to 
(q2n+I' T2n+I )· We know that for 11 ~ A" for 11 ~ Y + 1 for which P" is 
nontrivial 

q2n I~Q T/c5 < 11++ (if q2n(11)(c5) is not trivial, then 
,1+1 

* " q2n(11Hc5I~ T2nr11I~S(B)I" suP(q2n(11)(c5)) E Po), 

but q2n+1 I~ T2n = T2n+1 and T2n+1 is canonical. Hence T2n+1 r11 is a Q" term, 
and once we know that T2n+1 r11, the truth of (**) just depends on the value of 
G(Q,,). Hence 

q2n+ 1 r 111~ T/c5 < 11++ (if q2n (11)( c5) is nontrivial, then 

q2n r(11)(c5) I~p: T2n+1 r11 I~S(BH" suP(q2n(11)(c5)) E P~), 

which exactly proves that the conditions of Sublemma 8 are satisfied. Hence 
we get that there is (q*, r) E R below ((qn' Tn)ln < co) ; in particular, we get 
an element of R below (q, T). 0 

This completes at last the proof of Lemma 5. 0 

Recall from §3 that Sn is the product X n<l<w Col(let2 , < Ie/+ I). Sn is of 
course len directed closed; hence by Lemma 5 if B is adequate and sup(B) = A" 
then QM1 *S(B) *Sn is len directed closed. (Of course the last iteration is really 
a product because Sn of V Ql+1*B is the same as Sn in the sense of V.) S(B) 
already belongs to V Q,I+1. Note that Q;:2 is A,+w+1 distributive. (It does not 
introduce any new sequences of ordinals of length ~ A, +w .) Since the cardinality 
of S(B)*Sn is less than A,+w, pm(A,+k) in the sense of V Q,I+1*S(B)oOS. is the same 
as in VQ*B*S. (for m, k < co), but QM1 * B * Sn is essentially len directed 
closed. Hence by our assumptions about len 

V Q,I+1 *S(B)*S. t= len is supercompact. 
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In particular, 
Q *S(B)*S . +5 V 1+1 • 1= "n IS ,t supercompact. 

But the fact that "n is ,t+5 supercompact is witnessed by a subset of p(p(,t+5)) , 
namely the normal ultrafilter on PIC (,t+5) , but this ultrafilter is also a normal 
ultrafilter in VQ*S(B)*S.. Hence we have proved 

Lemma 12. If Q was the forcing notion for killing all the bad stationary sets, 
then in VQ the following facts hold: 

(1) G. C. H. holds above "w' and 21C• = ,,; for n < OJ. 
(2) There are no bad stationary sets. 
(3) If B is I-adequate with sup(B) =,t a limit cardinal, then ifweforce with 

S(B) * Sn' "n is ,t+5 supercompact. 

We shall never have to refer again to the particular way in which we defined 
Q; the only facts we shall need about VQ are summarized by (1), (2), (3) in 
the statement of Lemma 12. There/ore from now on we assume that our ground 
model V satisfies (1)-(3) of Lemma 12. 

Definition 4. Given an adequate set of cardinals B with sup(B) = ,t, a sequence 
of normal ultrafilters {Unln < OJ} such that Un is a normal ultrafilter on "n 
and a sequence of functions {J" I n < OJ} (fn: "n ~ "n) are called good for B 
if for n < OJ every condition in S(B) * Sn forces that "Un is the projection of 
some normal ultrafilter on PIC (,t+) , Fn , such that . 

{PI the order type of P = J,,(P n "nH E Fn". 

Lemma 13. There exist a sequence of normal ultra filters {Unln < OJ} and a 
sequence of functions {J"ln < OJ} which are good for unboundedly many sets 
of cardinality ~ ,,;; namely for every set of cardinals B, IBI ~ ,,; (each 
member of B above "w), there exists an adequate B* with sUp,t which is a 
limit cardinal, B ~ B* such that {Unln < OJ}, {fnln < OJ} are good for B* . 

Proof. Assume the lemma fails; then for every sequence of ultrafilters U = 
{Unln < OJ} (Un on "n) and a sequence of functions / = {fnln < OJ} (J,,: 
"n ~ "n)' there is B(U, /) of cardinality ~ ,,; such that for no adequate 

* *...... * ... ... B , B ~ B , U, / are good for B . Let T be the union of all the B( U , f) 
since there are at most ,,; sequences of the form U and / we consider, and 
since IB(U, /)1 ~ ,,; , the cardinality of T is at most ,,;, but then we can 
find an adequate B*, T ~ B* , with sup(B*) a limit cardinal A. 

In VS(B·)*S., "n is A+5 supercompact. By a theorem of Solovay (see [S-R-
K, Men]; see also [La] for similar arguments) there is a normal ultrafilter on 
PIC (A+) , Fn , and a function J,,: "n ~ "n such that 

• 
{Plthe order type of P = J,,(P n "nH E Fn. 
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Let Un be the projection of Fn to Kn' But S(B) * Sn is K:2 closed and 
2Kn = K:; hence both Un and fn are in V. Therefore some condition in 
S(B) * Sn forces 

(*) "Un can be extended to a normal ultrafilter Fn on ~ (A+) and {Plorder 
type of P = fn(P n Kn)} E Fn". n 

By the fact that S(B) * Sn is a homogeneous forcing notion, every condition 
in S(B) * Sn forces (*) above. (Note that we can get the sequences (Un In < OJ) 
and (fnln < OJ) in V.) We showed that U = (Unln < OJ) and / = (Inln < OJ) 
are good for B*, but B( U , /) ~ B*, a contradiction to the definition of 
B(U,/). 0 

We are ready for the proof of Theorem 1. Fix the sequence (Unln < OJ), 
(fnln < OJ) satisfying Lemma 13. We use the forcing notion .9 described in §3 
in terms of the sequences (Unln < OJ) and (Inln < OJ) (see the remarks after 
the proof of Theorem 3.1). 

So let .9 be as above (defined in terms of U, /). We claim that in V.9' we 
have that Kw is the first cardinal fixed point that G. C. H. holds and that A~ 

w,~ 

holds for all Kw < f1 (f1 regular). 
Lemma 14. For all n < OJ, 

and 

Hn = {ada < Kn' G. C. H. holds between (inclusive) a and fn(a)} 
E Un 

Ln = {ala < Kn' there are exactly a +w+! cardinals between a and fn(a)} 

E Un' 
Proof. Pick any adequate B such that U, / is good for B (sup(B) = A) . 
In VS(Bl*Sn, Kn is A+ supercompact, and there is a normal ultrafilter on 
PK (A+), Fn' such that Fn projects to Un and {PIP E PK (A+), order type 
or" P = In(P n Kn)} E Fn' In VS(Bl*sn form the ultrapow;r of the universe 
by Fn and get a transitive class M. The ordinal A + is represented in the ul-
trapower by the function g(P) = order type of P (P E PK (A+)); hence by 
our assumption we can take g to be In(P n Kn)' Kn is represented by the 
function h(P) = P n Kn (see [S-R-K]). Also P(A) (in the sense of VS(Bl*Sn) is 
in M. In VS(Bl*Sn G. C. H. holds between Kn and A. (Note that above Kw 
G. C. H. holds in V; S(B) * Sn does not destroy it.) Between Kn and Kw we 
forced with X n<i COl(K72 , < K i+!) , each Ki satisfies the G. C. H. , and when 
we force with C~1(K72, < Ki+!) all cardinals between Kt and < Ki+! satisfy 
the G. C. H. Therefore 

VS(Bl*Sn F 'v'a[(Kn :S a :S A)2" = a +]. 

Since, for a < A, P(a) EM, 

M F 'v'a(Kn :S a :S A)2" = a + . 
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By the Los theorem applied to our ultrapower 

{PIVP pnKn ~ P < f(pnKn), 2P = p+} E Fn' 

By definition of the projection of Fn , we get (in VS(Bl*S.) 

{ala < Kn , Vp a ~ P < f(a) , 2P = p+} E Un' 

but Un E V and, for P < Kn , 2P = p+ in VS(Bl*S. if and only if it is true in 
V. (Forcing with S(B) * Sn does not introduce any new subset of Kn .) Hence 
we proved 

{ala < Kn , G. C. H. holds between a and fn(a) inclusive} E Un' 
For the second fact we again pick an adequate B such that (Unln < co) and 
(f"ln < co) are good for B; hence in VS(Bl Kn is A+ supercompact by a 
normal ultrafilter Fn projecting to Un and satisfying 

{PIP E PIC (A+) , order type of P = fn(P n KnH E Fn' 
• 

Again if M is the ultrapower of VS(Bl*S. by Fn , then P(A) EM, and hence, 
for a ~ A, a is a cardinal in M iff it is a cardinal in VS(Bl*S •. But in VS(Bl*S. 

Kw = K:w , K; = K:W+I and for Kw < Ii if Ii ~ A is a cardinal in VS(Bl*S., 
then it is either in the closure of B or successor of an element in the closure 
of B. A+ is represented in M by the function g(P) = f,,(P n Kn)' Also every 
limit point of B is still a cardinal in VS(Bl*S.; hence if B is of cardinality K; 
(which we can assume without loss of generality), then 

S(Bl*S + +w+ I . + V • F there are exactly Kw = Kn many cardmals between Kn and A. 
Therefore 

+w+1 . M F there are exactly Kn many cardmals between Kn and A. 
Using the Los theorem 

+ +w+1 {PIP E PIC (A ), there are exactly (P n Kn) 
• 
many cardinals between P n Kn and f(P n KnH E Fn' 

Fn projects to Un so we get 

{ I +w+l. J. Ln = a a < Kn , there are exactly a many cardmals between a and n(aH 
E Un' 0 

Let p be a condition in P whose a-part, f-part, and S-part are trivial and 
whose A-part is (Ln n Hnln < co) (where Ln and Hn were defined by the 
statements of Lemma 14). 

Lemma 15. In V9' (if p E G(.9')) Kw is the first cardinal fixed point and 
G. C. H. holds. 
Proof. By the analysis done in §3 we know that in V9' each Kn is a successor 
cardinal, and the cardinals below KO are exactly co, COl ' ao' all cardinals in V 
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between ao and fo(ao),fo(ao),J(ao)+ ,and KO. The cardinals between Kn and 
Kn+1 are Kn , K; , K;+ , a n+1 ' all cardinals V between a n+1 and /"+1 (an+I ) , 

/"+1 (an+I ), /"+1 (an+lt , and Kn+1 (where (anln < w) is the sequence intro-
duced by the a-parts of conditions in G(9')). Since P E G(9') , we know 
a j E L j n Hj' so there are exactly a7W+1 cardinals (in V) between a j and 
!;(a j ) , and so none of them is a cardinal fixed point. It is now obvious that 
there are no cardinal fixed points below Kw. On the other hand, there are at 
least sup( { a 7w+ II i < w}) many cardinals below K w' but the last sup is K w ' 
so Kw is a cardinal fixed point. 

Similarly the fact that G. C. H. was satisfied in V by Kw and between an 
and In(an) (recall an E Ln n Hn) guarantees the G. C. H. below Kw. Above 
Kw it holds because it holds in V. (Between WI and ao we forced with 
Col( WI ' < ao) which arranged G. C. H. below ao ; between (J aot and KO 
we used Col(J(aot, KO) which arranged G. C. H. between J(ao) and KO' 
etc.). 0 

Lemma 16. V9" F ll.Kw,P. holds Jor all regular Il > Kw such that Il is not a 
successor oj a singular cardinal oj co finality bigger than K; and it is not non-
Mahlo inaccessible. 
Proof. Let Il be as in the statement of the lemma, and let i, S be 9' terms, 
q E 9' ,where q If- i is an algebra on Il w~th < Kw many operations and S is 
a stationary subset of Il such that if a E S then cf(a) < Kw. 

The forcing notion 9' of course is a forcing notion even in VS(B) where B is 
any adequate set. (In fact (Un In < w) is still a sequence of normal ultrafilters 
in VS(B).) And therefore the terms i and S are 9' terms also in VS(B). 

Clearly we still have 
q If- T is an algebra on Il with < Kw many operations 

when the forcing is over VS(B). We claim that we can pick B such that in 
VS(B) we have 

q * If- S is a stationary subset of Il and Il is regular 
for appropriate choice of q* ::S q and such that (Unln < w) and (/"In < w) are 
good for B. It is clear in case Il = K; for any B because in VS(B) we do not 
have a new subset of K;. (Recall that, for an adequate B, min(B) ~ K;+ .) 
Hence, since 19'1 = K;, there are no new 9' terms for subsets of K;, so if 
t~ere is a term in VS(B) for a closed unbounded subset of K; disjoint from 
S, this. term is in V, and it is a term for a closed unbounded subset disjoint 
from S, which is a contradiction. 

For Il > K;, there is q* such that (over V) A = {alq* If- a E S} is a 
stationary subset of A. This is obvious since 19'1 = K; and Il > K;. A is a 
stationary subset of Il in V; hence by our assumptions it is not bad. Hence we 
can find adequate C such that VS(C) F A is a stationary subset of Il. Without 
loss of generality we can assume that VS(C) F Il is regular. The reason for it 
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is that if J-l is not non-Mahlo inaccessible and not a successor of a singular 
cardinal we can assume that J-l E C. (Note that if an adequate C works, any 
bigger C works.) If J-l = 0+ , where cf(o) :::; K~, then we can have that C is 
cofinal in 0; hence S(C) does not collapse J-l. By definition of {Unln < OJ}, 
{fnln < OJ} we can find adequate B, C ~ B, such that {Unln < OJ}, {J"ln < OJ} 
are good for B . Hence a generic filter for S( C) picks a generic filter for S(B) . 
Therefore we must have VS(B) F A is stationary. (A club disjoint from A in 
VS(B) is in VS(C).) Since 19'1 = K~ < J-l, we have V S (B)*9D F A is stationary. 
But q* 11- A ~ S (also over VS(B)); hence over S(B) we get q* II- S is a 
stationary subset of J-l and that J-l is regular and hence J-l is regular in VS(B)*S. 
for every n. 

Fix n < OJ. We know that in VS(B)*S. there is a normal ultrafilter on 
P" (A+) , Fn , such that Fn projects to Un and {PIP E P" (A+) , order type of 
p'= J,,(P n Kn)} E Fn' If F: is the projection of Fn t~ P" (J-l) we clearly 
have the following: In VS(B)*S. F there is a normal ultrafilter ~n P" (J-l), F: ' 
whose projection to Kn is Un and such that {PIP E P" (J-l), order type of 
P :::; J,,(pnKn)} E F: . We have shown that in VS(B) the seq~ences {Knln < OJ}, 
{Unln < OJ}, {J"ln < OJ}, and the cardinal J-l satisfy all the assumptions of 
Theorem 3.15, where the forcing notion mentioned there, 9', is exactly our 
given 9'. (9' defined from {Unln < OJ} and {J"ln < OJ} is the same in V 
and VS(B) , since forcing with S(B) does not introduce any new sequences of 
length :::; K~.) Therefore by Theorem 3.15, applied in VS(B) , we know that 
V S (B)*9D F A"w,Il' Therefore for some q** :::; q*, q** E 9', and some term .9f 
(the term is in VS(B)) we have 

*. . 0 

q II- N ~ J-l/\ INI < K(J)' N is a subalgebra of r, . . . 
and S n N is stationary in sup(N). 

But N is a 9' term for a set of ordinals of cardinality less than K(J)' Again 
using 19'1 = K~ we can code .9f as a set of ordinals of cardinality :::; K~. Since 
S(B) is K~+ distributive, this coded set is in V, so we can assume .9f E V. 
Now it is easily checked that also over V 

*. . . 
q II- N ~ J-l/\ IN I < K(J) /\ N is a subalgebra of r, . . . 

and S n N is stationary in SUp(N). 
Hence we proved that in V we have A . 0 "w,p, 

We shall now prove that in vP K(J) is fully compact. Actually we shall prove 
that A; A holds in the model for every regular A> K(J)' which by Theorem 2.3 
is suffici~nt. So we are given in vP an algebra N on a regular cardinal A> K(J) 
and a stationary subset S ~ A where, for 0 E S, cf(o) < K(J)' We are also 
given, for 0 E S, Dt5 ~ 0 where IDt51 :::; Kn for some fixed n. If A" A holds, 

w' 
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we get the conclusion of Ll~ ).; hence by Lemma 16 we can assume )., = f.l + 

where f.l is singular and cf(;)' > K~ or that)., is a non-Mahlo inaccessible. (In 
+ 

the last case we put f.l = ).,.) Note that in the present case ~K", <)., for every 
~ <).,. 

The set S, the algebra .S2I , and the assignment ~ ....... (D,J) are defined in 
V9i' , but since K~ <)., and 19'1 = K~ there is a stationary set T ~)., such that 
for some condition p E 9', P If- T ~ S. For ~ E T let D; be {PIP < ~ some 
q :S p, q If- P E D,J}' Since D,J is forced to have cardinality less than Kw and 
since 19'1 = K~, we get ID;I :S K~. 

T and (D; I~ E T) are now defined in V. We go back to arguing over V. 
Pick an adequate set B such that {K~+, ).,+} ~ B, and such that (Unln < OJ), 
(Inln < OJ) are good for B. Since IBI :S K~, B is not cofinal in f.l; hence if 
1] = sup( B n f.l) we have that 1] E B, 1] < f.l, 1] is not the successor of a singular 
cardinal, and it is not a non-Mahlo inaccessible. Also we have r; >)., (where r; 
is the minimal member of B above 1]). Note that K~ < 1]. Hence Col(1] , < r;) 
appears as one of the components in S(B) . In particular if we denote the Levy 
collapse that collapses)., to have cardinality 1] by Col(1] , ).,) , there is a natural 
projection of S(B) onto Col(1],).,), and this projection introduces a generic 
function g: 1] o~o )." g one-to-one. (Note that in VS(B) 1] is still a regular 
cardinal.) For f E S(B) let f* be its projection to Col(1] , ).,). f* is a function 
from a subset of 1] (of cardinality less than 1]) into ).,. Given E ~ )." lEI < 1] , 
any condition f can be extended to f' such that E ~ range(f')*. (f* is 
partial information on the collapse map g.) Also every f' can be extended to 
f so that domain(f *) is an ordinal less than 1]. 

Lemma 17. In VS(B) 

T* = {PIP < 1], supg"P = a is in T, and D: ~ g"P} 

is a stationary subset of 1] . 
Proof. Assume otherwise. Let 'l' be a term forced by some condition in S(B), 
f, to denote a closed unbounded subset of 1] disjoint from T* . 

Consider the structure (in V) ~ = (Hp' E, S(B) , 'l', 1],).,) where p is any 
regular cardinal large enough so that S(B) , 'l' E Hp' By induction on )., we 
can easily define an increasing sequence of elementary substructures of ~, 
(Nala < ).,) ,where INal < )." Na n)" is an ordinal (which is of course less than 
).,), a ~ Na , f E No, (NpIP:S a) E Na+l ' Na for limit a is UP<a Np ' and all 
subsets of Na of cardinality :S K~ are in Na+1 · (Namely PK++(Na) ~ Na+l . 

"' + 
We can satisfy this last condition because IN:"' I < )., by our assumptions about 
)., .) 

Since {ala limit Nan;., = a} form a closed unbounded subset of ;., and T is 
stationary, we can find a E T such that Nan;., = a. Let ( = cf(a). (Recall that 
( < Kw ') Fix a cofinal continuous sequence in a, (P(~)I~ < O. By induction 
on ( we define a decreasing sequence of conditions in S(B) n Na , (f"I~ < (), 
where, for y < (, (f"I~ < y) E Na , f" E Np(,J)+I' (Actually (f"I~ < y) E 
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Np ~ N.) P(o)::; sup(rangefo*+I) < a, 1115 = Dom(fo*) is an ordinal less 
1+1 a 

than 11, and 10+1 forces some ordinal between 1115 and 1115+1 to be in 't'. Also 
D: n Np(J) ~ range(fo+l) . 

fo is J. For limit I' pick a condition below (1010 < 1') ; such a condition ex-
ists because S(B) is "w closed. We can pick this condition in Np(Y)+1 because 
by the induction assumption 10 E N p(J)+1 ~ Np(y). Therefore (1010 < 1') ~ 
Np(y)+I. By our definition of the sequence (Nvlv < A) (noting that II'I < "w)' 
(1010 < 1') E Np(Y)+1 ' but Np(Y)+1 is an elementary substructure of C?f, so we 
can find the lower bound to (1010 < 1') in N p(y)+I. This lower bound will be 
f.y. Without loss of generality we can assume that Dom(f.y) is an ordinal < 11 
(which we denote by 11y). For successor I' = 0 + 1, we can find an extension 
of 10, h* , such that 

(a) range(h*) 2 (D: n Np(t5») u {P(o)} . 
(b) h forces some ordinal above 1115 in 't' and the domain of h* is above 

this ordinal. 
Such an h* can be found in N p(J)+2 because ID:I ::; ,,; ; hence D: n Np(J) E 

N p(J)+1 and P(o) E Np(J)+I' 10 E N p(J)+I. Since Np(t5)+1 ~ Np(t5)+2 and since 
they are elementary substructures of C?f, we can find h* to be in Np(J)+2 and 
define f.y to be this h * . 

Let fr. be a lower bound of (1010 < e) which exists since lei < "w. Let 
11, = sup(11J lo < e). Clearly 11, < 11· h forces that the range of g on 111; is 
included in Na n A = a (because each 10 E Na and the range of .r; is also in 
Na ). g"11, is forced to be UJ <, range(fo), and we get that a = sUPt5<I; P(o) ::; 
sup g"11, ; hence h If- sup g"11, -= a. fr. also forces that D: ~ g"111; and that 
between 1115 and 1115+1 (for 0 < e) there is an element of 't'. Since 't' is forced 
to be closed, h If- 11, E 't'. But all the previous remarks show that 11, E T* . We 
get a contradiction to 't' being disjoint from T*. 0 

Exactly as in the proof of Lemma 16, we can show that the sequences ("win < 
OJ), (Un In < OJ) ,and (In In < OJ) , and the cardinal 11 satisfy in VS(B) all the 
assumptions of Theorem 3.15; hence 

V S (B)*.9' 1= A 
"co' '1 

We assume that the condition p E .9 , mentioned above when we defined T, 
is in G(.9). In V S (B)*.9', T* (defined in Lemma 17) is still a stationary subset 
of 11 because 1.91 = ,,; < 11. Also the sequence (DJlo E T) and the algebra 
oN are in V S (B)*.9' (V.9' is included in V S (B)*.9'). 

In V S (B)*.9' consider an algebra oN on A with "n many operations (recall 
that we assumed that, for 0 E T, IDJI < "n)' such that, for any subalgebra of 
oN , 9 , if 0 E 9 n T then DJ ~ 9, "n ~ 9 , 9 is closed under g and g-1 
(g is the generic function g: 11 o~o A.) , and if a < 11, a E 9 , then sup gil a is 
in 9. 
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Apply Lemma 2.4 in VS (B)*.9 and get a subalgebra !B of Ji/ of cardinality 
less than K w such that the order type of !B n rf is a regular cardinal y < K w 

(clearly Kn < y) and T* n!B is stationary in sup!B. The term denoting !B 
in VS(B) can be easily coded as a set of ordinals of cardinality S K; , and since 
S(B) is K;+ distributive, this term can be assumed to be in V. Hence !B is 
in V.9 (as well as T* n!B , and g r!B n rf) . Now we argue in V.9 . Let h be 
the unique order-preserving map from y onto !B n rf. We get R = {PIP < y, 
h(P) E T* n!B} is a stationary subset of y. By our assumption the function 
g 0 h is a one-to-one mapping from y onto !B. Note that the function on 
y, K(p) = sup go h" p, is continuous and for pER is mapped into !B; 
hence T = g 0 h" R ~ T is a stationary in sup(!B), and if we put, for JET, 
!Bo = go h"((g 0 h)-l(J)), then l!Bol < y = I!BI and !B = UOET!BO' Also for 
JET, it can be easily shown that Do ~ !Bo ' Let x E Do; then XED; n!!8 , 
and hence g-\x) E !!8 n rf. Let "J = g-l(J). Since JET, "J E T*. Also 

11- * 11- 1 - II 1-J = supg J and Do ~ g J. Therefore g- (x) E In!B = h (h- (J)) = 
II 1 ~ ~ 

(g 0 h) ((g 0 h)- (J)) = !!8o)' We get that !!8, T, and (!BoIJ E T) witness the 
truth of Ll;w, A ' so we have proved Theorem 1. 0 
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ABSTRACT. We show that the construction of an almost free nonfree Abelian 
group can be pushed from a regular cardinal /C to ~IC+I. Hence there are 
unboundedly many almost free nonfree Abelian groups below the first cardinal 
fixed point. 

We give a sufficient condition for "/c free implies free", and then we show, 
assuming the consistency of infinitely many supercompacts, that one can have 
a model of ZFC+G.C.H. in which ~w2+1 free implies ~w2+2 free. Similar 
construction yields a model in which ~" free implies free for /C the first cardi-
nal fixed point (namely, the first cardinal a satisfying a = ~a) . The absolute 
results about the existence of almost free nonfree groups require only minimal 
knowledge of set theory. Also, no knowledge of metamathematics is required 
for reading the section on the combinatorial principle used to show that al-
most free implies free. The consistency of the combinatorial principle requires 
acquaintance with forcing techniques. 
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