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ARTICLE OPEN

When does reinforcement learning stand out in quantum

control? A comparative study on state preparation
Xiao-Ming Zhang 1,2, Zezhu Wei1, Raza Asad3, Xu-Chen Yang 4 and Xin Wang 1,2*

Reinforcement learning has been widely used in many problems, including quantum control of qubits. However, such problems

can, at the same time, be solved by traditional, non-machine-learning methods, such as stochastic gradient descent and Krotov

algorithms, and it remains unclear which one is most suitable when the control has specific constraints. In this work, we perform a

comparative study on the efficacy of three reinforcement learning algorithms: tabular Q-learning, deep Q-learning, and policy

gradient, as well as two non-machine-learning methods: stochastic gradient descent and Krotov algorithms, in the problem of

preparing a desired quantum state. We found that overall, the deep Q-learning and policy gradient algorithms outperform others

when the problem is discretized, e.g. allowing discrete values of control, and when the problem scales up. The reinforcement

learning algorithms can also adaptively reduce the complexity of the control sequences, shortening the operation time and

improving the fidelity. Our comparison provides insights into the suitability of reinforcement learning in quantum control problems.

npj Quantum Information            (2019) 5:85 ; https://doi.org/10.1038/s41534-019-0201-8

INTRODUCTION

Reinforcement learning, a branch of machine learning in artificial
intelligence, has proven to be a powerful tool to solve a wide
range of complex problems, such as the games of Go1 and Atari.2

Reinforcement learning has also been applied to a variety of
problems in quantum physics with vast success,3–24 including
quantum state preparation,3–8 state transfer,9 quantum gate
design,10 and error correction.11 In many cases, it outperforms
commonly used conventional algorithms, such as Krotov and
Stochastic Gradient Descent (SGD) algorithms.9,10 In the reinforce-
ment learning algorithm, an optimization problem is converted to
a set of policies that governs the behavior of a computer agent, i.e.
its choices of actions and, consequently, the reward it receives. By
simulating sequences of actions taken by the agent maximizing
the reward, one finds an optimal solution to the desired
problem.25

The development of techniques that efficiently optimize control
protocols is key to quantum physics. While some problems can be
solved analytically using methods such as reverse engineering,26 in
most cases numerical solutions are required. Various numerical
methods are therefore put forward, such as gradient-based methods
(including SGD,17 GRAPE27, and variants28), the Krotov method,29 the
Nelder-Mead method30 and convex programming.31 Recently, there
is a frenetic attempt to apply reinforcement learning and other
machine-learning-based algorithms32–37 to a wide range of physics
problems. In particular, the introduction of reinforcement learning to
quantum control have revealed new interesting physics,3–8 and
these techniques have therefore received increasing attention. A
fundamental question then arises: under what situation is reinforce-
ment learning the most suitable method?
In this paper, we consider problems related to quantum control of

a qubit. The goal of these problems is typically to steer the qubit
toward a target state under certain constraints. The mismatch
between the final qubit state and the target state naturally serves as
the cost function used in the SGD or Krotov methods, and the

negative cost function can serve as the reward function in the
reinforcement learning procedure. Our question then becomes:
under different scenarios of constraints, which algorithm works
best? In this work, we compare the efficacy of two commonly-used
traditional methods: SGD and the Krotov method, and three
algorithms based on reinforcement learning: tabular Q-learning
(TQL),25 deep Q-learning (DQL),2 and policy gradient (PG),38 under
situations with different types of control constraints.
In ref., 5 the Q-learning techniques (TQL and DQL) have been

applied to the problem of quantum state preparation, revealing
different stages of quantum control. The problem of preparing a
desired quantum state from a given initial state is on one hand
simple enough to be investigated in full detail, and on the other
hand contains sufficient physics allowing for various types of
control constraints. We therefore take quantum state preparation
as the platform that our comparison of different algorithms is
based on. While a detailed description of quantum state
preparation is provided in Results, we briefly introduce the five
algorithms we are comparing in this work here. (Detailed
implementations are provided in the Methods and Supplementary
Method 1).
SGD is one of the simplest gradient-based optimization

algorithms. In each iteration, a direction in the parameter space
is randomly chosen, along which the control field is updated using
the gradient of the cost function defined as the mismatch
between the evolved state and the target state. Ideally, the
gradient is zero when the calculation has converged to the
optimal solution. The Krotov algorithm has a different strategy:
The initial state is first propagated forward obtaining the evolved
state. The evolved state is then projected to the target state,
defining a co-state encapsulating the mismatch between the two.
Then the co-state is propagated backward to the initial state,
during which process the control fields are updated. When the
calculation is converged, the co-state is identical to the
target state.
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In Q-learning (including TQL and DQL), a computer agent
evolves in an environment. All information required for optimiza-
tion is encoded in the environment, which is allowed to be in a set
of states S. In each step, the agent chooses an action from a set A,
bringing the environment of the agent to another state. As a
consequence, the agent acquires a reward, which encapsulates
the desired optimization problem. Fig. 1a schematically shows
how TQL works. At each state s 2 S, the agent chooses actions
a 2 A according to the action-value function Qðs; aÞ, defined as
the estimated total reward starting from state s and action a,
forming the so-called Q-table. Each time the agent takes an action,

a reward r is generated according to the distance between the
resulting state and the target, which updates the Q-table. An
optimal solution is found by iterating this process sufficient times.
We note that since a table has a finite number of entries, both the
states and actions should be discretized. Figure 1b shows DQL, in
which the role of the Q-table is replaced by a neural network,
called the Q-network. The agent then chooses its action according
to the output of the Q-network, and the reward is used to update
the network. In this case, although the allowed actions are
typically discrete, the input state can actually be continuous.
Similar to TQL and DQL, PG also requires the sets of states S,

actions A, and rewards r. The policy of the agent is represented by
a neural network. With the state as the input, the network outputs
the probability of choosing each action. After each episode, the
policy network is updated toward a direction that increases the
total reward. Since the state is encoded as the input of the neural
network, PG can also accommodate continuous input states.

RESULTS

Single-qubit case

We start with the preparation of a single-qubit state. Consider the
time dependent Hamiltonian

H½JðtÞ� ¼ 4JðtÞσz þ hσx ; (1)

where σx and σz are Pauli matrices. The Hamiltonian may describe
a singlet-triplet qubit39 or a single spin with energy gap h under
tunable control fields.40,41 In these systems, it is difficult to vary h
during gate operations, and we therefore assume that h is a
constant in our work, which at the same time serves as our energy
unit. Quantum control of the qubit is then achieved by altering
JðtÞ dynamically.
Quantum state preparation refers to the problem to find JðtÞ such

that a given initial state jψ0i evolves, within time T , to a final state
jψfi that is as close as possible to the target state jϕi. The quality of
the state transfer is evaluated using the fidelity, defined as

F ¼ hψf jϕij j2: (2)

We typically use the averaged fidelity F over many runs of a given
algorithm in our comparison (unless otherwise noted, we average
100 runs to obtain F), because the initial guesses of the control
sequences are random, and the reinforcement learning procedure is
probabilistic.
In this work, we take jψ0i ¼ j0i, jϕi ¼ j1i and T ¼ 2π unless

otherwise specified. Under different situations, there are various
kinds of preferences or restrictions of control. We consider the
following types of restrictions:

(i) Assuming that control is performed with a sequence of
piecewise constant pulses, and in this work, we further
assume that the time duration of each piece is equal to each
other for convenience. For this purpose, we divide the total
time T into N equal time steps, each of which having a step
size dt ¼ T=N, with N denoting the maximum number of
pieces required by the control. JðtÞ is accordingly discre-
tized, so that on the ith time step, JðtÞ ¼ Ji and the system
evolves under HðJiÞ. Denoting the state at the end of the ith
time step as jψii, the evolution at the ith step is
jψii ¼ Ui jψi�1i, where Ui ¼ expf�iHðJiÞdtg. In principle,
the evolution time can be less than T , namely the evolution
may conclude at the if th time step with if � N. (In our
calculations, the evolution is terminated when the fidelity
F � 0:999.) Due to their nature, SGD and Krotov have to
finish all time steps, i.e. if ¼ N. However, as we shall see
below, QL and DQL frequently have if < N.

(ii) We also consider the case where the magnitude of the
control field is bounded, i.e. Ji 2 ½Jmax; Jmin� for all i. The

Fig. 1 Sketch of the procedure of TQL and DQL. a In TQL, the Qðs; aÞ
values are stored in the Q-table. When the agent is at state sð5Þ, it

reviews Qðsð5Þ; aðiÞÞ for all possible actions and chooses one with the

maximum “Q-value” (which we assume is að3Þ). As a result, the state

then evolves to sð2Þ. Depending on the distance between sð2Þ and

the target, the Q-values (e.g. Qðsð5Þ; að3ÞÞ) is updated according to Eq.

(8). This process is then repeated at the new state sð2Þ and so forth. b
In DQL, the Q-table is replaced by the Q-network. Instead of
choosing an action with the maximum Q-value from a list, this
process is done by a neural network, the Q-network, which takes the
input state ðsÞ and outputs an action that it finds most appropriate.
Evaluation of the resulting state ðs0Þ after the action suggests how
the neural network should be updated (trained). For detailed
implementation, see Methods and Supplementary Method 1
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constraint can be straightforwardly satisfied in TQL and DQL,
since they only operate within the given set of actions thus
cannot exceed the bounds. For SGD and Krotov, updates to
the control fields may exceed the bounds, in which case we
need to enforce the bounds by setting Ji as Jmax when the
updated value is greater than Jmax, and as Jmin when the
updated value is smaller than Jmin. In the case in which
either of them is not restricted, we simply note Jmin ! �1
or Jmax !1.

(iii) The values of the control field may be discretized in the
given range, i.e., Ji 2 fJmin; Jmin þ dJ=M; Jmin þ
2dJ=M; ¼ ; Jmaxg where dJ ¼ ðJmax � JminÞ, so that the
control field can take Mþ 1 values including Jmin and Jmax.
In reality this situation may arise, for example, when
decomposing a quantum operation into a set of given
gates.42–44 For a reason similar to (ii), TQL and DQL only
select actions within the given set so the constraint is
satisfied. For SGD and Krotov which keep updating the
values of the control field during iterations, we enforce the
constraint by setting the value of each control field to the
nearest allowed value at the end of the execution.

To sum up, the number of pieces in control sequences N, the
bounds of the control field Jmin and Jmax, as well as the number of
the discrete values of the control field Mþ 1 are the main factors
characterizing situations to prepare quantum states, based on
which our comparison of different algorithms is conducted. We
also define Niter as the number of iterations performed in
executing an algorithm, which is typically taken as equal for
different algorithms to ensure a fair comparison. Unless otherwise
noted, Niter ¼ 500 in all results shown.
In Fig. 2 we study a situation where the maximum number of

pieces in the control sequence N is given, and the results are
shown as the averaged fidelities as functions of N. Here, the
quality of an algorithm is assessed by the averaged fidelity of the
state it prepares (as compared to the target state) F, but not by the
computational resources it costs. For N � 10, the Krotov method
gives the lowest fidelity, possibly due to the fact that Krotov
requires a reasonable level of continuity in the control sequence,
and one with a few pieces is unlikely to reach convergence. As N
increases, the performance of Krotov is much improved, which has
the highest fidelity when N is large (N � 30 as seen in the figure).
SGD performs better than Krotov for N � 10, but worse otherwise,
because as N increases, the algorithm has to search over a much
larger parameter space. Within the given number of iterations

(Niter ¼ 500 as noted above), it concludes with a lower fidelity. Of
course, this result can be improved if more iterations are allowed,
and we shall show relevant results in Supplementary Discussion 2.
The SGD results at N ¼ 2 is irregular (thus the cusp at N ¼ 6), due
to the lack of flexibility in the control sequence which makes it
difficult to achieve high fidelity with only two steps.
The fidelity for TQL is higher than SGD and Krotov, but is still

lower than that of DQL and PG, indicating the superior ability of
deep learning. Nevertheless, we note that the TQL may sometimes
fail: it occasionally arrives at a final state which is completely
different than the target state. On the other hand, SGD could fail
by being trapped at a local minimum, but even in that case it is
not drastically different from the optimal solution in terms of the
fidelity. This is the reason why the TQL results drop for N>10. For
larger N, the failure rate for TQL is higher (possibly due to the
higher dimensionality of the Q-table), and therefore the averaged
fidelity is lower. Among all five algorithms, PG is consistently the
best. Apart from PG, DQL gives the highest fidelity for N < 30, but
due to its nonzero failure probability, it is outperformed by Krotov
for N gt; 30. Nevertheless, the effect is moderate and the fidelity
is still very close to 1 (F ¼ 0:9988).
To further understand the results shown in Fig. 2, we take

examples from N ¼ 20 and plot the pulse profiles and the
corresponding trajectories on the Bloch sphere in Fig. 3. We
immediately realize that reinforcement learning (TQL, DQL, and
PG) yield very simple pulse shapes: one only has to keep the
control at zero for time T=2, and the desired target state (j1i) will

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

SGD

Krotov

TQL

DQL

PG

Fig. 2 Average fidelities as functions of the maximum number of
control pieces. For TQL, DQL, and PG, Ji 2 f0; 1g (i.e. M ¼ 1). For SGD
and Krotov, no restriction is imposed on the range of Ji and M (i.e.
M!1). The vertical dashed lines correspond to results shown with
respective M values in Fig. 4

Fig. 3 Pulse profiles and the corresponding trajectories on the Bloch
sphere. a, c, e Example pulse profiles taken from results of Fig. 2 with
N ¼ 20. b, d, f Evolution of the state corresponding to the respective
control sequence in the left column. TQL, DQL, and PG give the
same optimal results and are thus shown together
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be achieved. However, to find the result, the algorithm has to
somehow realize that one does not have to complete all N pieces,
which implies their ability to adaptively generating the control
sequence. As can be seen from Fig. 3a, c, SGD and Krotov only
search for pulse sequences with exactly N pieces and therefore
miss the optimal solution. Their trajectories on the Bloch sphere
are much more complex as compared to those of reinforcement
learning. In practice, the complex pulse shapes and longer gate
times mean that they are difficult to realize in the laboratory, and
potentially introduces error to the control procedure (In Supple-
mentary Discussion 4 we provide more details on this issue). From
Fig. 3 we also notice that reinforcement learning possesses better
ability to adaptively sequencing, which is particularly suitable for
problems that involve optimization of gate time or speed, such as
the quantum speed limit.5,9 On the other hand, application of SGD
or Krotov to the same problem requires searching over various
different N values before an optimal solution can be found, which
cost much more resources.45,46

We now study the effect of restrictions on the performances of
algorithms. Namely, the control field is bounded between Jmin and
Jmax, with Mþ 1 allowed values including the bounds. In Fig. 4, we
impose the same restriction J 2 ½0; 1� to all five methods and vary
M from M ¼ 1 to M ¼ 49. It is interesting to note that the
averaged fidelities of three reinforcement learning algorithms
decreases with M, albeit not considerably. This is because TQL,
DQL and PG favor bounded and concrete sets of actions, and
more choices will only add burden to the searching process,
rendering the algorithms inefficient. Improvements may be made
by increasing the number of iterations (cf. Supplementary
Discussion 2), and using a larger neural network with stronger
representational power. For N ¼ 6 (Fig. 4a), TQL and DQL are
comparable and have overall the best performance except for
M>14 in which SGD becomes slightly better. On the other hand, F
for PG drops rapidly for M � 30. For N ¼ 20 (Fig. 4b), DQL and PG
have the best performance, but for large M they are not
significantly better than other methods. More results involving
SGD and Krotov are given in Supplementary Discussion 1, from
which we conclude that the effect of boundaries in control is

much more obvious for Krotov method than SGD, since Krotov
performs much larger updates at each iteration. Meanwhile, the
effect of discretization (decreasing M) are severe for both Krotov
and SGD methods, indicating that successful implementations of
them depend crucially on the continuity of the problem.
Finally, we note that all results obtained have the target state

being j1i. Preparing a quantum state other than j1i may have
different results, for which an example is presented in Supple-
mentary Discussion 3. Nevertheless, the overall observation of the
pros and cons of the algorithms should remain similar.

Multi-qubit case

We now consider a case preparing a multi-qubit state as sketched
in Fig. 5a, b. Our system is described by the following Hamiltonian:

HðtÞ ¼ C
X

K�1

k¼1

SkxS
kþ1
x þ SkyS

kþ1
y

� �

þ
X

K

k¼1

2BkðtÞS
k
z ; (3)

0.2

0.6

1a

SGD Krotov TQL DQL PG

10
0

10
1

0.2

0.6

1b

Fig. 4 Effect of discrete control fields on the averaged fidelity for all
five methods considered. The strength of control field is restricted to
Ji 2 ½0; 1�, and Mþ 1 discrete values (including 0 and 1) are allowed.
a shows the case of N ¼ 6 while b N ¼ 20, corresponding to the two
vertical dashed lines in Fig. 2

Fig. 5 Spin transfer as preparation of a multi-qubit state. a The
multi-qubit system is initialized with the leftmost spin being up and
all others down. b The target state has the rightmost spin being up
and all others down. c The average fidelity versus the number of
spins from different algorithms; d–g The amplitudes (visualization of
the final prepared state) at different spins for K ¼ 8. The red solid
bars correspond to results averaged over 100 runs, and the hollow
bars enclosed by dashed line shows the results with the highest
fidelities
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where K is the total number of spins, Skx , S
k
y and Skz are the kth spin

operator, C describes the constant nearest-neighbor coupling
strength (set to be C ¼ 1), and BkðtÞ is the time-dependent local
magnetic field applied at the kth spin to perform control. This is
essentially a task transferring a spin: the system is initialized to a
state with the leftmost spin being up and all others down, and the
goal is to prepare a state with the rightmost spin being up and all
others down. We set the operation time duration to be
T ¼ ðK � 1Þπ=2, which is divided to 20 equal time steps (i.e.
N ¼ 20). The external field is restricted to BkðtÞ=C 2 ½0; 40� for SGD
and Krotov, and BkðtÞ=C 2 f0; 40g for all three reinforcement
learning algorithms. Note that TQL fails for K � 2 due to the large
size of the Q-table, and is thus excluded in the comparison.
Figure 5c shows the average fidelity versus the number of spins

(K ), after each algorithm is run for 500 iterations. As K increases,
the dimensionality of the problem increases and therefore the
performances of all algorithms deteriorate. When K < 4, Krotov,
DQL and PG have comparable performances, while SGD has the
lowest fidelity. As K increases, F for PG and DQL drop much more
slowly as compared to Krotov. At K ¼ 8, we have F ¼ 0:0989
(Krotov), F ¼ 0:4214 (PG), F ¼ 0:5433 (DQL), respectively. Here, we
have not assumed a particular form of the control field, so one has
to search over a very large space. Specializing the control to
certain types would improve performances of the algorithms.47

In order to visualize the final states prepared, we define the
amplitude, Ak , as the absolute value of the inner product between
the final states and the state with the kth spin being up while all
others being down. A perfect transfer would be that the amplitude
is 1 for the rightmost spin and 0 otherwise. Taking K ¼ 8 as an
example, we show how the amplitudes distribute over different
spins in Fig. 5d–g. We compare two different kinds of results: one
showing the averaged results over 100 runs (shown as red solid
bars), and the other the best result among the 100 runs (hollow
bars enclosed by dashed lines). We see that SGD completely fails
to prepare the desired state. The best results from Krotov, DQL
and PG are comparable, but considering the average over many
runs, DQL and PG have better performances. Moreover, the
optimal control sequences for different algorithms are provided in
Supplementary Tables 1–4.

DISCUSSION

In this paper, we have examined performances of five algorithms:
SGD, Krotov, TQL, DQL, and PG, on the problem of quantum state
preparation. From the comparison, we can summarize the
characteristics of the algorithms under different situations as
follows (see also Table 1).
Dependence on the maximum number of pieces in the control

sequence, N: When all algorithms are executed with the same
number of iterations, PG has overall the best performance, but the
corresponding fidelity still drops slightly as N increases. In fact, the
fidelities from all methods decrease as N increases, except the
Krotov method, for which the fidelity increases when N is large.

Ability to adaptively segment: During the optimization process,
TQL, DQL, and PG can adaptively reduce the number of pieces
required and can thus find optimal solutions efficiently. SGD and
Krotov, on the other hand, always work with a fixed number of N
and thus sometimes miss the optimal solution.
Dependence on restricted ranges of the strength of the control

field: TQL, DQL, and PG naturally work with restricted sets of
actions so they perform well when the strength of the control field
is restricted. Such restriction reduces the efficiency for both SGD
and Krotov method, but the effect is moderate for SGD because its
updates on the control field are essentially local. However, the
Krotov method makes significant updates during its execution and
thus becomes severely compromised when the strength of the
control field is restricted.
Ability to work with control fields taking Mþ 1 discrete values:

TQL, DQL, and PG again naturally work with discrete values of the
control field. In fact, the fidelities from them decrease as the
allowed values of the control fields become more continuous (M
increases). This problem may be circumvented using more
sophisticated algorithms such as Actor-Critic,48,49 and the deep
deterministic policy gradient method.50 SGD is not sensitive to M
because it works with a relatively small range of control field and a
reasonable discretization is sufficient. The Krotov method, on the
other hand, strongly favors continuous problem, i.e. M being large.
Ability to accommodate scaled-up problems (multiple qubits):

Except for TQL, all other algorithms can be straightforwardly
generalized to treat quantum control problems with more than
one qubit. However, SGD is rather inefficient, and DQL generally
outperforms all others for cases considered in this work (K � 8).
Moreover, we have found that PG and DQL methods, in general,

have the best performances among the five algorithms consid-
ered, demonstrating the power of reinforcement learning in
conjunction with neural networks in treating complex optimiza-
tion problems.
Our direct comparison of different methods may also shed light

on how these algorithms can be improved. For example, the
Krotov method strongly favors the “continuous” problem, for
which TQL, DQL, and PG do not perform well. It should be possible
that gradients in the Krotov method can be applied in the Q-
learning procedures and thereby improves their performances. We
hope that our work has elucidated the effectiveness of reinforce-
ment learning in problems with different types of constraints, and
in addition, it may provide hints on how these algorithms can be
improved in future studies.

METHODS

In this section, we give a brief description of our implementation of TQL,
DQL, and PG in this work. The full algorithms for all methods used in this
work are given in Supplementary Method 1.

TQL

For Q-learning, the key ingredients include a set of allowed states S, a set of
actions A, and the reward r. The state of qubit can be parametrized as

jψðθ;φÞi ¼ ± cos
θ

2
j0i þ eiφ sin

θ

2
j1i

� �

; (4)

where ðθ;ϕÞ corresponds to a point on the Bloch sphere, and a possible
global phase of �1 has been included. Our set of allowed states is defined as

S � jψðθ;φÞijθ 2 sθ;φ 2 sφ
� �

; (5)

where

sθ ¼
0π

30
;
1π

30
; ¼ ;

29π

30

� 	

; sφ ¼
0π

30
;
1π

30
; ¼ ;

59π

30

� 	

: (6)

We note that this is a discrete set of states, and after each step in the
evolution, if the resulting state is not identical to any of the member in the
set, it will be assigned as the member that is closest to the state, i.e. having
the maximum fidelity in their overlap.

Table 1. Summary of the performances under different situations

SGD Krotov TQL DQL PG

Performance vs number of time steps N & % & & ?

Ability to adaptively segment ? ? ?

Discrete operation set (M small) ? ?

Continuous operation set (M large) ?

Scaled-up problems (multi-qubits) ?

A “?” indicates that the algorithm performs best, while the arrow “&” (“%”)

denotes decrease (increase) of the performance versus increase of the

variable concerned
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In the ith step of the evolution, the system is at a state si ¼ jψii 2 S, and
the action is given by the evolution operator ai ¼ Ui ¼ expf�iHðJiÞdtg. All
allowed values of the control field Ji therefore form a set of possible actions
A. The resulting state Ui jψii after this step is then compared to the target
state, and the reward is calculated using the fidelity between the two states as

ri ¼

10 F 2 ð0:5; 0:9�;

100 F 2 ð0:9; 0:999�;

5000 F 2 ð0:999; 1�;

8

>

<

>

:

(7)

so that the action that takes the state very close to the target is strongly
rewarded. In practice, the agent chooses its action according to the ϵ-greedy
algorithm,25 i.e. the agent either chooses an action with the largest Qðs; aÞ
with 1� ϵ probability, or with probability ϵ it randomly chooses an action in
the set. The introduction of a nonzero but small ϵ ensures that the system is
not trapped in a poor local minimum. The elements in Q-tables are then
updated as:

Qðsi�1; aiÞ  Qðsi�1; aiÞ þ α½ri þ γmax
a0

Qðsi ; a
0Þ � Qðsi�1; aiÞ�; (8)

where a0 refers to all possible ai in this step, α is the learning rate, and γ is a
reward discount to ensure the stability of the algorithm.

DQL

DQL stores the action-value functions with a neural network Θ. We take qubit
case as an example. Defining an agent state as

s ¼ Re h0jψið Þ; Im h0jψið Þ; Re h1jψið Þ; Im h1jψið Þ½ �T ; (9)

the network outputs the Q-value for each action a 2 A as Qðs; a;ΘÞ. We
note that in DQL, the discretization of states on the Bloch sphere is no longer
necessary and we can deal with states that vary continuously. Otherwise the
definitions of the set of actions and reward are the same as those in TQL.
We adopt the double Q-network training approach:2 two neural

networks, the evaluation network Θ and the target network Θ�, are used
in training. In the memory we store experiences defined as
ei ¼ ðsi�1; ai ; ri ; siÞ. In each training step, an experience is randomly
chosen from the memory, and the evaluation network is updated using the
outcome derived from the experience.

PG

Similar to DQL, PG is based on neural networks. With the state s as the input
vector, the network of PG outputs the probability of choosing each action
p ¼ Pðs;ΘÞ, where p ¼ ½p1; p2; ¼ �

T
. At each time step t, the agent chooses

its action according to p, and stores the total reward it has obtained
vt ¼

Pt
i¼1γ

iri . In each iteration, the network is updated in order to increase
the total reward. This is done according to the gradient of logPðst ;ΘÞvt , the
details of which can be found in Supplementary Method 1.
We note that unlike the case for SGD and Krotov, in which the fidelity

monotonically increases with more training in most cases, the fidelity
output by TQL, DQL, and PG may experience oscillations as the algorithm
cannot guarantee optimal solutions in all trials. In this case, one just has to
choose outputs which have higher fidelity as the learning outcome.
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