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Abstract. Co-training, a paradigm of semi-supervised learning, may
alleviate effectively the data scarcity problem (i.e., the lack of labeled
examples) in supervised learning. The standard two-view co-training re-
quires the dataset be described by two views of attributes, and previous
theoretical studies proved that if the two views satisfy the sufficiency
and independence assumptions, co-training is guaranteed to work well.
However, little work has been done on how these assumptions can be
empirically verified given datasets. In this paper, we first propose novel
approaches to verify empirically the two assumptions of co-training based
on datasets. We then propose simple heuristic to split a single view of
attributes into two views, and discover regularity on the sufficiency and
independence thresholds for the standard two-view co-training to work
well. Our empirical results not only coincide well with the previous the-
oretical findings, but also provide a practical guideline to decide when
co-training should work well based on datasets.

1 Introduction

Co-training, a paradigm of semi-supervised learning, has drawn considerable at-
tentions and interests recently (see, for example, [1,2] for review). The standard
two-view co-training [3] assumes that there exist two disjoint sets of features or
views that describe the data.1 The standard co-training utilizes an initial (small)
labeled training dataset and a (large) set of unlabeled data from the same dis-
tribution, and it works roughly as follows [3]. Two separate classifiers are first
trained on the initial labeled training dataset using the two views respectively.
Then, alternately, each classifier classifies the unlabeled data, chooses the few
unlabeled examples whose labels it predicts most confidently, and adds those
examples and the predicted labels to the training dataset of the other classifier.
The classifiers are retrained, and the process repeats, until some stopping crite-
rion is met. That is, the two classifiers “teach” each other with the additional

1 Another form of co-training, called the single-view co-training in our paper, generates
diverse learners on the single view of attributes [4,5]. In this paper, we mainly study
the standard two-view co-training [3], which will be referred to as two-view co-
training, or simply co-training in the paper.
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examples whose labels are given by the other classifier to improve the classifi-
cation accuracy, compared to a classifier learned only from the initial labeled
training data.

Two assumptions are proposed for co-training to work well [3]. The first one
assumes that the views are sufficient; that is, each view (thus also the combined
view) is sufficient to predict the class perfectly. We call it the sufficiency as-
sumption. The second assumption requires that the two views be conditionally
independent; that is, the two views are independent given the class. We call it
the independence assumption. Theoretical results have shown that if the suf-
ficiency and independence assumptions are satisfied, co-training is guaranteed
to work well. (The assumptions can be relaxed for co-training to still work well
[6,7]. Nevertheless, the sufficiency and independence assumptions are a “sufficient
condition” for co-training to work well). In addition, the two-view co-training
has been applied quite successfully to many real-world tasks, such as statistical
parsing [8], noun phrase identification [9], and image retrieval [10].

However, the two assumptions that guarantee co-training to work well may
not be true in most real-world applications. Given a real-world dataset with two
views of attributes, how can we judge if the two-view co-training would work
well? How can we verify if the sufficiency and independence assumptions are
satisfied to guarantee co-training to work well? If the real-world dataset has
only one view, can the two-view co-training still work? This paper is our first
attempt to answer these questions.

2 Verifying Co-training Assumptions Empirically

Given a whole dataset (with labels) and two views of attributes (X = x1, . . . , xm

and Y = y1, . . . , yn), how can we verify if the two assumptions on sufficiency and
independence for the standard co-training are satisfied? If the assumptions are
satisfied, co-training is guaranteed to work well, and thus can be applied. Note
that sometimes the domain knowledge can ensure the satisfaction of the two as-
sumptions, but in most real-world applications, such assumptions cannot be guar-
anteed. Thus it is important that these assumptions be empirically verified based
on the dataset given. Here we will use the whole labeled dataset (or a very large
training set) that represents the learning task to verify the two assumptions. This
is because the theoretical assumptions on sufficiency and independence are based
on the whole domain (for example, it is assumed that there exist target functions
that map from the single view, the X view, and the Y view perfectly [3]).

The sufficiency assumption is relatively easy to verify. Sufficiency means that
X×Y can accurately predict the class, so can X and Y individually. We can build
a classifier to estimate the accuracy on the whole dataset D using X×Y with the
10-fold cross-validation. We denote this accuracy as p. The sufficiency says that
p should be close to 1. Note that the theoretical results assume that there exist
(target) functions that map from X × Y , X , and Y to the class label perfectly.
As we are verifying the assumption empirically, we use learning algorithms on
the whole dataset to establish if such functions exist or not. Similarly, we build
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a classifier using attributes in X to estimate the accuracy (call it px) of X
predicting the class, and accuracy (call it py) of Y predicting the class.

Thus, the sufficiency assumption of co-training can be defined as: there exists
a small positive number δ1 (such as 0.1) such that

p > 1 − δ1,
px > 1 − δ1, and
py > 1 − δ1.
We call δ1 the sufficiency threshold. In Section 3.2, we will discover ranges of

δ1 that make co-training work well.
Conditional independence is a bit harder to verify. It means that given the

class, the two views are independent. One way to verify this is, for each class
label, if each xi is independent of Y , and each yi is independent of X . To verify
if xi is independent of Y empirically, we build a classifier (or many classifiers)
to predict xi using Y on the whole dataset. If xi is independent of Y , then Y
cannot predict xi well — not better than the default accuracy of xi. Again we
establish empirically if Y can predict xi better than its default accuracy on the
whole dataset. Assume that the 10-fold cross-validated accuracy of Y predicting
xi on D is pxi , then it should not be much larger than the default accuracy of
xi — the accuracy (denoted as p′xi

) of the majority value of the class. The same
is true for using X to predict yj . Thus, the independence assumption can be
defined as: there exists a small positive number δ2 (such as 0.1) such that for
each class value

pxi < p′xi
+ δ2 for all 1 ≤ i ≤ m, and

pyi < p′yi
+ δ2 for all 1 ≤ i ≤ n.

We call δ2 the independence threshold. We will establish the ranges of δ2 to
make co-training work in Section 3.2.

3 Splitting Single Views to Two Views

In the previous section we describe an empirical approach to verify, when given
the whole dataset and two views, if the two views satisfy the sufficiency and
independence assumptions for co-training to work well. However, the standard
two-view co-training has limited success in most real-world datasets with single
views, such as most UCI datasets [11]. (One could also apply directly the single-
view co-training on the datasets with single views, but other complications may
be entailed.)

In this section we propose a simple heuristic to split single views into two views
such that if the two views satisfy the sufficiency and independence assumptions,
the two-view co-training is guaranteed to work well. The heuristic works as
follows. We first calculate the entropy of each attribute in the single view based
on the whole dataset D, similar to the entropy calculation for all attributes
when deciding which attribute should be chosen as the root of the decision tree
[12]. Intuitively, the larger the entropy, the more predictive of the class that
the attribute would be. In order to distribute high-entropy attributes evenly in
the two views, we simply assign attributes with the first, third, and so on (the
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odd number of), highest entropy to the first view. We then assign attributes
with the second, fourth, and so on (the even number of), highest entropy to the
second view. Our proposed method is closely related to [13], which also splits
single-views into two views. However, it simply splits the attributes randomly
into two views. Later in this section, we make a comparision between our entropy
splitting approach and the random splitting approach. After the two views are
formed, the two assumptions (sufficiency and independence) for co-training are
verified using the approaches described in the previous section.

We choose 32 UCI datasets coming with the WEKA package [14] to see if we
can split the single view into two views for co-training to work. The continuous
attributes are discredited into 10 equal-width bins in order to utilize naive Bayes
[15] for checking the sufficiency and independence assumptions. As most previous
co-training researches are based on binary classification problem, datasets with
multiple classes are converted to binary by using the majority class value as
one class, and the rest of the other values as the other class. These datasets are
named with “ new” appended on the end of their original names.

In order to study the range of the sufficiency and independence thresholds for
co-training to work well, we set δ1 = 0.5 for now (a very relaxed value, as any
weak binary classifier should predict better than 50%). We apply both entropy
splitting and random splitting on these 32 datasets for comparison. Entropy
splitting yields smaller δ1 on most datasets (31 out of 32) and smaller δ2 on
about half datasets (15 out of 32) compared to random splitting, thus we utilize
it to verify the working of co-training in the rest of the paper. The cross-validated
accuracies on the single view, the X view, and the Y view using naive Bayes on
the whole datasets are listed in Table 1. We use “Acc(X ,Y )”, “Acc(X)”, and
“Acc(Y )” to denote them respectively in the table.

Our experiments of applying co-training on these UCI datasets are conducted
in the following two high-level steps. In the first step, we run the standard co-
training on these datasets to see if co-training would work. For each dataset we
also obtain the tightest (smallest) sufficiency and independence thresholds that
would make it pass the verification. In the second step, we apply a meta-learning
algorithm [16] on the results of the first step to discover proper ranges of the
thresholds that can predict when co-training works well. We describe these two
steps in details below.

3.1 Applying Co-training on UCI Datasets

To apply co-training on these 32 datasets, the whole datasets D are first split
randomly into three disjoint subsets: the training set (R), unlabeled set (U), and
test set (T ). The test set T is always 25% of D. To make sure that co-training
can possibly show improvement when the unlabeled data are added, we choose
a small training set for each dataset such that the “optimal gain” in accuracy
when using the unlabeled data optimally is large enough (greater than 10%).
The “optimal gain”, denoted as “OptGain” in Table 1, is thus the difference
between the accuracy on the initial training set R plus all unlabeled data with
correct labels and the accuracy on R alone (without any benefit of unlabeled
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examples). The “optimal gain” reflects the upper bound that co-training can
achieve in accuracy. The unlabeled set is the whole dataset taking away the test
set and the training set. The proper training set size (with the optimal gain
greater than 10%) is also listed in Table 1. The standard co-training [3] is then
applied. The process is repeated 20 times with different split of R, U , and T .

The average accuracy before applying co-training (test accuracy of applying
naive Bayes on the initial training set; denoted as “IniAcc”), and the average
accuracy after applying co-training (denoted as “CtAcc”) are recorded in the
table. A significance test, a paired t-test with 95% confidence, is applied to see if
the test accuracy after co-training is significantly better than the test accuracy
before co-training (i.e., if co-training really works or not). If it is, then co-training
wins, denoted by W in the “CtWorks?” column; if it is significantly worse, then
co-training loses (L); else co-training ties (T ) with no co-training. These results
are presented together in Table 1 for easy viewing.

From Table 1, we can see that overall, co-training wins in 6 datasets, loses in
3, and ties in the rest 23 datasets. Of course this does not imply that co-training
does not work well for most single-view real-world datasets, as the sufficiency
and independence thresholds (δ1 and δ2) are set very relaxed (δ1 = 0.5), thus
the two views of these datasets may not be sufficient or independent. For each
dataset, we can obtain the tightest (smallest) threshold values for the sufficiency
and independence assumptions to pass. These threshold values (δ1 and δ2) are
also listed in Table 1. These values provide us with an opportunity to discover
the hidden regularity of these thresholds that make co-training win.

3.2 Meta-learning Co-training Thresholds

Results in Table 1 do seem to indicate that co-training would win when δ1 and
δ2 are relatively small. In order to obtain a more precise range of δ1 and δ2, we
use the idea of meta-learning to find hidden regularity of δ1 and δ2 that makes
co-training work (win). We simply take, from Table 1, the numerical values in
columns δ1 and δ2 as attributes, and W , L or T from “CtWorks?” as the class
label. We obtain 32 training examples on which we can apply meta-learning.

We first assign W (win) as one class, and group L (lose) and T (tie) as
the “others” class, to discover when co-training would win (W ). As we expect
simple rules for the thresholds, we apply WEKA‘s j48, the standard decision-
tree algorithm [12] on the 32 training examples with pruning. The decision tree
found is surprisingly simple:

d1 <= 0.23
| d2 <= 0.15: W (7.0/2.0)
| d2 > 0.15: others (8.0/1.0)
d1 > 0.23: others (17.0)

The tree discovered by j48 clearly indicates that co-training would win if the
sufficiency threshold (δ1) is less than or equals to 0.23, and the independence
threshold (δ2) is less than or equals to 0.15. There are 3 exceptions to the simple
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Table 1. Applying the standard co-training on UCI datasets after view split. The
cross-validated accuracies on the single view, the X view, and the Y view using naive
Bayes on the whole datasets are listed as “Acc(X,Y )”, “Acc(X)”, and “Acc(Y )” re-
spectively. “Training” indicates the size of training set, the test set is always 25% of the
whole dataset, and the rest is the unlabeled set. “OptGain” is the difference between
the accuracy on the initial training set plus all unlabeled data with correct labels and
the accuracy on initial training set alone (without any benefit of unlabeled examples).
“IniAcc” and “CtAcc” indicate the average test accuracy before and after applying
co-training respectively. “CtWorks?” shows if co-training wins, ties or loses based on a
paired t-test with 95% confidence.

Dataset Acc(X,Y )Acc(X)Acc(Y ) δ1 δ2 TrainingOptGainIniAccCtAcc CtWorks?

breast-cancer 75.5% 73.3% 74.0% 0.270.32 1/50 28.5% 0.44 0.48 T
breast-w 97.3% 96.6% 95.4% 0.050.13 1/100 17.2% 0.80 0.90 W
colic 78.8% 75.0% 81.8% 0.250.13 1/50 21.0% 0.60 0.63 T
credit-a 84.8% 84.6% 74.1% 0.260.31 1/50 23.0% 0.62 0.60 T
credit-g 76.3% 72.0% 73.4% 0.280.18 1/100 16.2% 0.58 0.58 T
diabetes 75.4% 69.7% 74.9% 0.300.12 1/50 15.1% 0.62 0.64 T
heart-statlog 83.7% 79.6% 76.7% 0.230.06 1/50 26.6% 0.59 0.73 W
hepatitis 83.9% 83.2% 82.6% 0.170.19 1/50 17.6% 0.69 0.70 T
ionosphere 90.9% 89.7% 90.1% 0.100.35 1/50 25.2% 0.66 0.69 T
kr-vs-kp 87.9% 70.4% 80.1% 0.300.27 1/200 24.0% 0.64 0.50 L
mushroom 95.8% 92.9% 98.5% 0.070.54 1/500 15.9% 0.80 0.82 T
sonar 77.4% 76.4% 76.0% 0.240.23 1/50 24.1% 0.53 0.52 T
tic-tac-toe 69.6% 70.5% 65.3% 0.350.17 1/100 15.5% 0.58 0.56 T
vote 90.1% 86.9% 91.0% 0.130.26 1/50 23.0% 0.68 0.60 T
anneal new 92.4% 82.9% 92.5% 0.170.49 1/50 13.9% 0.77 0.71 L
arrhythmia new 75.2% 74.6% 72.8% 0.270.34 1/50 21.9% 0.52 0.56 T
autos new 79.0% 81.0% 72.2% 0.280.62 1/50 24.9% 0.57 0.55 T
cmc new 65.4% 66.1% 61.0% 0.390.21 1/100 14.5% 0.52 0.50 T
cylinder-bands new 73.9% 67.4% 73.8% 0.330.51 1/50 16.8% 0.57 0.51 L
dermatology new 99.7% 99.5% 99.7% 0.010.20 1/50 27.1% 0.73 0.86 W
ecoli new 97.7% 85.4% 83.9% 0.160.11 1/50 40.5% 0.57 0.70 W
flags new 75.3% 73.7% 74.2% 0.260.32 1/50 20.0% 0.54 0.52 T
glass new 72.4% 69.2% 68.2% 0.320.24 1/50 21.5% 0.53 0.55 T
haberman new 75.8% 75.2% 74.2% 0.260.02 1/50 29.0% 0.46 0.49 T
heart-c new 84.2% 80.2% 76.9% 0.230.10 1/50 20.0% 0.65 0.69 T
heart-h new 84.0% 78.6% 80.3% 0.210.12 1/50 20.2% 0.66 0.75 W
liver-disorders new 64.9% 60.0% 64.9% 0.400.03 1/50 18.0% 0.47 0.49 T
primary-tumor new 85.0% 81.7% 79.1% 0.210.12 1/50 17.4% 0.67 0.66 T
solar-flare 1 new 74.0% 73.4% 74.9% 0.270.27 1/50 27.5% 0.47 0.50 T
solar-flare 2 new 100% 100% 81.4% 0.190.18 1/50 24.7% 0.75 0.69 T
spambase new 84.5% 79.9% 78.6% 0.210.15 1/300 28.8% 0.57 0.75 W
splice new 92.3% 84.1% 86.3% 0.160.19 1/200 25.9% 0.66 0.67 T

tree, but the overall accuracy of this tree is quite high at 91%, much higher than
the default accuracy of 81% (26/32).

It would also be interesting to find out when co-training would lose (L) so it
should be avoided. We use L (lose) as one class, and group win (W ) and tie (T )
as the “others” class, and run j48 again.2 The result is also surprisingly simple:

2 We tried to run j48 on the training examples with three classes: W , L and T , but it
always returns a one-node tree, with or without pruning.



602 C.X. Ling, J. Du, and Z.-H. Zhou

d2 <= 0.26: others (21.0)
d2 > 0.26
| d1 <= 0.28: others (9.0/1.0)
| d1 > 0.28: L (2.0)

This indicates that co-training would lose (so it should not be used) if the suffi-
ciency threshold (δ1) is greater than 0.28, and the independence threshold (δ2)
is greater than 0.26. Clearly our empirical results coincide well with theoretical
findings that if the two views are sufficient and independent, co-training must
work well (win). However, theoretical guarantee on sufficiency and independence
is often impossible to obtain. What is more important is that the actual range of
the sufficiency and independence thresholds, though discovered empirically here,
provides a simple guideline for deciding and applying the standard co-training
in real-world datasets.

4 Conclusions

To summarize, in this paper we propose empirical verification of the sufficiency
and independence assumptions of the standard two-view co-training algorithm.
We design heuristic to split datasets with a single view into two views, and if
the two views pass the sufficiency and independence verification discovered by
meta-learning, co-training is highly likely to work well. Our conclusions coincide
well with the previous theoretical results, but our work provides a practical guide
as to when co-training can work in datasets with two views. Our current work
is based on the whole dataset. In our future work, we will study co-training
verification on small training data.
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