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Abstract

It is well known that if (X1, ..., Xn) are i.i.d. r.v.’s taken from either the exponential
distribution or the geometric one, then the distribution of min(X1, ..., Xn) is, with
a change of parameter, is also exponential or geometric, respectively. In this note
we prove the following result. Let F be a natural exponential family (NEF) on R

generated by an arbitrary positive Radon measure µ (not necessarily confined to the
Lebesgue or counting measures on R). Consider n i.i.d. r.v.’s (X1, ..., Xn), n ≥ 2,
taken from F and let Y = min(X1, ..., Xn). We prove that the family G of distributions
induced by Y constitutes an NEF if and only if, up to an affine transformation, F is
the family of either the exponential distributions or the geometric distributions. The
proof of such a result is rather intricate and probabilistic in nature.
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1 Introduction

Both distributions, the geometric distribution supported on N0 = {0, 1, 2, . . .} and the

exponential distribution supported on [0,∞), possess similar properties. We outline only

some of them:

• Like its continuous analogue (the exponential distribution), the geometric distribu-

tion is memoryless.

• If a r.v. X has an exponential distribution with mean 1/λ then ⌊X⌋, where ⌊x⌋
denotes the floor function of a real number x, is geometrically distributed with

parameter p = 1− e−λ.

• If (X1, ..., Xn) are i.i.d. r.v.’s taken from either the exponential distribution or

the geometric one, then the distribution of min(X1, ..., Xn) is, with a change of

parameter, also exponential or geometric, respectively.

• Both families of distributions belong to the class of natural exponential families

(NEF’s).

Indeed, the present note incorporates the last two properties in the following sense.

Let F be an NEF on R generated by an arbitrary positive Radon measure µ (not nec-

essarily confined to the Lebesgue or counting measures on R). Consider n i.i.d. r.v.’s
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Order statistics and exponential families

(X1, ..., Xn), n ≥ 2, taken from F and let Y = min(X1, ..., Xn). Then we prove that the

family G of distributions induced by Y constitutes an NEF if and only if, up to an affine

transformation, F is the family of either the exponential distributions or the geometric

distributions.

A similar, but rather more restrictive, problem has been treated by Bar-Lev and

Bshouty (2008) in which they considered the case where µ has the form µ(dx) = h(x)dx.

Then under some restrictive conditions on h (as differentiability) they showed that the

family of distributions induced by Y is an NEF if and only if the distribution of the Xi’s

is an exponential one (up to an affinity x 7→ ax+ b). In their concluding remarks, Bar-Lev

and Bshouty (2008) indicated the mathematical difficulties arising for proving that when

µ is a counting measure on N0 then the family G is an NEF iff F is the family geometric

distributions. It should be noted, however, that for the restricted case µ(dx) = h(x)dx,

Bar-Lev and Bshouty (2008) treated the question of when Gr, the family of distributions

induced by the r-th order statistic X(r) (out (X1, ..., Xn)), is an NEF. They showed that

necessarily r = 1 in which case the NEF F must be that of the exponential distributions.

As already indicated, we consider here the case r = 1 and prove in Theorem 1 a more

general result for an arbitrary measure µ (which includes the Lebesgue measure and

counting measure as special cases).

In Section 2 we introduce some required preliminaries on NEF’s. In Section 3 we

present and prove our main result. The style of the result and the methods of the proof

are close to the celebrated Balkema-de Haan-Pickands theorem on extreme values (see

[1] and [5]).

2 Some preliminaries on NEF’s

For proving our main result we shall need the definition of an NEF (for a detailed

description of NEF’s on R see Letac and Mora, 1990).

Let µ be a positive non-Dirac Radon measure on R. The Laplace transform of µ is

Lµ(θ) =

∫

∞

−∞

eθxµ(dx) ≤ ∞.

Let

D(µ) = {θ ∈ R : Lµ(θ) < ∞} , Θ(µ) = intD(µ)

and denote kµ(θ) = logLµ(θ), θ ∈ Θ(µ). Also, let M(R) denote the set of positive mea-

sures µ on R not concentrated on one point such that Θ(µ) 6= ∅. Then, the family of

probabilities

F = F (µ) = {P (θ, µ) : θ ∈ Θ(µ)}

where

P (θ, µ)(dx) = eθx−kµ(θ)µ(dx)

is called the NEF generated by µ.

The two special cases of the geometric and exponential families have the following

NEF features:

• Geometric:

µ(dx) =

∞
∑

k=0

δk(dx), Lµ(θ) = (1− eθ)−1, kµ(θ) = − ln(1− eθ),Θ(µ) = (−∞, 0),

where δk is the Dirac mass on k. In this case

P (θ, µ)(dx) =
∑

x∈N0

(1− q)qxδx
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where q = eθ < 1. Let X1, ..., Xn be i.i.d. r.v.’s with common geometric distribu-

tion with parameter q, then the p.d.f. of Y = min (X1, ..., Xn) is geometric with

parameter qn, or in its NEF p.d.f. form with θ 7−→ nθ.

• Exponential:

µ(dx) = 1(0,∞)(dx), Lµ(θ) = (−θ)
−1

, kµ(θ) = − ln(−θ),Θ(µ) = (−∞, 0),

where its known p.d.f. form is

λe−λx
1(0,∞), λ > 0,

in which case

θ = −λ.

If X1, ..., Xn be i.i.d. r.v.’s with common exponential distribution with parameter λ

then the p.d.f. of Y = min (X1, ..., Xn) is again exponential with parameter nλ, or

in its NEF p.d.f. form with θ 7−→ nθ.

3 The main result

Theorem 3.1. Let µ ∈ M(R) and n ≥ 2 be an an integer. LetX1, ..., Xn be i.i.d. r.v’s with

common distribution P (θ, µ) and denote by Qθ the distribution of Y = min(X1, ..., Xn).

Then there exist a measure ν ∈ M(R), an NEF F (ν) and a differentiable mapping

θ 7→ α(θ) from Θ(µ) to Θ(ν) such that Qθ = P (α(θ), ν) for all θ ∈ Θ(µ) if and only if F (µ)

is a positive affine transformation of either the NEF of geometric distributions or the

NEF of exponential distributions.

Proof. The statement ⇐ is simple as can be seen from the remarks at the end of

Section 2. Indeed, with the choices of µ made there, we have for both, the geometric

and exponential cases, that µ = ν and α(θ) = nθ.

We prove the statement ⇒ in six steps. In the first step we derive the functional

equation (3.3) which provides a necessary condition for Qθ ∼ Y = min (X1, ..., Xn) to

belong to some NEF F (ν). The second step proves that the support of µ is bounded on

the left, while the third step shows that such a support is unbounded on the right. The

fourth step further analyzes the functional equation (3.3) and provides an important

equation (3.7) associated with the measure µ. More specifically the problem is then

being reduced to the case where the support interval (i.e., the convex hull of the support)

of µ is exactly [0,∞). If we denote by µx the translate of µ(dt) by t 7→ t − x and then

truncate at zero, the equality (3.7) is k′µx
= k′µ for µ almost all x. This equality reduces

the characterization problem to the problem of whether µ possesses at least one atom or

not. If µ has at least one atom the the fifth step proves that µ generates the geometric

NEF. Otherwise, the sixth step shows that µ generates the exponential NEF. Such six

steps then conclude the proof.

First step. This step is devoted to the setting of the functional equation (3.3) below.

For simplicity, we write k = kµ,Θ = Θ(µ) and so on. In the sequel we write

∫ b+

a−

f(t)µ(dt) for

∫

[a,b]

f(t)µ(dt) and

∫ b+

a+

f(t)µ(dt) for

∫

(a,b]

f(t)µ(dt).

If the law of Y belongs to an NEF F (ν) then for θ ∈ Θ and real y, the number P (Y ≥ y)

can be represented in two different ways, by which one gets the following equality

e−nk(θ)

(
∫

∞

y−

eθtµ(dt)

)n

= e−kν(α(θ))

∫

∞

y−

eα(θ)tν(dt),
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and hence the following equality, between two probability measures, holds:

ne−nk(θ)

(
∫

∞

y−

eθtµ(dt)

)n−1

eθyµ(dy) = e−kν(α(θ))eα(θ)yν(dy).

This proves that the measures ν and µ are equivalent and we can introduce the Radon

Nikodym derivative g(y) = dν
dµ (y). Hence, the following equality which holds µ almost

everywhere:

ne−nk(θ)+kν(α(θ))

(
∫

∞

y−

eθtµ(dt)

)n−1

e(θ−α(θ))y = g(y).

By denoting gn(y) =
(

g(y)
n

)1/(n−1)

and

A(θ) =
−θ + α(θ)

n− 1
, B(θ) =

nk(θ)− kν(α(θ))

n− 1
, (3.1)

and elevating to the power 1/(n− 1), we get the following equality which holds µ almost

everywhere:

e−yA(θ)−B(θ)

∫

∞

y−

eθtµ(dt) = gn(y). (3.2)

Assume, without loss of generality, that µ and ν are probability measures. Then, the

Hölder inequality, applied to the pair of functions (g, 1) and to (p, q) = (n− 1, (n− 1)/(n−
2)), shows that

∫

∞

−∞
gn(y)µ(dy) < ∞. Integrating (3.2) on [x,∞) with respect to µ(dy)

yields for all θ ∈ Θ
∫

∞

x−

(

e−yA(θ)−B(θ)

∫

∞

y−

eθtµ(dt)

)

µ(dy) =

∫

∞

x−

gn(y)µ(dy).

Now, by differentiating, with respect to θ, of both sides of the latter equality, we obtain

∫

∞

x−

(

e−yA(θ)−B(θ)

∫

∞

y−

eθt(t− yA′(θ)−B′(θ))µ(dt)

)

µ(dy) = 0.

Since the latter equality holds for all x, it follows that for each fixed θ ∈ Θ,
∫

∞

x−

eθt(t− xA′(θ)−B′(θ))µ(dt) = 0, (3.3)

which holds µ(dx) almost everywhere. The equality (3.3) holds in particular for any

element x of the support S of the measure µ. To prove this statement, we denote by

H(x) the left hand side of (3.3). Then locally, H has a bounded variation (i.e., it is the

difference of two non-increasing functions) and its discontinuity points are the atoms of

µ. Therefore H(x) = 0 if x is an atom of µ. If x ∈ S and is not an atom of µ then there

exists a sequence (xk) such that H(xk) = 0 for all k and such that xk → x. Since H is

continuous in x it follows that H(x) = 0 for all x ∈ S.

Second step. We prove that the support of µ is bounded on the left. If not,

the equality (3.3) holds for some fixed θ ∈ Θ and for some sequence (xk) such that

limk→∞ xk = −∞. This implies that A′(θ) = 0 and B′(θ) = k′(θ). But then clearly the

equality
∫

∞

x−

k

eθt(t− k′(θ))µ(dt) = 0

cannot hold for all k. Indeed, if k0 is such that xk0
≤ k′(θ) then such an equality would

imply that for any k > k0

0 =

∫ x−

k0

x−

k

eθt(t− k′(θ))µ(dt),
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while the right hand side is negative for k large enough.

Third step. This step proves that the support of µ is unbounded on the right. It

relies on the following lemma, which has its own interest with its characterisation of the

distribution B(1, a) up to a dilation by b :

Lemma 1. Let P be a non-Dirac probability on [0,∞) and K > 0 such that for P almost

all x we have
∫ x+

0
−

tP (dt) = Kx

∫ x+

0
−

P (dt). (3.4)

Then K < 1 and there exists b > 0 such that P (dt) = a
ba t

a−11(0,b)(t)dt, where a =

K/(1−K).

Proof. If K > 1 then for at least one x > 0 we have

∫ x+

0−
P (dt) =

1

K

∫ x+

0−

t

x
P (dt) <

∫ x+

0−
P (dt),

which is a contradiction. If K = 1 then 0 =
∫ x+

0−
(t − x)P (dt) for P almost all x. This

implies that t − x = 0 for P (dt)P (dx) almost all (t, x), which is possible only if P is a

Dirac measure, a contradiction. The probability measure P has no atom on t0 > 0 since

(3.4) implies t0P ({t0}) = Kt0P ({t0}) which contradicts that K < 1. Similarly, P has no

atom on zero. If not, since for at least one x > 0 one has
∫ x

0+

P (dt) ≥

∫ x

0+

t

x
P (dt) =

∫ x

0
−

t

x
P (dt) = KP ({0}) +

∫ x

0+

P (dt) >

∫ x

0+

P (dt),

we get a contradiction.

The support S of P contains 0. If not, there exists b in S such that P ([0, b)) = 0. Since

P is not Dirac there exists a sequence xn ց b such that
∫ xn

b

t

xn
P (dt) = A

∫ xn

b

P (dt).

Now consider the conditional probability Pn which is P (dt) conditioned on b < t < xn.

Then, Pn converges weakly to δb (the simplest way to prove this is to use the distribution

function of Pn). Since
∫ xn

b
tPn(dt) = Kxn, then by passing to the limit we get the

contradiction for K = 1.

The support S of P is an interval containing zero. If not, and since 0 ∈ S, there exist

0 < x1 < x2 such that P ((x1, x2)) = 0, x1, x2 ∈ S and
∫ x1

0
P (dt) > 0. Hence, from (3.4),

we get the following contradiction

Kx1

∫ x1

0

P (dt)
(a)
=

∫ x1

0

tP (dt)
(b)
=

∫ x2

0

tP (dt)
(c)
= Kx2

∫ x2

0

P (dt)
(d)
= Kx2

∫ x1

0

P (dt),

where the equalities (a) and (c) stem from (3.4) and the fact that x1 and x2 are in S. The

equalities (b) and (d) come from the fact that P ((x1, x2)) = 0.

Now, since P has no atoms, the function

f(x) =

∫ x

0

tP (dt)−Kx

∫ x

0

P (dt)

is continuous. Furthermore, f is zero P almost everywhere. This implies that f is zero

on the support S of P . If not, there exists x0 ∈ S such that |f(x0)| > 0 and an open

interval (x0 − h, x0 + h) such that |f(x)| > 0 if |x− x0| < h. However,

∫ x0+h

x0−h

|f(t)|µ(dt) = 0
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and thus (x0 − h, x0 + h) and S are disjoint (recall that S is the complementary set of the

largest open set with P zero measure). Hence, a contradiction follows.

Accordingly, S = [0, b] for some real b or S = [0,∞). Denote by S0 the interior of S.

We have seen that for all x ∈ S, f(x) = 0. We rewrite this fact as

∫ x

0

tP (dt) = Kx

∫ x

0

P (dt).

Differentiating this equality (in the Stieltjes sense) we get (on S0) that

xP (dx) = a

(
∫ x

0

P (dt)

)

dx,

where a = K
1−K . This shows that P (dx) = g(x)dx is absolutely continuous. In fact, from

xg(x) = a
∫ x

0
g(t)dt, it follows that the function g is continuous and even differentiable on

S0. This leads to the differential equation g′(x)/g(x) = (a− 1)/x on S0 and g(x) = Cxa−1,

where C > 0. If S is unbounded then g cannot be a probability density. Therefore

S = [0, b] is bounded and the lemma is proved. �

We now prove the claim of Step 3 that the support of µ is unbounded on the right. If

not, from Step 2, we may assume without loss of generality that the support interval of µ

is exactly [0, b] with b > 0. Substituting x = 0 in (3.3) gives B′(θ) = k′(θ). We now show

that A′(θ) = 1− 1
bk

′(θ). To see this we rewrite (3.3) as follows

∫ b+

x
−

eθttµ(dt)
∫ b+

x
−

eθtµ(dt)
= xA′(θ) + k′(θ) (3.5)

and we do x ր b in (3.5). The left hand side converges to b and A′(θ) = 1 − 1
bk

′(θ) is

proved. This now leads to the equation

∫ b+

x−
eθt(t− x)µ(dt)
∫ b+

x−
eθtµ(dt)

=
(

1−
x

b

)

k′(θ). (3.6)

Fix θ, consider the change of variable t 7→ b− t and apply Lemma 1 to the image P (dt) of

the probability eθt−k(θ)µ(dt) and to A = k′(θ)/b. Then, it follows that the a of Lemma 1 is

a(θ) = k′(θ)/(b− k′(θ)). Since the support interval of P is also [0, b] we can claim that

eθt−k(θ)µ(dt) = a(θ)(b− t)a(θ)−11(0,b)(t)dt,

an equality which cannot hold for all θ. One may realize this as follows. Since

µ(dt) = e−tθ+(a(θ)−1) log(b−t)+c(θ)1(0,b)(t)dt,

where c(θ) = k(θ)+ log a(θ), we have, by differentiating by θ, that for all (θ, t) ∈ Θ× (0, b),

−t+ a′(θ) log(b− t) + c′(θ) = 0.

Then, differentiating by t, we get b− t = a′(θ), which is clearly impossible.

Fourth step. From Steps 2 and 3, we may assume throughout the sequel that the

support interval of µ is exactly [0,∞). This assumption implies that we are allowed to

substitute x = 0 in (3.3) to obtain

∫

∞

0−
eθt(t−B′(θ))µ(dt) = 0,
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which shows that B′ = k′. By the definition of B in (3.1), this implies that k(θ)− kν(α(θ))

is a constant. We denote by µx(du) the image of the measure µ by the map t 7−→ u = t−x

multiplied by the function 1[0,∞)(u). The equality (3.3) can then be reformulated as

k′µx
(θ) = k′(θ), (3.7)

for µ(dx) almost everywhere. We now analyze (3.7) according to whether µ has at least

one atom (Fifth Step), an assumption that will lead to the geometric NEF, or not (Sixth

Step), a fact that will lead to the exponential NEF.

Fifth step. Assume that µ has an atom x0. We prove that there exists a countable

additive subgroup G of R and a real character χ of G such that

µ(dt) = µ(0)
∑

x∈G∩[0,∞)

eχ(x)δx(dt),

where µ(x) denotes the mass of the atom x.

This assumption implies that (3.7) is true for x = x0 and thus that µ has an atom on 0

(and thus are all the measures µx for which (3.7) is true). This implies that µ is purely

atomic. Denote by S the set of atoms of µ. From (3.7) we infer that for all x ∈ S we have

S = (S − x) ∩ [0,∞).

Denote G = S ∪ (−S). Then G is an additive group with S = G ∩ [0,∞). Write µ(dt) =
∑

x∈S µ(x)δx(dt), then (3.7) implies that for all x ∈ S we have

µx(dt) =
µ(x)

µ(0)
µ(dt).

Calculating the mass of this measure on s ∈ S we get

µ(s) =
µ(0)

µ(x)
µx(s) =

µ(0)

µ(x)
µ(x+ s).

For x ∈ S, denote χ(x) = log µ(x)− logµ(0) and for x ∈ −S denote χ(x) = −χ(−x). Then

the latter equality implies

χ(x+ s) = χ(x) + χ(s),

that is, χ is a real character of G.

We now prove that G is aZ for some for some a > 0. If not, then G is a dense in

R. Then, either any pair (x, x′) of G\ {0} is such that x/x′ is rational, or there exists

a pair such that x/x′ is irrational. Without loss of generality, we may assume for the

latter two cases that 1 ∈ G. In the first case (where x/x′ is rational) there exist arbitrary

small rational numbers x ∈ G such that χ(x) = xχ(1). Thus, for A > 0, the family
{

eχ(x) : x ∈ G ∩ [0, A]
}

cannot be summable and µ is not a Radon measure. Similarly,

for the second case (x/x′ is irrational), G contains a subgroup Z(α) for some irrational

number α (where Z(α) is the set of a + bα with a, b in Z). By denoting p1 = eχ(1) and

p2 = eχ(α) we obtain that pa1p
b
2 = eχ(a+bα). We now need to prove that

∑

{

pa1p
b
2 : 0 ≤ a+ bα ≤ A

}

= ∞. (3.8)

This can be accomplished by a tedious discussion and analysis of the nine cases 0 < p1 <

1, p1 = 1 and p1 > 1 combined with 0 < p2 < 1, p2 = 1 and p2 > 1 (we omit details for

brevity). This, however, would finally show that µ cannot be a Radon measure.

Thus we conclude the case where µ has at least one atom by stating that for this case

there exist a > 0 and numbers p = eχ(a) > 0 and q = µ(0) such that

µ(dt) = µ(0)
∞
∑

n=0

qpnδna(dt).
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This is equivalent to saying that F (µ) is the image of the geometric distributions by the

dilation n 7−→ an.

Sixth step. We assume that µ has no atoms. Denote by X ⊂ [0,∞) the set of x such

that (3.7) holds. We prove that the closure X̄ of X is the support S of µ. To see that

S ⊂ X̄, we choose x0 ∈ S. If there is no sequence (xn) of X converging to x0, this would

imply the existence of ǫ > 0 such that µ([x0 − ǫ, x0 + ǫ]) = 0 and thus contradict the fact

that x0 ∈ S. To see that X ⊂ S we choose x0 ∈ X. If x0 /∈ S then this would imply the

existence of ǫ > 0 such that µ([x0 − ǫ, x0 + ǫ]) = 0. Since 0 ∈ S, the measure µx0
cannot

be equivalent to µ. Thus, the statement that S = X̄ is proved.

Now, the fact that µ has no atoms implies that x 7−→ µx is a continuous function on R

for the vague topology of Radon measures. The equality (3.7) is thus equivalent to the

existence of a function χ on X such that

µx(dt) = eχ(x)µ(dt), (3.9)

and the preceding remark implies that χ is a continuous function on X and is extendable

in a continuous function to X̄. Thus (3.7) and (3.8) hold on S. Now we observe that (3.7)

implies that for all x ∈ S we have S = (S − x) ∩ [0,∞). Thus G = S ∪ (−S) is an additive

subgroup of R. Since G is closed, then either G = {0}, or there exists a > 0 such that

G = aZ or G = R. Such two cases can be excluded since µ has no atoms, and thus we

get S = [0,∞).

We now show that χ(x+ s) = χ(x) + χ(s) for all x ≥ 0 and s ≥ 0. For this we observe

that (3.7) implies that for all x ≥ 0 the measure µx generates the NEF F (µ). Thus µx

must share with µ the property (3.7), and for s ≥ 0 we therefore have

µx+s(dt) = eχ(x)µ(dt).

Since µx and µ are proportional, the factor eχ(x) is the same. Since we also have

µx+s(dt) = eχ(x+s)µx(dt), the equality χ(x+ s) = χ(x) + χ(s) follows.

As χ is continuous, it is simple to see that there exists b ∈ R such that χ(x) = bx. One

can consult Bingham, Teugels and Goldie for reference to this Cauchy functional equation.

By introducing the measure µ̃(dt) = e−btµ(dt), we have F (µ̃) = F (µ). Furthermore (3.9)

implies that for all x ≥ 0 we have

µ̃x(dt) = µ̃(dt).

This implies that for all intervals I ⊂ [0,∞), we have µ̃(x + I) = µ̃(I). Thus µ̃ is

proportional to the restriction of the Lebesgue measure to [0,∞) and the theorem is

proved.
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