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Abstract By maximizing the criterion/, Fisher Linear Discriminant
finds the subspaces in which the classes are most linearly
The Fisher Linear Discriminant (FLD) is commonly used separable. The solution [3] that maximizés is a set of
in pattern recognition. It finds a linear subspace that maxi- the eigenvector$g; } which must satisfy
mally separates class patterns according to Fisher's Crite-
rion. Several methods of computing the FLD have been pro- Sp¢ = ASw¢. )
posed in the literature, most of which require the calculation
of the so-called scatter matrices. In this paper, we bring a
fresh perspective to FLD via the Fukunaga-Koontz Trans-
form (FKT). We do this by decomposing the whole data
space into four subspaces, and show where Fisher’s Cri-
terion is maximally satisfied. We prove the relationship be-
tween FLD and FKT analytically, and propose a method of
computing the most discriminative subspace. This metho
is based on the QR decomposition, which works even whe
the scatter matrices are singular, or too large to be formed.
Our method is general and may be applied to different pat-
tern recognition problems. We validate our method by ex-
perimenting on synthetic and real data.

This is called the generalized eigenvalue problem [2, 3].
The discriminant subspace is spanned by the generalized
eigenvectors. The discriminability of each eigenvector is
measured by the corresponding generalized eigenvalue, i.e.,
the most discriminant subspace corresponds to the maxi-
mal generalized eigenvalue. The generalized eigenvalue
problem can be solved by matrix inversion and eigen-
ddecomposition, i.e., applying the eigen-decomposition on
PS;le. Unfortunately, for many applications with high
dimensional data and few training samples, such as face
recognition, the scatter matri,, is singular because gen-
erally the dimension of sample data is greater than the num-
ber of samples. This is known as the undersampled or small
sample size problem [3, 2].
] Up till now, a great number of methods have been pro-
1. Introduction posed to circumvent the requirement of nonsingularity of
S.,, such as Fisherface [1] and LDA/GSVD [5]. In [1],

In recent years, discriminant subspace analysis has beelfrisherface first applies PCA [6, 8] to reduce dimension
extensively studied in computer vision and pattern recog- such thatS,, is nonsingular, then followed by LDA. The
nition. It has been widely used for feature extraction and LDA/GSVD algorithm [5] avoids the inversion &,, by the
dimension reduction in face recognition [1] and text classi- simultaneous diagonalization via the Generalized Singular
fication [5]. One popular method is the Fisher Linear Dis- Value Decomposition (GSVD).
criminant (FLD), also known as Linear Discriminant Anal- However, these methods are designed to overcome the
ysis (LDA) [2, 3]. It tries to find an optimal subspace such singularity problem and do not directly relate to the gen-
that the separability of two classes is maximized. This is eralized eigenvalue, the essential measure of the discrim-
achieved by minimizing the within-class distance and max- inability. In this paper, we propose to apply Fukunaga
imizing the between-class distance simultaneously. To beKoontz Transform (FKT) [3] on the LDA problem. Based
more specific, in terms of the between-class scatter matrixon the eigenvalue ratio of FKT, we decompose the whole
S, and the within-class scatter mati$,, the Fisher’s Cri- data space into four subspaces. Then our theoretical analy-
terion can be written as ses show the relationship between LDA, FKT and GSVD.

187'S, | Our work has three main contributions:
b
Tr(®) = |78, | @) 1. We present a unifying framework to understand differ-



ent methods, namely, LDA, FKT and GSVD. To be
more specific, for the LDA problem, GSVD is equiv-

alent to FKT; and the generalized eigenvalue of LDA
is equal to both the eigenvalue ratio of FKT and the
square of the generalized singular value of GSVD.

. The proposed theory is useful for pattern recognition.

2.1. Linear Discriminant Analysis

Given the data matribA, which can be divided int@’
classes, we try to find a linear transformation matbixc
RP*4 whered < D. It maps high dimensional data to
a low dimensional space. From the perspective of pattern
classification, LDA aims to find the optimal transformation

Our theoretical analyses demonstrate how to chooseg gych that the projected data are well separated.

the best subspaces for maximum discriminability. The

Usually, two types of criteria are used to measure the

experiments on synthetic data and real data Va”dateseparability of classes [3]. One type gives the upper bound

our theory.

. In connecting FKT with LDA, we show how FKT,

originally meant for 2-class problems can be general-

ized to handle multiple classes.

on the Bayes error, e.g., Bhattacharyya distance. The other
type is based on scatter matrices. As shown in Equation 1,
Fisher’s criterion belongs to the latter type. The solution
of the criterion is the generalized eigenvector and eigen-
value (See Equation 2). However, as we mentionef,if

The rest of this paper is organized as follows: Section 'S nonsingular it can be solved by the generalized eigen-
2 briefly reviews the mathematical background for LDA, decompositionS;,"Sy¢ = A¢. OtherwiseS,, is singular

GSVD, and FKT. In Section 3, we first analyze the discrim-

inant subspace of LDA based on FKT, then set up the con-

nections between LDA, FKT and GSVD. We apply our the-

and we have to circumvent the nonsingularity requirement
via LDA/GSVD [5], for example.

ory to the classification problem on synthetic and real data 2-2- Generalized SVD

in Section 4, and conclude our paper in Section 5.

2. Mathematical Background

Notations. Let A = {ay,..,ay}, a;, € RP denote a
data set of giverD-dimensional vectors. Each data point
belongs to exactly one aof' object classe§ L, ..., L¢}.
The number of vectors in clads; is denoted byV;, thus

N = Y N,;. Observe that for high-dimensional data, e.g.,
face images, generally; < N <« D. The between-class
scatter matrixS,, the within-class scatter matr,,, and
the total scatter matri%; are defined as follows:

C

Sp = ZNi(mi —m)(m; —m)" = H,H] (3)
=1
C

Se = Z Z (a—m;)(a— mi)T = Hng 4)
1=1a€L;
N

S = Y (ai—m)(a—m)" = HH (5)
=1

S, = S;+S. (6)

Herem,; denotes the class mean amdis the global mean

of A. The matricesH, ¢ RP*¢ H, € RP*VN, and
H, ¢ RP*N are theprecursormatrices of the between-

class scatter matrix, the within-class scatter matrix and theR("t=7»)*("=7s) gre identity matrices,
total scatter matrix respectively. Let us denote the rank of R(C—7»)x(":=7) and O,

each scatter matrixr,, = Rank(S,), 1o = Rank(S;),
andr, = Rank(S;). Note that for high-dimensional data
(D> N),rn,<C-1,r, <N-—1landr; <N —1.

The Generalized Singular Value Decomposition (GSVD)
was developed by Van Loan et al. [4]. We will briefly re-
view the mechanism of GSVD using LDA as an example.

Howland et. al. [5] extended the applicability of LDA
to the case whe$,, is singular. This is done by using
the simultaneous diagonalization of the scatter matrices via
GSVD [4]. First, to reduce computation loal;, andH,,
are used instead &, andS,,. Then, based on GSVD there
exist orthogonal matrice¥ € R¢*¢, Z ¢ RV*N and a
nonsingular matrixX € RP*P such that:

Y'H!X = [%,0], (7
ZTHTX = [Z,,0]. (8)
where
I, Oy
Xy = D, ) Y = Dy
0, L,

SinceY, Z are orthogonal matrices arid is nonsingular,
from Equations 7, 8 we obtain

H = Y[%,0X, ©)

H] = zZ[¥,,0X (10)

The matricesI, € ROt 7mw)x(e=m) gnd I, €
andO, €

c R(Nfr“,)x(mfr“,) are

rectangle, zero matrices which may have no rows
or no columns, andDj=diag ar,—r,+1,-..,r,) and
D, =diag B, —r,+1s - Bry) SALSTYL > @y, 41 > 00 >



Q> 0,0 < Bry—py1 < oo < B, < 1,anda? + 32 = 1. S
Thus, B 1

iy, +32I%, =1, (11) ]
whereI € R™*"™ is an identity matrix. The columns 2 |
of X, the generalized singular vectors for the matrix pair | £ ¢
(Hy, H,,), can be used as the discriminant feature subspace i i
based on GSVD. 1

D
2.3. Fukunaga Koontz Transform =
Dimension
The FKT was designed for the 2-class recognition prob-
lem. Given data matrices ; and A, from two classes, the Figure 1. The whole data space is decom-
autocorrelation matrice; = A; A7 andS, = A, AT are posed into four subspaces via FKT. In U,
positive semi-definite (p.s.d.) and symmetric. The sum of the null space of S;, there is no discriminant
these two matrices is still p.s.d. and symmetric and can be information. In - U, the sum of A, + A, is equal
factorized in the form to 1. Note that we represent all possible sub-
T spaces, but in practice, some of these sub-
S=8,+8S,=[U,U,] [ D 0 ] [ UT ] (12) spaces may hot exist.
0 o] U”

Without loss of generality,S may be singular and
r=Rank@8)< D, thusD = diag{\{,...., A}, A1 > ... >
A, > 0. U € RP*" is the set of eigenvectors correspond- 3.1. LDA /FKT
ing to nonzero eigenvalues aiid, € RP*(P-7) s the
orthogonal complement dJ. Now we can whiterS by a Generally speaking, for the LDA problem there are more
transformation operatd® = UD~'/2. The sum of thetwo  than2 classes. To handle multiple classes, we replace the
matricesS,, S, becomes autocorrelation matrices; andS, with the scatter matrices

- T JUE S, andS,,. SinceS,, S,, andS; are p.s.d., symmetric and
PSP =P (S1+8:)P =8, +8, =1 (13) S, = S, + S.,, we can apply FKT o1$,, S,, andS,, which
whereS; = PTS,P andS, — PTS,P, I € R™" is an \(/jve shall hendcgff[)rtth call LkI)DA/Flé';..Thg[vIvholg datlfl_ spice is
ety maix Spose an cigerecior$i s v win TIPS N0 Mo Sbspeetsanat (ee 0,
eigenvalue\;, that is:S;v = \;v. SinceS; =1 —S,, we . oL Igenvect °SP
o ing to the zero eigenvalues 8. It is the intersection of
can rewrite it as: X N
the null spaces a8, andS,,, and contains no discriminant

(I—Sy)v=MA\v (14) information. On the other hand] is the set of eigenvectors
S,v— (1= A)v (15) cprre_sp_ondln_g to the_nonzero eigenvalueS oflt contains
discriminant information. B
This means tha$, has the same eigenvector$sbut the Based on FKTS;, = P”S,P andS,, = P”S,,P share

corresponding eigenvalue J = 1 — ;. Consequently, the same eigenvectors, and the sum of two eigenvalues cor-

the dominant eigenvector &, is the weakest eigenvector responding to the same eigenvector is equal to
of S5, and vice versa.

S, = VAVT (16)

Se = VA,VT 17

3. Theory (17)
In this section, we first employ FKT o8, andS.,',  whereV ¢ R"**"* is the orthogonal eigenvector matrix,

which results in decomposing the whole data sgicimto Ay, A, € R™X" are diagonal eigenvalue matrices. Ac-
four subspaces. Then we explain the reIa’Fionsh?p betweencording to the eigenvalue rati@, U can be further de-
LDA, FKT and GSVD based on the generalized eigenvalue. composed into three subspaces. To keep the integrity of
This gives insight into the different discriminant subspace the whole data space, we incorporéfe as the fourth sub-
analyses. space. See Fig. 1.

1in this paper, we focus on linear discriminant subspace analysis, but
our approach can be easily extended to nonlinear discriminant subspace o

analysis. For example, based on kernel method, we can apply FKT on ingto A, = Q, Ay = 1. Si.nC_e X = 00 in this sub-
kernelizedS;, and kernelize.,. space, the eigenvalue ratio is maximized.

1. Subspace:lthe span of eigenvectofs; } correspond-



2. Subspace:2he span of eigenvectofs; } correspond-
ingto0 < A, < land0 < A, < 1. Since
0 <
that of %ubspace.

3. Subspace:3the span of eigenvectofs; } correspond-

ingto\, = 1and), = 0. SinceA—i = 0, the eigen-

X,
value ratio is minimal.

4. Subspace4U |, the span of eigenvectors correspond-

ing to the zero eigenvalues B§.

Note that in practice, any of these four subspaces may

not exist, depending on the ranks ®f, S,, andS,. For

example, ifr, = r,, + rp, then Subspace 2 does not exist.

As illustrated in Fig. 1, the null space 8f, is the union of
Subspacé and Subspacé, and the null space &, is the
union of Subspac® and Subspact, if they exist.

3.2. Relationship between LDA, GSVD and
FKT

< o0, the eigenvalue ratio is smaller than

Hence,

D '/2UTH,H] UD /2 = VA, VT (24)

In general, there is no unique decomposition on the above
equation becausH,H] = H,YY”H] for any orthogo-

nal matrixY € R¢*C. That is:

D 2uTH,YYTH/UD V2 = VA, VT (25)
Y'HIUD /2 = £,vT (26)
Y'HIUD '/?v = %, (27)

whereY), € REx™ andA, = f)bTZA]b.
[UD’”QV,UL € RP*D . Then,

If we defineX =

Y'H[X = YTHf[UD '?V,U,] (28)
= [YTH]UD '/?V, 0] (29)
= [%,0] (30)

How do these four subspaces help to maximize the Here, H{ U, = 0 andH] U, = 0 becauseU is the

Fisher criterion/p? We explain this in the following The-
orem that connects the generalized eigenvalugrofo the
eigenvalues of FKT. We begin with a Lemma:

Lemma. For the LDA problem, GSVD is equivalent to
FKT, with X — {UD*/QV,UL}, Ay = 7%, and
A, = 2I¥,,. WhereX, 3, and %, are from GSVD (See

Equations 7, 8), an®@, D, V, U, A, andA, are matrices
from FKT (See Equations 16, 17, 18).

Proof. GSVD = FKT
Based on GSVD,

T
S, = HH =xT { Ebozb 8 } X1 (19
T
Sw _ Hng — X—T |: Ewozw 8 :| X—l (20)
Thus,
XT(sb+sw)X=H 8} (21)

SinceXx!'s, + ¥I%, = I € R™*"™, if we choose the
first r; columns ofX asP, i.e., P = X(p,,), then
PT(S, + S, )P = L. This is exactly the outcome of FKT.
Meanwhile, we can reach the conclusion that= ¥7'%,
andA,, = 2Ty,

FKT = GSVD
Based on FKTP = UD /2
S, = PTS,P=D?2UTH,H/UD /2 (22)

S, = VA, VT (23)

intersection of the null spaces 8f andS,,. Similarly, we
can obtainZ"HI X = [%,,0], whereZ € RV*¥ s an
arbitrary orthogonal matrix antl,, € R¥*" andA,, =
$T%,. SinceA, + A, = IandI € R™*" is an identity
matrix, it is easy to check that! s, + £33, = I, which
satisfies the constraint of GSVD.

Now we have to prov& is nonsingular.

XxXT =

[UDfl/viul} { vIp-1/2u” ]

I

whereV € R™*" and [U,U_] are orthogonal matrices.
Note thatUTU,; = 0 andUTU = 0. ThusXX” can be
eigen-decomposed with positive eigenvalues, which means
X is nonsingular. O

= up'u’+u,U?

D' 0
vl 5

or| e

Ul

Based on the above lemma, we can investigate the rela-
tionship between the eigenvalue ratio of FKT and the gen-
eralized eigenvalug of the Fisher criterion/g.

Theorem. If A is the solution of Equation 2 (the generalized
eigenvalue of, andS,,), and\, and \,, are the eigenval-
ues after applying FKT o8, andS,,, then\ = AAL , Where
A+ Ay = 1.

Proof. Based on GSVD, it is easy to verify that:

SISy 0

— T _ ~x—-T
Sy =H,H, =X { 0 0

} X1 (32



According to our lemmaj, = 'S, thus Input: The data matrixA..
Output: Projection matrix® r such that the/r is maximized.

S, = X7 [ /Bb 8 } X! (33) 1. ComputeH, andH; from data matrixA:
H, = [\/Nl(ml — m),...,m(mc — m)] ,
Similarly, we can rewriteS,, but with A,,. SinceS,¢ = H, = [a-m, .. ay—m].
>\Sw¢)!
2. Apply QR decomposition ofl; = QR, whereQ €
3. LetS; = RR”, sinceS; = Q”'S,Q = Q"H,H/ Q =
(34) RR”.

Let v = X9, and multiplyX” on both sides, we can

obtain the following. 4. LetZ = Q"H,.

5. LetS, = ZZ", sinceS, = Q7S,Q = Q"H,H! Q =

Ay 0 Ay O ZzZ".
v=A v (35) _ _

0 0 0 0 6. Compute the eigenvectofs; } and eigenvalue$);} of

S;'S,.
If we add) [ /Bb 8 } v on both sides of Equation 35, then 7. Sort the eigenvectorg; according to)\; in decreasing
order,
AM>2A > 2> A1 == A, =0.
(1+X) [ Ay 0 ] v=2\ { I 0 } V. (36) 8. The final projection matrixdr = QV, whereV =
0 0 0 0 {vi}. Note that we can choose the subspaces based on

the columns oiV.

This means thafl + )\, = A, which can be rewritten as
Ay = A1 — Ap) = A\, because\, + A, = 1. Now, we Figure 2. Algorithm: Apply QR decomposi-
can observe that = j—b O tion to compute LDA/FKT.

Corollary. If \isthe generalized eigenvalue®f andS,,,
and« and g are the solutions of Equations 7, 8 andg is 3.3 Algorithm
the generalized singular value of the matrix p@,, H,,),

then) = %, wherea? + 32 = 1. Although we proved that FKT is equivalent to GSVD on

the LDA problem, LDA/GSVD is computationally expen-
Proof. In Lemma we have proved thadt, = Z{'%, and  sive. The running time of LDA/GSVD i©(D(N + C)2),
Ay = X35, thatis: A, = o® and\,, = §%. According  whereD is the dimensionality)V is the number of training
to Theorem, we observe that= Q. Therefore itis easy  samples and” is the number of classes. In this paper, we
to see that\ = [T Note thatg is the generalized singu-  propose an efficient way to compute the Subspacesind

lar value Of(Hb, w) by GSVD, and)\ is the genera“zed 3 of LDA/FKT based on QR decomposition because Sub-
eigenvalue of S, S,,). ] space4 contains no discriminant information. Moreover,

we use smaller matriced;, and H; because matriceS,,
S., andS; may be too large to be formed. Our LDA/FKT

The Corollary suggests how to evaluate the discriminant algorithm is shown in Fig. 2. The running time( D).

subspaces of LDA/GSVD. Actually, Howland et. al. in [5]
applied the Corollary implicitly, but in this paper we explic- )
itly connect the generalized singular vaI%ewith A, the 4. Experiments
measure of discriminability.

Based on our analysis, the eigenvalue @#o and the 4.1. A Toy Problem

square of the generalized singular va ie both are equal

to the generalized eigenvalue the measure of discrim- First, we experiment on synthetic data: three single
inability. Therefore, according to Fig. 1, Subspdg¢evith Gaussian classes with the same covariance matrix and dif-
the infinite eigenvalue rane*r is the most discriminant  ferent means. In 3D space, the three classes share the same
subspace, followed by Subspazend Subspaca. How- covariance matrix:diag([1,1,0]), and each class hds)

ever, Subspace 4 which contains no discriminant informa- points. They have different mear{s; 0,0]%, [0, 1, 2]7, and
tion, can be safely thrown away. [0,1,0]T (See Fig. 3(a)).



Table 1. Eigenvalue and eigenvalue ratio of
the toy problem.

LDA/FKT LDA/GSVD LDA
Ao/ A a2/ 32 A
1/0 = 0o (1.6709 x 100)2 — 00 | oo
0.29286,/0.70714 0.643542
= 0.4141 = 0.4141 0.4141
0/1=0 (1.0616 x 1002 =0 | 0

As shown in Fig. 4, LDA/FKT decomposes the whole
data space into three subspace£ and3. Here Subspace
does not exist because the number of sam@3@si¢ larger
than the dimensiorj. Note that each subspace consists of

only one eigenvector. In terms of the eigenvalue ratio, Sub-

spacel is the most discriminative subspace, followed by
Subspace and3. But if we use Fisherface (PCA followed
by LDA), we cannot obtain Subspatéecause Fisherface
restricts to the Subspacé@sand 3 where),, # 0 so that
S., is invertible. In doing so, Fisherface is discarding the
most discriminative information (Subspate To compare
LDA/FKT with Fisherface, we project the original 3D data
to Subspacéa and Subspacg, and we also project to 2D
space via Fisherface. As illustrated in Fig. 3(b) and 3(c),
the 2D projection of FKT is more separable than the projec-
tion of Fisherface. This is consistent with our theory.

Let us recall the Corollary: the eigenvalue ratio of
LDA/FKT is equal to the square of the generalized singular
value of LDA/GSVD. To check this, we also apply GSVD
on H;, andH,,, which is known as LDA/GSVD [5]. Then
we obtain the generalized singular valugd. From Table
1, we see that? /3% ~ Ab/sz. Thus we show the validity
of our theory experimentally. Moreover, this means we can
compute the generalized eigenvaluef LDA, although it
cannot be obtained directly wh&, is singular.

4.2. Face Recognition
We now apply LDA/FKT on a real problem: face recog-

nition. We perform experiments on the CMU-PIE [7] face
dataset. The CMU-PIE database consists of @@t 000

@ 0 00
Db D> D>

>
op  x

(b) (©

Figure 3. Original 3 classes (triangle, circle
and cross) in 3D space (a) and 2D projection
by (b) LDA/FKT and (c) Fisherface. Observe
that the 2D projection of FKT is more separa-
ble than that of Fisherface.

70 x 80. Fig. 5 shows a sample of PIE face images used in
our experiments. It is easy to see that the major challenge
on this data set is to do face recognition under different il-
luminations.

Here, to evaluate the performance of LDA/FKT, we com-
pare it with PCA and Fisherface. We employ 1-NN to do
face recognition after projection onto the respective sub-
spaces. For PCA, the projected subspace cont#ir-
mensions; for Fisherface, we take the fité0 principal
components to mak&,, nonsingular, then followed by
LDA. For LDA/FKT, we project data to Subspaces2.

In face recognition, we usually have an undersampled
problem, which is also the reason for the singularity of
S.w- To evaluate the performance under such situation,
we randomly choose: training samples from each sub-

images of68 subjects. Each subject was recorded acrossject, n = 2,---,12, and the remaining images are used

13 different poses, undet3 different illuminations (with
and without background lighting), and withdifferent ex-

for testing. Moreover, for each set aftraining samples,
we repeat sampling) times to compute the mean and stan-

pression. Here we use a subset of PIE for our experimentsdard deviation of classification accuracies. As illustrated
We chooses7 subjects®, and each subject has frontal in Fig. 6, we observe that the more the training samples,
face images with background lighting. All of these face im- the better the recognition accuracy. To be more specific,
ages are aligned based on eyes coordinates, and cropped for each method, increasing the number of training samples
increases the mean recognition rate and decreases the stan-
dard deviation.

Fig. 6 also shows that no matter how many training sam-

2The difference depends on the machine precision.
3In CMU-PIE, there aré8 subjects together, we only choo§e sub-
jects because one subject has fewer frontal face images.



Eigenvalues

Recognition rate (%)
3

’ Nu:nber of lraiiwng samp\ses (per cla:s) *
Figure 4. Eigenvalue curve for the toy prob-
lem by LDA/FKT. Note that each subspace
consists of only one eigenvector.

Figure 6. The accuracy curve on PIE with
varying training samples. We show the rate
and standard deviation from 10 runs.

discriminative subspace.

Our result also showed how FKT, originally proposed
for 2-class problems, can be generalized to handle multiple
classes. This is achieved by replacing the autocorrelation
matricesS; andS, with the scatter matrice§, andS,,.

In the near future, we intend to investigate further the
insights that FKT reveals about LDA. Another interesting

Figure 5. A sample of face images from PIE direction to pursue is the extend our theory to nonlinear
dataset. Each subject has 24 frontal face im- discriminant analysis. One way is to use the kernel trick
ages under different lighting conditions. employed in SVM, e.g., construct kernelized between-class

scatter and within-class scatter matrices. FKT may yet
again reveal new insights into kernelized LDA.
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