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Abstract

Attribution methods aim to explain a neural net-

work’s prediction by highlighting the most rel-

evant image areas. A popular approach is to

backpropagate (BP) a custom relevance score us-

ing modified rules, rather than the gradient. We

analyze an extensive set of modified BP meth-

ods: Deep Taylor Decomposition, Layer-wise

Relevance Propagation (LRP), Excitation BP, Pat-

ternAttribution, DeepLIFT, Deconv, RectGrad,

and Guided BP. We find empirically that the ex-

planations of all mentioned methods, except for

DeepLIFT, are independent of the parameters of

later layers. We provide theoretical insights for

this surprising behavior and also analyze why

DeepLIFT does not suffer from this limitation.

Empirically, we measure how information of later

layers is ignored by using our new metric, co-

sine similarity convergence (CSC). The paper pro-

vides a framework to assess the faithfulness of

new and existing modified BP methods theoreti-

cally and empirically. 2

1. Introduction

Explainable AI (XAI) aims to improve the interpretability

of machine learning models. For deep convolutional net-

works, attribution methods visualize the areas relevant for

the prediction with so-called saliency maps. Various attri-

bution methods have been proposed, but do they reflect the

model behavior correctly?

(Adebayo et al., 2018) proposed a sanity check: if the pa-

rameters of the model are randomized and therefore the

network output changes, do the saliency maps change too?

Surprisingly, the saliency maps of GuidedBP (Springenberg
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(a) Sanity Checks (VGG-16)

(b) Image (c) Expl. Cat (d) Expl. Dog (e) Diff. (c) - (d)

Figure 1: (a) Sanity Checks: Saliency maps should change

if network parameters are randomized. Parameters are ran-

domized from the last to the first layer. Red denotes positive

and blue negative relevance. (b-e) Class insensitivity of

LRPα1β0 on VGG-16. Explanation for (c) Persian cat (283)

and (d) King Charles Spaniel (156). (e) Difference (c) - (d),

both normalized to [0, 1]. L1-norm of (e) = 0.000371.

et al., 2014) stay identical, when the last layer (fc3) is ran-

domized (see Figure 1a). A method ignoring the last layer

can not explain the network’s prediction faithfully.

In addition to (Adebayo et al., 2018), which only reported

GuidedBP to fail, we found several modified backpropaga-

tion (BP) methods fail too: Layer-wise Relevance Propaga-

tion (LRP), Deep Taylor Decomposition (DTD), PatternAt-

tribution, Excitation BP, Deconv, GuidedBP, and RectGrad

(Bach et al., 2015; Montavon et al., 2017; Kindermans et al.,

2018; Zhang et al., 2018; Zeiler & Fergus, 2014; Springen-

berg et al., 2014; Kim et al., 2019). The only tested modified

BP method passing is DeepLIFT (Shrikumar et al., 2017).

https://github.com/berleon/when-explanations-lie
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Modified BP methods estimate relevant areas by backprop-

agating a custom relevance score instead of the gradient.

For example, DTD only backpropagates positive relevance

scores. Modified BP methods are popular with practitioners

(Yang et al., 2018; Sturm et al., 2016; Eitel et al., 2019).

For example, (Schiller et al., 2019) uses saliency maps to

improve the classification of whale sounds or (Böhle et al.,

2019) use LRPα1β0 to localize evidence for Alzheimer’s

disease in brain MRIs.

Deep neural networks are composed of linear layers (dense,

conv.) and non-linear activations. For each linear layer, the

weight vector reflects the importance of each input directly.

(Bach et al., 2015; Kindermans et al., 2018; Montavon et al.,

2017) argue that aggregating explanations of each linear

model can explain a a deep neural network. Why do these

methods then fail the sanity check?

Theoretically, we show that the z+-rule – used by DTD,

LRPα1β0, and Excitation BP – yields a multiplication chain

of non-negative matrices. Each matrix corresponds to a

layer. The saliency map is a function of this matrix chain.

We show that such a non-negative matrix chain converges to

a rank-1 matrix. If C∈R
n×m is a rank-1 matrix, then it can

be written as an outer product C = cγT , c∈R
n, γ ∈R

m.

Multiplying C with any vector v yields always the same

the direction: Cv = cγTv = λc, λ ∈ R. The scaling is

irrelevant as saliency maps are normalized. If sufficiently

converged, the backpropagated vector can merely switch

the sign of the saliency map. For example, in Figure 1a, the

sign of the PatternAttribution saliency map switches due

to the randomization of fc3. Figure 1b-1e show how the

saliency maps of LRPα1β0 become class-insensitive.

Empirically, we quantify the convergence to a rank-1 matrix

using our novel cosine similarity convergence (CSC) metric.

CSC allows to retrace, layer by layer, how modified BP

methods lose information about previous layers. Using CSC,

we observe that all analyzed modified BP methods, except

for DeepLIFT, converge towards a rank-1 matrix on VGG-

16 and ResNet-50. For sufficiently large values of α and

β, LRPαβ does not converge but also produces rather noisy

saliency maps.

The paper focuses on modified BP methods, as other attri-

bution methods do not suffer from the converges problem.

They either rely on the gradient directly (Smilkov et al.,

2017; Sundararajan et al., 2017), which does not converge

or consider the model as a black-box (Ribeiro et al., 2016;

Lundberg & Lee, 2017).

Our findings show that many modified BP methods are

prone to class-insensitive explanations and provide saliency

maps that rather highlight low-level features. Negative rele-

vance scores are crucial to avoid the convergence to a rank-1

matrix — a possible future research direction.

2. Theoretical Analysis

Notation For our theoretical analysis, we consider feed-

forward neural networks with a ReLU activation function

[x]+ = max(0,x). The neural network f(x) contains n
layers, each with weight matrices Wl. The output of the l-th
layer is denoted by hl. We use [ij] to index the i, j element

in Wl as in Wl[ij] . To simplify notation, we absorb the bias

terms into the weight matrix, and we omit the final softmax

layer. We refer to the input with h0 = x and to the output

with hn = f(x). The output of the l-th layer is given by:

hl = [Wlhl−1]
+ (1)

All the results apply to convolutional neural networks as

convolution can be expressed as matrix multiplication.

Gradient The gradient of the k-th output of the neural

network w.r.t. the input x is given by:

∂fk(x)

∂x
= WT

1 M1
∂fk(x)

∂h1
=

n
∏

l

(

WT
l Ml

)

· vk, (2)

where Ml = diag(1hl>0) denotes the gradient mask of the

ReLU operation. The last equality follows from recursive

expansion. The vector vk is a one-hot vector to select the

k-th output.

The gradient of residual blocks is also a product of matrices.

The gradient of hl+1 = hl + g(hl) is:

∂hl+1

∂hl
= I +G∂g(hl)/∂hl

, (3)

where G∂g(hl)/∂hl
denotes the derivation matrix of the

residual block, and I is the identity matrix. For the gradient,

the final saliency map is usually obtained by summing the

absolute channel values of the relevance vector r∇0 (x) of

the input layer.

The following methods modify the gradient definition and

to distinguish the rules, we introduce the notation: r∇l (x) =
∂f(x)
∂hl

which denotes the relevance at layer l for an input x.

Interpretability of Linear Models The relevance of the

input of a linear model can be calculated directly. Let y =
wTx be a linear model with a single output scalar. The

relevance of the input x to the i-th output y[i] is :

rLinear
x

(x) = w ⊙ x. (4)

2.1. z+-Rule

The z+-rule is used by DTD (Montavon et al., 2017), Ex-

citation BP (Zhang et al., 2018) and also corresponds to

the LRPα1β0 rule (Bach et al., 2015). The z+-rule back-

propagates positive relevance values, which are supposed to
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Figure 2: The positive column vectors a1,a2 of matrix

A1 (orange) form a cone. The resulting columns of A1A2

(green) are contained in the cone as they are positive linear

combinations of a1,a2. At each iteration, the cone shrinks.

correspond to the positive evidence for the prediction. Let

wij be an entry in the weight matrix Wl:

rz
+

l (x) = Z+
l · rz+

l+1(x)

whereZ+T

l =

(

[wijhl[j] ]
+

∑

k[wikhl[k]
]+

)

[ij]

(5)

Each entry in the derivation matrix Z+
l is obtained by mea-

suring the positive contribution of the input neuron i to the

output neuron j and normalizing by the total contributions

to neuron j. The relevance from the previous layer rz
+

l+1 is

then distributed according to Z+
l . The relevance function

rz
+

l : Rn 7→ R
m maps input x to a relevance vector of layer

l. For the final layer the relevance is set to the value of the

explained logit value, i.e. rz
+

n (x) = fk(x). In contrast to

the vanilla backpropagation, algorithms using the z+-rule

do not apply a mask for the ReLU activation.

The relevance of multiple layers is computed by applying

the z+-rule to each of them. Similar to the gradient, we

obtain a product of non-negative matrices: Ck =
∏k

l Z
+
l .

Theorem 1. Let A1, A2, A3 . . . be a sequence of non-

negative matrices for which limn→∞ An exists. We exclude

the cases where one column of limn→∞ An is the zero vec-

tor or two columns are orthogonal to each other. Then the

product of all terms of the sequence converges to a rank-1

matrix C̄:

C̄ :=
∞
∏

i=1

Ai = c̄γT . (6)

(Hajnal, 1976; Friedland, 2006) proved a similar result for

squared matrices. In appendix A, we provide a rigorous

proof of the theorem using the cosine similarity.

The geometric intuition of the proof is depicted in Figure 2.

The column vectors of the first matrix are all non-negative

and therefore in the positive quadrant. For the matrix multi-

plication AiAj , observe that Aiak is a non-negative linear

combination of the column vectors of Ai, where ak is the

k-th column vector Aj[:k]
. The result will remain in the

convex cone of the column vectors of Ai. The conditions

stated in the theorem ensure that the cone shrinks with ev-

ery iteration and it converges towards a single vector. In

the appendix B, we simulate different matrix properties and

find non-negative matrices to converge exponentially fast.

The column vectors of a rank-1 matrix are linearly depen-

dent C = cγT . A rank-1 matrix C always gives the same

direction of c: CZ+
k+1=cγTZ+

k+1=cλT and for any vec-

tor v: CZ+
k+1v = cλTv = tc, where t ∈ R. For a finite

number of matrices Ck =
∏k

l Z
+
l , Ck might resemble a

rank-1 matrix up to floating-point imprecision or CkZ
+
k+1

might still be able to alter the direction. In any case, the

influence of later matrices decreases.

The Z+ matrices of dense layers fulfill the conditions of

theorem 1. Convolutions can be written as matrix multipli-

cations. For 1x1 convolutions, the kernels do not overlap

and the row vectors corresponding to each location are or-

thogonal. In this case, the convergence happens only locally

per feature map location. For convolutions with overlapping

kernels, the global convergence is slower than for dense lay-

ers. In a ResNet-50 where the last convolutional stack has

a size of (7x7), the overlapping of multiple (3x3) convolu-

tions still induces a considerable global convergence (see

LRPCMP on ResNet-50 in section 5).

If an attribution method converges, the contributions of the

layers shrink by depth. In the worst-case scenario, when

converged up to floating-point imprecision, the last layer can

only change the scaling of the saliency map. However, the

last layer is responsible for the network’s final prediction.

2.2. Modified BP algorithms

LRPz The LRPz rule of Layer-wise Relevance Propaga-

tion modifies the backpropagation rule as follows:

rz−LRP
l (x) = Zl · rz−LRP

l+1 (x),

whereZl =

(

wijhl[j]
∑

k wikhl[k]

)T

[ij]

.
(7)

If only max-pooling, linear layers, and ReLU activa-

tions are used, it was shown that LRPz corresponds to

gradient⊙input, i.e. rz−LRP
0 (x) = x ⊙ ∂f(x)

∂x (Shrikumar

et al., 2016; Kindermans et al., 2016; Ancona et al., 2017).

LRPz can be considered a gradient-based and not a modi-

fied BP method. The gradient is not converging to a rank-1

matrix and therefore gradient⊙input is also not converging.

LRPαβ separates the positive and negative influences:

rαβl (x) =
(

αZ+
l − βZ−

l

)

rαβl+1(x), (8)

where Z+
l and Z−

l correspond to the positive and negative

entries of the matrix Z. (Bach et al., 2015) propose to

weight positives more: α ≥ 1 and α−β = 1. For LRPα1β0,

this rule corresponds to the z+-rule, which converges. For
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(a) PatternNet (b) W = UlΣlVl (c) Tl =
√

ΣlVlUl+1

√

Σl+1

Figure 3: PatternNet & PatternAttr.: (a)(b) Ratio between the first and second singular value σ1/σ2 for Al,Wl, and Al⊙Wl.

(c) σ1/σ2 of inter-layer derivation matrices. For (b) (c), we sliced the 3x3 convolutional kernels to 1x1 kernels.

α > 1 and β > 0, the matrix Zl = αZ+
l − βZ−

l can

contain negative entries. Our empirical results show that

LRPαβ still converges for the most commonly used parame-

ters α = 2, β = 1 and even for a higher α = 5 it converges

considerable on the ResNet-50.

Deep Taylor Decomposition uses the z+-rule if the in-

put to a convolutional or dense layer is in [0,∞], i.e. if the

layer follows a ReLU activation. For inputs in R, DTD also

proposed the w2-rule and the so-call wB rule for bounded

inputs. Both rules were specifically designed to produce

non-negative outputs. Theorem 1 applies and DTD con-

verges to a rank-1 matrix necessarily.

PatternNet & PatternAttribution takes into account

that the input hl contains noise. If dl corresponds to the

noise and sl to the signal, than hl = sl + dl. To assign the

relevance towards the signal direction, it is estimated using

the following equation:

ai =
cov[h]wi

wT
i cov[h]wi

, (9)

where ai is the estimated signal direction for the i− th neu-

ron with input h and weight vector wi = W[i:]. PatternNet

is designed to recover the relevant signal in the data. Let

Al[i:] = ai be the corresponding signal matrix to the weight

matrix Wl, the rule for PatternNet is:

rPN
l (x) = AT

l · rPN
l+1(x), (10)

PatternNet is also prone to converge to a rank-1 matrix.

To recover the relevant signal, it might be even desired to

converge to the a single direction – the signal direction.

The convergence of PatternNet follows from the compu-

tation of the pattern vectors ai in equation 9. It is simi-

lar to a single step of the power iteration method vk+1 =
Cvk/ ‖Cvk‖. In appendix C, we provide details on the

relationship to power iteration and also derive equation 9

from the equation given in (Kindermans et al., 2018). The

power iteration method converges to the eigenvector with

the largest eigenvalue exponentially fast.

All column vectors in A[i:] = ai underwent a single step

of the power iteration and therefore tend to point towards

the first eigenvector of cov[h]. This can also be verified

empirically: the ratio of the first and second singular value

σ1(A)/σ2(A) > 6 for almost all the VGG-16 patterns (see

Figure 3a), indicating a strong convergence of the matrix

chain towards a single direction.

The findings from PatternNet are hard to transfer to Pat-

ternAttribution. The rule for PatternAttribution uses the

Hadamard product of Al and Wl:

rPA
l (x) = (Wl ⊙Al)

T · rPA
l+1(x), (11)

The Hadamard product complicates any analytic argument

using the properties of Al or Wl. The theoretical results

available (Ando et al., 1987; Zhan, 1997) did not allow us

to show that PatternAttribution converges to a rank-1 matrix

necessarily.

We provide a mix of theoretical and empirical insights

on why it converges. The conditions of convergence

can be studied well on the singular value decomposition:

(Wl ⊙Al)
T = UlΣlVl. Loosely speaking, the matrix chain

will converge to a rank-1 matrix if the first σ1 and second σ2

singular values in Σl differ and if Vl and Ul+1 are aligned

such that higher singular values of Σl and Σl+1 are multi-

plied together such that the ratio σ1/σ2 grows.

To see how well the per layer matrices align, we look at the

inter-layer chain members: Tl =
√
ΣlVlUl+1

√

Σl+1. In

Figure 3, we display the ratio between the first and second

singular values σ1(Tl)/σ2(Tl). For W ⊙A, the first singu-

lar value is considerably larger than for the plain weights W .

Interestingly, the singular value ratio of inter-layer matrices

shrinks for the plain W matrix. Whereas for PatternAttribu-

tion, the ratio increases for some layers indicating that the

Hadamard product leads to more alignment of the matrices.

DeepLIFT is the only tested modified BP method which

does not converge to a rank-1 matrix. It is an extension of
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the backpropagation algorithm to finite differences:

f(x)− f(x0)

x− x0
(12)

For the gradient, one would take the limit x0 → x.

DeepLIFT uses a so-called reference point for x0 instead,

such as zeros or for images a blurred version of x. The fi-

nite differences are backpropagated, similar to infinitesimal

differences. The final relevance is the difference in the k-th

logit: rDL
l (x) = fk(x)− fk(x

0).

Additionally to the vanilla gradient, DeepLIFT separates

positive and negative contributions. For ReLU activations,

DeepLIFT uses either the RevealCancel or the Rescale rule.

Please refer to (Shrikumar et al., 2017) for a description.

The rule for linear layers is most interesting because it is

the reason why DeepLIFT does not converge:

rDL+
l (x,x0) =MT

>0 ⊙
(

W+T

l rDL+
l+1 (x,x0)

+W−
T

l rDL−

l+1 (x,x0)
) (13)

where the mask M>0 selects the weight rows correspond-

ing to positive deltas (0 < ∆hl = hl − h0
l ). For negative

relevance rDL−

l , the rule is defined analogously. An inter-

esting property of the rule (13) is that negative and positive

relevance can influence each other.

If the intermixing is removed by only considering W+ for

the positive rule and W− for the negative rule, the two

matrix chains become decoupled and converge. For the

positive chain, this is clear. For the negative chain, observe

that the multiplication of two non-positive matrices gives

a non-negative matrix. Non-positive vectors b, c have an

angle ≤ 90◦ and cT b = ‖c‖ ‖b‖ cos(c, b) ≥ 0. In the

evaluation, we included this variant as DeepLIFT Ablation,

and as predicted by the theory, it converges.

Guided BP & Deconv & RectGrad apply an additional

ReLU to the gradient and it was shown to be invariant to the

randomization of later layers previously in (Adebayo et al.,

2018) and analyzed theoretically in (Nie et al., 2018):

rGBP
l (x) = WT

l

[

Mlr
GBP
l+1 (x)

]+
. (14)

Ml = diag(1h1>0) denotes the gradient mask of the ReLU

operation. For Deconv, the mask of the forward ReLU is

omitted, and the gradients are rectified directly. RectGrad

(Kim et al., 2019) is related to GuidedBP and set the lowest

q percentile of the gradient to zero. As recommended in the

paper, we used q = 98.

As a ReLU operation is applied to the gradient, the back-

propagation is no longer a linear function. The ReLU also

results in a different failure than before. (Nie et al., 2018)

provides a theoretical analysis for GuidedBP. Our results

align with them.

3. Evaluation

Setup We report results on a small network trained on

CIFAR-10 (4x conv., 2x dense, see appendix D), a VGG-16

(Simonyan & Zisserman, 2014), and ResNet-50 (He et al.,

2016). The last two are trained on the ImageNet dataset

(Russakovsky et al., 2015), the standard dataset to evaluate

attribution methods. The different networks cover different

concepts: shallow vs. deep, forward vs. residual connec-

tions, multiple dense layers vs. a single one, using batch nor-

malization. All results were computed on 200 images from

the validation set. To justify the sample size, we show boot-

strap confidence intervals in Figure 4b (Efron, 1979). We

used the implementation from the innvestigate and deeplift

package (Alber et al., 2019; Shrikumar et al., 2017) and

added support for residual connections. The experiments

were run on a single machine with two graphic cards and

take about a day to complete.

Random Logit We display the difference of saliency

maps explaining the ground-truth and a random logit in

Figure 4a. As the logit value is responsible for the predicted

class, the saliency maps should change. We use the SSIM

metric (Wang et al., 2004) as in (Adebayo et al., 2018).

Sanity Check We followed (Adebayo et al., 2018) and

randomized the parameters starting from the last layer to

the first layer. For DTD and LRPα1β0, randomizing the last

layer flips the sign of the saliency map sometimes. We,

therefore, compute the SSIM also between the inverted

saliency map and report the maximum. In Figure 4b, we

report the SSIM between the saliency maps (see also Figure

1a and appendix G).1

Cosine Similarity Convergence Metric (CSC) Instead

of randomizing the parameters, we randomize the back-

propagated relevance vectors directly. We select layer k
and set the corresponding relevance to rk(x) := v1 where

v1 ∼ N (0, I) and then backpropagate it as before. For ex-

ample, for the gradient, we would do: ∂hk

∂h1

∂f(x)
∂hk

:= ∂hk

∂h1
v1.

We use the notation rl(x|rk : =v1) to describe the relevance

rl at layer l when the relevance of layer k is set to v1.

Using two random relevance vectors v1,v2 ∼ N (0, I),
we measure the convergence using the cosine similarity.

A rank-1 matrix C = cγT always yields the same direc-

tion: Cv = cγT = λc. If the matrix chain converges,

the backpropagated relevance vectors of v1,v2 will align

more and more. We quantify their alignment using the co-

sine similarity scos(rl (x|rk: =v1) , rl (x|rk: =v2))) where

1For GuidedBP, we report different saliency maps than shown
in Figure 2 of (Adebayo et al., 2018). We were able to confirm a
bug in their implementation, resulting in saliency maps of Guid-
edBP and Guided-GradCAM to remain identical for early layers.
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(a) Random Logits (b) Parameter Randomization

Figure 4: (a) SSIM between saliency maps explaining the ground-truth or a random logit. (b) The parameters of the

VGG-16 are randomized, starting from the last to the first layer. SSIM quantifies the difference to the saliency map from the

original model. Intervals show 99% bootstrap confidences.

scos(a, b) = aT b / (‖a‖ · ‖b‖).
Suppose the relevance matrix chain would converge to

a rank-1 matrix perfectly, than we have for both v1,v2:

rl(x|rk=vi) = Cvi = cγTvi = λic where λi = γTvi and

their cosine similarity will be one. The opposite direction

is also true. If C has shape n × m with n ≤ m and if

for n linearly independent vectors vi, the cosine similarity

scos(Cvi, Cvj) = 1, then C is a rank-1 matrix.

An alternative way to measure convergence would have

been to construct the derivation matrix Ck =
∏k

l=1 Zl and

measure the ratio σ1(Ck)/σ2(Ck) of the first to the second-

largest singular value of Ck. Although this approach is well

motivated theoretically, it has some performance downsides.

Ck would be large and computing the singular values costly.

We use five different random vectors per sample – in total

1000 convergence paths. As the vectors are sampled ran-

domly, it is unlikely to miss a region of non-convergence

(Bergstra & Bengio, 2012).

For convolution layers, we compute the cosine similarity

per feature map location. For a shape of (h,w, c), we obtain

h · w values. The jump in cosine similarity for the input

is a result of the input’s low dimension of 3 channels. In

Figure 5, we plot the median cosine similarity for different

networks and attribution methods (see appendix F for addi-

tional Figures). We also report the histogram of the CSC at

the first convolutional layer in Figures 5e-5g.

4. Results

Our random logit analysis reveals that converging methods

produce almost identical saliency maps, independently of

the output logit (SSIM very close to 1). The rest of the

field (SSIM between 0.4 and 0.8) produces saliency maps

different from the ground-truth logit’s map (see Figure 4a).

We observe the same distribution in the sanity check results

(see Figure 4b). One group of methods produces similar

saliency maps even when convolutional layers are random-

ized (SSIM close to 1). Again, the rest of the field is sensi-

tive to parameter randomization. The same clustering can

be observed for ResNet-50 (appendix E, Figure 8).

Our CSC analysis confirms that random relevance vectors

align throughout the backpropagation steps (see Figure 5).

Except for LRPz and DeepLIFT, all methods show conver-

gence up to at least 0.99 cosine similarity. LRPα5β4 con-

verges less strongly for VGG-16. Among the converging

methods, the rate of convergence varies. LRPα1β0, Pattern-

Net, the ablation of DeepLIFT converges fastest. PatternAt-

tribution has a slower convergence rate – still exponential.

For DeepLIFT Ablation, numerical instabilities result in

a cosine similarity of 0 for the first layers of the ResNet-

50. Even on the small 6-layer network, the median CSC is

greater than 1-1e-6 for LRPα1β0 (see Figure 5d).

5. Discussion

When many modified BP methods do not explain the net-

work faithfully, why was this not widely noticed before?

First, it is easy to blame the network for unreasonable expla-

nations – no ground truth exists. Second, MNIST, CIFAR,

and ImageNet contain only a single object class per image –

not revealing the class insensitivity. Finally, it might not be

too problematic for some applications if the saliency maps

are independent of the later network’s layers. For example,

to explain Alzheimer’s disease (Böhle et al., 2019), local

low-level features are sufficient as they are predictive for

the disease and the data lacks conflicting evidences (i.e. the

whole brain is affected).

When noticed, different ways to address the issue were

proposed and an improved class sensitivity was reported

(Kohlbrenner et al., 2019; Gu et al., 2018; Zhang et al.,
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(a) ResNet-50

(b) VGG-16 (logarithmic) (c) VGG-16 (linear)

(d) CIFAR-10 (e) VGG-16 (f) ResNet-50 (g) CIFAR10

Figure 5: (a)-(d) Median of the cosine similarity convergence (CSC) per layer between relevance vectors obtained from

randomizing the relevance vectors of the final layer. (e)-(g) histogram of the distribution of the CSC after the first layer.

2018). We find that the underlying convergence problem

remains unchanged and discuss the methods below.

LRPCMP (Kohlbrenner et al., 2019; Lapuschkin et al.,

2017) use LRPz for the final dense layers and LRPαβ for

the convolutional layer. We report results for α = 1, 2 as in

(Kohlbrenner et al., 2019) in Figure 6a.

For VGG-16, the saliency maps change when the network

parameters are randomized. However, structurally, the un-

derlying image structure seems to be scaled only locally (see

Figure 6a). Inspecting the CSC path of the two LRPCMP

variants in Figure 6c, we can see why. For dense layers, both

methods do not converge as LRPz is used, but the conver-

gence start when LRPαβ is applied. The relevance vectors

of the dense layer can change the coarse local scaling. How-

ever, they cannot alter the direction of the relevance vectors

of earlier layers to highlight different details.

In the backward-pass of the ResNet-50, the global-aver-

aging layer assigns the identical gradient vector to each

location of the last convolutional layer. Furthermore, the

later convolutional layers operate on (7x7), where even a

few 3x3 convolutions have a dense field-of-view. LRPCMP

does not resolve the global convergence for the ResNet-50.

Contrastive LRP (Gu et al., 2018) noted the lack of class

sensitivity and proposed to increase it by subtracting two

saliency maps. The first saliency map explains only the

logit yk = y ⊙mk, where mk is a one-hot vector and the

second explains the opposite y¬k = y ⊙ (1−mk):

max(0,n(rz
+

x
(x|rlogits: =yk))

− n(rz
+

x
(x|rlogits: = y¬k))

(15)

n(.) normalizes each saliency map by its sum. The results of

Contrastive LRP are similar to Figre 1e, no max is applied.

The underlying convergence problem is not resolved.

Contrastive Excitation BP The lack of class sensitivity

of the z+-rule was noted in (Zhang et al., 2018) and to

increase it, they proposed to change the backpropagation

rule of the final fully-connected layer to:

rcEBP
final fc(x) = (Z+

final fc −N+
final fc)mk, (16)

where mk is a one-hot vector selecting the explained class.

The added N+
final fc is computed as the Z+

final fc but on the neg-

ative weights −Wfinal fc. Note that the combination of the
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(a) VGG-16

(b) ResNet-50

(c) VGG-16

Figure 6: (a-b) Sanity checks and (c) CSC for LRPCMP .

two matrices introduces negative entries. Class sensitivity

is increased. It does also not resolve the underlying con-

vergence problem. If, for example, more fully-connected

layers would be used, the saliency maps would become

globally class insensitive again.

Texture vs. Contours (Geirhos et al., 2019) found that

deep convolutional networks are more sensitive towards

texture and not the shape of the object. For example, the

shape of a cat filled with an elephant texture will be wrongly

classified as an elephant. However, modified BP methods

highlight the contours of objects rather.

Recurrent Neural Networks Modified BP methods are

focused on convolutional neural networks and are mostly

applied on vision tasks. The innvestigate package does not

yet support recurrent models. To our knowledge, (Arras

et al., 2017) is the only work that applied modified BP

rules to RNNs (LRPz for LSTMs). Training, and applying

modified backpropagation rules to RNNs, involves unrolling

the network, essentially transforming it to a feed-forward

architecture. Due to our theoretical results, modified BP

rules that yield positive relevance matrices (e.g. z+-rule)

will converge. However, further work would be needed to

measure how RNN architectures (LSTM, GRU) differ in

their specific convergence behavior.

Not Converging Attribution Methods Besides modified

BP attribution methods, there also exist gradient averaging

and black-box methods. SmoothGrad (Smilkov et al., 2017)

and Integrated Gradients (Sundararajan et al., 2017) aver-

age the gradient. CAM and Grad-CAM (Zhou et al., 2016;

Selvaraju et al., 2017) determine important areas by the

activation of the last convolutional layer. Black-box attri-

bution methods only modify the model’s input but do not

rely on the gradient or other model internals. The most

prominent black-box methods are Occlusion, LIME, SHAP

(Zeiler & Fergus, 2014; Ribeiro et al., 2016; Lundberg &

Lee, 2017). IBA (Schulz et al., 2020) applies an information

bottleneck to remove unimportant information. TCAV (Kim

et al., 2018) explains models using higher-level concepts.

All here mentioned attribution methods do not converge,

as they either rely on the gradient or treat the model as

black-box. Only when the BP algorithm is modified, the

convergence problem can occur. The here mentioned algo-

rithms might still suffer from other limitations.

Limitations Also, we tried to include most modified BP

attribution methods, we left some out for our evaluation

(Nam et al., 2019; Wang et al., 2019; Huber et al., 2019). In

our theoretical analysis of PatternAttribution, we based our

argument on why it converges on empirical observations

performed on a single set of pattern matrices.

6. Related Work

Limitations of attribution The limitations of explana-

tion methods were studied before. (Viering et al., 2019)

alter the explanations of Grad-CAM arbitrarily by modify-

ing the model architecture only slightly. Similarly, (Slack

et al., 2020) construct a biased classifier that can hide its

biases from LIME and SHAP. The theoretic analysis (Nie

et al., 2018) indicates that GuidedBP tends to reconstruct

the input instead of explaining the network’s decision. (Ade-

bayo et al., 2018) showed GuidedBP to be independent of

later layers’ parameters. (Atrey et al., 2020) tested saliency

methods in a reinforcement learning setting.

(Kindermans et al., 2018) show that LRP, GuidedBP, and

Deconv produce incorrect explanations for linear models if

the input contains noise. (Rieger, 2017; Zhang et al., 2018;

Gu et al., 2018; Kohlbrenner et al., 2019; Montavon et al.,

2019; Tsunakawa et al., 2019) noted the class-insensitivity

of different modified BP methods, but they rather proposed

ways to improve the class sensitivity than to provide cor-

rect reasons why modified BP methods are class insensitive.

Other than argued in (Gu et al., 2018), the class insensitivity

is not caused by missing ReLU masks and Pooling switches.

To the best of our knowledge, we are the first to identify the

reason why many modified BP methods do not explain the

decision of deep neural networks faithfully.

Evaluation metrics for attribution As no ground-truth

data exists for feature importance, different proxy tasks

were proposed to measure the performance of attribution
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algorithms. One approach is to test how much relevance

falls into ground-truth bounding boxes (Schulz et al., 2020;

Zhang et al., 2018).

The MoRF and LeRF evaluation removes the most and least

relevant input features and measures the change in model

performance (Samek et al., 2016). The relevant image parts

are masked usually to zero. On these modified samples, the

model might not be reliable. The ROAR score improves it

by retraining the model from scratch (Hooker et al., 2018).

While computationally expensive, it ensures the model per-

formance does not drop due to out-of-distribution samples.

The ROAR performance of Int.Grad. and GuidedBP is

equally bad, worse than a random baseline (see Figre 4

in (Hooker et al., 2018)). Thus, ROAR does not separate

converging from non-converging methods.

Our CSC measure has some similarities with the work (Bal-

duzzi et al., 2017), which analyzes the effect of skip con-

nections on the gradient. They measure the convergence

between the gradient vector from different samples using

the effective rank (Vershynin, 2012). The CSC metric ap-

plies to modified BP methods and is an efficient tool to trace

the degree of convergence.

A different approach to verify attribution methods is to mea-

sure how helpful they are for humans (Alqaraawi et al.,

2020; Doshi-Velez & Kim, 2017; Lage et al., 2018).

7. Conclusion

In our paper, we analyzed modified BP methods, which aim

to explain the predictions of deep neural networks. Our

analysis revealed that most of these attribution methods

have theoretical properties contrary to their goal. PatternAt-

tribution and LRP cite Deep Taylor Decomposition as the

theoretical motivation. In the light of our results, revisiting

the theoretical derivation of Deep Taylor Decomposition

may prove insightful. Our theoretical analysis stresses the

importance of negative relevance values. A possible way to

increase class-sensitivity and resolve the convergence prob-

lem could be to backpropagate negative relevance similar to

DeepLIFT, the only method passing our test.
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Kindermans, P.-J., Schütt, K., Müller, K.-R., and Dähne, S.

Investigating the influence of noise and distractors on the

interpretation of neural networks. arXiv: 1611.07270,

2016.
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