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Abstract
We seek to understand when heterogeneity in agent
preferences yields improved outcomes in terms of
overall cost. That this might be hoped for is based
on the common belief that diversity is advantageous
in many multi-agent settings. We investigate this in
the context of routing. Our main result is a sharp
characterization of the network settings in which
diversity always helps, versus those in which it is
sometimes harmful.
Specifically, we consider routing games, where di-
versity arises in the way that agents trade-off two
criteria (such as time and money, or, in the case of
stochastic delays, expectation and variance of de-
lay). Our main contributions are: 1) A participant-
oriented measure of cost in the presence of agent
diversity; 2) A full characterization of those net-
work topologies for which diversity always helps,
for all latency functions and demands.

1 Introduction
It is a common belief that diversity helps. In non-cooperative
multi-agent systems, where a central theme is the tension be-
tween selfish behavior and social optimality—can diversity of
agent preferences help to bring us closer to the coveted social
optimality? We provide an answer to this question in the con-
text of non-atomic selfish routing, where diversity naturally
arises in the way agents trade-off two criteria, for example,
time and cost, or, in the presence of uncertain delays, expec-
tation and variance of delay.

As we shall see, there is no unique answer. Rather, it de-
pends on the setting. To address our question we need to
specify how to measure the cost of an outcome, and define a
benchmark setting with no agent heterogeneity. To measure
the cost of an outcome, we treat an agent’s cost as the sum
of two terms associated with two criteria: If we let `P denote
the cost of one criterion (e.g., the latency) over a path P , and
vP be the cost of the second criterion, then the overall cost is
given by `P + r · vP , where r is our diversity parameter. The
special case of r = 0 corresponds to indifference to the sec-
ond criterion and results in the classic selfish routing model
where agents simply minimize travel time.

A first approach to measuring the effect of diversity might
be to compare the cost of an outcome with r = 0 (i.e., just
the total latency) to that with other values of r, including pos-
sibly mixed values of r across the population being routed.
However, this approach does not pinpoint the gains and losses
from agent heterogeneity as opposed to agent homogeneity;
rather, it (mostly) pinpoints the gains and losses depending
on whether players are affected by the second criterion or
not. Instead, we focus on the sum of the costs incurred by the
agents as measured by their cost functions, and compare costs
incurred by a heterogeneous population of agents to those in-
curred by an equivalent population of homogeneous agents.
What are equivalent populations? Suppose the heterogeneous
population’s diversity profile is given by a population den-
sity function f(r). Then, we define the corresponding ho-
mogeneous population to have the single diversity parameter
r̄ =

∫
rf(r)dr. In addition, we require the two populations

to have the same size, in the sense that the total source-to-sink
flows that they induce are equal.
Contribution. We fully characterize the topology of net-
works for which diversity is never harmful, regardless of the
demand size and the distribution of the diversity parameter
(discrete or continuous). We do so both for single and multi-
commodity networks.

For single-commodity networks it turns out that this topol-
ogy is that of series-parallel networks. In Theorem 1, we
show that if the network is series-parallel, then diversity only
helps for any choice of demand and edge functions. The key
observation is that there is a path for which the homogeneous
flow is at least as large as the heterogeneous flow. As the cost
of the homogeneous flow is the same on all used paths, while
the cost of each unit of heterogeneous flow is lowest on the
path it uses, one can then deduce that the cost of the heteroge-
neous flow is at most that of the homogeneous flow. To show
necessity, we first provide an instance on the Braess graph for
which diversity is harmful, and then show how to embed it in
any non-series-parallel graph.

In multi-commodity networks, by the result above, each
commodity must route its flow through a series-parallel sub-
network. But, as Proposition 2 shows, this is not enough,
and the way in which these series-parallel networks overlap
needs to be constrained. The necessary constraint is exactly
captured by the class of block-matching networks, defined in
this paper. Sufficiency in this case then follows quite easily
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from the same result for the single commodity case.
The main technical challenge is to show necessity. To this

end, assuming diversity does no harm, we show, via a case
analysis, how the subnetworks of the commodities may over-
lap. First, in Proposition 2, we give an instance on a network
of two commodities and three paths for which diversity hurts.
Then we mimic this instance on a general network. The dif-
ficult part is to choose the corresponding paths for the mim-
icking, so that, in the created instance, all the flow under both
equilibria goes through these paths. The challenge is that the
commodities’ subnetworks may overlap in subtle ways.
Related work. Our work was inspired by the selfish rout-
ing literature where agents have to tradeoff two criteria such
as time versus tolls, or expected travel time versus variance.
In the former setting, early results (e.g., [Beckmann et al.,
1956]) showed that tolls can help implement the social opti-
mum as an equilibrium, when agents all have the same linear
objective function combining time and money. Much more
recently, these results were extended to the case where agents
trade-off travel time and money differently, by Cole et al.
(2003) and Fleischer (2005) for the single commodity case,
and by Karakostas and Kolliopoulos (2004a) and Fleischer et
al. (2004) for the multicommodity case. We remark that the
above works, apart from [Cole et al., 2003], consider only
the case where the social welfare is defined as the total travel
time, whereas in our work we consider the total agent cost,
which encapsulates both criteria. This, for example, is also
the case for Christodoulou et al. (2014) and Karakostas and
Kolliopoulos (2004b). In stochastic selfish routing and re-
lated frameworks, most models assume homogeneous agents
(e.g., [Piliouras et al., 2013], [Nikolova and Stier-Moses,
2015], [Lianeas et al., 2016], [Kleer and Schäfer, 2016]) and
study the degradation of a network’s performance due to risk
aversion. Fotakis et al. (2015) considered games with hetero-
geneous risk-averse players and showed how uncertainty can
be used to improve a network’s performance.

Characterizing the topology of networks that satisfy some
property is a common theme in computer science. Relevant
to our work, Epstein et al. (2009) characterized the topol-
ogy of single-commodity networks for which all Nash equi-
libria are social optima (under bottleneck costs), and Milch-
taich (2006) characterized the topology of single-commodity
networks which do not suffer from the Braess Paradox for
any cost functions. Chen et al. (2015) fully characterized
the topology of multi-commodity networks that do not suffer
from the Braess paradox. These characterizations appear sim-
ilar to ours, although there does not seem to be any other con-
nection between the two problems, as (i) there are instances
where diversity helps while the Braess Paradox occurs and
others where diversity hurts but the paradox does not occur,
and (ii) the Braess Paradox may occur in series-parallel net-
works when considering selfish routing with heterogeneity in
agent preferences, which is not the case for the classic selfish
routing model.

In the following works, the characterizing topology for the
corresponding question (for a single commodity) is similar to
ours. Fotakis and Spirakis (2008) considered atomic games
and proved that series-parallel networks are the largest class
of networks for which strongly optimal tolls are known to

exist. Nikolova and Stier-Moses (2015) considered homoge-
neous agents and a social cost function that does not account
for the second criterion; They showed that series-parallel net-
works admit the best bound on the degradation of the net-
work due to risk aversion. Theorem 4 of Acemoglu et al.
(2016), proves that series-parallel networks are the charac-
terizing topology for what they call the Informational Braess
Paradox with Restricted Information Sets; this theorem com-
pares the cost of one agent type before and after more infor-
mation is revealed to agents of that type, but does not consider
the change in the cost of other agent types. In contrast, our
work considers non-atomic games with heterogeneous agents
and bounds the overall costs faced by the collection of agents.
Most relevant to our work is [Meir and Parkes, 2014] and its
Theorem 3.1 as it implies that for series-parallel networks the
cost of an agent of average parameter only increases when
switching from the heterogeneous instance to the correspond-
ing homogeneous one and thus for our sufficiency theorems,
one is left to prove that the heterogeneous equilibrium cost
is no greater than the cost of an agent of average parameter
(though we give a different proof).

2 Preliminaries
Consider a directed multi-commodity network G = (V,E)
with an aggregate demand of dk units of flow between origin-
destination pairs (sk, tk) for k ∈ K. We let Pk be the set of
all paths between sk and tk, and P := ∪k∈KPk be the set of
all origin-destination paths. We let [m] denote {1, . . . ,m}.
We assume that K = [m], for some m. The agents in the
network—i.e., the players of the game—must choose routes
that connect their origins to their destinations. We encode the
collective decisions of agents in a flow vector f = (fπ)π∈P ∈
R|P|+ over all paths. Such a flow is feasible when demands
are satisfied, as given by constraints

∑
π∈Pk

fπ = dk for all
k ∈ K. For simplicity, we let fe denote the flow on edge
e; note that fe =

∑
π:e∈π fπ . When we need multiple flow

variables, we use the analogous notation g, gπ, ge.
The network is subject to congestion that affects two cri-

teria the players consider. These two criteria are modeled
by two edge-dependent functions that take as input the edge
flow fe of e, for each edge e: a latency function `e(x) as-
sumed to be continuous and non-decreasing, and a deviation
function σe(x) assumed to be continuous (but not necessarily
non-decreasing).

Throughout the paper we refer to the agent’s objective as
the cost along a route. Formally, for a given agent, on letting
`π(f) =

∑
e∈π `e(fe) and σπ(f) =

∑
e∈π σe(fe), for a con-

stant r ≥ 0 that quantifies the agent diversity parameter, the
agent’s cost along route π under flow f is

crπ(f) =
∑
e∈π

`e(fe) + r
∑
e∈π

σe(fe) = `π(f) + rσπ(f) (1)

We assume that for any edge and any agent’s diversity pa-
rameter r, the functions `e and `e + rσe are non-decreasing.
Note that if there is an upper bound rmax on the possible val-
ues of the diversity parameter r, then the latter assumptions
do not require σe to be non-decreasing. This is desirable be-
cause, for example, in risk-averse selfish routing where σe
models the variance, σe may be decreasing in the flow.
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Players Heterogeneity. We assume that there may be more
than one value of the diversity parameters r for the players
routing commodity k. We use the term single-minded to re-
fer to players with r = 0. We handle both the cases of a
continuous and a discrete distribution of the diversity param-
eter among the players, though, for our results, we need only
consider the discrete case.1

For a discrete distribution of, say, n discrete values
rk1 , . . . , r

k
n, the demand dk is a vector dk = (dk1 , . . . , d

k
n)

where each dki denotes the total demand of Commodity k
with diversity parameter rki . We let dk denote Commodity
k’s total demand, dk =

∑n
i=1 d

k
i . Variables frπ and fre de-

note the flow of diversity parameter r on path π and edge e,
respectively. Formally, an instance is described by the tu-
ple (G, {(`e, σe)}e∈E , {(sk, tk)}k∈K , {dk}k∈K , {rk}k∈K),
where rk = (rk1 , . . . , r

k
n) is the vector of different diversity

parameters encountered in the heterogeneous population.
Equilibrium flows. The Wardrop equilibrium of an instance
is a flow f such that for every k ∈ K, for every path π ∈ Pk
with positive flow, and any diversity parameter r on it, the
path cost crπ(f) ≤ crπ′(f) for all paths π′ ∈ Pk .

From here on, we shall refer to the Wardrop equilibrium
as the equilibrium. Our goal is to compare the total agent
cost at the equilibrium of an instance with a population that
has heterogeneous diversity parameters, to the total agent cost
at the equilibrium of the same instance but with the popula-
tion of each commodity keeping its magnitude but changed
to be homogeneous, with diversity parameter equal to the
expected value of the diversity parameter distribution in the
heterogeneous population of the commodity. To differentiate
more easily, for a heterogeneous instance we call the former
the heterogeneous equilibrium and the latter the (correspond-
ing) homogeneous equilibrium. We usually denote the hetero-
geneous equilibrium by g and the homogeneous equilibrium
by f . The existence of both equilibria is guaranteed by e.g.
[Schmeidler, 1973, Theorem 2]. We note here that in gen-
eral we do not need uniqueness of equilibria, neither for the
edge costs nor for the edge flows. Our results hold for any
arbitrary pair of heterogeneous and homogeneous equilibria
of the corresponding instances. Also, as for classic routing
games, without loss of generality (WLOG) we may assume
that equilibrium flows are acyclic.
Total Costs. For a heterogeneous equilibrium flow vector g,
the heterogeneous total cost of Commodity k is denoted by
Ck,ht(g) =

∑
j=1...n d

k
j c
k,rkj (g) where ck,r

k
j (g) denotes the

common cost at equilibrium g for players of diversity param-
eter rkj in Commodity k. The heterogeneous total cost of g
is then Cht(g) =

∑
k∈K C

k,ht(g). For the corresponding
homogeneous equilibrium flow f , i.e. the instance with di-
versity parameter r̄k, where r̄k denotes the average diversity
parameter for Commodity k, players of Commodity k share
the same cost cr̄

k

(f). Then, the homogeneous total cost of
Commodity k under f is Ck,hm(f) = dkc

r̄k(f), and the ho-
mogeneous total cost of f is Chm(f) =

∑
k∈K C

k,hm(f).

1This is basically because the flow gp of a path p with diver-
sity parameter within some range, can be changed to have parameter
equal to the average parameter on p, and the equilibrium remains.

Figure 1: A block-matching network of 2 commodities. G1 and
G2 are series-parallel and their block representations are G1 =
s1AuBvCwDt1 and G2 = s2EwDt1FuBvGt2. G1 and G2

share exactly blocks B and D and do not share any edge on any
other of their blocks. If we add an edge from s1 to t1, then the net-
work stops being block-matching since G1 will be a block by itself
and it will not match any of the blocks of G2.

Finally, if Cht(g) ≤ Chm(f), we say that diversity helps; if
not, we say that diversity hurts. For our characterization to be
meaningful, we assume an average-respecting demand, i.e.,
a demand where ∀i, j : r̄i = r̄j . Otherwise, diversity may
hurt in simple instances, e.g., with two parallel links and two
commodities.

Networks. For a network G we let V (G) and E(G) denote
its vertex set and edge set, respectively.

A directed s–t network G is series-parallel if it consists of
a single edge (s, t), or it is formed by the series or parallel
composition of two series-parallel networks with terminals
(s1, t1) and (s2, t2), respectively. In a series composition, t1
is identified with s2, s1 becomes s, and t2 becomes t. In a
parallel composition, s1 is identified with s2 and becomes
s, and t1 is identified with t2 and becomes t. The internal
vertices of a series-parallel networkG are all its vertices other
than its terminals.

An s–t series-parallel network may be represented using a
sequence of networks Bj connected in series, where each Bj
is either a single edge or two series-parallel networks con-
nected in parallel. Given a series-parallel network H , we
can write H = sB1v1B2v2 . . . Bb−1vb−1Bbt, where for any
j and triple xBjy, x and y are the terminals of the series-
parallel network Bj , and Bj is either a single edge or a par-
allel combination of two series-parallel networks. We re-
fer to the Bj’s as blocks, the prescribed representation as
the block representation of H , and the vi’s as separators,
as they separate s from t. Two series-parallel networks G1

and G2 are said to be block-matching if for every block B
of G1 and every block D of G2, either E(B) = E(D) or
E(B) ∩ E(D) = ∅. Note that E(B) = E(D) implies that
B and D have the same terminals and direction, as for either
B or D, the source vertex will have only outgoing edges to-
ward the internal vertices and the target vertex will have only
incoming edges from the internal vertices.

For a k-commodity network G, let Gi be the subnetwork
of G that contains all the vertices and edges of G that be-
long to a simple si–ti path for Commodity i. In other words,
Gi is the subnetwork of G for Commodity i that equilibria
flows will consider, as they are, WLOG, acyclic. A multi-
commodity network G is block-matching if for every i, Gi
is series-parallel, and for every i, j, Gi and Gj are block-
matching. An example is given in Figure 1.
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3 Topology of Single-Commodity Networks
for which Diversity Helps

In this section, we fully characterize the topology of single-
commodity networks for which, with any choice of hetero-
geneous demand and edge functions, diversity helps. WLOG
we may restrict our attention to single-commodity networks
whose edges all belong to some simple source-destination
path as only these edges are going to be used by the (WLOG,
acyclic) equilibria and thus all other edges can be discarded.
It turns out that this topology is exactly that of series-parallel
networks (Theorems 1 and 2).

3.1 Series Parallel Implies Diversity is Helpful
Throughout this section we will be considering a heteroge-
neous instance G on an s–t series-parallel network G. We let
F denote the corresponding homogeneous instance. We let g
denote an equilibrium flow for G and f an equilibrium flow
for F . Finally, we let Cht(g) denote the cost of flow g and
Chm(f) the cost of flow f . Although redundant, we keep the
superscripts as a further reminder of the flow type at hand.

The key observation is that there is a path P used by flow
f such that for every edge in P , fe ≥ ge, and hence for any
r ∈ [0, rmax], crp(f) ≥ crp(g) (Lemmas 12 and 2). We then
deduce our result: Cht(g) ≤ Chm(f) (Theorem 1).

Lemma 1. Let G be an s–t series-parallel network and let
x and y be flows on G that route d1 and d2 units of traffic
respectively, with d1 ≥ d2 and d1 > 0. Then, there exists an
s–t path P such that for all e ∈ P, xe > 0 and xe ≥ ye.
Lemma 2. There exists a path P used by f such that for any
r ∈ [0, rmax], crp(g) ≤ crp(f).

Proof. Flows f and g have the same magnitude on the series-
parallel network G. Applying Lemma 1 with x = f and
y = g implies that there exists an s–t path P such that for
all e ∈ P, fe > 0, implying that WLOG P is used by f , and
fe ≥ ge. By assumption, for any r ∈ [0, rmax], `e + rσe is
non-decreasing, and thus for all e ∈ P, `e(fe) + rσe(fe) ≥
`e(ge)+rσe(ge). Consequently,

∑
e∈P (`e(fe)+rσe(fe)) ≥∑

e∈P (`e(ge) + rσe(ge))⇔ crp(g) ≤ crp(f) as needed.

Theorem 1. Cht(g) ≤ Chm(f).3

Proof. Since G is a series-parallel network, on setting r̄ =
E[r] and then applying Lemma 2, we obtain that there is a
path P used by f such that

`p(f) + r̄σp(f) ≥ `p(g) + r̄σp(g) (2)

WLOG we can assume that the total demand d = 1. We
first bound the total cost of g in terms of the cost of path P
under g and then we use (2) to further bound it in terms of the
cost of path P under f . The latter equals the cost of f , as the
demand is equal to 1.

2Lemma 1 is similar to [Milchtaich, 2006, Lemma 2].
3The inequality might be strict. Consider the case of 2 parallel

links with (`1(x), σ1(x)) = (1, x) and (`2(x), σ2(x)) = (2, 0),
and 1 unit of flow, half with r = 0 and half with r = 2.

Figure 2: The Braess network of Proposition 1.

Consider the heterogeneous equilibrium flow g. By the
equilibrium conditions, for any player of diversity parame-
ter r, for any r, the cost she incurs with flow g is cr(g) ≤∑
e∈p `e(ge) + r

∑
e∈p σe(ge). In other words, there is

no incentive to deviate to path P (if not already on it).
Thus, for the demand vector (d1, . . . , dk) of diversity pa-
rameters (r1, . . . , rk), Cht(g) ≤

∑k
i=1 di(

∑
e∈p `e(ge) +

ri
∑
e∈p σe(ge)) = `p(g) + r̄σp(g), with the equality fol-

lowing as the total demand is 1 and the average diversity
parameter is r̄ =

∑k
i=1 diri. As P is used by f , we have

Chm(f) = `p(f) + r̄σp(f), and applying (2) we obtain
Cht(g) ≤ `p(g)+ r̄σp(g) ≤ `p(f)+ r̄σp(f) = Chm(f).

3.2 The Series Parallel Condition is Necessary
To prove the necessity of the network being series-parallel,
we begin by constructing an instance for which diversity
hurts, i.e. the heterogeneous equilibrium has total cost strictly
greater than the total cost of the homogeneous equilibrium
(Proposition 1). Then, in Theorem 2, we show how to embed
this instance into any network that is not series-parallel.

Recall the Braess graph GB , shown in Figure 2.

Proposition 1. For any strictly heterogeneous demand on the
Braess graph GB , there exist edge functions (`e)e∈E and
(σe)e∈E that depend on the demand, for which Cht(g) >
Chm(f). 4

Proof. We may assume WLOG that the demand is of unit
size. Let r̄ be the average diversity parameter, r0 be the min-
imum of the diversity parameters’ distribution and let d0 be
the total demand with diversity parameter equal to r0. Since
the demand is strictly heterogeneous, it must be r0 < r̄. In
addition, we let h be any continuous, strictly increasing cost
function with h( 1

2 ) = 1 and h( 1
2 + d0

2 ) = 1 + r̄−r0
2 .

Consider the Braess graph GB =
({s, u, v, t}, {(s, u), (u, t), (u, v), (s, v), (v, t)}) with
cost functions `(s,u)(x) = `(v,t)(x) = h(x),
σ(s,u)(x) = σ(v,t)(x) = 0, `(u,t)(x) = `(s,v)(x) = 2 + r̄+r0

2 ,
and σ(u,t)(x) = σ(s,v)(x) = 0, and `(u,v)(x) = 1 and
σ(u,v)(x) = 1. The instance is shown in Figure 2.

The heterogeneous equilibrium g routes the d0 units that
have r = r0 through the zig-zag path, i.e. path s, u, v, t; the
rest of the flow is split between the upper and lower paths
s, u, t and s, v, t, and has Cht(g) = 3 + r̄. The homogeneous
equilibrium f splits the flow between the upper and lower
paths and has Chm(f) = 3 + r̄+r0

2 < 3 + r̄ = Cht(g).

4The proposition remains true even if we are restricted to only
using affine functions.
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Theorem 2. If G is not series-parallel, then for any strictly
heterogeneous demand there are cost functions for which
Cht(g) > Chm(f).

Proof sketch. IfG is not series-parallel then the Braess graph
can be embedded in it (see e.g. [Valdes et al., 1979]). Thus,
starting from the Braess network GB , by subdividing edges,
adding edges and extending one of the terminals by one
edge, we can obtain G. Fixing such a sequence of oper-
ations, for the given heterogeneous demand, we start from
the Braess instance given by Proposition 1 and apply the se-
quence of operations one by one, so that, throughout the pro-
cedure, there are exactly 3 paths that correspond to the upper,
lower and zig-zag paths of Proposition 1, with corresponding
costs, and all other paths have some very large costs. Then,
Cht(g) > Chm(f) follows exactly as in Proposition 1.

4 Topology of Multi-Commodity Networks
for which Diversity Helps

In this section we fully characterize the topology of multi-
commodity networks for which, with any choice of hetero-
geneous average-respecting demand and edge functions, di-
versity helps. Because of Theorem 2, if we require diversity
to help on any instance on G, then for any commodity i, Gi
needs to be series-parallel. Yet, as we shall see in Proposi-
tion 2, this is not enough. We also need to understand the
overlaps of the Gi’s. It turns out that the allowable overlaps
are exactly captured by the topology of block-matching net-
works (Theorems 3 and 4).

4.1 Sufficiency
Using Theorem 1, we can obtain an analogous theorem for
the multi-commodity case.

Theorem 3. Let G be a k-commodity block-matching net-
work. Then, for any instance on G with average-respecting
demand Cht(g) ≤ Chm(f).

Proof sketch. Consider Commodity i and let Gi =
siB1v1 . . . vbi−1Bbiti be its block representation. Consider
an arbitrary Bj with terminals vj−1 and vj . Because G is
block-matching, any other Commodity l either contains Bj
as a block in its block representation or contains none of its
edges. Also, recall that, as explained in the preliminaries sec-
tion, if Gl contains Bj , it has the same terminals vj−1 and
vj . This implies that under any routing of the demand, ei-
ther all of l’s demand goes through Bj or none of it does.
This means that under both equilibria g and f , the total traffic
routed from vj−1 to vj through Bj is the same which fur-
ther implies that, if restricted to the block, the cost of the
heterogeneous equilibrium is less than or equal to that of
the homogeneous equilibrium: Cht(g)

∣∣∣
Bj

≤ Chm(f)
∣∣∣
Bj

.

On the other hand, if we let B be the set of all the blocks
of all commodities, then Cht(g) =

∑
B∈B C

ht(g)
∣∣∣
B

and

Chm(f) =
∑
B∈B C

hm(f)
∣∣∣
B

which using the previous in-
equality proves the result.

Figure 3: The network for Proposition 2

4.2 Necessity
To derive the necessity we first give an example of a non-
block-matching network for which diversity hurts (Proposi-
tion 2). Then, after giving some properties for commodities
for which the corresponding Gi’s are series-parallel (Lem-
mas 3 and 4), we mimic the above example to obtain con-
tradicting instances for networks that are not block-matching
and thereby prove Theorem 4.

Let G be the following 2-commodity network, depicted in
Figure 3. G2, the subnetwork for Commodity 2, consists of
a simple s2–t2 path P2, while G1, the subnetwork for Com-
modity 1, is formed from two simple s1–t1 paths named P1

and P3; P1 and P2 are disjoint, while P2 and P3 share a single
edge, named e2. Finally e1 is an edge on P1 but not on P3.

Proposition 2. There exist edge functions and demands onG
for which diversity hurts.

Proof. Let d1 = d2 = 1 be the total demands for Com-
modities 1 and 2 respectively. Let G1’s demand consist of
3
4 single-minded players (i.e., with diversity parameter equal
to 0) and 1

4 players with diversity parameter equal to 4, and
let G2’s demand be homogeneous with diversity parameter
equal to 1. To all edges other than e1 and e2, assign latency
and deviation functions equal to 0. Assign edge e1 the con-
stant latency function `1(x) = 1 and the constant deviation
function σ1(x) = 2. Assign edge e2 the constant deviation
σ2 = 0, and as latency function any `2 that is continuous and
strictly increasing, with `2(1) = 3 and `2( 5

4 ) = 9.
The equilibrium costs depend only on the flow through

edges e1 and e2, as all other edges have cost 0. Also note
that at least 1 unit of flow will go through e2 as this is the
only route for G2’s demand.

In the heterogeneous equilibrium g of this instance, 3
4 units

of flow are routed through e1, and 1 + 1
4 units of flow are

routed through e2, givingCht(g) = 1· 34d1 +9· 14d1 +9·d2 =
12. In the homogeneous equilibrium f , G1’s demand uses
only P1. Thus, Chm(f) = 3 · d1 + 3 · d2 = 6 < Cht(g).

Remark 1. Proposition 2 would still hold if the common por-
tion of P1 and P3, and the portion of P2 after e2, both had
positive costs instead of zero. This is close to the way we
will mimic this instance in the proof of Theorem 4. The idea,
in both equilibria, is to route all the flow of Commodity 1
through two paths, P1 and P3, each containing one of e1 or
e2, and to route the flow of Commodity 2 through a path, P2,
that contains e2. This is done by putting (relatively) big con-
stants as latency functions on all other edges that depart from
vertices of the corresponding paths up to the point where e1

or e2 is reached, though some care is needed. Then, the re-
lation of the equilibria costs will follow as in Proposition 2,
as the exact same edge functions will be used for edges e1
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and e2. This will be specified precisely when we give the con-
struction.

Next, we state some useful properties of series-parallel net-
works that are based on their block structure. They will be
used in the proof of Theorem 4.

Lemma 3. Let i be a commodity of network G and suppose
that Gi is series-parallel.

(i) Let B1 and B2 be distinct blocks of Gi, with B1 preced-
ing B2. There is no edge in G from an internal vertex of B1

to an internal vertex of B2.
(ii) Let u and v be vertices in Gi. If (u, v) is an edge of G

then there is a simple si–ti path in Gi that contains both u
and v (not necessarily in that order).

Lemma 4. Let i be a commodity of network G and suppose
that Gi is series-parallel with block representation Gi =
siB1v1 . . . vb−1Bbti. Let w be a vertex of Bk for some
k ∈ [b].

(i) Suppose that w 6= vk−1, and let P be an arbitrary path
from a vertex u, in a block A that precedes Bk in the block
representation, to vertex w. Let w′ be the first vertex on P
that is an internal vertex in Bk, if any. Then P must include
an edge of Bk exiting vk−1 prior to visiting w′.

(ii) Suppose that w 6= vk. Then any path of G from w to a
vertex u in a block succeedingBk has to first enter vk through
one of its incoming edges that belong to Bk, before going to
a block C that succeeds Bk in the block representation.

(iii) Every simple vk−1–vk path in G is completely con-
tained in Bk.

Theorem 4. Let G be a multi-commodity network. If diver-
sity helps for every instance on G with average-respecting
demand (i.e. for any heterogeneous equilibrium g and any
homogeneous equilibrium f , Cht(g) ≤ Chm(f)), then G is
a block-matching network.

Proof. Let G have k commodities. First, we note that for any
i ∈ [k], Gi is a series-parallel network. For otherwise, by
Proposition 1, there is some heterogenous players’ demand
for Commodity i and edge functions forGi such that diversity
hurts. Letting all other commodities have zero demand yields
an instance on G for which diversity hurts, a contradiction.

To prove that G is block-matching, it remains to show
that for any two commodities i and j of G, for any block
B of Gi and any block D of Gj , either E(B) = E(D) or
E(B) ∩E(D) = ∅. To reach a contradiction we assume oth-
erwise, i.e. WLOG we assume that for Commodities 1 and 2
there exist two blocks B of G1 and D of G2 that share some
common edge, and at the same time, WLOG, there is an edge
in B that is not in D. The latter implies that B is not a sin-
gle edge, and thus it must be a parallel combination of two
series-parallel networks.

Let u and v be the endpoints of B. We first prove that all
simple s2–t2 paths of G2 that share an edge with B first tra-
verse an edge starting at u before traversing any other edge
of B (Proposition 3). Then we prove that all s2–t2 sim-
ple paths of G2, that share an edge with B, reach u before
traversing any internal vertex of B (Proposition 4). Since
E(B) ∩ E(D) 6= ∅, there is a simple s2–t2 path of G2 that
shares an edge withB. Proposition 4 implies that this path,Q,

Figure 4: Illustrating why P2 6= P in general in Proposition 3

has a subpath consisting of a simple s2–u path Q1 that shares
no internal vertex with B. A completely symmetric argument
shows that Q has a subpath consisting of a simple v–t2 path
Q3 that shares no internal vertex with B. 5 But then, for any
simple u–v path Q2 inside B, the path Q′ = Q1, Q2, Q3 is a
simple s2–t2 path, and thus it belongs to G2. But this implies
that all the edges ofB belong toG2 and becauseB is a block,
these edges will all be in a single block of G2. This block
must be block D, since by assumption E(B) ∩ E(D) 6= ∅,
contradicting the existence of an edge in B and not in D.
Therefore, once these propositions are proved, the theorem
will follow.

The proofs of these propositions rely on the same idea. For
each proposition, assuming that it does not hold, we construct
instances, i.e. we choose demand and edge functions for G,
such that diversity hurts, contradicting the assumption that
for any instance on G diversity helps. The construction of the
contradicting instances is based on Remark 1.

Proposition 3. Let P be a simple s2–t2 path in G2 which
shares an edge with B. The first edge on P in B departs from
u, i.e. has the form (u, x) for some x in B.

Proof. Let B be the parallel combination of H1 and H2.
WLOG we may assume that P only visits vertices ofG1, plus
s2 and t2, as we may treat subpaths of P that have vertices
that lie outside G1 as simple edges. Let w be the first inter-
nal vertex of P that belongs to B, and WLOG suppose that
w lies in H1. By Lemma 3(ii), the edge of P exiting w will
either go toward t1, i.e. forward, and thus traverse an edge
of B for the first time (recall also Lemma 4(ii)), or will go
toward s1, i.e. backward, either staying in H1 or going back
to one of the preceding blocks of B. If it goes to one of the
preceding blocks of B, then by Lemma 4(i), it has to traverse
an edge ofB departing from u in order to re-enter the internal
portion of B (recall that P has some edge in B) and then the
proposition would hold. The remaining possibility is that the
backward edge leads to another internal vertex of H1. How-
ever, we can only repeat this process finitely often so if the
proposition does not hold, it must be that P eventually tra-
verses a first edge in B that departs from an internal vertex of
H1. In this case we will reach a contradiction by creating an
instance where diversity hurts. This instance will be based on
the instance of Proposition 2.

We would like to use the following construction at this
point. Let P2 be the path P resulting from the discussion in

5For the symmetric argument, simply reverse all the arcs and the
directions of the demand.
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the previous paragraph and let e2 be the first edge on P that
lies inB. Then let P3 be an s1–t1 path through e2. Recall that
e2 lies in H1. Now let P1 be an s1–t1 path that goes through
H2 and let e1 be an arbitrary edge on P1 inB. The intention is
to force the s1–t1 flow to use just paths P1 and P3, while the
s2–t2 flow uses just path P2, at the same time ensuring that
diversity is harmful as in Proposition 2. Consider the follow-
ing edge functions. e1 and e2 receive the same edge functions
as in Proposition 2. The other edges all receive a constant de-
viation function equal to 0. For their latency functions, edges
on P1 and P3 that are in B receive 0 functions. Out-edges
from P1 and P3 that lie in B all receive functions of constant
value N even if they are on P2. All as yet unassigned edges
on P2 receive 0 functions, and the remaining edges are all
given functions of constant value M � N . However, the ex-
ample in Figure 4 shows that there is a zero cost s2–t2 path
(s2, w, z, t2), which defeats the construction.

We fix this problem by defining the path P2 as follows. Let
x be the first vertex on path P (in the example, this is w) such
that there is an edge (x, y) in B and such that there is a y–t2
path Py–t2 which does not go through any earlier vertex on P
(i.e. any vertex from s2 to x inclusive). Then (x, y) is chosen
to be e2, and P2 is defined to be the simple path comprising
the initial portion of P up to x, followed by e2, followed by
Py–t2 (it may be that P2 = P ). Now the above cost functions,
modulo a few details, achieve the desired contradiction.

Proposition 4. All simple s2–t2 paths of G2 that share an
edge with B reach u before any internal vertex of B.

The proof is largely similar to that of Proposition 3.
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