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Abstract—The ability to update firmware is a feature that is
found in nearly all modern embedded systems. We demonstrate
how this feature can be exploited to allow attackers to inject ma-
licious firmware modifications into vulnerable embedded devices.
We discuss techniques for exploiting such vulnerable functionality
and the implementation of a proof of concept printer malware
capable of network reconnaissance, data exfiltration and propa-
gation to general purpose computers and other embedded device
types. We present a case study of the HP-RFU (Remote Firmware
Update) LaserJet printer firmware modification vulnerability,
which allows arbitrary injection of malware into the printer’s
firmware via standard printed documents. We show vulnerable
population data gathered by continuously tracking all publicly
accessible printers discovered through an exhaustive scan of
IPv4 space. To show that firmware update signing is not the
panacea of embedded defense, we present an analysis of known
vulnerabilities found in third-party libraries in 373 LaserJet
firmware images. Prior research has shown that the design flaws
and vulnerabilities presented in this paper are found in other
modern embedded systems. Thus, the exploitation techniques
presented in this paper can be generalized to compromise other
embedded systems.

Keywords-Embedded system exploitation; Firmware modifica-
tion attack; Embedded system rootkit; HP-RFU vulnerability.

I. INTRODUCTION

Modern embedded devices exist in large numbers within our

global IT environments and critical communication infrastruc-

tures. Embedded systems like routers, switches and firewalls

constitute the majority of our global network substrate. Special

purpose appliances like printers, wireless access points and IP

phones are now commonplace in the modern home and office.

These appliances are typically built with general purpose,

real-time operating systems using stock components. They

are capable of interacting with general purpose computers as

general purpose computers themselves.

The diverse and proprietary nature of embedded device

hardware and firmware is thought to create a deterrent against

effective wide-spread exploitation. While such claims of em-

bedded security fundamentally reduce to security through ob-

scurity, it is nonetheless claimed by embedded device vendors

to provide security for their products [1].

To demonstrate that such claims of embedded security are

overly optimistic and that emerging embedded exploitation

techniques and embedded system malware pose a threat to the

security of our existing networks, we present the following

four contributions:

General firmware modification attack description: We

present firmware modification attacks, a general strategy that

is well-suited to the exploitation of embedded devices. This

strategy aims to make arbitrary, persistent changes to victim

devices’ firmware by leveraging design flaws commonly found

within embedded software. Firmware modification attacks

can affect entire families of devices adhering to the same

system design flaw, transcending operating system versions

and instruction set architectures. The HP-RFU vulnerability

presented in this paper affects MIPS- and ARM-based printers

alike, regardless of their underlying software implementation.

We discuss the general preconditions for and the process

of leveraging firmware modification attacks against modern

embedded devices.

HP LaserJet firmware modification case study: We use

a firmware modification vulnerability recently discovered by

the authors in nearly all HP LaserJet printers [2] to present

a real-world case study of the development cycle of such

attacks against common embedded devices. We present the

threat model characterization, vulnerability analysis and threat

assessment of HP-RFU and show a full exploit against the

vulnerability. The entire process, from discovery to the im-

plementation of the final attack and malware package, took

approximately two months, was carried out using public ven-

dor information readily available on the Internet and required

a hardware budget of under $2,000. This attack is effective

against the majority of LaserJet printers currently in produc-

tion and affects a large number of installed devices. While it

is difficult to divine the actual size of the vulnerable device

population, HP shipped 11.9 million such units in a single

quarter of 2010 alone [3].
The design flaws identified in the HP remote firmware

update functionality can be seen in other modern embedded

systems. Thus, the attack strategy we present can be general-

ized and applied to other vulnerable embedded device types.

We discuss the offensive potential of our proof of concept

printer malware and its impact on the efficacy of traditional

network defense doctrine.

Vulnerable population / patch propagation analysis: The

severity of the HP-RFU attack is further increased due to the



ubiquitous nature of the vulnerable population. While firmware

fixes have been released by the vendor, mitigation of the vul-

nerability discussed in this paper ultimately depends on end-

users diligently updating firmware. Applying firmware updates

on mission-critical embedded systems can be cumbersome and

daunting [4]. It is not surprising that we have found that this

diligence is lacking, which favors the attacker.

We present the results of exhaustive scans of IPv4 to show

the distribution of all publicly accessible, vulnerable LaserJet

printers on the Internet. We have identified over 90,000 unique

vulnerable printers inside numerous government organizations,

educational institutions and other sensitive environments. We

periodically fingerprint the specific firmware version of each

tracked device in order to analyze the rate and pattern of

firmware patching throughout the world. We believe this

data will shed light on the inefficacy of the patch cycle

for large populations of embedded devices as compared to

patch propagation patterns within general purpose computer

populations. Firmware patch propagation data for the first

two months following the official release of firmware updates

for 53 printer models [5] is presented in this paper. Initial

data indicates a global patch level of approximately 1.08%.

Furthermore, 24.8% of all patched printers still had open telnet

interfaces with no root password configured (a default setting).

Vulnerable third-party library analysis: Mandatory firm-

ware update signature verification was introduced by the

vendor on some vulnerable LaserJet printer models following

the disclosure of the HP-RFU vulnerability. This mitigates

the specific vulnerability discovered by the authors. However,

mandatory firmware signature verification allows known vul-

nerable code to be signed and verified. It does not remove the

actual vulnerabilities within the signed firmware, nor will it

detect or mitigate the exploitation of the actual vulnerability.

We present the results of automated analysis of a large

collection of LaserJet printer firmwares released over the last

decade, including the latest firmwares released in response to

the HP-RFU disclosure. We analyzed all publicly available

firmware images for 63 models of HP LaserJet printers.

By cross-referencing the specific version numbers of third-

party libraries like OpenSSL and zlib found within firmware

updates with known vulnerabilities for those specific library

versions, we conclude that a large number of vendor-issued

firmwares are released with multiple known vulnerabilities. In

some cases, we identified recently released firmware updates

containing vulnerabilities in third-party libraries that have been

known for over eight years. We identified third-party libraries

with known vulnerabilities in 80.4% of all firmware images

analyzed.

The remainder of this paper is organized as follows: Sec-

tion II describes the general firmware modification attack

strategy and surveys such existing attacks against embedded

devices. Section III discusses the discovery of the HP-RFU

vulnerability and the subsequent proof of concept attack and

malware development. Section IV discuss the real-world offen-

sive potential of our proof of concept attack. The distribution

of publicly accessible vulnerable LaserJet printers and initial

firmware patch propagation telemetry is presented in Sec-

tion V. Vulnerable third-party library analysis of 373 vendor-

issued firmware updates is presented in Section VI. We survey

related works and ongoing work in the area of host-based

embedded defense and vulnerability analysis in Section VII.

Lastly, we propose recommendations for hardening embedded

devices against attacks described in this paper in Section VIII

and present our concluding remarks in Section IX.

II. FIRMWARE MODIFICATION ATTACK

Firmware modification attacks aim to inject malware into

the target embedded device. Predictions of firmware modifi-

cation attacks against printers are almost a decade old [6].

Firmware modification attacks can be carried out either as

standalone attacks or as secondary attacks following initial

exploitation using traditional attack vectors.

Standalone firmware modification attacks manipulate firm-

ware update features instead of exploiting flaws in the victim

software. For example, the firmware modification case study

presented in Section III utilizes the remote firmware update

feature within HP LaserJet printers. This attack vector is not

unique to the vulnerable devices discussed in this paper. Other

ubiquitous embedded systems like ATM machines, smart

battery controllers, keyboards, enterprise routers and PBX

equipment are also vulnerable to such attacks. Similar stan-

dalone firmware modification attacks [7]–[12] have recently

been reported.

The standalone firmware modification strategy is well-suited

to embedded exploitation in general for the following reasons:

Feasibility: Firmware update is an ubiquitous feature found

in modern embedded devices. Previous work [7], [13], [14]

shows that a large number of embedded devices have firmware

update features that are not sufficiently protected by proper

user authentication. Many devices that require authentication

before allowing firmware updates are vulnerable to trivial

administrative interface bypass attacks [15]. Furthermore, net-

booted embedded devices that use insecure protocols like

TFTP to retrieve their configurations and firmware are vul-

nerable to standard OSI Layer 2 attacks.

Fail-Safe: Firmware update mechanisms usually mandate

integrity and model verification prior to execution of the

actual firmware modification. Malicious firmware update pack-

ages sent to incompatible embedded devices are rejected

and ignored. This relaxes the reconnaissance and accuracy

requirements for the attacker and reduces the penalty of a

misdirected attack. For example, the final malicious binary

described in Section III contains a single RFU image targeting

a precise printer model. However, if the exact model of the

victim printer is unknown, multiple malicious RFU commands

covering all potential printer models can be sent sequentially

without damaging the printer. Furthermore, each RFU com-

mand need not contain a full printer OS image, which is at

least several megabytes in size. A bare-bones OS boot loader

can be sent instead. Such a loader will be at most be several



hundred kilobytes in size (the development of this offensive

technique is outside the scope of this paper).

Platform Independence: Attacks that manipulate firmware

update features within the vulnerable device do not need to

depend on specific software vulnerabilities in the victim and

will generally work across many models of the same device,

even across different machine architectures. For example, the

HP-RFU vulnerability manipulates a feature of the LaserJet

firmware, which is supported across nearly all printer models

and is common among MIPS- and ARM-based devices.

While mandatory firmware signature verification can mit-

igate standalone firmware modification attacks, this counter-

measure is not the panacea of embedded security. Firmware

modification attacks can be carried out as a secondary payload

following the successful exploitation of the embedded de-

vice via traditional vectors like memory modification attacks.

Firmware content is typically stored in rewritable, nonvolatile

memory like flash. Embedded operating systems generally

lack the fine-grain privilege separation and execution isolation

found in modern operating systems; even when available in

later builds, vendors oftentimes choose to not utilize these

memory isolation features. Furthermore, for embedded oper-

ating systems with process and memory isolation, vulnerabil-

ities within the kernel or privileged processes can still allow

an attacker to make persistent changes to the device. For

example, prior research has demonstrated that it is possible

to make persistent modifications to the boot ROM portion of

enterprise routers using only software operations [16]. Thus,

countermeasures like authentication and firmware signature

verification cannot fully prevent firmware modification attacks

on embedded systems with vulnerable attack surfaces.

Section III illustrates the development cycle of a typical

firmware modification attack and embedded malware. Sec-

tion VI presents vulnerable third-party library analysis for a

large corpus of HP LaserJet firmware images.

III. CASE STUDY: HP LASERJET EXPLOITATION

The HP-RFU firmware modification vulnerability [2] was

discovered unintentionally when the authors attempted to

inject host-based defenses into network printers. The HP

LaserJet family was chosen because of its popularity and

commanding market share [3]. The LaserJet P2055DN model

was chosen as our initial target device.

Analysis of the HP LaserJet firmware revealed a reliably

exploitable design flaw that allows remote attackers to make

persistent modifications to the printer’s firmware by printing

to it.

In order to inject host-based defenses into any target hard-

ware, the original firmware must be unpacked and analyzed.

In the case of prior work on Cisco IOS routers, this process

was straightforward1. However, unpacking and analyzing HP

LaserJet firmware images presented several challenges. Fig-

ure 8 of the Appendix shows the hex dump of a RFU file.

1IOS images are simple ZIP files with slightly non-standard headers.

The remote firmware update for the P2055DN printer begins

with standard PJL (Printer Job Language) but enters into an

undocumented language called ACL. Approximately 7 MB

of binary data follows. Initial static analysis2 revealed no

recognizable filesystem headers and no function preambles for

any known machine architecture inside the RFU binary.

Without further analysis, a key design flaw became appar-

ent: the firmware modification mechanism is coupled with the

printing subsystem, which must accept incoming requests in

an unauthenticated manner as per general specification. As

confirmed by vendor documentation [17], the RFU file is

printed to the target device via the raw-print protocol over

standard channels like TCP/9100, LPD and USB. Various

other vendors also use the same update strategy.

When a print job is received by the printer’s job-parsing

subsystem, a proprietary mechanism is used to determine

the presence of a valid firmware update package. If a PJL

command containing a valid RFU package is present, the

integrity of the RFU payload is verified and decompressed.

The payload’s unpacked binary data is then written to persis-

tent storage within the target printer, thereby modifying the

printer’s firmware.

Once the RFU binary structure was obtained through stan-

dard hardware and software reverse engineering methods, we

discovered that it was possible to pack arbitrary executable

code back into a legitimate RFU package in a PJL com-

mand. This command can then be embedded into a malicious

document or sent directly to the victim printer to arbitrarily

and persistently modify its firmware. Such an attack does

not affect the printing of the legitimate carrier document

and only makes the printer unavailable for approximately 90

seconds. The printer will continue to respond to network

requests throughout most of the firmware update process.

Thus, the attack will likely go completely unnoticed by users

and network monitoring systems.

Fig. 1. Byte value distribution histogram of a typical RFU file. Distribution
suggests that the data is compressed and not encrypted.

2We used standard industry practices of loading the image into IDA Pro,
fixing the memory mapping, and so forth. A detailed discussion of reverse
engineering is outside the scope of this paper.



A. Discovery Process

Initial static analysis of the original RFU binary revealed

no printable strings, no known filesystem headers nor rec-

ognizable executable binaries. We concluded that the binary

payload was likely either encrypted or compressed. Figure 1

shows the byte distribution histogram for a typical RFU binary

payload for the P2055DN printer. The histogram suggests that

the binary blob is compressed and not encrypted as common

encryption algorithms typically generate high-entropy cipher-

text, which was not observed.

Manual inspection of the binary revealed a simple package

header structure containing a short checksum field followed

by multiple entries of the same data structure, containing

the compressed and uncompressed size of each firmware

component as well as its target address within the printer’s

persistent storage address space. This header is shown in

Figure 9 of the Appendix.

Fig. 2. Formatter board for LaserJet P2055DN. Dump of the onboard SPI
flash revealed RFU format and integrity checking algorithm.

The printer’s formatter board hardware components were

desoldered and reverse engineered. Figure 2 shows the actual

formatter board inside the target device. Figure 3 illustrates the

main components found on the P2055DN’s primary control

(formatter) board. Manual inspection revealed that the system

was powered by a Marvell SoC. Aside from the machine

architecture (ARM), no other information was publicly avail-

able due to the proprietary nature of the chip. However, the

SPI flash chip is a stock component with a publicly available

datasheet.

The main SoC on the formatter board uses the Spansion

flash chip as a boot device. This chip has 8 MB of storage

and communicates with the main Marvell SoC via a Serial

Peripheral Interface (SPI) using a simple command protocol

defined in its datasheet. In order to extract the contents of

the flash chip, a SPI chip dumper was implemented using an

Arduino [18] to perform the actual I/O. Figure 4 shows the

physical hardware setup connecting the SPI boot flash chip to

the Arduino board.

Analysis of the boot loader code revealed the binary struc-

ture and compression algorithm used in the RFU format.

Manual inspection of the flash chip content revealed a boot

image layout shown in Figure 5.

ELPIDA
E1116AL

DDR Memory

MARVELL
88e11118

Gigabit Ethernet

SPANSION
FL064P

SPI-Flash (boot)

NEC
RH4-0214-05

Engine Controller

Marvell 
88PA2AL2-TAH1

ARM SoC

Formatter Board

Fig. 3. Logical block diagram of the major components used on the LaserJet
P2055DN formatter board. The Spansion boot flash was key to our reverse
engineering effort.

A factory reset RFU image was found inside the boot

flash. This image is immediately preceded by a boot loader

containing the code that validates and parses RFU images. IDA

Pro [19] disassembled the boot loader binary. The resulting

assembly code revealed that the RFU image is validated using

a trivial checksum function and compressed using a common

algorithm.

Fig. 4. The SPI flash chip was physically removed then connected to an
Arduino for boot code extraction.

Furthermore, the specific version of the compression library

used to process RFU images appear to have several known

arbitrary code execution vulnerabilities [20]–[22]. Section VI

presents an analysis of vulnerable third-party libraries found

in a large number of firmware images released by the vendor.

B. Proof of Concept Printer Malware

Static analysis of the extracted boot flash code revealed

the precise RFU binary structure, checksum and compression

algorithms used. This information allowed the authors to write

HPacker, a tool that takes an uncompressed ARM ELF image

as input and returns a valid compressed PJL update command

as output.

The malicious PJL command can be printed directly to the

target printer or embedded within various document formats

(an example is included in Figure 10 of the Appendix). Either



P2055DN Boot-Flash Layout

0x000000 - 0x800000

L1-BootLoader

Factory-Reset RFU

SecStore Area

Fig. 5. Boot image layout on the SPI flash chip. The level-1 boot loader
contains code that validates, unpacks and decompresses the factory reset RFU
allowing us to reverse engineer the binary RFU format and compression
algorithm.

way, once the PJL command is sent to the victim printer, it

will recognize the print job as containing a valid firmware

update and allow the attacker to make arbitrary modifications

to the victim’s firmware storage area.

The unpacked RFU package for the P2055DN contains over

a dozen files. The main file of interest is the binary OS image,

a single 14 MB ELF image containing the VxWorks operating

system and various other vendor-specific additions.

The creation of the proof of concept malware essentially

reduced to creating a VxWorks rootkit capable of:

• Command and control via covert channel

• Print job snooping and exfiltration

• Autonomous and remote-controlled reconnaissance

• Multiple device type infection and propagation to the

Windows operating system and other embedded devices

• Reverse IP tunnel to penetrate perimeter firewalls

• Self-destruction

A video discussing the technical mechanics of this rootkit

and a demonstration of its capabilities is publicly available

[23].

The VxWorks OS image found within the RFU binary

contains a complete socket library [24] and direct access to

the underlying network transceiver hardware. The creation

of the proof of concept code was mainly an exercise in

identifying and intercepting the proper pieces of binary within

the VxWorks image.

No host-based security mechanism exists within the firm-

ware image. Thus, the attacker is free to make arbitrary

changes to the victim device. As long as the functionality and

general performance of the device is not altered, detection of

firmware modification is not possible without careful removal

and inspection of the hardware inside the printer.

Several challenges arose during the construction of the proof

of concept code. The VxWorks image extracted from the

RFU package contained no symbol information. Locating the

appropriate socketlib, print job processing and raw network

I/O binary interfaces within the binary proved non-trivial.

We developed a set of IDA-Python scripts to perform

standard control-flow analysis of the target binary around

code that we manually identified as network-facing. This

effort was expedited by a patch made to the VxWorks kernel,

which redirected debug messages destined for the UART to

a TCP connection. Using these two mechanisms, a dynamic

analysis environment was created to probe network-facing

code, which eventually yielded a small set of functions likely

to be libraries used by multiple pieces of unrelated code.

Function prototype data was taken from available VxWorks

documentation and used as a final check to positively identify

each library function.

Typically, the malware would be optimized, compressed,

packed and broken up to fit within gaps inside the original

firmware or placed within dynamically allocated memory.

However, since the attacker controls the firmware storage area

absolutely, we added a new section within the ELF header

marked with rwx privileges. This gave us more than sufficient

space to implement all the previously mentioned malware

functionality. In total, 2,800 lines of assembly were written

to create the proof of concept malware.

IV. THREAT MODEL AND ASSESSMENT

We present the threat model and assessment analysis for the

HP-RFU vulnerability presented in Section III.

A. Threat Model Characterization

The HP-RFU vulnerability exploits a design flaw in the

firmware update mechanism found in nearly all LaserJet

printers. In order to achieve persistent firmware modification

on the victim device, the attacker must deliver a malicious

PJL command to the raw-printing processing subsystem of the

target. This can be done by using the following attack types:

Active Attacks require the attacker to directly trigger the

firmware update process by actively connecting to the printer

and sending it the malicious PJL command over the printer’s

raw-printing port.

Reflexive Attacks are akin to reflexive cross-site scripting

attacks where malicious firmware update commands are em-

bedded in passive data that is passed along to the user of the

victim device. For example, the final binary package of the

HP-RFU attack can be embedded inside innocuous-looking

documents and sent to unwitting users, perhaps in the form of

an academic paper or resume. In this reflexive attack scenario,

the actual attack is launched when the malicious document is

printed.

B. Threat Assessment

Figure 6 illustrates an advanced persistent attack scenario

where a compromised printer is used as a reconnaissance tool

and offensive asset. Once the malware package is delivered

to the victim printer, it can be used to carry out firmware

modification attacks against other embedded devices like other

printers, IP phones and video conferencing units. Compro-

mised embedded devices can be used to establish reverse IP

tunnels back out to the Internet, giving the attacker direct

access to the secured internal network. These devices can also

be used to carry out standard network attacks like ARP cache

poisoning and act as offensive assets to further compromise



general purpose computers and other embedded devices behind

the victim’s perimeter defenses.
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Fig. 6. Typical advanced persistent threat attack scenario involving compro-
mised printers.

No host-based security mechanisms exist on the compro-

mised printer. Thus, the presence of malware on this device

will most likely go undetected if the functionality of the

device is not affected. The compromised printer is an ideally

situated stealthy asset that can be used as a fail-safe device

allowing the attacker re-entrance into the victim network even

if all compromised general purpose machines are neutralized.

Contrary to the sensationalized media coverage regarding the

HP-RFU vulnerability, it would be unwise for the attacker to

destroy a compromised printer physically3.
The HP-RFU vulnerability disclosure is described in CVE-

2011-4161 [25]. As Section V shows, there are currently over

90,000 vulnerable LaserJet printers publicly accessible over

the IPv4 Internet.

C. Compounding Factors

The following factors compound the severity of the HP-RFU

vulnerability:

No authentication prior to firmware update: The PJL/RFU

mechanism is coupled with the raw-printing protocol, a clear-

text protocol that does not support authentication. Any party

who is allowed to use the victim printer can carry out a

firmware modification attack against the printer. Therefore,

the attacker does not need to have direct IP connectivity to

the victim printer even in the active attack scenario because

the malicious payload can be relayed by intermediate print

servers.

RFU feature enabled by default: The majority of the

firmwares we analyzed enable the remote RFU update feature

3While it has been demonstrated and stated in the initial reports that using
the printer’s fuser as an ignition source to create fire is not possible, physical
destruction of the printer is possible via multiple methods.

by default. Network-printing typically requires the printer to

be reachable via TCP/9100. Since arbitrary binary traffic is

allowed in the raw-printing protocol by specification, it is diffi-

cult to detect and stop malicious PJL commands at the network

layer. Recent research suggests that it may be possible to use

languages like PostScript to compute a valid, malicious PJL

command on the victim printer when the malicious document

is processed [11]. If so, this will significantly increase the

difficulty of detection of this type of attack on the network

level or within print servers.

Poor and incomplete configuration interface: The configu-

ration interface of many “advanced” security features does not

exist on the printer’s HTTP or Telnet administrative interfaces.

For example, disabling the remote RFU feature and setting

PJL passwords can only be done through a separate enterprise

printing management tool called HP Web Jetadmin (WJA)

[26]. This is a 315 MB program that requires the installation

of Windows-based web and SQL servers and is generally not

practical for average users without enterprise IT support.

RFU feature cannot be disabled: Several LaserJet models,

including the P2055DN used in our initial experimentation, do

not support any way to disable the remote RFU feature, even

through Web Jetadmin. As far as the authors are aware, prior

to the release of the second version of the security bulletin

[27], no combination of available configurable settings could

disable the vulnerable feature on these printers. Furthermore,

these models were not included in the first release of the

security bulletin [28], since security bulletins released by the

vendor must contain an acceptable mitigation method. Since

no firmware fix was available, the devices most affected by

the HP-RFU vulnerability were not listed in the initial vendor

disclosure document.

Potential for irreversible, permanent malware injection:

The SPI boot flash chip used on the P2055DN formatter board

supports a One-Time-Programmable (OTP) feature [29] that

allows areas of memory within the chip to be programmed and

locked permanently. This is an irreversible operation that is

typical for similar flash components. If the malicious malware

package injected into the boot flash chip of the printer took

advantage of this feature, removal of the malware would

be impossible without physical removal of the compromised

component.

V. VULNERABLE DEVICE POPULATION ANALYSIS

Vendors of general purpose operating systems and popular

applications have deployed large-scale distribution networks

to automatically update host software with little to no user

interaction. However, no such widely deployed distribution

exists to push patches and firmware updates to embedded

systems.

The results presented in this section indicate that approx-

imately 1.08% of vulnerable HP LaserJet printers have been

patched worldwide, despite the public announcement of the

HP-RFU vulnerability and the rapid release of firmware up-

dates by the vendor (see Table I).



This highlights the ineffectiveness of simple public release

of firmware updates for vulnerable embedded devices. Em-

pirical evidence suggests that vulnerable embedded devices

will persist for a long period of time as compared to vul-

nerable general purpose computers. The threat will persist

unless proactive firmware update mechanisms are developed

for legacy embedded systems. However, a more proactive

firmware update mechanism may also be exploited in firmware

modification attacks.

A. Methodology

In order to quantify the number of printers that are vulner-

able to the HP-RFU attack, we scanned the IPv4 Internet for

publicly accessible HP printer web, telnet, SNMP and raw-

print server sockets. Model numbers and firmware datecodes

were gathered by employing the following methods:

• “@PJL INFO ID” command over TCP/9100

• “@PJL INFO CONFIG” command over TCP/9100

• “@PJL INFO PRODINFO” command over TCP/9100

• SNMP GET using “public” as the community string

• Model-specific banner scraping over TCP/23,80

B. Findings

In the two months following the official release of firmware

updates for the HP-RFU vulnerability, we identified 90,847

unique HP printers that are publicly accessible over the IPv4

Internet. Firmware version data is collected periodically for

each device. Table I shows our findings.

Potentially vulnerable printers 90,847
Printers with identifiable
firmware datecode 74,770
Number of patched printers 808
Overall patch rate 1.08%

TABLE I
OBSERVED POPULATION OF PRINTERS VULNERABLE TO THE HP-RFU

ATTACK ON IPV4.

Patching vulnerable printers to the latest firmware does

not necessarily secure the printer. We probed each printer

for other well-known vulnerabilities and common miscon-

figurations that can result in unrestricted root-level access

to the printer. Table II lists the vulnerabilities, including a

ChaiVM vulnerability FX exploited in 2003 [30] (this talk

also discussed the potential for firmware modification).

Vulnerable printers are grouped into five general organiza-

tional types: educational, private enterprise, military, civilian

government and Internet service providers. Tables III and IV

show the distributions of the average age of the firmware

images currently installed across different organization types

and continents, respectively. The firmware age is taken from

the datecode in the response from the devices’ administrative

interfaces. Organizational and geographic data were gathered

though the DNS, Internet Routing Registry (IRR) whois or

commercial geolocation databases.

Unrestricted Telnet 50,500

Unrestricted ChaiVM4 27,570

Vulnerable Virata EmWeb5 2,740

TABLE II
OBSERVED POPULATION OF PRINTERS VULNERABLE TO ATTACKS OTHER

THAN HP-RFU ON IPV4.

Avg Age Oldest
Count (years) Firmware

Education 48,626 4.13 1993-08-20
ISP 4,650 3.70 1994-10-12
Enterprise 2,842 4.02 1992-12-16
Military 201 4.63 1999-10-30
Government 126 4.33 1996-12-20

TABLE III
ORGANIZATIONAL DISTRIBUTION OF VULNERABLE PRINTERS.

The above data is a lower bound on the number of vulner-

able LaserJet printers on the Internet since it does not include

devices behind firewalls or NATs or in other private networks..

In the months following the HP-RFU vulnerability disclo-

sure, we observed 808 unique vulnerable printers that have

been updated to firmware versions that mitigate the problem.

We also observed 211 printers that did not require updated

firmware to be invulnerable to the HP-RFU. However, out of

these 1,019 devices, 24.8% (253) of them still have open telnet

interfaces with no root passwords configured.

Approximately 64% of all vulnerable printers were located

in North America. Over 65% of all vulnerable printers were

found within the networks of educational institutions world-

wide.

We also identified the following populations of vulnerable

printers within two notable organizations:

• United States Department of Defense: 201 printers

• Hewlett-Packard: 6 printers

VI. VULNERABLE THIRD-PARTY LIBRARIES

Mandatory firmware signature verification was introduced

by the vendor [5] in response to the disclosure of the HP-

RFU vulnerability. While this effectively mitigates the specific

attack presented in Section III, we believe this response is

inadequate for at least two reasons:

Signed firmware 6= secure firmware: Firmware signature

verification guarantees that the binary data to be processed at

firmware update time originated from a trusted source within

the vendor’s organization. Vulnerable code that is signed by

the vendor remains vulnerable to exploitation. This mechanism

does not prevent firmware or memory modification attacks in

general and thus contributes little to the overall security of the

embedded device.

Signed firmware prevents independent third-party defense

development: Mandatory signature verification that only ac-

cepts firmware updates signed by the vendor will categorically

4The ChaiVM EZLoader allows unsigned .jar files to be installed [31].
5A remote crash vulnerability exists in Virata EmWeb R6.0.1 [32].



Avg Age Oldest
Count (years) Firmware

N. America 47,840 4.46 1992-12-16
Europe 14,196 4.16 1993-08-20
Asia 10,353 3.77 1998-09-02
Oceania 1,081 4.79 1998-09-02
S. America 673 3.43 1999-01-27
Africa 60 4.56 2001-04-26

TABLE IV
GEOGRAPHICAL DISTRIBUTION OF VULNERABLE PRINTERS.

prevent all non-vendor issued code from running. This makes

the injection of legitimate third-party host-based defenses into

vulnerable firmware images impossible.

In order to show that firmware signing as the sole security

mechanism is inadequate, we present the results of the auto-

mated analysis of the third-party library vulnerabilities in a set

of 373 firmware update packages issued by the vendor over

the last decade. The dataset includes 358 RFUs released prior

to the disclosure of HP-RFU as well as 15 RFUs released as

part of SSRT100692 rev.3. The printer models and firmware

images analyzed are listed in Table VII of the Appendix.

A. Methodology

All RFU images were unpacked and decompressed. Em-

bedded filesystems (LynxFS) were extracted from the decom-

pressed data. Extracted executables and shared objects were

pattern-matched against known ASCII and binary signatures

to detect the presence of specific versions of two specific third-

party libraries: zlib and OpenSSL.

While this process suggests the presence of specific versions

of third-party libraries in the analyzed firmware updates, no

analysis was performed to check whether the libraries can

be invoked by the attacker, or that the known vulnerabilities

are reliably exploitable on the printers’ machine architectures.

This is the topic of ongoing research.

We present findings for the following third-party library

vulnerabilities found in 373 vendor-issued firmware updates:

zlib: CA-2002-07, CERT-{68062, 238678} Discovered in

2002, zlib ver. 1.1.3 and earlier have a double free bug that

allows arbitrary code execution [20]. In 2005 the vendor was

notified of a buffer overflow in zlib ver. 1.2.1 and 1.2.2 [21].

The vendor was notified of a DOS condition in zlib ver. 1.2.0.x

and 1.2.x in 2004 [22].

OpenSSL: CVE-{2009-3245, 2006-3738, 2006-4339} There

are over 100 known vulnerabilities in various versions of

OpenSSL. We scanned for the above three critical vulnera-

bilities in our firmware update dataset because they involve

features that are likely to be reachable via network attack. The

first two vulnerabilities can lead to arbitrary code execution.

The last vulnerability can bypass x.509 certificate verification.

B. Findings

Figure 7 shows the percentage of vendor released firmware

images that uses versions of zlib and OpenSSL library con-

taining known vulnerabilities for a subset of LaserJet models.

Fig. 7. Percentages of RFUs for each printer model containing known zlib
and OpenSSL vulnerabilities.

Model Lib Earliest RFU Latest RFU

2055
ssl Unknown Unknown
zlib 2009-04-30 Present

4005
ssl 2010-02-11 Present
zlib 2009-06-05 Present

4250
ssl 2004-09-02 Present
zlib 2004-09-02 Present

4700
ssl 2009-09-14 Present
zlib 2009-06-05 Present

9050
ssl 2004-06-30 Present
zlib 2004-06-30 Present

TABLE V
LIFESPAN OF VULNERABILITIES IN THIRD-PARTY LIBRARIES USED BY

LASERJET FIRMWARE.

Table V shows the duration of which known vulnerabilities

have existed for in various models of LaserJet printers.

Overall, we made the following observations:

Printer models analyzed 63
RFU images analyzed 373
All RFUs w/ at least 1 vulnerability 300
Latest RFUs w/ at least 1 vulnerability 41 (65.1%)
Most common zlib version 1.1.4
Most common OpenSSL version 0.9.7b

TABLE VI
THIRD-PARTY LIBRARY VULNERABILITY ANALYSIS OBSERVATIONS.

Mandatory firmware update signature verification is not

an adequate defense mechanism against vulnerabilities that

exist in the codebase of existing printers. Therefore, a large

population of network printers is still potentially vulnerable

to exploitation, despite the firmware updates released by the

vendor.

VII. RELATED WORK

This section surveys recent firmware modification attacks

as well as host-based defense technologies that can be applied

to mitigate firmware modification attacks against embedded

systems and concludes with a brief discussion of firmware

analysis and its tools.



A. Recent Firmware Modification Attacks

Firmware modification attacks against the telecommuni-

cation infrastructure [10], [16], SCADA and PLC systems

[33], laptop battery controllers, network interface cards, au-

tomated teller machines, medical devices and a wide range

of other critical embedded systems have been demonstrated.

For example, in the so-called Athens Affair, Ericsson AXE

mobile phone base station controllers were altered to have their

lawful intercept code surreptitiously activated in the Vodafone

network in Greece [34].

PsycoB0t, the first publicly known router botnet, modified

the firmware of approximately 85,000 DD-WRT home routers

to include an IRC-based bot controller that was used briefly

to carry out denial of service attacks before mysteriously

disappearing [35]. Barnaby Jack controlled ATMs and drained

them of their cash by replacing firmware in specific models

[9]. Miller demonstrated Mac laptop battery controller firm-

ware modification [8]. Costin demonstrated several PostScript-

based attacks against Lexmark printers capable of memory

inspection and possibly arbitrary modification [11]. Finally,

Fu’s body of work on medical device security, including

realized attacks against an implantable cardioverter debrillator

[36] and an automated external defibrillator [7], has shown the

consequences of the exploitation of embedded devices.

B. Embedded System Defense Technologies

Numerous rootkit and malware detection and mitigation

mechanisms have been proposed for general purpose comput-

ers and operating systems (virtualization-based [37], binary

analysis [38], function hook monitoring [39], etc). These

strategies may perform well within general purpose comput-

ers and well-known operating systems, but they have not

been adapted to operate within the unique characteristics and

constraints of embedded device firmware (limited storage,

memory and processing; absence of memory management

units; real-time operating systems; etc). Effective prevention of

binary exploitation of embedded devices requires a rethinking

of detection strategies and deployment vehicles.

Rinard posits that security vulnerabilities are excess, un-

wanted features in a software system [40]. This comes about

through overly general (bloated) software, feature accretion,

subsystem reuse and development errors on the part of design-

ers and implementors and vulnerability insertion on the part

of attackers. Several remedies are outlined including feature

replacement or excision, input rectification and dynamic mod-

ification, and techniques for allocating memory and handling

loops and typical failure conditions are discussed.

DynamoRIO [41] originated from a collaboration between

HP, who created Dynamo, and MIT, who created RIO.

DynamoRIO is a runtime code manipulation system that

supports code transformations on any part of program. An

application launched by DynamoRIO can be analyzed and

manipulated through its API. DynamoRIO is designed for

general purpose operating systems like Windows and Linux

on the x86 architecture.

Much work has been done in using remote software attes-

tation as a defense against firmware modification. SWATT:

Software-Based Attestation for Embedded Devices, proposed

by Seshadri et al. [42], and SBAP: Software-Based Attesta-

tion for Peripherals, proposed by Li et al. [43], involve the

external validation of embedded devices through the use of a

challenge-response protocol. In fact, VIPER, proposed by Li

et al. [44], can be directly applied to mitigate a real-world

firmware modification attack against keyboards [12]. While

promising, such defense mechanisms are generally stop-the-

world algorithms, requiring a full halt of the system while

remote attestation is in progress. While perhaps adequate for

printers, it would be difficult to directly apply such techniques

to embedded devices like routers and firewalls, which must

deliver uninterrupted availability.

Guards, originally proposed by Chang and Atallah [45],

are simple pieces of code that are injected into the protected

software using binary rewriting techniques. Once injected, a

guard can perform tamper-resistance functionality like self-

checksumming and software repair.

C. Further Firmware Analysis and Useful Tools

The vulnerable third-party library analysis presented in

Section VI is likely symptomatic of a larger phenomenon.

We believe that rigorous analysis of the code and data of

proprietary embedded systems will yield important insights

into the exploitability of such devices. The HP-RFU case

study presented in this paper revealed several obstacles that

impeded vulnerability analysis on legacy embedded systems.

While the process of reverse engineering proprietary firmware

image formats is a necessary prerequisite to useful analysis, it

is a time-consuming and energy-intensive exercise that must

be repeated for each new embedded device type. The following

open source tools greatly streamlined our firmware format

reverse engineering process.

Binwalk [46] is a pattern-matching tool designed to search

for known headers and structures in arbitrary binary data.

It is particularly useful for identifying known executable

headers, detecting the ISA of potentially executable data by

identifying known function prolog and epilog patterns and

recognizing compressed data by locating headers of well-

known algorithms.

FRAK [47], the Firmware Reverse Analysis Konsole, is a

recently released open source framework designed to modu-

larize and automate the firmware unpacking, analysis, modifi-

cation and repacking processes. It has been particularly useful

in automating large-scale analysis of firmware collections and

identifying structures within firmware images of unknown

formats.

VIII. RECOMMENDED DEFENSES

We discuss two host-based defense techniques developed

by the authors to mitigate the vulnerabilities described in this

paper. The vulnerable firmware update feature found in HP

LaserJet printers is rarely used and should be disabled until

it is needed. However, we found that disabling this feature



was not trivial and at times impossible, as was the case

with the LaserJet P2055DN. We propose a technique, which

we call Autotomic7 Binary Structure Randomization (ABSR),

which not only disables unnecessary features, but also removes

the unused binary from the firmware image. This technique

simultaneously reduces the attack surface of the embedded

device as well as the amount of code and data that can be

used as part of any shellcode.

Disabling unused features on the embedded device is

helpful, but does not guard against exploitation via attack

vectors within necessary features that cannot be removed. For

example, vulnerable third-party libraries like ones identified in

Section VI may be pivotal to the functionality of the embedded

device. We believe techniques like ABSR should be used

in conjunction with other host-based defenses to detect and

mitigate the consequences of successful exploitation. Software

Symbiotes have been demonstrated as a viable dynamic firm-

ware integrity attestation technique on embedded systems such

as enterprise routers.

Despite proper software and security engineering practices

by vendors, firmwares will continue to be released with

bugs and vulnerabilities. ABSR and Symbiotes are aimed at

securing devices that run such firmware.

A. Autotomic Binary Structure Randomization (ABSR)

ABSR is a fortification technique currently being developed

by the authors. This approach accepts arbitrary executables or

firmware images as input and outputs a hardened, functionally

equivalent variant of the original. The exploitability of the

input binary is reduced by two primary operations: autotomic

binary reduction and binary structure randomization. First,

unused code, as determined by the particular configuration

state of the target device, is autotomically removed in order

to reduce the potential vulnerable attack surface of the overall

system. For example, if a network printer is not configured to

support LDAP authentication and UPnP, code sections corre-

sponding to these feature sets are programmatically stripped

from the resulting binary.

Furthermore, the autotomic operation can remove the bi-

naries of features that are enabled by default but can not be

disabled via configuration, which was precisely the case of

the HP-RFU vulnerability. The RFU firmware update feature

is rarely used but is enabled by default on all systems, some of

which had no method of administratively disabling this code

path; ABSR would remove the binary executables associated

with the feature. Using the free space generated by the

autotomic reduction phase, the binary structure randomization

phase restructures the remaining executable binary blobs. We

propose disabling and removing all unused features in general.

However, the firmware update feature is a special case in

which the code path should be disabled but not removed

from the binary since this feature is necessary for future

firmware updates. In this case, we propose an alternative

7Autotomy - The spontaneous casting off of parts is a (biologically) viable
security mechanism.

method of enabling this code path, potentially through an

ABSR configuration interface.

This approach differs from most existing techniques in that

no attempt is made to remap coherent blocks of code into

randomized locations in memory. Instead, ABSR decomposes

all remaining basic blocks of the binary in order to transform

them into a randomized, functionally equivalent program while

intentionally breaking control-flow isomorphism.

Like software Guards and Symbiotes, ABSR is not a stop-

the-world defense mechanism. ABSR does not halt the original

functionality of the protected device while it is engaged.

Like other randomization techniques such as Address Space

Layout Randomization (ASLR) and Instruction-Set Random-

ization (ISR), ABSR is built into the architectural design of

the protected device and does not require dynamic patching

or binary rewriting like DynamoRIO. ABSR is an topic of

ongoing research.

B. Software Symbiotes

Software Symbiotes [48] are a host-based defense mecha-

nism that are specifically designed to inject intrusion detection

functionality into the binary firmware of existing embedded

devices. A Symbiote is a code structure embedded in situ into

the firmware of an embedded system. The Symbiote tightly

co-exists with its host executable in a mutually defensive

arrangement, sharing computational resources with its host

while simultaneously protecting the host against exploitation

and unauthorized modification. The Symbiote is stealthily

embedded in a randomized fashion within an arbitrary body of

firmware to protect itself from removal and unauthorized deac-

tivation. Unlike remote software attestation techniques, Guards

and Symbiotes do not require the disabling of interrupts or a

full system halt while the security mechanisms are engaged.

IX. CONCLUSION

We presented a general discussion of firmware modifica-

tion attacks against embedded systems as well as a specific

case study of such a vulnerability found in nearly all HP

LaserJet printers. We discussed the analysis process that led

to the discovery of the HP-RFU vulnerability as well as

the implementation of a proof of concept printer malware.

The printer malware presented in this paper can be delivered

through standard PJL commands and can be embedded in

innocuous document formats such as PostScript. It is capa-

ble of stealthy network reconnaissance, data exfiltration and

propagation by autonomously compromising general purpose

computers and other embedded device types. The HP-RFU

vulnerability exploits a fundamental design flaw found not

only in nearly all LaserJet printers, but in other modern

embedded systems as well. Thus, the process presented in this

paper can be generalized and applied to the exploitation of

similarly vulnerable embedded systems.

We presented the results of exhaustive scans of IPv4 to track

the size and distribution of all publicly accessible vulnerable

LaserJet printers over time. Out of over 90,000 vulnerable

units, only 1.08% of the vulnerable population has been



patched since the release of firmware updates in response to

the disclosure of HP-RFU. Furthermore, 24.8% of all patched

printers are configured to have open telnet interfaces with

no root password. In other words, we only identified 766

printers out of over 90,000 units that are simultaneously not

vulnerable to the HP-RFU attack and have properly configured

root passwords.

Firmware update signing can mitigate the HP-RFU vulner-

ability. However, it should not be used as the sole security

mechanism on embedded systems. We presented the results

of the analysis of all available firmwares for 63 HP LaserJet

printer models that identify third-party libraries with known

vulnerabilities within the signed codebase. We identified vul-

nerable third-party libraries in 80.4% of all firmware images

analyzed. Furthermore, we identified libraries containing vul-

nerabilities that have been known for over eight years in

several of the most recently released firmware images.

The scientific evidence, quantitative analysis and the proof

of concept HP-RFU vulnerability exploitation presented in

this paper demonstrate the importance of introducing effective

host-based defense into vulnerable embedded devices.
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APPENDIX

Fig. 8. Hex dump of a typical HP-RFU. For P2055DN, using the undocu-
mented PJL/ACL language.

Fig. 9. “UAT” table structure. Contains a checksum value, followed by a
directory manifest describing various compressed components of the binary
update package.

Fig. 10. RFU binary embedded inside a typical PostScript file. This illustrates
the most straightforward reflexive attack.

Model RFUs (qty.) Earliest RFU Latest RFU
2300 2 2004-05-12 2004-12-03
2400 4 2004-09-02 2009-06-24
3000 2 2004-01-06 2008-04-09
3500 3 2004-01-19 2007-02-20
3550 2 2004-09-22 2005-03-07
3600 2 2006-08-07 2006-08-28
3700 3 2004-03-31 2006-12-06
3800 1 2008-04-08 2008-04-08
4100 2 2004-10-08 2005-12-21
4200 2 2004-10-07 2005-06-02
4250 9 2004-09-02 2011-04-06
4300 2 2004-10-07 2005-06-02
4345 10 2005-01-25 2011-04-29
4600 2 2004-10-12 2006-10-10
4650 3 2004-08-27 2007-04-19
4700 7 2009-06-05 2011-05-11
4730 8 2009-06-04 2011-04-29
5100 1 2004-01-15 2004-01-15
5200 9 2009-06-04 2011-12-14
5500 3 2004-10-07 2005-06-02
5550 10 2004-07-29 2011-04-06
8000 1 2010-10-28 2010-10-28
8150 2 2004-01-14 2004-10-14
8500 6 2010-10-25 2011-06-29
9000 3 2004-08-09 2005-12-21
9050 21 2004-06-30 2011-12-13
9055 1 2008-02-20 2008-02-20
9065 5 2004-09-10 2008-02-20
9200 8 2005-01-25 2011-04-19
9250 10 2009-06-04 2011-12-19
9500 12 2004-10-24 2011-05-24
CM1312 5 2010-06-16 2011-12-09
CM1415 6 2010-07-21 2011-12-15
CM3530 9 2009-06-04 2011-12-13
CM4730 11 2009-06-04 2011-12-12
CM6040 8 2009-09-09 2011-12-12
CM80 5 2008-10-28 2010-08-05
CP1518 3 2010-06-16 2011-12-10
CP1525 6 2010-07-21 2011-12-15
CP2024 3 2010-05-12 2011-12-08
CP3505 8 2009-06-04 2011-04-06
CP3525 10 2008-12-04 2011-12-12
CP4005 6 2009-06-05 2011-05-11
CP4525 7 2010-01-20 2011-12-13
CP5225 5 2011-12-20 2011-12-20
CP6015 9 2009-06-04 2011-12-12
M1522 2 2011-03-19 2011-12-12
M1536 5 2010-07-21 2011-12-15
M2727 3 2010-09-02 2011-12-12
M3035 17 2009-06-05 2011-12-12
M4345 15 2009-06-05 2011-12-12
M5035 15 2009-06-05 2011-12-12
M9050 9 2009-06-05 2011-12-12
P2035 4 2011-03-30 2011-12-13
P2055 9 2009-04-30 2011-12-14
P3005 9 2009-06-15 2011-04-06
P3015 8 2009-09-10 2011-12-13
P4015 10 2009-06-04 2011-12-14
Pro 100 1 2011-10-21 2011-10-21
T1200 2 2010-08-31 2011-07-06
T2300 2 2010-08-31 2010-10-28
T7100 4 2011-09-06 2011-11-05
Z6200 1 2011-11-05 2011-11-05

TABLE VII
PRINTER MODELS AND FIRMWARE IMAGES ANALYZED FOR VULNERABLE

LIBRARIES.


