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Abstract

We analyze a large, detailed operational data set from a restaurant chain to shed new light on

how workload (defined as the number of tables or diners that a server simultaneously handles)

affects servers’ performance (measured as sales and meal duration). We use an exogenous shock

- the implementation of labor scheduling software - and time-lagged instrumental variables to

disentangle the endogeneity between demand and supply in this setting. We show that servers

strive to maximize sales and speed efforts simultaneously, depending on the relative values of

sales and speed. As a result, we find that, when the overall workload is small, servers expend

more and more sales efforts with the increase in workload at a cost of slower service speed.

However, above a certain workload threshold, servers start to reduce their sales efforts and work

more promptly with the further rise in workload. In the focal restaurant chain we find that

this saturation point is currently not reached and, counter-intuitively, the chain can reduce the

staffing level and achieve both significantly higher sales (an estimated 3% increase) and lower

labor costs (an estimated 17% decrease).

Keywords: econometrics; empirical study on staffing; worker productivity; business analytics;

restaurant operations; behavioral operations management; quality/speed trade-off
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1 Introduction

In many service organizations such as retail stores, call centers and restaurants, labor costs often

reach 60% – 70% of operating expenses, making it one of the largest cost components. To control
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these large and stubbornly increasing costs companies strive to reduce staffing levels, which often

risks overwork and leads to high turnover typical in the above industries (e.g., Whitt, 2006). At

the same time, overstaffing may cause inefficiencies, so identifying the right staffing level is crucial

to achieving optimal operational performance. Not surprisingly, many service companies are in-

creasingly utilizing computerized staffing tools (Maher, 2007) in order to optimize the deployment

of the expensive labor force. As a result, staffing policies have also received wide interest in the

academic research, with most of the literature focusing on a now traditional engineering approach

to design an optimal staffing policy: the demand for labor is calculated and translated into labor

requirements using optimization algorithms.

However, in most of these staffing tools and academic research employee productivity is typically

calculated using “grand averages” over some time intervals (as reflected, for instance, in a call center

survey (Gans et al., 2003), thus overlooking employees’ adaptive behavior towards changing work

environments. There is, however, growing evidence that behavioral aspects of workers must be

taken into account. For instance, Brown et al. (2005) found several anomalies suggesting that

some behavioral aspects of labor management may lead to serious staffing errors. Despite these

observations, there is generally a lack of empirical research about the specific mechanisms through

which staffing affects worker performance (Akşin et al., 2007). Our paper aims to both fill this void

in the literature and to aid in practical decision-making by demonstrating usefulness of the data

analytic approach to labor management.

Recent efforts have bridged operations management (OM) models and human resource man-

agement (HRM) to study the impact of external factors on individuals’ performance (Boudreau,

2004, please refer to Section 2 for more discussion). Closer to the question posed in this study,

several researchers have recently turned to understanding the impact of workload, an integral envi-

ronmental factor, on individual performance. Some of them focused on the impact of workload on

service time, while other studies separately examined the impact of workload on service quality1.

However, in practice service time and service quality are both critically important to the firm, and

there is often a tradeoff between them. For instance, a call center employee can spend more time

on the call to increase quality of service or to reduce service time in order to service another client

at the expense of service quality. A growing number of papers are starting to use analytical mod-

eling approaches to yield insights into how workers make such trade-off decisions, often termed the

quality-speed conundrum (e.g., Hopp et al., 2007, Anand et al., 2011, more discussion in Section

2). Understanding how workers react to workload in terms of both service time and quality in

practice is therefore of great significance in the service industry, where service providers aim to

simultaneously maximize service quality, which relates to revenues and customer satisfaction, and

minimize service time, which is associated with opportunity costs. In reaching these objectives,

employees of these service providers are constrained by their limited attention or time available,

which we refer to as capacity, leading to the quality/speed trade-off because delivering high service

1We do not restrict quality to service accessibility, which is often assumed in the service operations literature. We
broadly regard quality as a standard for service content.
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quality takes more time. There are, however, to the best of our knowledge, no empirical studies on

this speed/quality trade-off. We demonstrate that understanding of this tradeoff is essential to the

optimal labor management and we show how a service organization can benefit by understanding

this tradeoff using large-scale data analysis.

In this paper, we examine how workload affects service speed (as reflected in the service time)

and quality (as reflected in the sales amount) decisions, using a set of unique and very detailed

transaction-level data from a restaurant chain’s point-of-sales system that contains approximately

190,000 check-level observations for five restaurants from August 2010 to June 2011. We demon-

strate how staffing capacity can be leveraged to optimize the workload. We show that servers strive

to maximize sales and speed efforts simultaneously, depending on the relative values of sales and

speed. After disentangling the endogeneity of demand and supply in this setting using a natu-

ral experiment (labor management software implementation) and other instruments, in our focal

restaurants, we find that servers react non-linearly to the workload, which is defined as the number

of tables or diners that a server simultaneously serves. Surprisingly, when the overall workload is

small, servers expend more and more sales efforts with the increase in workload, which consist of

both up-selling and cross-selling, but at a cost of slower service. However, above a certain threshold

(around 0.46 tables per server above the sample mean of 2.16 tables) servers start to reduce their

sales efforts and work more promptly with a further rise in workload due to trading off speed of

service for service quality. We explain that servers value sales more than speed when the overall

workload is low. However, when the overall workload is high, servers may deem speed more valu-

able than sales and therefore serve the tables faster, which can potentially reduce the sales. Thus,

we conclude that our focal restaurants can improve performance by exploiting the inverted-U rela-

tionship between sales and workload so that reducing the number of waiters can both significantly

increase sales (by about 3%) and reduce costs (by about 17%). We test the robustness of our results

using different workload measures and we discuss the managerial implications of measuring work-

load differently. In particular, a priori, hourly analysis may seem to be most appropriate because

restaurants tend to schedule servers on an hourly basis. We show that the hourly-level analysis

corroborates our main check-level findings on servers’ behavior under various levels of workload,

but it may produce different estimates of the magnitudes of workload effects.

2 Related Literature

Our research setting relates to five streams of literature 1) optimal staffing decisions, 2) OM/HRM

interface research, 3) empirical workload studies, 4) speed/quality tradeoff, and 5) restaurant rev-

enue management research.

There is an extensive analytical literature on staffing decisions in services (please see Gans

et al., 2003 and Akşin et al., 2007 for their excellent literature reviews). Classical models here

tended to assume that workers’ productivity is independent from their work environment largely

because of modeling tractability issues. Recent studies have started to incorporate some aspects of
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worker behavior in their models. For example, Arlotto et al. (Forthcoming) consider both worker

heterogeneity and learning for staffing decisions. Research has also been done to incorporate new

work environment. For example, unlike in traditional call centers where one agent handles one call

at a time, Luo and Zhang (2013) model how to staff an instant messaging contact center, where

one server handles multiple customers simultaneously. Compared with the voluminous analytical

literature on optimal staffing decisions, there are only a handful empirical studies that explicitly

examine the impact of staffing on workers’ performance. In a retail setting, Fisher et al. (2006) and

Perdikaki et al. (2012) found that store staffing levels influences the conversion of traffic into sales.

In another retail study, Mani et al. (2011) estimated that an optimal staffing level could improve

average store profitability by 3.8% to 5.9%. These studies are conducted at store level, while our

analysis focuses on individual employee level. Still, as suggested by Akşin et al. (2007), there is a

general lack of empirical research about the impact of staffing on performance, which we study in

this paper.

An increasing number of studies has sought to bridge OM models with behavioral literature

in order to relax the often rigid assumptions of the classical OM models and to study the impact

of external factors on individuals’ performance (see Boudreau et al., 2003 and Bendoly et al.,

2006 for comprehensive reviews). For example, Schultz et al. (1998) challenged the traditional

assumption that a worker’s production rate is independent from the environment. In a production

line simulation experiment, they found that individuals’ processing times were dependent on the

state of the system, such as the buffer size, as well as on the processing speed of co-workers. Unlike

what the assumption of independence would predict, the experiment revealed less idle time and

higher output because people tended to speed up and avoid idle time. Schultz et al. (1999) explained

that a low-inventory system improves productivity because it creates more feedback, stronger group

cohesiveness and better task norms than a high-inventory system. In another lab experiment,

Bendoly and Prietula (2008) asked subjects to solve vehicle routing problems. They found a non-

monotonic relationship between pressure (induced by workload) and motivation, which affected

performance. This effect can be further moderated by learning. Furthermore, Bendoly (2011)

used physiology data about eye dilation and blink rate to measure the arousal and stress levels of

subjects, which confirmed that task-state conditions affected emotions and thus task performance.

While this stream of research is experimental, real-world systems are generally more complex, and

therefore Boudreau et al. (2003) called for observational studies to validate the behavioral lab

findings in real industrial settings. Our research belongs to a very recent stream of observational

papers that have answered this call (e.g., Huckman et al., 2009, Staats and Gino, 2012) by using

archival data to understand the impact of external factors on workers’ performance.

Several researchers have recently turned to understanding the impact of workload, an integral

environmental factor, on individual performance. They often use healthcare services as a test-bed.

For example, Kc and Terwiesch (2009) conducted a rigorous empirical analysis of the impact of

workload on service time using operational data from patient transport services in cardiothoracic

surgery. They found that workers speed up as workload increases, and that this positive effect

4



may be diminished after long periods of high workload. Kc and Terwiesch (2011) showed further

evidence that the occupancy level of a cardiac intensive care unit is negatively associated with

patients’ length of stay because the hospital, faced with high occupancy, is likely to discharge

patients early. Although high workload may stimulate medical workers to accelerate their services,

Batt and Terwiesch (2012) discovered that the net effect of high congestion is to actually decrease

the service rate. These studies focused on the impact of workload on service time, while other

studies separately examined the impact of workload on service quality. For example, Kuntz et al.

(Forthcoming) suggested a non-linear relationship between hospital workload and mortality rates.

Powell et al. (2012) found that overworked physicians generate less revenue per patient because

of a workload-induced reduction in diligence over paperwork. Our study distinguishes itself from

this stream of literature in two aspects: 1) our study explicitly stresses the value of empirical

studies for making optimal staffing decisions; 2) we study how workers react to workload in terms

of both service time and quality, in particular, we analyze how workers make speed/quality trade-off

decisions.

A growing number of papers are starting to use analytical modeling approaches to yield insights

into how workers make such trade-off decisions. For example, Hopp et al. (2007) discovered that

workers, similar to call center agents, use both time and quality as a buffer for variability. Debo

et al. (2008) suggested that service providers may yield higher revenues from “inducing service” at

low workloads than at high workloads because “service inducement” may intensify congestion in the

case of high workloads. Furthermore, Kostami and Rajagopalan (2009) analyzed this speed/quality

trade-off in both single-period and multi-period settings. In addition, Anand et al. (2011) found

that service providers slow down as customer intensity increases, which causes the equilibrium

service value to increase. As a result, they suggested that servers may become slower when the

number of competing servers increases. Alizamir et al. (2013) studied how to dynamically balance

diagnostic accuracy against delays in the process of performing additional diagnoses, considering

servers’ beliefs about the congestion level, customer type, and the number of tests performed so

far. There are, however, to the best of our knowledge, no empirical studies on this speed/quality

trade-off.

Finally, while papers on restaurant management have analyzed the impact of pricing, table mix,

table characteristics, food, atmosphere, fairness of wait and staff training on financial performance

(see Kimes et al. 1998, 1999; Kimes and Robson 2004; Robson 1999; Kimes and Thompson 2004;

Sulek and Hensley 2004), we contribute by showing that staff workload has a major impact on

revenue generation.

3 Wait Staff Activities and Hypotheses Development

In the USA alone, the restaurant industry employs about 13 million workers, who provide over

$500 billion in meals per year, yet rigorous empirical studies of restaurant workers are lacking.

For our analysis we selected the restaurant setting because 1) workloads in restaurants tend to be
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highly variable, which provides an opportunity to study how changes in workload affect worker

performance; 2) the restaurant industry is labor-intensive, employing approximately 10% of the

total workforce in the United States; and 3) its productivity is only half that of manufacturing

industries, creating multiple opportunities for productivity improvement (Mill, 2006).

3.1 Wait Staff Activities

Waiters and waitresses, also known as servers, serve diners once customers are seated. In a typical

work scenario (Fields, 2007), they first greet diners shortly after they are seated. They instanta-

neously fill water glasses, present the menu and ask diners whether or not they would like anything

from the bar. Then they return to the table to present the specials and take the order. After

serving the food, they check on the table during the meal for any special requests or additional

drink orders. Finally, they present the check and change, thanking diners on their way out of the

restaurant.

In performing these activities, servers expend two types of efforts, i.e., sales (or service quality)

and speed, which will influence sales per check and meal duration, respectively. Sales efforts consist

of both up-selling more expensive items and cross-selling additional items, which both lead to higher

sales per check. As an example of up-selling, servers may testify from their own “tasting experience”

that lobster tails are extremely delicious or servers may may inform diners that uniquely tender

Kobe beef comes from cows that are hand-massaged. The lobster tails and Kobe beef are going

to cost more than a chicken salad that a diner would probably order otherwise. As an example

of cross-selling, a server may make suggestions of certain (somewhat expensive) wines that will go

well with the main dish. In addition, servers may check on diners a couple of times to ask them

if they would like anything else, such as drinks and desserts. Research shows that diners are more

likely to purchase a dessert if a server makes such a suggestion (Fitzsimmons and Maurer, 1991).

In addition, to expend effort in speed, servers may carry multiple items from the kitchen to save

trips and time. They also need to remember cooking times and what stage of the meal the diners

are at in arranging the time to drop the entree tickets. By making decisions about how much effort

to put into sales and speed, servers aim to simultaneously maximize both. However, servers are

constrained by their limited capacities of attention (or time available) to increase sales and speed.

Because of these constraints, servers need to make trade-off decisions given current workload level.

How they decide between sales and speed efforts is a very interesting question. According to

a study by the National Restaurant Association (Mill, 2006), complaints about restaurant service

far exceed complaints about food or atmosphere. The majority of complaints are about service

speed and inattentive waiters, for example long waits to settle the bill and a server’s impatience

with answering menu questions. In addition, sales are of great importance to restaurants which,

on average, generate very small pre-tax profit margins, averaging just 4% of sales revenues. In

order to increase sales, servers are usually instructed and trained to sell more items and to sell

more expensive items. Hence, understanding servers’ behavior towards sales and speed is critical

for improving restaurant service operation.
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Because servers’ sales and speed efforts are not directly observable, we rely on observable per-

formance metrics, namely the sales and meal duration of each meal, to infer servers’ efforts in sales

and speed. In the next subsection, we develop hypotheses about the impacts of workload on sales

and meal duration, respectively.

3.2 Hypotheses Development

Conventional wisdom suggests that focusing on one task should ensure a fast completion time. In

other words, working on multiple tasks without changing one’s total capacity and capability will

mechanistically diversify one’s attention, thus decelerating the completion time of each task. How-

ever, under excessive workload, workers may feel stressed (Bendoly, 2011) and decide to rush their

work at a cost of quality by cutting corners (Oliva and Sterman, 2001) but nevertheless acceler-

ating the completion of tasks. These seemingly conflicting predictions seem to suggest that the

impacts of workload on performance is influenced by both mechanics and human factors (Bendoly

and Hur, 2007). Therefore, we develop our hypotheses about the effects of workload on sales and

meal duration through two different types of effects, i.e., mechanistic effects and behavioral effects.

We also define and distinguish these effects below.

Mechanistic Effects

Mechanistic effects include the factors that change workers’ performance without changing their

intrinsic capacity and capability. In a processor sharing system, where an agent distributes his/her

limited attention to several customers simultaneously, the service time/quality for one customer

depends on the number of customers that the worker handles simultaneously as well as on the

service time/quality of other customers (Kleinrock, 1976; Akşin and Harker, 2001; Luo and Zhang,

2013). One of the reasons for this effect is that each of n jobs in a processor-sharing system is likely

to get approximately 1/nth of workers’ limited capacity, which may contribute to lower quality and

speed. Another reason is that, mechanistically speaking, an extra customer might require some

fixed setup time. In particular, as the number of other customers increases, the service time might

be prolonged, while holding service quality constant. At the same time, while handling multiple

customers, a server constrained by the limited capacity for attention will give each customer less

attention, which may consequently reduce service quality.

Restaurant servers operate in such a processor sharing system, where one server often waits

multiple tables and follows a set-up routine for each new party, such as setting the table and offer-

ing water before taking orders. Assuming servers work at the same pace and try to maintain some

constant quality, when the workload increases, i.e., the number of parties/tables that a server si-

multaneously handles increases, diners may have to wait. For example, diners at table i, which have

already been seated, may need some assistance from their server who is busy serving other tables

or setting up another table. Therefore, they have to wait to get the server’s attention, prolonging

the meal duration at table i. Furthermore, while serving multiple tables, servers may become so
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occupied with carrying food that they have no time/capacity to conduct effective suggestive selling,

thus lowering the final sales.

Behavioral Effects

Unlike mechanistic effects, behavior effects affect performance via changing workers’ intrinsic capac-

ity, capability and how they perform work. We theorize three behavioral effects that may contribute

to the impacts of workload on sales and meal duration.

Effect I: Motivation Motivation unlocks workers’ potential capabilities and stimulates them to

expend more effort with intrinsic willingness and enthusiasm. Such motivation may be improved by

appropriately increasing workload. Goal-setting theory suggests that challenges faced by workers

can enhance motivation (Locke, 1968; Latham and Locke, 1979). Increasing workload can be

perceived as a challenge, thus increasing arousal regarding the work (Bendoly, 2011) and stimulating

motivation to exert more efforts (Deci et al., 1989). Indeed, cognitive psychology also suggests that

workload may trigger the cortex to release hormones that improve cognitive performance, which

develops workers’ potential capacity (Lupien et al., 2007).

For instance, workload can be represented as the number of tables that a restaurant server

simultaneously handles. According to the aforementioned goal-setting theory, as workload increases,

servers may perceive a challenge, which may stimulate them to expend extra efforts. Furthermore,

serving tables is not only a physical job but also an emotional or cognitive job in that servers must

constantly anticipate diners’ needs and multitask to fulfill them. The extra hormones released

from increasing workload should also increase servers’ capacity and help them enhance their service

performance.

Effect II: Anti-productive Emotions Excessively high workload may induce anti-productive

emotions, thus lowering performance. When workload becomes too high, it may function as a con-

straint that causes frustration and hinders workers from fulfilling their goals (Peters and O’Connor,

1980), which may further reduce workers’ motivation and commitment (e.g., O’Connor et al., 1984).

Moreover, working under high workload will force workers to pursue multiple goals simultaneously

in a finite amount of time. These multiple goals may create conflicts and increase the expected

difficulty of achieving goals, thus lowering workers’ commitment (Donahue et al., 1993; Dalton and

Spiller, 2012). Furthermore, heavy workload can cause fatigue (Cakir et al., 1980; Setyawati, 1995)

and stress (Bendoly, 2011), which may lead to reduced motivation and effort.

When servers handle too many tables simultaneously, they may also experience aforementioned

anti-productive emotions. Servers’ goals should be to maximize sales and speed at each table.

However, waiting too many tables may hinder them from achieving these goals. For example,

servers who serve multiple tables are prone to making errors when taking orders, thus limiting

their sales effectiveness. Knowing that they cannot fully achieve their goals, servers may feel

frustrated and thus compromise their commitment and effort. For example, they may rush diners
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by presenting the check without being asked. Servers may also experience fatigue and stress caused

by heavy workload, and decrease their efforts.

Effect III: Discretionary Service In contrast to the aforementioned motivation effect that

focuses on intrinsic willingness and enthusiasm, workers can simply be incentivized by workload to

adjust their service quality and speed at their discretion without necessarily displaying willingness

and enthusiasm. Hopp et al. (2007) cite call center agents as an example and theoretically analyze

such a setting, where servers can use their discretion in upselling strategies and thus have great

influence over service duration. The authors assume that the expected revenue will be concavely

increasing in service duration. Among other findings, they discover that servers may adjust their

service time and thus the service quality in response to system congestion. In other words, servers

use service time and quality as buffers against congestion variability. More surprisingly, they find

that increasing capacity in this discretionary task completion setting may even increase congestion

because servers may find it more attractive to prolong service duration in order to achieve higher

quality than to speed up their service in order to reduce waiting cost. A similar system is studied

by Debo et al. (2008), who theorize that a changing workload together with a variable fee structure

may create an incentive for service providers to extend service time and perform extra service

in order to generate higher revenues. In particular, they argue that service providers may yield

higher revenues from “inducing service” at low workloads than at high workloads because “service

inducement” may intensify congestion in the case of high workload.

Restaurant servers have similar discretion in terms of service quality and speed. Besides the

minimum service procedure, such as taking the order and settling the bill, restaurant servers may

additionally chat with diners and check if they need to purchase anything else in the middle of

the meal. Performing these additional service tasks takes extra time, and should be positively

associated with final sales, a measure of service quality. In response to low workloads, servers

should have a strong incentive to perform extra service at the cost of longer service time because

1) the waiting cost is relatively low and 2) a sales-maximizing (i.e., tips-maximizing) server should

extract more revenues from each of the few tables that they serve. However, in response to high

workloads, the incentives of servers may change from seeking extra service quality/sales to faster

service because 1) the waiting cost is high and 2) servers wish to turn over the tables to seat new

diners, who tend to spend more money per unit of time than lingering diners. In sum, different

levels of workload may create different incentives of their discretionary efforts, as reflected in sales

and speed.

Competing Hypotheses for Sales The aforementioned theories seem to show conflicting

effects of workload on sales. On one hand, mechanistic effects as well as behavioral effects II and

III seem to suggest that increasing workload may reduce sales per check. On the other hand,

behavioral effect I seems to imply that workload should boost sales. Hence, we form two competing

hypotheses for sales:

HYPOTHESIS 1a (H1a): As workload increases, sales will increase.
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HYPOTHESIS 1b (H1b): As workload increases, sales will decrease.

Competing Hypotheses for Meal Duration Similarly, the theories seems to imply conflicting

effects of workload on meal duration. Whereas mechanistic effects seem to suggest that increasing

workload may decelerate meal duration, all three behavioral effects seem to indicate that increasing

workload may accelerate meal duration. Therefore, we propose two competing hypotheses for meal

duration:

HYPOTHESIS 2a (H2a): As workload increases, meal duration will increase.

HYPOTHESIS 2b (H2b): As workload increases, meal duration will decrease.

4 Data

4.1 Research Setting and Data Collection

To examine our research hypotheses, we worked closely with a restaurant chain’s management to

collect point-of-sales (POS) data from five restaurants owned and operated by Alpha (the real name

is disguised for confidentiality reasons), a restaurant chain that offers family-style casual dining

service in the Boston suburbs. We gained access to their sales data as a part of their implementing

a new server scheduling system, the implementation of which is used for identification purposes in

Subsection 5.2. The restaurants are open from 11:30 am to 10:00 pm from Monday to Thursday,

and from 11:30 am to 11:00 pm from Friday to Sunday. Diners include couples, families, students

and their friends. The restaurants have a full-service bar and they offer internationally-inspired

fusion food. Our study focuses on the main dining room because the bar and take-out services

operate according to a different business model and they would require different operationalization

of variables. Our data consist of 11 months of transactions from August 2010 to June 2011. The

transaction data include information about servers, sales, gratuities, party size, and service start

and end time. In order to reduce the influence of outliers (e.g., very large parties and private events),

we drop the transactions which include the day’s top and bottom 7.5% of checks. Our final data

set includes approximately 190,000 check-level observations. We believe that our restaurant sample

represents an appropriate data set to study the impact of workload on restaurant performance

because we possess comprehensive temporal and monetary information for each meal service that

occurred during both peak and non-peak hours, allowing us to systematically quantify the impact

of workload on server performance. At the same time, the data set we possess is among the largest

and most granular in the existing literature on the impact of workload on performance.

4.2 Measures and Controls

In order to understand how workload affects servers’ behavior of handling each check, we use

individual checks as the unit of analysis. In practice, restaurants tend to schedule servers on an

hourly basis, so we also aggregate all variables at the hourly level to provide a robustness check and

assess staffing implications in Subsection 5.5. We are interested in studying servers’ performance
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and therefore we operationalize dependent variables Salesi and MealDurationi to reflect the sales

and the length of a check i, which is exclusively assigned to one server in our focal restaurants.

We infer the meal duration of each check from check opening and closing times recorded in our

POS data. This inferred duration could be slightly inaccurate because diners could arrive before

the check was opened and they could leave after the check was closed. Nevertheless, our meal

duration measure directly captures the server’s involvement with the customer (rather than, say,

the host’s involvement before the check is open) which is also consistent with previous literature

(Kimes, 2004).

We define the key independent variable AvgTablesi as the average number of tables (parties)

that a server handles simultaneously together with the focal check i being analyzed. For example,

suppose check i lasts 40 minutes. During this period, a server overlaps with another table (party)

for 20 minutes. Our workload measure AvgTablesi is (40 min + 20 min)/(40 min) = 1.5 tables.

First, weighting the workload by the meal duration reflects the exact amount of load that affects

check i because the time spent on other tables either before or after check i should largely not

affect check i2. Furthermore, we believe that tables are more appropriate than diners as our main

analysis for the following reasons. Tables (parties) are likely to be more salient than diners for

servers because 1) hosts and hostesses are instructed to distribute tables (parties) evenly among

the servers, 2) servers are assigned to sections, which consist of a relatively fixed number of tables3.

In addition, the marginal workload of an additional table is more significant than the marginal

workload of an extra diner in a party because a server needs to perform a fixed set of procedures,

such as taking the order, to every table regardless of the party size. Of course, the number of diners

is a reasonable alternative workload measure. We use diners per server as an alternative workload

measure in the robustness check section and the results are qualitatively the same.

In addition to these main variables of interest, we consider the following control variables.

Variable PartySizei is the number of diners in a particular party i, which should affect both sales

and meal duration. Variable StoreItemsi is the arithmetic average of the store-wide number of items

ordered at the beginning and at the end of check i, which is used to control for the workload on the

kitchen. Finally, we also control for the time/date/location of check i. Night hours usually generate

more sales than lunch hours, so we include a categorical control variable Houri to represent the

hour when check i was opened. Weekends are usually busier than weekdays, so we include another

categorical control, DayWeek i. Business during the summer in these locations is usually slower

than during the winter because many residents go on vacation. In addition, economic trends may

affect diners’ consumption level. In order to adjust for these temporal factors, we consider another

categorical control variable YearWeeki, which starts at one from the first week of August of 2010

and ends at 48 in the last week of June of 2011. We choose to have this trend control at the

2We used alternative individual-level workload measures, such as the number of tables either at the beginning
of or at the end of check i (Kc and Terwiesch 2009 counted the hospital bed occupancy at the beginning of a
patient’s admission. Kc and Terwiesch 2011 measured the ICU occupancy at the time of a patient’s discharge).
These alternative measures yielded qualitatively congruent results.

3In practice, some smaller tables can be combined to form a bigger table.
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weekly level because our instrumental variables are lagged by one week (for more on the instrument

validity, please see Subsection 5.4). We also control for store fixed effects using the variable Storei.

To summarize, Table 1 presents a list of variable definitions. These data allow us to test our

hypotheses while controlling for factors that can affect servers’ performance.

Table 1: Check-level Analysis Variable Definition

Variable Definition

Salesi Sales of check i measured in dollars.

MealDurationi Meal duration of check i measured in minutes.

AvgTablesi Average number of tables (parties) that a server handles

simultaneously together with check i.

PartySizei Number of diners in a particular party i.

StoreItemsi Arithmetic average of store-wide number of items ordered at the

beginning and at the end of check i .

Houri Categorical variable indicating the hour when check i was

opened.

DayWeeki Categorical variable indicating the day of the week when check i

was opened.

YearWeeki Categorical variable indicating the week order in the study

period. E.g., the first week of August 2010 is one, while the last

week of June 2011 is 48.

Storei Categorical variable indicating the store where check i happened.

4.3 Descriptive Statistics

Table 2 presents the summary statistics of the check-level variables. On average, each check gen-

erates $40.38, taking approximately 48 minutes. Each check is on average shared by 2.35 diners.

In addition, in the course of a meal, there are, on average, close to 80 items ordered in the entire

restaurant.

Table 2: Summary Statistics of Check-level Variables

Sales MealDuration AvgTables PartySize StoreItems

N 190,799 190,799 190,799 190,799 190,799

Mean 40.38 47.98 2.16 2.35 79.90

Stdev 15.69 16.23 0.83 0.87 36.02

Min 7.88 21.84 1 1 2

P5 20.38 28.39 1 1 23

P25 28.16 37.13 1.57 2 53

P50 37.45 43.69 2.05 2 78.5

P75 49.73 56.79 2.63 3 105

P95 70.86 80.82 3.61 4 140.5

Max 131.75 113.59 9.65 5 261.5

Before testing our hypotheses, we transform Sales and MealDuration into their natural loga-
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rithms in order to linearize the exponential forms of sales and meal duration models (Kleinbaum

et al., 2007). These variables have large standard deviations relative to their means, so transform-

ing them is recommended to increase normality prior to model estimation (Afifi et al., 2004). Log

transformation increases the normality of the errors, which ensures that our hypothesis test statis-

tics follow t-distribution. In addition, transforming the monetary variable normalizes the scale to

percentages for easier interpretation.

Table 3 shows the correlations of the check-level variables. We observe that log(Sales) is pos-

itively associated with log(MealDuration) (correlation = 0.256), PartySize (correlation = 0.536)

and StoreItems (correlation = 0.214). The correlations among the predictors are relatively low,

suggesting that the predictors should not cause the multicollinearity issue in the model estimation.

Table 3: Correlation Matrix of Check-level Variables

log (Sales) log(MealDuration) AvgTables PartySize StoreItems

log (Sales) 1.000

log(MealDuration) 0.256* 1.000

AvgTables -0.064* 0.098* 1.000

PartySize 0.536* 0.029* -0.077* 1.000

StoreItems 0.214* 0.081* 0.241* 0.113* 1.000

*: Significant at the 0.01 level.

5 Estimation and Results

First, we estimate a set of multivariate regression models to provide a preliminary and exploratory

analysis. Second, we use an instrumental variable approach to address potential omitted variable

bias and simultaneity bias issues. We conduct additional analysis to understand the mechanisms

of our empirical results and perform robustness checks of our our main results. We finally discuss

the implications of alternative workload measures.

5.1 Multivariate Regression

We first specify the following linear regression model to provide a preliminary analysis of the

relationship between workload and servers’ performance:

log(Salesi) = α0 + α1AvgTablesi + α2PartySizei + α3Controlsi + εi (1)

log(MealDurationi) = β0 + β1AvgTablesi + β2PartySizei + β3StoreItemsi (2)

+β4Controlsi + ξi.

To ensure that we correctly specify the model given the competing hypotheses, we allow for

non-linear relationships between dependent and independent variables. To model this non-linear

relationship, we include AvgTables2 in the models in addition to AvgTables itself. That is,
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log(Salesi) = α0 + α1AvgTablesi + α2AvgTables
2
i + α3PartySizei + α4Controlsi + εi (3)

log(MealDurationi) = β0 + β1AvgTablesi + β2AvgTables
2
i + β3PartySizei + β4StoreItemsi (4)

+β5Controlsi + ξi.

In these models, Controls i include DayWeeki, Houri, YearWeeki and Storei to adjust for the

time/date and location factors, which is equivalent to a store fixed-effect model because we in-

clude store-specific time-invariant factors among our controls, which help control for unobserved

heterogeneity among stores, such as the income level of the neighborhood and other time-invariant

omitted variables. We further center AvgTables and AvgTables2 around their means for inter-

pretation purposes. Furthermore, we compute Huber-White robust errors to alleviate potential

heteroskedasticity issue.

Note that the quadratic specification of AvgTablesi allows us to compute the critical points in

the regression models. In particular, since the critical point of a quadratic function of the form

f(x) = ax2 +bx+c is −b/(2a), the critical point of, e.g., log(Salesi) is expected to be at −α1/(2α2).

Although these regression models are useful as a preliminary estimator (Kennedy, 2003), they

may not address two potential endogeneity issues:

1. Omitted variable bias: The omitted variable bias from OLS is given by rTxβxsx/sT , where rTx

is the correlation between the omitted variable x and the endogenous variable T (workload),

βx is the relationship between the omitted variable x and the dependent variable (sales), sx

and sT are the standard deviations of x and T . In our setting, one major omitted variable is

managers’ demand forecast, which will enter the error term. The demand forecast should be

positively correlated with sales, i.e., βx > 0. In addition, sales forecast should be positively

correlated with staffing levels, but negatively associated with workload, namely rTx < 0

because managers tend to match the demand with staffing. The standard deviations of x

and T should be positive. Hence, OLS may underestimate the true impact of workload

on sales. There are other possible omitted variables in the error, such as consumers’ price

sensitivity and their intrinsic level of hunger. Nevertheless, this type of consumption behavior-

related omitted factors are likely to be uncorrelated with congestion and staffing. In order

to address this potential omitted variable bias issue, we first adopt an instrumental variable

2SLS approach (Angrist and Krueger, 1994), which is elaborated in Subsection 5.2. We also

performed Hausman endogeneity tests after 2SLS estimations and rejected the null hypotheses

that those workload measures were exogenous in the sales model.

2. Simultaneity bias (reverse causality): Managers generally do not make demand forecast for

meal duration, so the same omitted variable may not apply to meal duration. Nevertheless, the

OLS meal duration model may suffer from a simultaneity bias (reverse causality). First, long

meal duration may be indicative of insufficient staffing. Second, randomly long meal duration

may mechanistically increase workload. For these reasons, this positive correlation between
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meal duration and workload may overestimate the true effect of workload. Similar to the sales

model, we took the instrumental variable approach to address this potential simultaneity bias

issue. Hausman endogeneity test rejected the null hypotheses that workload measures were

exogenous in the meal duration model.

5.2 2SLS Model

We adopt an instrumental variable 2SLS approach (Angrist and Krueger, 1994) to address the endo-

geneity issue for the following reason. First, the 2SLS instrument estimator can provide consistent

estimates of the dependent variables using a large sample. It is also quite robust in the presence

of other estimation issues such as multicollinearity. For these reasons, the 2SLS instrumental vari-

able approach is widely used to address endogeneity issues (Kennedy, 2003). A valid instrumental

variable should satisfy relevance and exclusion restriction assumptions (Wooldridge, 2002). In par-

ticular, it should be uncorrelated with the error (i.e., exclusion restriction) and correlated with the

endogenous regressor (i.e., relevance). In other words, the instrument should explain the outcome

variable only through the endogenous regressor.

We propose two types of instruments. First, we utilize an exogenous shock in our study period:

the implementation of a new staffing system at one of the restaurants. On March 21st, 2011,

one of the restaurants adopted a new computer-based scheduling system, while the other four

restaurants continued to rely on managers to make demand forecasts and staffing-level decisions.

In particular, we create a dummy variable Software, which equals to one for all the observations

after the software implementation date at the store that implemented the software, and equals

to zero for all other observations. The management chose this particular restaurant as a pilot

project before subsequently implementing the software chain-wide. The sales performance of this

restaurant is similar to the other four restaurants in that they all show stable sales, thus reducing

the concern of selection bias. Using historical sales data, the new software forecasts the need for

servers. It is reasonable to assume that the system will prescribe different staffing levels from

those that managers might suggest because it uses more historical sales data than a manager can

handle. In other words, the system should have an affected staffing levels after its implementation.

We further control for demand and store fixed effects. Hence, variable Software should reflect the

impact of staffing levels on workload, satisfying the relevance condition. In addition, we would

expect the implementation of the software to affect sales and meal duration only through staffing

level because the system simply provides a user-friendly interface to schedule servers, perhaps with

a different forecast of demand. Diners do not observe the implementation of this labor scheduling

system. For these reasons, the implementation of the system should satisfy the exclusion restriction

condition.

Admittedly, both managers and servers in that particular restaurant may have anticipated

the implementation of the new software. They may also have had different emotional responses

to a computerized scheduling system. For both these reasons they might have re-adjusted their

productivity, which could invalidate using the software implementation as an instrument. In order
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to address this potential issue, following Bloom and Van Reenen (2007) and Siebert and Zubanov

(2010), we supplement our analysis using another type of instrumental variables, the lagged values

of the endogenous independent variables. To operationalize these lagged variables, we first compute

the hourly workload during the same hour as check i takes place. In particular, this hourly workload

is defined as the number of parties who started meals during the same hour divided by the number

of servers who processed at least one check in the same hour, i.e., HRLoad i = HRTables i

HRServers i
. Then we

compute LWHRLoad and LWHRLoad2, which are the HRLoad and HRLoad2 of the same restaurant

during the same hour of the previous week to use as instruments for the current week. For example,

if check i happened at 8:30 pm on 8/8/2010 at restaurant k, its instrument is the hourly load of the

8:00 pm slot on 8/1/2010 at restaurant k. We then mean-center these instruments for interpretation

purposes. We choose the lag to be one week because the restaurants in our study usually consider

the load from a week ago to generate staff schedules for the current week. For this reason, the

weekly lagged variables should correlate with the current hourly load. Note that we are unable to

construct a check-level lagged workload variable because meals start randomly. Nevertheless, the

current hourly load should correlate with check-level workload. Therefore, we anticipate that the

weekly lagged hourly workload should satisfy the relevance assumption.

Moreover, we expect these lagged values of the endogenous variables to be exogenous because

the staffing decisions from a week ago should not determine the unobserved factors for sales and

meal duration during the current week, i.e., contemporaneous shocks. In other words, the lagged

variables are not contemporaneously correlated with the disturbance (Kennedy, 2003), so they

should satisfy the exclusion restriction assumption of a valid instrument. Admittedly, the lagged

workload may not be ideal in the event of common demand shocks that are correlated over time.

However, these common demand shocks are basically trends (Villas-Boas and Winer, 1999), which

are controlled for in our models with the categorical control variable YearWeek, thus lessening this

potential concern. We further provide relevant statistics to show the validity of these instruments in

Subsection 5.4. With both types of instrumental variables we employ the following 2SLS estimation

procedure:

Stage 1: Estimate endogenous independent variables, namely AvgTables only for the linear

models 1 and 2, AvgTables and AvgTables2 for the quadratic models 3 and 4, using OLS and

instrumental variables (i.e., Software and LWHRLoad for the linear models, Software, LWHRLoad

and LWHRLoad2 for the quadratic models) and other exogenous controls (specified in Models 1

through 4). We then compute the predicted values of the endogenous independent variables, namelŷAvgTables alone in the linear models, both ̂AvgTables and ̂AvgTables2 in the quadratic models.

Stage 2: Use the predicted endogenous independent variables from Stage 1 to estimate the

coefficients of each equation (Models 1 through 4) with OLS regression and robust errors.

5.3 Results

Table 4 shows the results of check-level sales analysis. First, in the linear models, the OLS estimate

of AvgTables is -0.016 (Model 1), in support of H1b. However, after the endogeneity issue is

16



corrected by the instruments, the 2SLS estimate becomes 0.0336 (Model 1 estimated by 2SLS),

greater than the OLS estimate, as expected, supporting H1a. This result suggests that workload

may increase servers’ sales performance, controlling for party size and other factors. As expected,

a large party size is positively associated with higher sales per check. We then visually check

for the potential non-linear relationship between AvgTables and log(Sales) and observe that the

relationship between the workload and the sales may not be linear. Furthermore, we analytically

check for the potential non-linearity. The adjusted R2 of Model 1 is 0.3686, while the adjusted R2

of Model 3 is 0.371, which suggests that the quadratic model may provide a better goodness-of-fit

than the linear model. The quadratic specification results show that the coefficients of AvgTables2

are consistently negative (-0.0134 from Model 3 and -0.1293 from Model 3 estimated by 2SLS).

Interpreting the coefficients from the 2SLS, we find that the critical workload is about (0.0942/(2×
0.1293) ≈ 0.36) tables, less than one standard deviation (0.83) above the sample mean, which is

2.16 tables. These results suggest that variable AvgTables first concavely increases sales and then

concavely decreases sales. By fitting the quadratic function, we essentially obtain approximation of

the expected sales function, which takes demand uncertainty into consideration. Thus, we find the

“true” optimal workload. As far as we know, the company does not currently use newsvendor logic

about staffing underage or overage costs and simply applies the common in this industry “rule of

thumb” to calculate the right number of servers based on demand forecast. Our finding that the

critical workload is above the sample mean suggests that this “rule of thumb” is likely to be too

generous and the restaurants need fewer servers. Even if the original “rule of thumb” was developed

to buffer against uncertainty, we show that it is not effective, possibly because adaptive behavior

of servers is not accounted for. We further calculate that changing the current workload to the

optimal value would have generated (0.0942 × 0.36 − 0.1497 × 0.36 ≈2%) sales lift per check on

average, holding party size and other factors constant. Consistent with linear models, a larger party

size is positively associated with higher sales per check.

Note that the coefficient of AvgTables is negative in the OLS model (-0.0031), but its sign

becomes positive in the 2SLS model (0.0942) after the endogeneity issue is corrected by the instru-

ments, as expected. Without this correction, one would have mistakenly concluded that the optimal

workload is smaller than the sample mean, which would lead to erroneous staffing decisions. On

the other hand, the OLS-estimated quadratic term is less negative than the 2SLS estimator. The

bias direction for a non-linear relationship is generally complicated to identify because one cannot

keep the linear term unchanged while changing the quadratic term4.

Restaurants have capacity constraints because of the limited number of tables and diners per

table. Of course, a truncation of demand may cause a concave relationship between workload and

sales, even regardless of servers’ behavior. To address this issue, we control for party size in the

4For example, suppose Y = X + X2 + e. We assume the base case is X = 0, e = 0. If X increases by 1, X2

increases by 1, and e decreases by 1 (omitted variable bias), then Y increases by 1. Consider another case. If X
increases by 2, X2 increases by 4, and e decreases by 2 (omitted variable bias), then Y increases by 4. Using these
observed data, we fit a model Y = aX+bX2 and solve for a+b = 1; 2a+4b = 4, which yields b = 1 and a = 0. As can
be seen, even though the coefficient of X is underestimated, the coefficient of X2 is not necessarily underestimated.
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check-level analysis. In addition, our dependent variable - sales per check - should be immune to

demand truncation caused by store-wide capacity constraint. Furthermore, we discover that sales

dip after workload reaches a high level. If the alternative explanation about demand truncation

were valid here, sales would plateau as workload further increased.

The significant estimates in the quadratic model imply that the difference in mean sales for

each extra table load is likely to change, in addition to the better model fit described before.

Hence, we use the quadratic model specification as our main results for further interpretation

and analysis. Moreover, the quadratic specification results seem to reconcile the two competing

hypotheses. When the overall workload is low, behavioral effects, especially behavioral effects I

and III, may dominate the mechanistic effects because servers may have excess capacity. In other

words, under overall low workload, increasing workload may motivate servers to expend more sales

effort and improve performance (as suggested by behavior effect I). Moreover, servers should have a

strong incentive to perform extra service because a sales-maximizing (i.e., tips-maximizing) server

should extract more revenues from each of the few tables that they serve. However, when the overall

workload is excessively high, a further increase in workload may create anti-productive emotions

(behavioral effect II) and diversify servers’ attention (mechanistic effect), thus reducing sales. In

addition, when workload is high, servers’ incentives may change from increasing sales to increasing

speed (behavioral effect III), which further reduces sales. Note that, when the workload is high,

the motivational effect (behavioral effect I) may also be diminished because servers have physical

capacity constraints. Hence, as workload increases, sales will first increase and then decrease.

Table 4: Impact of Check-level Workload AvgTables on log(Sales)

Linear

Model 1

Estimated

by OLS

Linear

Model 1

Estimated

by 2SLS

Quadratic

Model 3

Estimated

by OLS

Quadratic

Model 3

Estimated

by 2SLS

AvgTables -0.0160*** 0.0336** -0.0031** 0.0942***

(0.0009) (0.0120) (0.0010) (0.0189)

AvgTables2 -0.0134*** -0.1293***

(0.0005) (0.0296)

PartySize 0.2240*** 0.2266*** 0.2226*** 0.2116***

(0.0008) (0.0012) (0.0008) (0.0039)

Controls Yes Yes Yes Yes

Observations 190,799 185,545 190,799 185,545

Prob>Chi-sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001

We now proceed with the check-level meal duration analysis and Table 5 presents the results. In

the linear models, the OLS estimate of AvgTables is 0.043 (Model 2), in support of H2a. However,

the 2SLS estimate becomes -0.0439 but only marginally significant at 6.9% level (Model 2 estimated

by 2SLS) and smaller than the OLS estimate probably because the instruments correct for the
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expected upward bias of AvgTables. This result supports H2b suggesting that increasing workload

may decrease meal duration, while holding party size and other factors constant. Following the same

procedure as in the sales model, we visually check for the potential nonlinear relationship between

AvgTables and log(MealDuration) and we analytically check for the potential non-linearity. The

adjusted R2 of Model 3 is 0.052, while the adjusted R2 of Model 4 is 0.055, suggesting that the

quadratic model provides a better goodness-of-fit than the linear model.

Among the quadratic model results, the coefficients of AvgTables2 are consistently negative (-

0.0111 from Model 4 and -0.0846 from 2SLS estimated Model 4). The coefficient of AvgTables is

significant and positive in the OLS model, while the estimated coefficients are statistically undif-

ferentiated from zero in the 2SLS model. The instruments may be correcting the bias of AvgTables

downwards. In addition, we anticipate that the instruments will increase the standard errors of the

estimates because they reduce the variation of the ̂AvgTablesi. Interpreting the coefficients from

the 2SLS estimation, the maximal meal duration seems to happen right at the sample mean of 2.16

tables, suggesting an inverted-U shaped relationship that AvgTables initially concavely increases

the meal duration of each check and then concavely decreases the meal duration.

In addition to the regression models described so far, we conduct a series of duration model

analysis of log(MealDuration) as a robustness check. We fit a variety of commonly used distributions

including Gompertz, Weibull, Log-logistic and Log-normal distributions, and include a Gamma-

distributed error term in the hazard function, i.e., Gamma mixture. All these models support that

workload has an inverted-U-shaped relationship with meal duration.

We obtain support for the inverted-U-shaped relationship between service duration and work-

load in the OLS model but weaker support in the 2SLS model. This relationship reconciles the

competing hypotheses. When the overall workload is low, as previously argued, in response to

increasing workload, servers may spend more time and effort selling more items, which accordingly

take time to consume and consequently increase meal duration (behavioral effect I). Secondary as

it is, mechanistic effect may also contribute to prolonging meal duration. In addition, although

behavioral effect I suggests that servers may be motivated to increase their effort level, this extra

effort is likely to be largely devoted to sales instead of speed because of the unique incentives of

a low workload (behavioral effect III). When the overall workload is high, however, servers have

stronger incentives to work more promptly (behavioral effect III). Furthermore, due to the anti-

productive emotions induced by the excessive workload (behavioral effect II), servers may rush the

diners by selling fewer items, which should decrease meal duration. The mechanistic processor-

sharing effect alone would suggest that meal duration may keep lengthening as workload increases;

nevertheless, this effect may be countered by the increased service rate because of servers’ prompt-

ness and rushing of diners. Therefore, as workload increases, meal duration first increases and then

decreases.
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Table 5: Impact of Check-level Workload AvgTables on log(MealDuration)

Linear

Model 2

Estimated

by OLS

Linear

Model 2

Estimated

by 2SLS

Quadratic

Model 4

Estimated

by OLS

Quadratic

Model 4

Estimated

by 2SLS

AvgTables 0.0430*** -0.0439 0.0545*** 0.0186

(0.0009) (0.0241) (0.0010) (0.0364)

AvgTables2 -0.0111*** -0.0846*

(0.0005) (0.0333)

PartySize 0.0264*** 0.0183*** 0.2226*** 0.2116***

(0.0008) (0.0024) (0.0008) (0.0039)

StoreItems -0.0002*** 0.0005** -0.0002*** 0.0002

(0.0000) (0.0002) (0.0000) (0.0002)

Controls Yes Yes Yes Yes

Observations 190,799 185,545 190,799 185,545

Prob>Chi-sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001

Number of Sold Items

As we discussed earlier, servers often face a speed/quality trade-off: achieving high sales/quality

takes time. In particular, on one hand, persuading diners to purchase more items takes extra time

and effort. On the other hand, servers may “rush” diners by presenting checks without even being

asked to do so, thus reducing meal duration and the number of sold items. In addition to this

speed/quality trade-off, servers may simply adjust their promptness to influence the meal duration

without affecting the number of sold items. Therefore, it remains unclear whether the effect of

workload on meal duration results from this speed/quality trade-off or from servers’ promptness or

both.

Furthermore, servers may influence sales by either cross-selling or up-selling. The parties that

purchase the cross-sold items, such as desserts or wines, usually spend more time on a meal than

those parties that only consume entrees. To have a better understanding of these factors, We first

control for the impact of the number of sold items during a check, i.e., Itemsi on sales. In other

words, we insert a control variable Items i, which is the number of items sold during check i, into

the sales model and we use the 2SLS estimation with the same set of instruments employed in

Subsection 5.2. It seems reasonable to assume that controlling for Itemsi leads to isolating the

cross-selling effect and focusing on the up-selling effect. We further adjust for Itemsi in the meal

duration model. The additional impact of workload on meal duration therefore should be attributed

to servers’ promptness and up-selling effort. Finally, we estimate the impact of workload on the

number of sold items using the a 2SLS strategy and the same set of instruments employed previously

to provide evidence of whether or not servers may affect meal duration through their cross-selling

efforts.
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Table 6 shows the results of the new 2SLS estimations with Items as a control variable and

with Items as a dependent variable. In estimating log(Sales) conditioned on the number of items

sold, we notice that the coefficient of AvgTables2 is still negative (-0.0705), while the coefficient

of AvgTables is positive (0.071), suggesting that workload has an inverted-U shaped relationship

with servers’ up-selling behavior. In estimating log(MealDuration) conditioned on the number of

items sold, the coefficient of AvgTables2 is still significant and negative (-0.077), which suggests

that servers may decelerate as workload increases below the inflection point, and yet accelerate

after workload surpasses the threshold. Finally, in estimating Items, the coefficient of AvgTables2

is negative (-0.6365), while the coefficient of AvgTables is positive (0.2705), which suggests that

workload also has an inverted-U shaped relationship with servers’ cross-selling effort. In other

words, as workload increases, servers first sell more items, but then sell fewer items as workload

continues increasing.

These results suggest that when overall workload is low, increasing workload stimulates servers

to redouble their up-selling and cross-selling efforts at the expense of slower service speed. When

overall workload is high, however, further increasing workload spurs servers to accelerate their

service at the expense of reduced sales efforts. Furthermore, since consuming more items prolongs

the meal duration (note that the coefficient of Items is positive in estimating log(MealDuration)),

the inverted-U shaped relationship between Items and workload provides indirect evidence that

servers may reduce meal duration, or “rush”, by selling fewer items in addition to simply being

more prompt. A similar empirical result is found in Batt and Terwiesch (2012), who find that

doctors order fewer diagnostic tests to reduce service time under high workload.

Table 6: Number of Sold Items Analysis

log(Sales) log(MealDuration) Items

AvgTables 0.0710*** 0.0456 0.2705*

(0.0156) (0.0342) (0.1262)

AvgTables2 -0.0705** -0.0770* -0.6365**

(0.0243) (0.0325) (0.2012)

PartySize 0.1075*** -0.0409*** 1.3728***

(0.0023) (0.0028) (0.0257)

StoreItems -0.0003

(0.0002)

Items 0.0769*** 0.0385***

(0.0009) (0.0008)

Controls Yes Yes Yes

Observations 185,545 185,545 185,545

Prob>Chi-sq <0.001 <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001
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5.4 Validity of Instrumental Variables

To confirm the validity of the instruments and ensure asymptotic consistency of instrumental vari-

able estimators, we check both the relevance condition and the exclusion restriction condition.

Table 7 shows the first-stage regression at the check level. The coefficient of Software is signif-

icant and negative (-0.0601) when AvgTables is regressed in the sales model, which suggests that

the implementation of the new scheduling software may have increased staffing level and thus re-

duced average workload. Specifically, the implementation of the software may have decreased the

workload by 6%. However, this variable is not significant in the meal duration model, although the

coefficient is also negative (-0.0143). Note that Software is positively associated with AvgTables2

(coefficient = 0.0889 and 0.1013) in both models because some values of AvgTables are negative

after mean-centering. In addition, as expected, the one-week lagged workload is positively associ-

ated with workload in the current week (coefficient = 0.1135 and 0.0468). The quadratic term of

the last week is also positively correlated with the quadratic term of the current week (coefficient

= 0.0232 and 0.0295).

Although Software is not significant when estimating AvgTables in the meal duration model, we

still choose to keep it in our instrumental variable estimations because 1) the F-statistics for the joint

significance of the first-stage estimations are all over 10, namely the suggested rule of thumb of weak

instruments (Staiger and Stock, 1997), which indicates that our instrumental variables combined

are not weak and they should satisfy the relevance condition; and 2) three instruments make the

two endogenous variables over-identified, which allows us to use Sargan overidentifying restriction

tests to ensure that our instruments satisfy the exclusion restriction assumption (Kennedy, 2003).

Unfortunately, there is no generally accepted statistical test for the exclusion restriction as-

sumption. Nevertheless, we conduct Sargan tests of over-identifying restrictions, which are often

used to test exogenous instruments. We find that the p-values are over 0.5 for both models and

therefore we fail to reject the null hypothesis that the error terms of the structural models are

uncorrelated with the instrumental variables. We would also argue that the implementation of

the software should affect restaurant performance only through staffing levels, without affecting

demand factors or the service quality of individual servers. Moreover, from our industry knowledge

and our interviews with restaurant managers, we believe that hourly staffing levels from one week

ago should be independent of the contemporaneous shock to meal duration and sales of the current

week after controlling for both time-varying and time-invariant effects.
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Table 7: First-stage Regressions of AvgTables and AvgTables2

Sales Model MealDuration Model

AvgTables AvgTables2 AvgTables AvgTables2

Software -0.0601*** 0.0889*** -0.0143 0.1013***

(0.0100) (0.0234) (0.0097) (0.0235)

LWHRTableLoad 0.1135*** 0.0418*** 0.0468*** 0.0238**

(0.0043) (0.0077) (0.0042) (0.0077)

LWHRTableLoad2 -0.0113** 0.0232** 0.0120*** 0.0295***

(0.0037) (0.0078) (0.0036) (0.0078)

PartySize -0.0739*** -0.1584*** -0.0954*** -0.1642***

(0.0023) (0.0054) (0.0022) (0.0055)

StoreItems 0.0076*** 0.0021***

(0.0001) (0.0001)

Controls Yes Yes Yes Yes

Observations 186,357 186,357 186,357 186,357

Prob>Chi-sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001

5.5 Robustness Checks

5.5.1 Correlated Errors

The regression models in Subsection 5.1 assume that the error terms in the sales and meal duration

models are independent from each other. Nevertheless, sales and meal duration may be simultane-

ously affected by common unobserved exogenous shocks, such as a baseball game in town. These

correlated shocks should be largely positive because longer meals are usually associated with larger

sales (the correlation is about 0.256).

In order to allow the errors to be correlated with each other, in addition to addressing the

potential endogeneity issues, we propose a system of simultaneous equations using a three-stage

least squares (3SLS) estimation method (Zellner and Theil, 1962) for the following reasons. First,

the 3SLS instrument estimation can provide consistent estimates of the endogenous variables. It is

also quite robust in the presence of other estimating issues such as multicollinearity. Furthermore,

the system of the simultaneous-equations approach utilizes all available information in the estimates

and is therefore more efficient than a single-equation approach (Kennedy, 2003). We use the same

instruments as described in Subsection 5.2 and propose the following estimation procedure:

Stage 1: Same as the first stage in the 2SLS approach.

Stage 2: After using the predicted values from Stage 1 to estimate the coefficients of each

equation, we use these 2SLS estimates to predict errors in the system of simultaneous equations, i.e.,

structural equation errors. These predicted errors are further used to compute the contemporaneous

variance-covariance matrix of the structural equation’s errors.

Stage 3: Compute the General Least Squares (GLS) estimators of the system of Equations.
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Table 8 presents the results of the 3SLS estimations. Consistent with the results in Tables 4 and

5 the coefficients of AvgTables are significant in the sales model (0.1291), but insignificant in the

meal duration model (0.0444). In addition, the coefficients of AvgTables2 are significant and equal

to -0.1497 and -0.0987 in the sales and meal duration models, respectively. These results support

the previous findings about the inverted-U-shaped relationships between workload and both sales

and meal duration. Interpreting the coefficients of the sales model, we calculate that the optimal

workload is about (0.1291/(2×0.1497) ≈ 0.43 tables above the sample mean. In addition, changing

the current workload to the optimal value would have generated (0.1291×0.43−0.1497×0.432 ≈ 3%)

sales lift per check on average, controlling for party size and other factors.

Table 8: 3SLS Estimations on log(Sales) and log(MealDuration)

log(Sales) log(MealDuration)

AvgTables 0.1291*** 0.0444

(0.0090) (0.0343)

AvgTables2 -0.1497*** -0.0987**

(0.0291) (0.0326)

PartySize 0.2109*** 0.0103**

(0.0040) (0.0037)

StoreItems -0.0000

(0.0002)

Controls Yes Yes

Observations 185,545 185,545

Prob>Chi-sq <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001

5.5.2 Hourly-level Analysis and Discussion of Workload Measures

Our main analysis (Subsection 5.3) is conducted at the check level because the check-level data

provide a granular sample to understand the nuances of servers’ behavior. Nevertheless, a priori,

an hourly-level analysis seems to be most appropriate because restaurants tend to schedule servers

on an hourly basis. In this subsection, we aggregate all variables at the hourly level to provide

a robustness check of the check-level results and to examine the practical implications of staffing

decisions. We show that the hourly-level analysis corroborates our check-level findings on servers’

behavior under various levels of workload, but it may produce different estimates of the magnitudes

of workload effects.

In order to be comparable to the check-level analysis, we define the hourly-level dependent

variables in terms of hourly average sales per check and hourly average meal duration. In other

words, HRAvgSalestk =

∑
i∈tk

Sales i

HRChecks tk
, and HRAvgMealDurationtk =

∑
i∈tk

MealDuration i

HRChecks tk
, where i

is a check that started in hour t at restaurant k, and HRCheckstk is the total number of checks

that started in hour t at restaurant k. Unlike the total sales per hour, hourly average sales per

check should be immune to demand truncation due to constrained capacity.
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We define the independent variable HRTableLoadtk as the workload during hour t at restaurant

k. It is computed as the number of parties who started meals during hour t divided by the number

of servers who processed at least one check in the same hour. We provide an alternative definition of

workload in terms of the number of diners, namely HRDinerLoadtk. As with the check-level analysis,

we center these workload variables and their quadratic terms for interpretation purposes. These

measures are commonly used among restaurant managers to decide on staffing levels. In addition,

we consider the following control variables. Variable HRChecktk is used to adjust for demand and

to account for the load on the kitchen and other functions in the restaurants. We also include

the one-hour lagged workload in terms of tables/diners per server, namely LagHRTableLoadtk or

LagHRDinerLoadtk because high traffic in the previous hour could generate some congestion over

the next hour. Finally, we use the same set of time/date/location control variables as in Models 3

and 4.

Table 9 shows the summary statistics of hourly variables. On average, each meal lasts approxi-

mately 47 minutes, generating sales of $39.13 per check on average. About 11.13 parties start their

meals during an average hour. In addition, each restaurant staffs on average close to six servers

per hour, which results in an hourly workload of 1.85 tables or 4.33 diners per server.

Table 9: Summary Statistics of Hourly Variables

HRAvgMealDuration HRAvgSales HRChecks Number of Servers

per Hour

HRTableLoad HRDineroad

N 16,874 16,874 16,874 16,874 16,874 16,874

Mean 47.05 39.13 11.13 5.71 1.85 4.33

Stdev 8.00 8.26 7.69 3.18 0.64 1.66

Min 21.85 9.98 1 1 0.17 1

P5 34.95 26.59 1 1 1 2

P25 42.01 33.53 4 3 1.33 3

P50 46.72 38.69 10 6 1.80 4.18

P75 51.55 44.32 17 8 2.22 5.38

P95 59.81 52.77 25 11 3 7.22

Max 109.23 96.12 45 18 7 15.50

We first specify our models as follows using hourly tables per server, HRTableLoad, as a workload
measure:

log(HRAvgSalestk) = α0 + α1HRTableLoadtk + α2HRTableLoad2
tk + α3HRCheckstk +

α4LagHRTableLoadtk + α5Controlstk + εtk

log(HRAvgMealDurationtk) = β0 + β1HRTableLoadtk + β2HRTableLoad2
tk + β3HRCheckstk +

β4LagHRTableLoadtk + β5Controlstk + ξtk,

where Controlstk include DayWeektk, Hourtk, YearWeektk and Storetk to adjust for the time/date
and location factors. We conduct 3SLS estimation using the same instruments as those used in
the check-level analysis, namely the software implementation, one-week lagged hourly workload in
terms of tables per server and its quadratic terms. As an alternative workload measure, we then
use hourly diners per server, HRDinerLoad, in the following models and follow the same 3SLS
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estimation using the instruments in terms of diners per server:

log(HRAvgSalestk) = a0 + a1HRDinerLoadtk + a2HRDinerLoad2
tk + a3HRCheckstk +

a4LagHRDinerLoadtk + a5Controlstk + ηtk

log(HRAvgMealDurationtk) = β0 + β1HRDinerLoadtk + β2HRDinerLoad2
tk + β3HRCheckstk +

β4LagHRDinerLoadtk + β5Controlstk + ϑtk.

Table 10 shows the hourly analysis results using alternative workload definitions. In estimating

log(HRAvgSales), the coefficients of HRTableLoad2 and HRDinerLoad2 are both significant and

negative (-0.3906, -0.0412). The coefficients of HRTableLoad and HRDinerLoad are both signifi-

cant and positive (0.5561, 0.1498). These are qualitatively consistent with our check-level results

– workload may have an inverted-U shaped relationship with sales per check, and the optimal

workload to maximize sales is greater than the sample mean. Using these estimated coefficients,

we compute that the optimal HRTableLoad is about 0.71 tables/server above the sample mean

(1.84 tables/server), and the optimal HRDinerLoad is about 1.81 diners/server above the sam-

ple mean (4.3 diners/server). These two optimal points seem to be consistent with each other

because 2.6 diners on average sit at one table in our sample. In addition, in interpreting the es-

timated coefficients, we find that the optimal HRTableLoad would have increased HRAvgSales by

(0.5561 × 0.71 − 0.3906 × 0.712) ≈ 20%, while the optimal HRDinerLoad would have increased

HRAvgSales by (0.1498 × 1.8 − 0.0412 × 1.82) ≈13%. In estimating log(HRAvgMealDuration),

the coefficients of HRTableLoad2 and HRDinerLoad2 are both significant and negative (-0.2066,

-0.0214), suggesting that workload initially concavely increases and then concavely decreases the

average meal duration of each check. Similar to the check-level results, the linear terms of both

workload measures are statistically insignificant at the 0.05 level.

We acknowledge that the sales-lift results from hourly sales analysis results are quantitatively

different from the check-level results. Above, we estimated that optimal check-level workload in

terms of tables/server was 0.43 tables above the sample mean, which would have generated about

3% extra sales. Nevertheless, the optimal hourly-level workload is 0.71 tables/server, which would

have generated approximately 20% additional sales. We provide three possible explanations. First,

check-level workload mechanically has a higher sample mean than hourly workload because those

servers who handle more tables contribute a higher weight to the average check-level workload. For

example, suppose we have six checks in an hour and two servers. One of the servers handles four

tables, while the other handles only two. The check-level sample mean is (4× 4 + 2× 2)/6 ≈ 3.33

tables/server. In contrast, the hourly sample mean is 6/2 = 3 tables/server. If we assume that

the intrinsic optimal workload is approximately the same regardless of the level of analysis (both

hour-level and check-level workload measures essentially reflect how many tables one server handles

simultaneously), and that it is greater than the sample mean, then the check-level sample mean

is closer to the intrinsic optimal workload than the hour-level sample mean. Our empirical results

show that the optimal workload is 0.43 tables above the check-level sample mean, and 0.71 tables

above the hourly sample mean.
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Table 10: Impacts of Hourly-level Workload on log(HRAvgSales) and log(HRAvgMealDuration)

Table Load Diner Load

log(HRAvgSales) log(HRAvgMealDuration) log(HRAvgSales) log(HRAvgMealDuration)

HRTableLoad 0.5561* 0.2125

(0.2781) (0.1728)

HRTableLoad2 -0.3906* -0.2066*

(0.1638) (0.1018)

HRChecks -0.0216 -0.0052 -0.0137* 0.0006

(0.0133) (0.0083) (0.0068) (0.0052)

LagHRTableLoad -0.0092 -0.0200***

(0.0072) (0.0045)

HRDinerLoad 0.1498** 0.0353

(0.0555) (0.0426)

HRDinerLoad2 -0.0412** -0.0214*

(0.0139) (0.0107)

LagHRDinerLoad -0.0013 -0.0067***

(0.0025) (0.0019)

Controls Yes Yes Yes Yes

Hypothesis Supported H1 H2 H1 H2

Observations 14768 14774 14768 14774

Prob>Chi-sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in parentheses.

2. *: p-value≤ 0.05, **: p-value≤ 0.01, ***: p-value≤ 0.001

Second, by analyzing hourly average workload, such as HRTableLoad, we implicitly assume

that all the servers receive the same number of tables in an hour, thus neglecting the workload

variation across each check in that table. In other words, the variance of HRTableLoad should

be smaller than the variance of check-level workload, which includes an extra variability from

work assignment across servers. In fact, Var(HRTableLoad) ≈ 0.42 <Var(AvgTables)≈ 0.7. This

difference in workload variances may contribute to the fact that the estimated hourly coefficients

are greater in absolute values than the estimated check-level coefficients, which contributes to a

smaller magnitude of sales lift.

Third, servers should have heterogeneous capabilities to handle different levels of workload. As

mentioned above, hourly aggregation implicitly assigns the same number of diners to all servers,

which is suboptimal for the restaurant. In reality, however, more capable servers may serve more

tables than less capable ones, which may self-optimize the sales impact of workload. Therefore, we

find a larger sales lift in the hourly analysis than in the check-level analysis.

While check-level and hourly-level results are quantitatively different, they are qualitatively

consistent in that 1) as workload increases, both sales and meal duration will first increase and

then decrease, and 2) the optimal workload to maximize sales is larger than the sample mean,

suggesting that reducing staffing level may contribute to not only a labor cost reduction but also a

sales lift.
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5.5.3 Alternative Inverted-U Shaped Hypothesis Testing

The commonly-used criterion for identifying an inverted-U relationship, i.e., the significance of the

quadratic term which we used in the main analysis, has been questioned in some recent literature

(Lind and Mehlum, 2010). This literature argues that the quadratic specification may erroneously

create an extreme point even though the true relationship is concave and monotone. We believe

that this concern does not necessarily apply to our analysis because our extreme points are close to

the sample means. Another concern would be that the quadratic term is limited to the “non-local”

assumption that implies that the fitted dependent variables, i.e., log ̂(Sales) and log( ̂MealDuration),

at a given AvgTables = AvgTables0 depend heavily on AvgTables values far from AvgTables0. In

order to provide robustness checks, we test whether or not the slope of the curve is positive at the

start and negative at the end of a reasonably chosen interval of the main variable [Xl, Xh], which

is often chosen to be [Xmin, Xmax] (Lind and Mehlum, 2010).

To implement this alternative hypothesis testing method, take Model 3 for example. We test

the following two standard one-sided t-tests:

HL
0 : α1 + 2α2AvgTables l ≤ 0 vs. HL

1 : α1 + 2α2AvgTables l > 0

HH
0 : α1 + 2α2AvgTablesh ≥ 0 vs. HH

1 : α1 + 2α2AvgTablesh < 0.

The rejection area is therefore

Rα =

{
(α1, α2) :

α1+2α2AvgTables l√
s11+2×2AvgTables ls12+(2AvgTables l)

2s22
> tα

and
α1+2α2AvgTables l√

s11+2×2AvgTableshs12+(2AvgTablesh)
2s22

< −tα
}
,

where s11, s12 and s22 are the 2SLS estimated variances of α1 and α2 and the covariance between

them, while tα is the α-level tail probability of the t-distribution.

Table 11 shows the hypothesis testing results. In the sales model (Model 3), the slope is positive

(0.369) at the lower bound and negative (-1.698) at the upper bound. The p-values of the t-values

are both less than 0.001, so we reject the null hypothesis that the relationship between AvgTables

and Sales is either monotone or U-shaped at the 0.001 confidence level. Similarly, in the meal

duration model (Model 4), the slope is positive (0.217) at the lower bound and negative (-1.245)

at the upper bound. The p-values of the t-values are both less than 0.05, which rejects the null

hypothesis that the relationship between AvgTables and MealDuration is monotone or U-shaped at

the 0.05 confidence level.
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Table 11: Alternative Inverted-U Shaped Hypothesis Testing

Sales Model (Model 3) Meal Duration Model (Model 4)

Lower Bound Upper Bound Lower Bound Upper Bound

Interval -1.160 7.490 -1.160 7.490

Slope 0.369 -1.698 0.217 -1.245

t-value 4.329 -3.839 1.985 -2.533

P > |t| 0.000 0.000 0.024 0.006

6 Managerial Insights and Concluding Remarks

6.1 Managerial Insights

Making optimal staffing decisions is critical for restaurants to achieve better performance. Our

study underscores several insights for restaurant managers facing the increasing challenges and

pressures of managing a complex workforce in a highly demanding work environment. Perhaps the

most counter-intuitive finding of our study is that reducing the staffing level may improve sales and

save labor costs – having one’s cake and eating it, too. We find that the optimal workload using

the average sales per check as performance metric is approximately 0.43 tables per server above

the current sample mean, controlling for demand. The average tables/server ratio in our sample is

currently on average equal to 2.16 tables per server during one check. Our findings indicate that

an optimal staffing of 2.59 tables per server would simultaneously increase sales and reduce labor

costs. Using the estimates in the 3SLS estimation of log(Sales), we project that optimal staffing

will directly increase the average sales per check by approximately 3%. In our robustness checks,

the hour-level analyses suggest that the optimal workload is 0.71 tables/server or 1.81 diners/server

above the sample means, which may increase average hourly sales per check by 20%.

To stay on the conservative side, we advocate the check-level workload measure to estimate the

economic impacts of workload. The commonly used hourly workload measure implicitly assumes

that workload is distributed evenly across servers, which is rather simplistic and unrealistic. In

addition, although the estimated sales lift in check-level analysis is about 3%, much less than the

20% of the hourly analysis, it is still very significant in a high-fixed-cost industry like restaurants.

In this type of industry, a 3% increase in sales at no additional cost has a substantial impact on

profits, even without accounting for the labor cost reduction resulting from the optimal workload

adjustment. Our estimated sales lift is in line with Mani et al. (2011), who estimated that an

optimal staffing level could improve average store profitability by 3.8% to 5.9% in a retail setting.

Although the hourly workload measure does not accurately reflect the economic impact of

optimal workload, its simplicity is relatively practical for restaurant managers to implement optimal

staffing levels. After forecasting demand in terms of tables or diners, managers can update their

demand/server ratio to generate new staffing decisions. Using hourly-level analysis, we find that

over 75% of the time, our focal restaurants tend to over-staff by, on average, one server per hour.

Reducing the staffing level by one server each hour can save about 17% of current labor costs (the
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current average hourly staffing level is 5.71 servers). Of course, our model does not allow us to

make an entirely accurate estimate of the potential improvement from optimal staffing (e.g., further

labor-related non-wage costs), nor can the restaurants perfectly forecast demand. We nevertheless

anticipate a significant sales lift and cost saving from optimal staffing because of the benefits from

correcting both under-staffing and over-staffing errors.

Firms nowadays have access to big data, such as new Human Resource Management software,

which allows them to analyze the impact of workload at a more granular level. The new software

is also capable of monitoring the workload of servers in real time, which facilitates the acceptance

of more detailed managerial implication. Our check-level workload measure provides a first step in

utilizing big operational data to understand the impact of workload.

6.2 Concluding Remarks

Most studies on staffing decisions in services tend to overlook employees’ adaptive behavior to

work environments. There is a general lack of empirical research about the impact of staffing on

workers’ performance. A growing stream of literature has documented that workers adjust their

performance in response to work environments. In particular, prior research has focused on the

impact of workload, an integral environmental factor, on either service time or quality, separately.

Little observational research has 1) explicitly emphasized the value of empirical research for staffing

decisions and 2) examined how workload affects service workers, who make joint speed/quality

decisions.

In this paper we utilize detailed operational data gathered from a restaurant chain to study

the effects of workload on servers’ performance in terms of both sales and meal duration, taking

endogeneity into consideration. We find that, when the overall workload is low, increasing the

workload may motivate servers to generate more sales. When the workload is high, increasing the

workload may reduce servers’ effective sales. We also find that, as workload increases, meal duration

first increases and then decreases. Due to this inverted-U shaped relationship between workload

and sales, we demonstrate that reducing the number of waiters in those restaurants whose current

average workload is below the optimum may both significantly increase sales and reduce labor costs,

which is against the traditional workforce management presumption.

Our empirical findings contribute to the existing analytical models on staffing in three ways.

First, our research shows the value of empirical research for making staffing decisions. Second, the

non-linearity of the impact of workload on meal duration enriches the analytical research on staffing

that considers workload-dependent productivity. Hasija et al. (2010) have written an important

and timely paper on the linear speeding-up behavior induced by workload to estimate a call center’s

capacity. de Véricourt and Jennings (2011) also explicitly model the workload of nurses to determine

efficient nurse staffing policies. Future research may further assume non-linear productivity induced

by workload and use our estimates. Third, our finding further provides empirical evidence to

support existing research studying the effect of workload on service speed and quality (see e.g., Hopp

et al. 2007; Debo et al. 2008; Anand et al. 2011). Higher sales not only benefit the restaurant’s
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bottom line but also may arguably reflect higher service quality. Understanding the trade-off

between productivity and quality induced by workload may strengthen the analytical models on

staffing.

The drivers of workload effects are initially unclear. On the one hand, a high workload may

indicate high demand, which will increase hourly performance. On the other hand, a high workload

may indicate under-staffing, which may result in overloaded servers and diminished performance.

Through instrumental variables, we show that optimal staffing decisions, i.e., supply factors, mainly

drive the results of our analysis. In particular, optimal staffing can improve sales generation and

save labor costs. Moreover, we explain that, when overall workload is low, increasing workload

stimulates servers to redouble both their up-selling and cross-selling efforts at the expense of slower

service speed. When overall workload is high, however, further increasing workload spurs servers

to accelerate their service at the expense of reduced sales efforts. Since consuming more items

prolongs the meal duration, our results also provide indirect evidence that a server may reduce

meal duration, or “rush”, by selling fewer items in addition to simply being more prompt. A similar

empirical result is found in Batt and Terwiesch (2012), who find that doctors order fewer diagnostic

tests to reduce service time.

It is important to take into account the limitations of our findings. Although our data set is

among the largest in the existing literature on worker performance response to external factors,

it misses a few interesting variables. For example, we do not observe the exact duration of each

service procedure, such as taking the order and settling the bill. An interesting avenue for future

research would be to examine the impact of workload on each specific service procedure and how

servers switch their service from table to table (see Bendoly et al. Forthcoming for some initial work

in this direction). In addition, we lacked data about complete tipping information because we only

observed tip paid through credit cards. We analyzed tip data that was available to us and found that

tips showed very little variation (as a percentage of the check); therefore we did not find a robust

impact of workload on tips. However, other types of customer satisfaction data, such as customer

surveys, would be desirable to study the impact of workload on guest satisfaction. Furthermore, due

to data limitations, our study does not examine the impact of other factors, such as kitchen capacity

and diner heterogeneity. Although we employed instrumental variables to address this omitted

variable issue, these factors would be worth studying in future research. Additionally, our data

only shows the number of servers who handled checks, which should cause a downward bias relative

to actual staffing decisions. Nevertheless, as we find that the restaurant is already overstaffed,

including more precise information in this case would only strengthen our findings. Further research

opportunities in this setting include studying other OM/Human Resources interface issues, such

as the “chemistry” among team members and team composition. Using our findings about servers’

adaptive behavior to environmental constrains to design new workforce scheduling algorithms would

offer an interesting and fruitful direction, too. Finally, in our models, in order to separate the

supply-side driver of workload effect, we assume exogenous demand, namely the number of diners

starting service every hour. In practice, arriving diners may choose to enter the restaurant or leave
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depending on its occupancy. For example, when a restaurant is too empty, diners may interpret it

as a sign of low restaurant quality, thus deciding to leave. However, when the restaurant is too full,

diners may anticipate a long wait, thus balking at the door. It would be interesting to empirically

test how occupancy affects demand.
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