
When feedback is cognitively-demanding: the importance
of working memory capacity

Emily R. Fyfe • Marci S. DeCaro • Bethany Rittle-Johnson

Received: 3 March 2013 /Accepted: 29 April 2014
� Springer Science+Business Media Dordrecht 2014

Abstract Feedback is generally considered a beneficial learning tool, and providing

feedback is a recommended instructional practice. However, there are a variety of feedback

types with little guidance on how to choose the most effective one. We examined indi-

vidual differences in working memory capacity as a potential moderator of feedback type.

Second- and third-grade children (N = 64) solved unfamiliar math problems prior to

receiving instruction. Children received verification feedback on their answers (outcome-

feedback) or on their strategies (strategy-feedback). Working memory capacity moderated

the effect of feedback type on procedural transfer—the ability to solve novel problems.

Children with lower working memory capacity benefitted less from strategy-feedback than

outcome-feedback, whereas children with higher working memory capacity benefitted

similarly from the two types of feedback. Results suggest the need to consider the cog-

nitive demands of different feedback types. Problem solving can be optimized by con-

sidering both characteristics of the learner and the learning environment.

Keywords Feedback � Working memory � Problem solving � Mathematics

learning � Cognitive load

The role of feedback during learning and problem solving has been studied extensively

(e.g., Mory 2004; Hattie and Gan 2011; Shute 2008). In learning contexts, the purpose of

feedback is to provide information that the learner can use to confirm, reject, or modify
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prior knowledge. In general, the effects of feedback are powerful and positive, leading

many researchers to endorse the provision of feedback (e.g., Alfieri et al. 2011; Steedly

et al. 2008). Indeed, Hattie and Timperley (2007) identify feedback as one of the ‘‘highest

influences on achievement’’ in the classroom (p. 83). However, feedback effects show

considerable variability (Kluger and DeNisi 1996), indicating some types of feedback are

more powerful than others. In response to these findings, researchers have called for future

work to specify key moderators of feedback type, including characteristics of the learner

(Hattie and Gan 2011; Mory 2004).

The type of feedback provided (e.g., focused on outcomes, strategies, effort, speed, etc.)

guides learners attention and may narrow the type of information the learner processes and

potentially corrects (Kluger and DeNisi 1996). Consequently, different feedback types may

place different demands on learners’ cognitive resources (e.g., Moreno 2004). In this case,

individual learner differences may impact feedback’s effectiveness. For example, working

memory (WM) capacity supports learners’ ability to actively select, regulate, and process

task-relevant information such as feedback (Alloway 2006). Further, WM capacity varies

across individuals, with some people demonstrating higher WM capacity than others

(Alloway 2006; Conway et al. 2005). Thus, individual differences in WM capacity likely

constrain how feedback is processed and what can be learned from different feedback

types.

We examined the role of working memory in learning from feedback. Specifically, we

examined the cognitive demands of two different feedback types and how differences in

WM capacity impact their effects. We focused on two types of feedback that vary in

content: outcome-feedback, which focuses on accuracy of answers, and strategy-feedback,

which focuses on how answers are obtained. These factors were studied in the context of

exploratory problem solving, in which elementary-school children solved unfamiliar

mathematics problems prior to instruction. Although WM is thought to play an important

role in the utility of feedback (e.g., Schooler and Anderson 1990; Moreno 2004), empirical

evaluations are lacking.

Theoretical motivation

By investigating WM capacity as a potential moderator of feedback type, we can better

understand why certain types of feedback are more or less effective than others. Moni-

toring and evaluating feedback rely on WM resources. Indeed, theoretical models of

feedback are specifically concerned with internal cognitive processes, such as WM, that

might affect how feedback is perceived and used (e.g., Clariana et al. 2000; Kulhavy and

Stock 1989). For example, Kulhavy and Stock (1989) suggest that at each point in the task

(i.e., initial question, feedback, later question), the learner engages in cognitive activity to

process the input and generate a response. This processing includes relating feedback to the

initial response, integrating information with prior knowledge, and evaluating one’s per-

formance. All of this processing relies extensively on WM resources.

According to cognitive load theory, when instructional techniques place high demands

on WM, the system can become overloaded, and learning suffers (Sweller 1998). Cognitive

load represents the total burden a task imposes on the learners’ cognitive system and it is

thus a multidimensional construct that includes a variety of factors, including mental effort,

fatigue, and frustration (Paas et al. 2003). Sweller et al. (1998) differentiate three different

types of cognitive load. Intrinsic load is a result of the complexity of the to-be-learned

content. Extrinsic load is a result of unnecessary cognitive processing caused by
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suboptimal instructional designs. Finally, germane load is a result of effortful, productive

learning processes. According to cognitive load theory, a central goal of instructional

design is to limit the total cognitive load imposed on the learner in an attempt to enhance

learning.

To the extent that feedback can be productively processed within WM, it will likely

result in germane cognitive load. However, feedback may also lead to extraneous pro-

cessing and overburden WM resources. For example, types of feedback that are overly

detailed, unfamiliar, or difficult to process may tax WM resources to a greater extent,

leading to higher total cognitive load and less effective learning. Further, certain learners,

such as those with lower WM capacity, may be more susceptible to these taxing effects.

We discuss feedback type and WM capacity in turn, focusing on their relevance to

mathematics problem solving.

Feedback type

In research and in practice, there are a variety of feedback ‘‘types,’’ as feedback can be used

for a variety of purposes (Mory 2004). We focus on corrective feedback in a problem-

solving setting, which is used to help learners detect errors and generate correct alternatives

(Dempsey et al. 1993). In particular, we examine two types of corrective feedback that vary

in content: outcome-feedback and strategy-feedback. Outcome-feedback is focused on the

accuracy of the learner’s response, whereas strategy-feedback is focused on how the learner

obtained the response. In the context of mathematics problem solving, outcomes refer to

numerical answers and strategies refer to domain-specific problem-solving procedures. This

distinction is salient in problem solving, in which the use of different strategies can lead to

the same outcome and the use of the same strategy can lead to different outcomes. For

example, consider the following problem: 3 ? 4 ? 5 = 5 ? __. One learner may use a

correct grouping strategy by canceling the 5s, which appear on both sides of the equal sign,

and adding the 3 and 4. Another learner may use a more naı̈ve strategy by always adding two

random numbers (see Rittle-Johnson 2006). In this case, the two different strategies may

result in the same outcome. The reverse is also true; for example, one correct strategy can

lead to different answers if a calculation error is made.

In addition to varying in content, corrective feedback can also vary in the amount of

information provided. For example, feedback can simply verify the correctness of a

response (i.e., verification feedback), provide the correct response, or provide additional

explanation (Dempsey et al. 1993). We examined the cognitive demands of the content of

the feedback message (the type of information), so we kept the amount of information

consistent. We opted to provide verification feedback for several reasons. First, verification

feedback is used in several existing studies on the effects of feedback during mathematics

problem solving (e.g., Alibali 1999; Hofer et al. 2011). Second, we were interested in

children’s exploration of novel problems and strategy generation. Recent evidence dem-

onstrated the powerful effects of verification feedback on strategy discovery and transfer

for elementary-school children (Baroody et al. 2013). Further, numerous studies suggest

full explanations are more effective after problem solving with minimal feedback (e.g.,

Kapur 2011; DeCaro and Rittle-Johnson 2012). Finally, given concerns that extensive

feedback might overwhelm WM capacity, especially in lower-capacity learners, it seemed

important to constrain the amount of information in the feedback. Thus, we employed

verification feedback on outcomes or on strategies.
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Feedback focused on outcomes is one of the most common types of feedback in both

educational and research contexts (e.g., Hattie and Timperley 2007; Pianta et al. 2007).

Outcome-feedback generally benefits learning when compared to no-feedback conditions

(e.g., Kluger and DeNisi 1996). Research suggests that it functions primarily by helping

learners correct inaccurate information (e.g., Anderson et al. 1972; Phye and Bender 1989).

That is, outcome-feedback helps learners identify their errors and search for more plausible

alternatives. In these studies, outcome-feedback has its greatest impact when learners’

answers are incorrect. Further, it helps prevent learners from making the same error

multiple times.

Despite these positive effects, many researchers recommend focusing feedback more

specifically on learners’ strategies (e.g., Earley et al. 1990; Clifford 1986; Kamins and

Dweck 1999; Luwel et al. 2011). Strategy-feedback concerns the processes that generate

outcomes, as opposed to the outcomes themselves. During problem solving, learners must

form hypotheses about which strategies are effective. Feedback that focuses on these

strategies might help learners reject erroneous hypotheses and provide cues for further

strategy searching. Indeed, Earley et al. (1990)examined outcome-feedback and strategy-

feedback for undergraduates buying and selling stocks for hypothetical companies.

Strategy-feedback was a more ‘‘direct and powerful way of shaping an individual’s task

strategy’’ (p. 103) than outcome-feedback and resulted in higher-quality information

search. Similarly Luwel et al. (2011) examined children’s performance on a numerosity

judgment task (e.g., how many blocks are green?), which could be solved using one of two

correct strategies. They found that strategy-feedback led to greater improvements in

adaptive strategy selection than outcome-feedback. Finally, feedback on middle-school

students’ writing strategies led to better maintenance and generalization of these strategies

relative to a no-feedback control (Schunk and Swartz 1993).

By providing information about strategies that apply across problems, strategy-feedback

may also promote more transferrable knowledge than outcome-feedback. The benefits of

outcome-feedback are often limited to the specific task on which the feedback was pro-

vided (e.g., Thompson 1998), whereas strategy-feedback has been shown to improve

transfer (Schunk and Swartz 1993). This benefit may be salient for mathematics, in which

outcome-feedback depends on specific numbers, but strategy-feedback applies to a wider

range of problems.

Cognitive demands of outcome feedback and strategy feedback

Though strategy-feedback has potential advantages relative to outcome-feedback, it has

potential consequences as well. In particular, strategy-feedback may tax WM resources to a

greater extent than outcome-feedback and lead to greater cognitive load. Indeed, past

research has found that different types of feedback can impose different levels of cognitive

load (e.g., Corbalan et al. 2010; Moreno 2004). For example, Corbalan et al. (2010)

investigated undergraduates’ performance on complex linear algebra problems that

required solving a variety of steps to obtain a final solution. Students reported lower levels

of cognitive load when they received more frequent outcome feedback (after each step)

than feedback on the final step only.

There are a number of reasons why strategy-feedback may require more WM resources

than outcome-feedback. First, strategy-feedback is less familiar than outcome-feedback

because teachers provide strategy-feedback less often than outcome-feedback. For exam-

ple, in a documentation of classroom practice, Pianta et al. (2007) noted that feedback
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often referred to the correctness of answers. Thus, learners are more familiar with out-

come-feedback, and as familiarity with a technique increases, WM resources are used to a

lesser extent (Anderson 1982; Kirschner et al. 2006). Second, because math problems often

require multi-step procedures to generate single numerical answers, processing strategy-

feedback may require more resources and more time than processing outcome-feedback.

Finally, research suggests that learning can be more difficult when hypothesis-testing is

required (DeCaro et al. 2008). If strategy-feedback promotes hypothesis-testing about more

complex information, it will place heavier demands on WM capacity. In general, research

on strategy-feedback is sparse, so more work is needed to understand its cognitive

demands. For example, in one meta-analysis, the low frequency of studies using strategy-

feedback prevented the researchers from examining it empirically (Kluger and DeNisi

1996).

Individual differences in working memory capacity

Due to the potentially high cognitive demands of strategy-feedback, it may not be effective

for all learners. Indeed, aptitude-by-treatment interactions suggest that the benefits of an

instructional technique often depend on learner characteristics (Cronbach and Snow 1977).

For example, both motivation and prior knowledge moderate the effects of feedback, with

feedback generally having a more positive effect for learners with mastery achievement

goals (e.g., VandeWalle 2003) and for learners with lower prior knowledge (e.g., Krause

et al. 2009). Individual differences in working memory capacity may also impact learning

from different feedback types. For example, researchers suggest that feedback competes

for WM resources (Schooler and Anderson 1990), which may influence how different

individuals process the presented material. That is, individuals with higher WM capacity

may be more capable of learning from certain types of feedback relative to those leaners

with lower WM capacity.

For children with lower WM capacity, the cognitive demands of strategy-feedback may

overwhelm limited resources and impede learning, essentially creating too much cognitive

load (e.g., Sweller et al. 1998). Thus, lower-capacity children may instead benefit more

from familiar outcome-feedback, which may focus their attention on key information

without requiring excessive processing. However, for learners with higher WM capacity,

strategy-feedback may represent a ‘‘desirable difficulty’’ (Bjork 1994; McDaniel and

Butler 2010). That is, strategy-feedback may place greater demands on WM, but not

enough to overwhelm their resources. In particular, strategy-feedback may direct higher-

capacity learners’ attention to more fruitful information (i.e., germane cognitive load),

which may promote transfer.

Current study

In summary, some researchers have proposed that strategy-feedback may be more bene-

ficial than outcome-feedback (e.g., Earley et al. 1990; Luwel et al. 2011), but outcome-

feedback is more common and is generally effective (cf. Hattie and Timperley 2007).We

suggest that the effectiveness of the two feedback types may depend on learners’ WM

capacity. The cognitive demands of strategy-feedback may be too high for some learners,

particularly those with lower WM capacity. Instead, lower capacity learners may benefit

more from outcome-feedback. In contrast, strategy-feedback may be as or more effective
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for higher WM capacity learners. Given our focus on problem-solving and strategy

acquisition, we expected these effects to occur on a measure of problem-solving transfer

(i.e., the ability to solve novel problems). These findings can inform our understanding of

the cognitive demands of different feedback types and reveal a potentially important

individual difference that moderates their effectiveness.

We tested this hypothesis with children (M age = 7 years, 11 months) learning about

math equivalence problems (e.g., 3 ? 4 ? 5 = 3 ? __), which requires an understanding

that both sides of an equation represent the same quantity. Math equivalence is a funda-

mental concept in arithmetic and a critical pre-requisite for understanding algebra (Mac-

Gregor and Stacey 1997). Unfortunately, many elementary school children solve these

problems incorrectly, struggling to understand math equivalence (e.g., McNeil and Alibali

2005). For example, when asked to solve 3 ? 4 ? 5 = 3 ? __, children often add all the

numbers and put 15 in the blank, or add only the numbers before the equal sign and put 12

(e.g., McNeil 2007). These strategies are thought to stem from children’s narrow experi-

ence with typical arithmetic problems in an ‘‘operations = answer’’ format, on which these

strategies work successfully (McNeil and Alibali 2005).

In the current study, elementary school children participated in exploratory problem

solving followed by brief instruction. Problem solving was considered exploratory because

children were not explicitly instructed on correct procedures. Including opportunities for

problem exploration prior to instruction is a recommended best practice in mathematics

education (Dewey 1910; Hiebert and Grouws 2007; Lehrer and Kim 2009) and numerous

studies support the benefit of this approach (e.g., DeCaro and Rittle-Johnson 2012; Kapur

2011; Schwartz et al. 2011). For example, DeCaro and Rittle-Johnson (2012) found that

elementary-school children learned more about math equivalence when they solved

problems with feedback before conceptual instruction, rather than vice versa. Problem

exploration is thought to give learners a chance to process the problems at a deeper level

and prepare them for future instruction (Schwartz et al. 2011). Thus, we adopted this more

optimal learning condition (explore then instruct), but manipulated the type of feedback

that was provided during exploration.

The current research question was embedded in a larger study examining the effects of

feedback more generally (Fyfe et al. 2012). The larger published report examined the effects

of providing feedback during problem solving and reported differences in learning outcomes

based on learners’ prior knowledge. The published report contains two experiments and the

study reported here is a reanalysis of one of them. We did not publish findings on WM

capacity in Fyfe et al. (2012) because it was not germane to the purpose of that paper, nor did

we focus on the differential effects of strategy- versus outcome-feedback. Thus, the ratio-

nale, hypotheses, analyses, and conclusions are all distinct. Further, the sample was recruited

and measures were administered with the current study’s purpose in mind.

Method

Participants

Participants were drawn from a larger study reported in Fyfe et al. (2012). The sample

reported here included 64 second- and third-grade children (M age = 7 years, 11 months,

range = 6 years, 10 months to 9 years, 10 months; 35 girls; 36 second-graders) from eight

different classrooms in two elementary schools (one public, one parochial). The vast

majority of children (n = 60) were from the public school, as the private school was small
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and not all children had parent consent. The children were predominantly African

American (98 %; 2 % White) and approximately 61 % received free or reduced price

lunch. All of these children scored below 80 % on a conceptual and procedural knowledge

measure at pretest (10 children were excluded due to this criterion). This criterion ensured

that we worked with children who could still learn from the intervention.

Design

Children participated in a pretest, intervention, posttest, and two-week retention test. For

the intervention, children were randomly assigned to the strategy-feedback (n = 31, 26

girls, 5 boys) or outcome-feedback (n = 33, 19 girls, 14 boys) condition. Random

assignment was at the individual student level, but each classroom had approximately the

same number of children assigned to each of the two conditions.

Materials

Intervention session

During the intervention, 12 math equivalence problems were presented in paper/pencil

format. Six problems were 3- and 4- addend problems (e.g., 10 = 3 ? h,

3 ? 7 = h ? 6), and the other six were 5-addend problems with a repeated addend on

either side of the equal sign (e.g., 5 ? 3 ? 9 = 5 ? h).

Assessment

The math equivalence assessment, adapted from past work (Matthews et al. 2012; Rittle-

Johnson et al. 2011), was administered at pretest, posttest, and retention test. Two parallel

forms were used: Form 1 at pretest and Form 2 at post- and retention test. The two forms

differed primarily in the specific numbers used in the items. Items were previously matched

to ensure the content and difficulty were comparable across forms, and item evaluation

indicated strong evidence for construct and face validity (Matthews et al. 2012; Rittle-

Johnson et al. 2011). The assessment included procedural learning, procedural transfer, and

conceptual items (see Tables 1 and 2). The procedural items assessed children’s use of

correct strategies to solve math equivalence problems. The learning items were similar to

those used for the intervention and the transfer items differed on key dimensions (e.g.,

inclusion of subtraction). The conceptual items assessed children’s understanding of the

equal sign and of the structure of equations. Alpha coefficients are reported for each

subscale in Tables 1 and 2. To establish inter-rater reliability on open-ended conceptual

items and on problem-solving strategies on the procedural items, a second rater coded

30 % of the responses. Inter-rater agreement was high (kappas = .88–.97).

Working memory

Children’s WM capacity was measured using the backward digit span task from the

Wechsler Intelligence Scale for Children (WISC-IV) Working Memory index (Wechsler

2003). Children were read a series of numbers at a rate of one per second and were asked to

repeat the numbers in reverse order. Number series length began at two and ended at a
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maximum of eight. There were two items per series length. The task was discontinued

when a child recalled both items in a series of a given length incorrectly. WM scores

consisted of the number of series that the child correctly recalled in backward order.

Cognitive load

Three items measured children’s subjective cognitive load during the intervention. Cog-

nitive load is rarely measured in young children, and we are not aware of any validated

measures of cognitive load for this age group. Thus, we adapted the language from three

existing items used with older children or adults. The first item was a subjective rating of

task difficulty adapted from Paas (1992), a measure used frequently to assess cognitive

load in adolescents and adults (see Paas et al. 2003). Children were asked, ‘‘How easy or

hard was it to solve all of those problems?’’ and responded on a 7-point scale ranging from

Table 1 Procedural items from
the math equivalence assessment
form 2

Cronbach’s alphas are from the
retention test

Procedural learning items
(a = .67)

Procedural transfer items
(a = .76)

8 = 6 ? h h ? 2 = 6 ? 4

3 ? 4 = h ? 5 8 ? h = 8 ? 6 ? 4

3 ? 7 ? 6 = h ? 6 5 ? 6 – 3 = 5 ? h

7 ? 6 ? 4 = 7 ? h 5 – 2 ? 4 = h ? 4

Table 2 Conceptual items from the math equivalence assessment form 2

Conceptual knowledge items (a = .72) Scoring criteria

1. Reproduce 4 ? 3 ? 9 = 4 ? h from memory after
viewing for 5 s

Reconstruct numerals, operators, equal sign and
blank in correct location

2. Reproduce 8 ? 6 ? 3 = h ? 2 from memory after
viewing for 5 s

Same as above

3. What does the equal sign (=) mean? Provide relational definition (e.g., the same
amount as)

4. What goes in the box to show that 10 cents is the same
mount of money as 1 dime?

Select the equal sign (=) from four options

5. Judge 3 = 3 and 7 = 3 ? 4 as true or false Judge both equations as true

6. Judge 31 ? 16 = 16 ? 31 and 7 ? 6 = 6 ? 6 ? 1
as true or false

Same as above

7. Is this a good definition of the equal sign? (Given three
definitions to rate)

Rate ‘‘two amounts are the same’’ as a good
definition of the equal sign

8. Which definition above is the best definition of the
equal sign?

Select ‘‘two amounts are the same’’ as best,
over ‘‘add’’ and ‘‘the answer to the problem’’

9. Decide if 6 ? 4 = 5 ? 5 is true and explain how you
know

Judge equation as true and explain that both
sides of the equal sign are the same amount

10. In the statement: 1 dollar = 100 pennies; What does
this equal sign mean?

Provide relational definition

Cronbach’s alphas are from the retention test
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very, very easy to very, very hard. The remaining two items were modified from the NASA

Task Load Index (Hart and Staveland 1988), a measure used in previous studies with adults

to assess cognitive load (e.g., Rey and Buchwald 2011; Zumbach and Mohraz 2008). The

two items measured frustration (‘‘I was stressed and irritated when I solved those prob-

lems.’’) and effort (‘‘I had to work hard to solve those problems.’’). Children indicated their

agreement on a 5-point scale. At least one study has directly compared the efficacy of both

the NASA-TLX and the Paas (1992) item as measures of cognitive load during learning

(Wiebe et al. 2010). They found that both measures were predictive of learning outcomes

and sensitive to changes in cognitive load.

Because cognitive load scales have rarely been employed with children, we included

three different items to explore how they functioned in a sample of elementary-school

children. On the task difficulty item (M = 5.1 out of 7.0, SD = 1.4, min = 2, max = 7),

approximately 60 % of children selected a 5 or higher. On the frustration item (M = 3.1

out of 5.0, SD = 1.4, min = 1, max = 5), an approximately equal percent of children

selected each response. Finally, on the mental effort item (M = 4.1 out of 5.0, SD = 1.2,

min = 1, max = 5), the distribution was more skewed with the majority of children

selecting a 4 or 5. We analyzed the three measures of cognitive load separately, in line with

past research (e.g., Rey and Buchwald 2011), as each taps a different aspect of cognitive

load (effort, frustration, task difficulty). Indeed, cronbach’s alpha across the three items

was very low (a = .12).

Procedure

Children completed a written pretest in their classrooms in one 30-minute session. Within

1 week, those who met the inclusion criteria (scored\ 80 % on the conceptual and pro-

cedural pretest measures) completed a one-on-one tutoring intervention and an immediate

posttest in a single session lasting approximately 50 min. The tutor was one of two female

experimenters who were trained to administer the intervention, and the intervention took

place in a quiet room at the child’s school. The intervention began with an exploratory

problem-solving phase. Children in both conditions were asked to solve 12 math equiva-

lence problems presented with paper and pencil. After each problem, children reported

either their strategy or their answer and received feedback on that report. This ensured the

condition manipulation was clean and strong; only children in the strategy-feedback

condition were encouraged to attend to their strategy and only children in the outcome-

feedback condition were encouraged to attend to their answer.

In the strategy-feedback condition, children reported how they solved each problem and

then received verification feedback on that strategy (see Table 3 for example strategy

reports). Specifically, the experimenter repeated the child’s strategy and stated whether it

was a correct or an incorrect strategy. For example, if a child reported using the incorrect

add-to-equal strategy on the problem 5 ? 3 ? 9 = 5 ? __ (see Table 3), the experimenter

repeated the child’s report: ‘‘Good try, but that is not a correct way to solve the problem.

Adding these three numbers (points to 5, 3, and 9) and putting the answer is not a correct

way to solve this problem.’’ The experimenter restated the strategy just as the child stated it

to ensure no extra information was given. The strategy feedback was based solely on the

child’s strategy and did not depend on the numerical answer. For example, if a child

reported using a correct strategy but obtained an incorrect answer (e.g., due to an arith-

metic error), the experimenter provided feedback that the strategy was correct and did not
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comment on the correctness of the numerical answer. Mismatches between the correctness

of strategies and numerical answers occurred on less than 3 % of all trials.

In the outcome-feedback condition, children reported their numerical answer and then

received verification feedback on their answer. Specifically, the experimenter repeated the

child’s answer and stated whether it was a correct or an incorrect answer. If the answer was

correct, the experimenter said, ‘‘Good job! You got the right answer. [Child’s answer] is

the correct answer.’’ If the answer was incorrect, the experimenter said, ‘‘Good try, but you

did not get the right answer. [Child’s answer] is not the correct answer.’’ The outcome

feedback was based solely on the children’s numerical answers, regardless of how they

derived their answers.

Immediately following the exploratory problem-solving phase, children rated their

subjective cognitive load using three different items. This rating was followed by a con-

ceptual instruction phase during which all children received brief instruction on the

meaning of the equal sign with number sentences as examples (e.g., 3 ? 4 = 3 ? 4). The

experimenter identified the two sides of the number sentences, provided an explicit defi-

nition of the equal sign (as meaning ‘‘the same amount as’’), and explained how the left and

right sides of the number sentences were equal. Children were asked simple questions to

ensure they were attending to the instruction, but no solution strategies were discussed. At

the end of the intervention, we administered the posttest and then measured children’s WM

capacity. Approximately 2 weeks after the intervention session, children completed the

retention test in their classrooms.

Data analysis

We used analysis of variance models to test our hypotheses. The goal was to determine

whether the effect of condition (outcome- vs. strategy-feedback) depended on individual

differences in WM capacity. That is, we examined whether WM capacity changed the

strength or direction of the relationship between condition and learning outcomes. As

mentioned previously, we predicted that lower WM capacity learners may benefit more

from outcome-feedback, but that strategy-feedback may be as or more effective for higher

WM capacity learners. Thus, we included the primary independent variable (condition), the

hypothesized moderator (WM capacity), and their interaction in the models. A significant

interaction indicated that WM capacity moderated the effect of condition. Primary

dependent variables included children’s percent correct on procedural learning, procedural

transfer, and conceptual knowledge (at both posttest and retention test). We also examined

the three indicators of cognitive load (ratings of effort, frustration, and task difficulty) as

secondary dependent measures. For the primary dependent measures, time (posttest and

retention test) was included as a within-subject factor in the ANCOVA model. Procedural

and conceptual pretest scores and age were included as covariates in all models. Explor-

atory analyses revealed no interactions with pretest scores or age so these interaction terms

were not retained.

Results

Pretest performance

Children had low to moderate knowledge of math equivalence at pretest. Children’s per-

formance on the procedural items at pretest (M = 28 %, SD = 20 %) did not differ as a
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function of condition, F\ 1.1, or WM capacity, r = .04, p = .73. Similarly, children’s

performance on the conceptual items at pretest (M = 18 %, SD = 18 %) did not differ as a

function of condition, F\ 1, or WM capacity, r = –.004, p = .97. Even though no dif-

ferences between conditions were found, children’s procedural and conceptual pretest

scores were included as covariates in all subsequent analyses to control for prior knowl-

edge. Age was also included as a covariate in all analyses, though it did not differ as a

function of condition, F\ 1, or WM capacity, r = .03, p = .80.

Posttest and retention test performance

Procedural learning

At posttest, children’s performance on the procedural learning items was moderate

(M = 42 %, SE = 5 %), and remained similar 2 weeks later (M = 36 %, SD = 5 %).

There were no effects of time, Fs\ 2.4. Further, procedural learning did not differ as a

function of condition, WM, or their interaction, Fs\ 1. Thus, in general, children solved

problems like those presented during the intervention moderately well following the

intervention.

Procedural transfer

Children’s procedural transfer was also moderate at posttest (M = 31 %, SE = 4 %) and

remained similar 2 weeks later (M = 25 %, SE = 4 %). There were no effects of time,

Fs\ 2.2, condition, F\ 1, or WM, F\ 1. However, there was a significant condition by

WM interaction, F(1, 57) = 5.46, p = .02, gp
2 = .09. To explore this interaction, we

examined the impact of condition at one standard deviation below (lower WM) and above

(higher WM) the mean (see Fig. 1). This was accomplished by centering WM at one

standard deviation below the mean in one model and at one standard deviation above the

mean in a separate model, as recommended by Aiken and West (1991). As shown in Fig. 1,

for children with lower WM capacity, strategy-feedback resulted in significantly lower

transfer performance (M = 27 %) than outcome-feedback (M = 57 %), F(1, 57) = 4.84,

p = .03, gp
2 = .08. In contrast, for children with higher WM capacity, strategy-feedback

Table 3 Strategies used to solve
math equivalence problems

Strategy How did you solve that problem?
(5 ? 3 ? 9 = 5 ? __)

Correct strategies

Equalize 5 plus 3 plus 9 is 17 and I know 5 plus 12 is 17

Add-
subtract

I added 5, 3, and 9 and got 17, and 17 minus 5 is 12

Grouping There was already a 5, so I just added 3 and 9

Incorrect strategies

Add all I added all of them together

Add-to-
equal

I added these three (points to 5, 3, and 9) and put the
answer

Carry There’s a 3 here so I put a 3 here

Other I know 5 plus 3 is 8. Then I just put 7 because it’s 1
less
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(M = 45 %) resulted in relatively higher transfer performance than outcome-feedback

(M = 30 %), although this effect did not reach significance, F(1, 57) = 1.24, p = .27,

gp
2 = .02.

Even though there were no significant effects of time, we verified that the condition by

WM interaction was consistent across both posttest and retention test. Specifically, we

conducted separate ANCOVAs for each test occasion. The condition by WM interaction

was significant at posttest, F(1, 57) = 4.13, p = .05, gp
2 = .07, and marginal at retention

test, F(1, 57) = 3.15, p = .08, gp
2 = .05. Overall, WM moderated the impact of condition

on procedural transfer, and this effect was consistent across time. Strategy-feedback led to

lower transfer than outcome-feedback for children with lower WM capacity, but feedback

type did not significantly impact transfer for children with higher WM capacity.

Conceptual knowledge

Children demonstrated good conceptual knowledge at posttest (M = 50 %, SE = 3 %),

although it dropped somewhat 2 weeks later (M = 40 %, SE = 3 %), as indicated by a

main effect of time, F(1, 57) = 23.91, p\ .001, gp
2 = .30. There were no significant

interactions with time, Fs\ 2.6. There was a main effect of WM, F(1, 57) = 7.55,

p = .01, gp
2 = .12. Children with higher WM capacity exhibited higher conceptual

knowledge than children with lower WM capacity (see Fig. 2). There was no main effect

of condition, F\ 1, nor did condition interact with WM, F\ 1.2. Even though there were

no interactions with time, we confirmed that the main effect of WM was significant at

posttest, F(1, 57) = 10.80, p = .002, gp
2 = .16, and marginal at retention test, F(1,

57) = 3.71, p = .06, gp
2 = .06.

Cognitive load

Children in the strategy-feedback condition reported higher levels of effort and frustration

than children in the outcome-feedback condition (effort: M = 4.4 out of 5.0, SE = 0.2 vs.

Fig. 1 Procedural transfer scores by feedback condition and working memory capacity Scores are
estimated based on posttest and retention test scores. Nonstandardized coefficients are plotted at ± 1 SD
from the mean
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M = 3.8, SE = 0.2, F(1, 56) = 4.31, p = .04, gp
2 = .07; frustration: M = 3.5 out of 5.0,

SE = 0.2 vs. M = 2.8, SE = 0.2, F(1, 57) = 4.73, p = .03, gp
2 = .07). Ratings of task

difficulty did not differ by condition, (M = 5.1 out of 7.0, SD = 1.4), F(1, 57) = 1.34,

p = .25, gp
2 = .02. There were no main effects of WM, nor did condition interact with

WM for any measure, F’s\ 1.2. Overall, these results suggest that strategy-feedback

resulted in higher perceived effort and frustration than outcome-feedback, regardless of

WM capacity.

Discussion

The effects of feedback on learning are powerful, though inconsistent (e.g., Kluger and

DeNisi 1996), suggesting that some types of feedback are more effective than others. We

examined the effect of feedback type on children’s mathematics problem solving and

whether individual differences in WM capacity moderated their relative effectiveness.

During problem solving, children received verification feedback on their answers (out-

come-feedback) or on their strategies (strategy-feedback). In contrast to researchers’

suggestions (e.g., Earley et al. 1990; Luwel et al. 2011), we found no evidence that

feedback on strategies is more beneficial than feedback on outcomes, and some evidence

that it can be detrimental. For children with higher WM capacity, the differences between

feedback conditions were not reliable. For children with lower WM capacity, strategy-

feedback was less effective than outcome-feedback on subsequent measures of procedural

transfer—the ability to solve novel problems—and this was consistent across time. Thus,

we provide evidence for an aptitude by treatment interaction in which the effects of

feedback type depend on learners’ WM capacity (e.g., Cronbach and Snow 1977).

Cognitive load theory suggests one potential reason for the moderating effects of WM

capacity. Children who received strategy-feedback reported higher levels of mental effort

Fig. 2 Conceptual knowledge scores by feedback condition and working memory capacity Scores are
estimated based on posttest and retention test scores. Nonstandardized coefficients are plotted at ± 1 SD
from the mean
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and frustration than children who received outcome-feedback. Although these ratings did

not differ as a function of WM capacity, the increased perceptions of cognitive load may

have been more detrimental for children with lower WM capacity. Specifically, the

demands of strategy-feedback may have overwhelmed their limited WM resources and

thus hindered their ability to process the problems in a deep manner (Sweller 1988). Even

if strategy-feedback increased germane load, which is related to productive, effortful

processing, the total cognitive load may have consumed too much attention and effort and

thus hindered transfer (e.g., Sweller et al. 1998). In contrast, the direct, familiar outcome-

feedback may have been processed more easily, freeing up more resources to focus on the

problems. Children with higher WM capacity, however, were less impacted by feedback

type. Higher-capacity children may have had sufficient resources to process either feed-

back type without experiencing detrimental effects of excessive cognitive load (Sweller

et al. 1998). These findings support a growing number of studies focused on the potential

consequences of cognitive overload in learning settings (e.g., Kalyuga, 2007; Mayer and

Moreno 2003). As Sweller et al. (1998) note, ‘‘any instructional design that flouts or merely

ignores WM limitations inevitably is deficient’’ (p. 253).

Although cognitive load theory provides a plausible explanation of the current results,

this explanation should be interpreted with some caution. The empirical support in the

current study is weak at best. Indeed, although cognitive load differed by condition, there

was no effect of WM capacity nor did it interact with condition. Further, the cognitive load

results are exploratory given the lack of a valid scale for this age group. Although we

adapted existing items to be suitable for young children, it remains unclear whether eight-

year-old children are capable of assessing their mental effort, their frustration, or task

difficulty. The measurement of cognitive load is a frequent limitation, even among studies

with adults (e.g., de Jong, 2010; Kalyuga 2011). Indeed, Kirschner et al. (2011)identify the

subjective measurement of cognitive load as the ‘‘ugly side of [cognitive load theory]

research’’ (p. 104). We acknowledge that the current study is no exception, but also note

that cognitive load theory is primary centered around the optimal use of WM capacity,

which is the key construct considered here.

Indeed, the current results contribute to a body of literature indicating that WM capacity

is an important cognitive construct that should be considered in learning contexts (e.g.,

Alloway 2006; Beilock and DeCaro 2007; Sweller et al. 1998). In the current study, higher

WM capacity was associated with higher conceptual knowledge of math equivalence after

the intervention, and it also impacted how children responded to feedback type on a

measure of procedural transfer. WM is thought to play an important role in a wide range of

tasks relevant to learning, including reasoning and problem solving, and it also accounts

for a significant portion of variance in general intellectual ability (cf. Conway et al. 2005;

Engle et al. 1999). The present study suggests the need to consider individual differences in

learners’ WM capacity in relation to the instructional method employed and the cognitive

load inherent in learning contexts. Specifically, children with lower WM capacity may

experience difficulty, and thus fall behind in learning settings, when feedback demands

exceed their limited resources. This finding is consistent with calls to be mindful of lower

WM capacity in learning contexts and to simplify instructional practices when possible

(e.g., Alloway 2006). Indeed, Alloway (2006) suggests that that the working demands of

many classroom activities may be one reason for the poor achievement of low capacity

learners. A natural tendency is to provide more information to struggling learners, but this

additional information may inadvertently harm learning.

In this study, children received exploratory problem solving followed by brief

instruction. A number of researchers in psychology and education have recently endorsed
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this explore-instruct approach (e.g., Hiebert and Grouws 2007; Kapur 2011; Schwartz et al.

2011). For example, Schwartz et al. (2011) suggest that problem exploration prepares

learners for future instruction by promoting attention to key problem features. Prior

exploration can also create opportunities for productive failure, in which learners experi-

ence difficulty discovering correct solution, but ultimately process the learning material at

a deeper level (Kapur 2011). Increasing evidence supports the benefits of this approach

(DeCaro and Rittle-Johnson 2012; Kapur 2011, 2012; Schwartz and Martin 2004; Schwartz

et al. 2011) and our goal was to consider the effects of feedback type and WM capacity

within this particular context

A limitation of the present results concerns differences between the conditions in the

current study. Although we focused on the type of feedback provided, the conditions also

differed with respect to the type of verbal report asked of the child. In the strategy-

feedback condition, children reported how they solved the problem and received feedback

on that strategy. In the outcome-feedback condition, children reported their final numerical

answer and received feedback on that solution. This difference was intended to focus

children’s attention on the content of the subsequent feedback message. However, one

possibility is that describing one’s strategy is more cognitively demanding than reporting

one’s answer, and that this difference (rather than the difference in the feedback provided)

led to the current results. Although we acknowledge this as a limitation, previous research

suggests that obtaining verbal reports of strategy use does not influence performance, as

indicated by similar patterns of learning when reports are and are not requested (McGilly

and Siegler 1990).

A further limitation is the absence of a condition in which children receive both types of

feedback. For example, giving children outcome-feedback on some trials and strategy-

feedback on others may have provided additional insight into how children respond to the

cognitive demands of each feedback type. Also, providing both types of feedback on the

same trial may have revealed key advantages (or disadvantages) the combination can offer

relative to presenting one feedback type alone. In the current study, we systematically

manipulated whether children received outcome-feedback or strategy-feedback in order to

tease apart the cognitive demands of the different feedback types (see also Luwel et al.

2011). In future work, we hope to examine how various combinations of outcome- and

strategy-feedback influence learning.

Future research is also necessary to examine the cognitive resources required to use

different types of feedback effectively. In this study, we focused on two types of verifi-

cation feedback that focused on numerical answers or domain-specific problem-solving

strategies. Yet, feedback can focus on other content relevant to learning and performance,

such as metacognitive strategies, effort, or speed (cf. Kluger and DeNisi 1996), and it can

include additional information such as the correct answer or elaborate explanations

(Dempsey et al. 1993). For example, Moreno (2004) provides some evidence that pro-

viding explanatory feedback can reduce cognitive load relative to correct-answer feedback

alone. Finally, feedback can be used for a variety of purposes, other than correcting

problem-solving errors. Feedback may also be used to increase motivation or productivity

(Kim and Hamner 1976), to trigger metacognitive awareness (Kulhavy and Stock 1989), or

to alter learners’ expectations about their selves or the task (Leary et al. 2009). Clearly,

more work is needed to examine the role of WM in learning from the wide variety of

feedback types not investigated here.

Additionally, future work should examine the generalizability of the present results

across settings, domains, and populations. For example, the brief, experimental one-on-one

session is quite dissimilar from many learning settings. Also, feedback may have more
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pronounced effects in domains with common misconceptions, such as math equivalence,

because one of the primary functions of feedback is to correct errors (e.g., Anderson et al.

1972). Finally, our sample included typical children in U.S. elementary schools; thus, these

findings may not generalize to at-risk children or children educated in other countries.

Despite these limitations, the current study provides insight into the role of feedback in

learning contexts. Specifically, this study demonstrates that the optimal type of feedback

can depend on individual differences in WM capacity. Although previous research sug-

gests that feedback on strategies can provide rich and useful information, this information

might become cognitively burdensome during problem solving, particularly for those

children with lower WM capacity. Thus, the current results caution against recommending

strategy-feedback as a universally effective practice. By considering the cognitive pro-

cessing elicited during learning, as well as the capacity of a learner to benefit from this

processing, we can better understand the mechanisms by which instructional settings

improve (or detriment) learning and transfer. Problem solving may be optimized when

characteristics of both the learner and the learning environments are carefully considered.
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