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Abstract

The Fisher Linear Discriminant (FLD) is commonly used
in pattern recognition. It finds a linear subspace that maxi-
mally separates class patterns according to Fisher’s Crite-
rion. Several methods of computing the FLD have been pro-
posed in the literature, most of which require the calculation
of the so-called scatter matrices. In this paper, we bring a
fresh perspective to FLD via the Fukunaga-Koontz Trans-
form (FKT). We do this by decomposing the whole data
space into four subspaces, and show where Fisher’s Cri-
terion is maximally satisfied. We prove the relationship be-
tween FLD and FKT analytically, and propose a method of
computing the most discriminative subspace. This method
is based on the QR decomposition, which works even when
the scatter matrices are singular, or too large to be formed.
Our method is general and may be applied to different pat-
tern recognition problems. We validate our method by ex-
perimenting on synthetic and real data.

1. Introduction

In recent years, discriminant subspace analysis has been
extensively studied in computer vision and pattern recog-
nition. It has been widely used for feature extraction and
dimension reduction in face recognition [1] and text classi-
fication [5]. One popular method is the Fisher Linear Dis-
criminant (FLD), also known as Linear Discriminant Anal-
ysis (LDA) [2, 3]. It tries to find an optimal subspace such
that the separability of two classes is maximized. This is
achieved by minimizing the within-class distance and max-
imizing the between-class distance simultaneously. To be
more specific, in terms of the between-class scatter matrix
Sb and the within-class scatter matrixSw, the Fisher’s Cri-
terion can be written as

JF (Φ) =
|ΦT SbΦ|
|ΦT SwΦ|

(1)

By maximizing the criterionJF , Fisher Linear Discriminant
finds the subspaces in which the classes are most linearly
separable. The solution [3] that maximizesJF is a set of
the eigenvectors{φi} which must satisfy

Sbφ = λSwφ. (2)

This is called the generalized eigenvalue problem [2, 3].
The discriminant subspace is spanned by the generalized
eigenvectors. The discriminability of each eigenvector is
measured by the corresponding generalized eigenvalue, i.e.,
the most discriminant subspace corresponds to the maxi-
mal generalized eigenvalue. The generalized eigenvalue
problem can be solved by matrix inversion and eigen-
decomposition, i.e., applying the eigen-decomposition on
S−1

w Sb. Unfortunately, for many applications with high
dimensional data and few training samples, such as face
recognition, the scatter matrixSw is singular because gen-
erally the dimension of sample data is greater than the num-
ber of samples. This is known as the undersampled or small
sample size problem [3, 2].

Up till now, a great number of methods have been pro-
posed to circumvent the requirement of nonsingularity of
Sw, such as Fisherface [1] and LDA/GSVD [5]. In [1],
Fisherface first applies PCA [6, 8] to reduce dimension
such thatSw is nonsingular, then followed by LDA. The
LDA/GSVD algorithm [5] avoids the inversion ofSw by the
simultaneous diagonalization via the Generalized Singular
Value Decomposition (GSVD).

However, these methods are designed to overcome the
singularity problem and do not directly relate to the gen-
eralized eigenvalue, the essential measure of the discrim-
inability. In this paper, we propose to apply Fukunaga
Koontz Transform (FKT) [3] on the LDA problem. Based
on the eigenvalue ratio of FKT, we decompose the whole
data space into four subspaces. Then our theoretical analy-
ses show the relationship between LDA, FKT and GSVD.

Our work has three main contributions:

1. We present a unifying framework to understand differ-



ent methods, namely, LDA, FKT and GSVD. To be
more specific, for the LDA problem, GSVD is equiv-
alent to FKT; and the generalized eigenvalue of LDA
is equal to both the eigenvalue ratio of FKT and the
square of the generalized singular value of GSVD.

2. The proposed theory is useful for pattern recognition.
Our theoretical analyses demonstrate how to choose
the best subspaces for maximum discriminability. The
experiments on synthetic data and real data validate
our theory.

3. In connecting FKT with LDA, we show how FKT,
originally meant for 2-class problems can be general-
ized to handle multiple classes.

The rest of this paper is organized as follows: Section
2 briefly reviews the mathematical background for LDA,
GSVD, and FKT. In Section 3, we first analyze the discrim-
inant subspace of LDA based on FKT, then set up the con-
nections between LDA, FKT and GSVD. We apply our the-
ory to the classification problem on synthetic and real data
in Section 4, and conclude our paper in Section 5.

2. Mathematical Background

Notations. Let A = {a1, ...,aN}, ai ∈ RD denote a
data set of givenD-dimensional vectors. Each data point
belongs to exactly one ofC object classes{L1, ..., LC}.
The number of vectors in classLi is denoted byNi, thus
N =

∑
Ni. Observe that for high-dimensional data, e.g.,

face images, generally,C ≤ N � D. The between-class
scatter matrixSb, the within-class scatter matrixSw, and
the total scatter matrixSt are defined as follows:

Sb =
C∑

i=1

Ni(mi −m)(mi −m)T = HbHT
b (3)

Sw =
C∑

i=1

∑
a∈Li

(a−mi)(a−mi)T = HwHT
w (4)

St =
N∑

i=1

(ai −m)(ai −m)T = HtHT
t (5)

St = Sb + Sw (6)

Heremi denotes the class mean andm is the global mean
of A. The matricesHb ∈ RD×C , Hw ∈ RD×N , and
Ht ∈ RD×N are theprecursormatrices of the between-
class scatter matrix, the within-class scatter matrix and the
total scatter matrix respectively. Let us denote the rank of
each scatter matrix:rw = Rank(Sw), rb = Rank(Sb),
andrt = Rank(St). Note that for high-dimensional data
(D � N ), rb ≤ C − 1, rw ≤ N − 1 andrt ≤ N − 1.

2.1. Linear Discriminant Analysis

Given the data matrixA, which can be divided intoC
classes, we try to find a linear transformation matrixΦ ∈
RD×d, whered < D. It maps high dimensional data to
a low dimensional space. From the perspective of pattern
classification, LDA aims to find the optimal transformation
Φ such that the projected data are well separated.

Usually, two types of criteria are used to measure the
separability of classes [3]. One type gives the upper bound
on the Bayes error, e.g., Bhattacharyya distance. The other
type is based on scatter matrices. As shown in Equation 1,
Fisher’s criterion belongs to the latter type. The solution
of the criterion is the generalized eigenvector and eigen-
value (See Equation 2). However, as we mentioned, ifSw

is nonsingular it can be solved by the generalized eigen-
decomposition:S−1

w Sbφ = λφ. Otherwise,Sw is singular
and we have to circumvent the nonsingularity requirement
via LDA/GSVD [5], for example.

2.2. Generalized SVD

The Generalized Singular Value Decomposition (GSVD)
was developed by Van Loan et al. [4]. We will briefly re-
view the mechanism of GSVD using LDA as an example.

Howland et. al. [5] extended the applicability of LDA
to the case whenSw is singular. This is done by using
the simultaneous diagonalization of the scatter matrices via
GSVD [4]. First, to reduce computation load,Hb andHw

are used instead ofSb andSw. Then, based on GSVD there
exist orthogonal matricesY ∈ RC×C , Z ∈ RN×N , and a
nonsingular matrixX ∈ RD×D such that:

YT HT
b X = [Σb, 0] , (7)

ZT HT
wX = [Σw, 0] . (8)

where

Σb =

 Ib

Db

Ob

 , Σw =

 Ow

Dw

Iw

 .

SinceY, Z are orthogonal matrices andX is nonsingular,
from Equations 7, 8 we obtain

HT
b = Y [Σb, 0]X−1, (9)

HT
w = Z [Σw, 0]X−1. (10)

The matrices Ib ∈ R(rt−rw)×(rt−rw) and Iw ∈
R(rt−rb)×(rt−rb) are identity matrices, andOb ∈
R(C−rb)×(rt−rb) and Ow ∈ R(N−rw)×(rt−rw) are
rectangle, zero matrices which may have no rows
or no columns, andDb=diag(αrt−rw+1, ..., αrb

) and
Dw=diag(βrt−rw+1, ..., βrb

) satisfy1 > αrt−rw+1 ≥ ... ≥



αrb
> 0, 0 < βrt−rw+1 ≤ ... ≤ βrb

< 1, andα2
i + β2

i = 1.
Thus,

ΣT
b Σb + ΣT

wΣw = I, (11)

where I ∈ Rrt×rt is an identity matrix. The columns
of X, the generalized singular vectors for the matrix pair
(Hb,Hw), can be used as the discriminant feature subspace
based on GSVD.

2.3. Fukunaga Koontz Transform

The FKT was designed for the 2-class recognition prob-
lem. Given data matricesA1 andA2 from two classes, the
autocorrelation matricesS1 = A1AT

1 andS2 = A2AT
2 are

positive semi-definite (p.s.d.) and symmetric. The sum of
these two matrices is still p.s.d. and symmetric and can be
factorized in the form

S = S1 + S2 = [U,U⊥]
[

D 0
0 0

] [
UT

UT
⊥

]
(12)

Without loss of generality,S may be singular and
r=Rank(S)< D, thusD = diag{λ1, ..., λr}, λ1 ≥ ... ≥
λr > 0. U ∈ RD×r is the set of eigenvectors correspond-
ing to nonzero eigenvalues andU⊥ ∈ RD×(D−r) is the
orthogonal complement ofU. Now we can whitenS by a
transformation operatorP = UD−1/2. The sum of the two
matricesS1,S2 becomes

PT SP = PT (S1 + S2)P = S̃1 + S̃2 = I (13)

whereS̃1 = PT S1P andS̃2 = PT S2P, I ∈ Rr×r is an
identity matrix. Suppose an eigenvector ofS̃1 is v with
eigenvalueλ1, that is:S̃1v = λ1v. SinceS̃1 = I− S̃2, we
can rewrite it as:

(I− S̃2)v = λ1v (14)

S̃2v = (1− λ1)v (15)

This means that̃S2 has the same eigenvector asS̃1 but the
corresponding eigenvalue isλ2 = 1 − λ1. Consequently,
the dominant eigenvector of̃S1 is the weakest eigenvector
of S̃2, and vice versa.

3. Theory

In this section, we first employ FKT onSb and Sw
1,

which results in decomposing the whole data spaceSt into
four subspaces. Then we explain the relationship between
LDA, FKT and GSVD based on the generalized eigenvalue.
This gives insight into the different discriminant subspace
analyses.

1In this paper, we focus on linear discriminant subspace analysis, but
our approach can be easily extended to nonlinear discriminant subspace
analysis. For example, based on kernel method, we can apply FKT on
kernelizedSb and kernelizedSw.
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Figure 1. The whole data space is decom-
posed into four subspaces via FKT. In U⊥,
the null space of St, there is no discriminant
information. In U, the sum of λb + λw is equal
to 1. Note that we represent all possible sub-
spaces, but in practice, some of these sub-
spaces may not exist.

3.1. LDA/FKT

Generally speaking, for the LDA problem there are more
than2 classes. To handle multiple classes, we replace the
autocorrelation matricesS1 andS2 with the scatter matrices
Sb andSw. SinceSb, Sw andSt are p.s.d., symmetric and
St = Sb +Sw, we can apply FKT onSb, Sw andSt, which
we shall henceforth call LDA/FKT. The whole data space is
decomposed into two subspaces:U andU⊥ (See Fig. 1).
On the one hand,U⊥ is the set of eigenvectors correspond-
ing to the zero eigenvalues ofSt. It is the intersection of
the null spaces ofSb andSw, and contains no discriminant
information. On the other hand,U is the set of eigenvectors
corresponding to the nonzero eigenvalues ofSt. It contains
discriminant information.

Based on FKT,̃Sb = PT SbP andS̃w = PT SwP share
the same eigenvectors, and the sum of two eigenvalues cor-
responding to the same eigenvector is equal to1.

S̃b = VΛbVT (16)

S̃w = VΛwVT (17)

I = Λb + Λw (18)

WhereV ∈ Rrt×rt is the orthogonal eigenvector matrix,
Λb,Λw ∈ Rrt×rt are diagonal eigenvalue matrices. Ac-
cording to the eigenvalue ratioλb

λw
, U can be further de-

composed into three subspaces. To keep the integrity of
the whole data space, we incorporateU⊥ as the fourth sub-
space. See Fig. 1.

1. Subspace 1: the span of eigenvectors{vi} correspond-
ing to λw = 0, λb = 1. Since λb

λw
= ∞, in this sub-

space, the eigenvalue ratio is maximized.



2. Subspace 2: the span of eigenvectors{vi} correspond-
ing to 0 < λw < 1 and 0 < λb < 1. Since
0 < λb

λw
< ∞, the eigenvalue ratio is smaller than

that of Subspace1.

3. Subspace 3: the span of eigenvectors{vi} correspond-
ing to λw = 1 andλb = 0. Since λb

λw
= 0, the eigen-

value ratio is minimal.

4. Subspace 4: U⊥, the span of eigenvectors correspond-
ing to the zero eigenvalues ofSt.

Note that in practice, any of these four subspaces may
not exist, depending on the ranks ofSb, Sw andSt. For
example, ifrt = rw + rb, then Subspace 2 does not exist.
As illustrated in Fig. 1, the null space ofSw is the union of
Subspace1 and Subspace4, and the null space ofSb is the
union of Subspace3 and Subspace4, if they exist.

3.2. Relationship between LDA, GSVD and
FKT

How do these four subspaces help to maximize the
Fisher criterionJF ? We explain this in the following The-
orem that connects the generalized eigenvalue ofJF to the
eigenvalues of FKT. We begin with a Lemma:

Lemma. For the LDA problem, GSVD is equivalent to

FKT, with X =
[
UD−1/2V,U⊥

]
, Λb = ΣT

b Σb and

Λw = ΣT
wΣw. WhereX, Σb andΣw are from GSVD (See

Equations 7, 8), andU, D, V, U⊥, Λw andΛb are matrices
from FKT (See Equations 16, 17, 18 ).

Proof. GSVD =⇒ FKT
Based on GSVD,

Sb = HbHT
b = X−T

[
ΣT

b Σb 0
0 0

]
X−1 (19)

Sw = HwHT
w = X−T

[
ΣT

wΣw 0
0 0

]
X−1 (20)

Thus,

XT (Sb + Sw)X =
[

I 0
0 0

]
(21)

SinceΣT
b Σb + ΣT

wΣw = I ∈ Rrt×rt , if we choose the
first rt columns of X as P, i.e., P = X(D,rt), then
PT (Sb + Sw)P = I. This is exactly the outcome of FKT.
Meanwhile, we can reach the conclusion thatΛb = ΣT

b Σb

andΛw = ΣT
wΣw.

FKT =⇒ GSVD
Based on FKT,P = UD−1/2

S̃b = PT SbP = D−1/2UT HbHT
b UD−1/2 (22)

S̃b = VΛbVT (23)

Hence,

D−1/2UT HbHT
b UD−1/2 = VΛbVT (24)

In general, there is no unique decomposition on the above
equation becauseHbHT

b = HbYYT HT
b for any orthogo-

nal matrixY ∈ RC×C . That is:

D−1/2UT HbYYT HT
b UD−1/2 = VΛbVT (25)

YT HT
b UD−1/2 = Σ̂bVT (26)

YT HT
b UD−1/2V = Σ̂b (27)

whereΣ̂b ∈ RC×rt , andΛb = Σ̂T
b Σ̂b. If we defineX =[

UD−1/2V,U⊥

]
∈ RD×D. Then,

YT HT
b X = YT HT

b [UD−1/2V,U⊥] (28)

= [YT HT
b UD−1/2V, 0] (29)

= [Σ̂b, 0] (30)

Here,HT
b U⊥ = 0 andHT

wU⊥ = 0 becauseU⊥ is the
intersection of the null spaces ofSb andSw. Similarly, we
can obtainZT HT

wX = [Σ̂w, 0], whereZ ∈ RN×N is an
arbitrary orthogonal matrix and̂Σw ∈ RN×rt , andΛw =
Σ̂T

wΣ̂w. SinceΛb + Λw = I andI ∈ Rrt×rt is an identity
matrix, it is easy to check that̂ΣT

b Σ̂b + Σ̂T
wΣ̂w = I, which

satisfies the constraint of GSVD.
Now we have to proveX is nonsingular.

XXT =
[
UD−1/2V,U⊥

] [
VT D−1/2UT

UT
⊥

]
= UD−1UT + U⊥UT

⊥

= [U,U⊥]
[

D−1 0
0 I

] [
UT

UT
⊥

]
(31)

whereV ∈ Rr×r and [U,U⊥] are orthogonal matrices.
Note thatUT U⊥ = 0 andUT

⊥U = 0. ThusXXT can be
eigen-decomposed with positive eigenvalues, which means
X is nonsingular.

Based on the above lemma, we can investigate the rela-
tionship between the eigenvalue ratio of FKT and the gen-
eralized eigenvalueλ of the Fisher criterionJF .

Theorem. If λ is the solution of Equation 2 (the generalized
eigenvalue ofSb andSw), andλb andλw are the eigenval-
ues after applying FKT onSb andSw, thenλ = λb

λw
, where

λb + λw = 1.

Proof. Based on GSVD, it is easy to verify that:

Sb = HbHT
b = X−T

[
ΣT

b Σb 0
0 0

]
X−1 (32)



According to our lemma,Λb = ΣT
b Σb, thus

Sb = X−T

[
Λb 0
0 0

]
X−1 (33)

Similarly, we can rewriteSw but with Λw. SinceSbφ =
λSwφ,

X−T

[
Λb 0
0 0

]
X−1φ = λX−T

[
Λw 0
0 0

]
X−1φ

(34)
Let v = X−1φ, and multiplyXT on both sides, we can
obtain the following.[

Λb 0
0 0

]
v = λ

[
Λw 0
0 0

]
v (35)

If we addλ

[
Λb 0
0 0

]
v on both sides of Equation 35, then

(1 + λ)
[

Λb 0
0 0

]
v = λ

[
I 0
0 0

]
v. (36)

This means that(1 + λ)λb = λ, which can be rewritten as
λb = λ(1 − λb) = λλw becauseλb + λw = 1. Now, we
can observe thatλ = λb

λw
.

Corollary. If λ is the generalized eigenvalue ofSb andSw,
andα andβ are the solutions of Equations 7, 8 andα/β is
the generalized singular value of the matrix pair(Hb,Hw),
thenλ = α2

β2 , whereα2 + β2 = 1.

Proof. In Lemma we have proved thatΛb = ΣT
b Σb and

Λw = ΣT
wΣw, that is: λb = α2 andλw = β2. According

to Theorem, we observe thatλ = λb

λw
. Therefore it is easy

to see thatλ = α2

β2 . Note thatαβ is the generalized singu-
lar value of(Hb,Hw) by GSVD, andλ is the generalized
eigenvalue of(Sb,Sw).

The Corollary suggests how to evaluate the discriminant
subspaces of LDA/GSVD. Actually, Howland et. al. in [5]
applied the Corollary implicitly, but in this paper we explic-
itly connect the generalized singular valueα

β with λ, the
measure of discriminability.

Based on our analysis, the eigenvalue ratioλb

λw
and the

square of the generalized singular valueα2

β2 , both are equal
to the generalized eigenvalueλ, the measure of discrim-
inability. Therefore, according to Fig. 1, Subspace1, with
the infinite eigenvalue ratioλb

λw
, is the most discriminant

subspace, followed by Subspace2 and Subspace3. How-
ever, Subspace 4 which contains no discriminant informa-
tion, can be safely thrown away.

Input : The data matrixA.
Output : Projection matrixΦF such that theJF is maximized.

1. ComputeHb andHt from data matrixA:

Hb =
[√

N1(m1 −m), ...,
√

NC(mC −m)
]
,

Ht = [a1 −m, ...,aN −m] .

2. Apply QR decomposition onHt = QR, whereQ ∈
RD×rt ,R ∈ Rrt×N andrt = Rank(Ht).

3. LetS̃t = RRT , sinceS̃t = QT StQ = QT HtH
T
t Q =

RRT .

4. LetZ = QT Hb.

5. Let S̃b = ZZT , sinceS̃b = QT SbQ = QT HbH
T
b Q =

ZZT .

6. Compute the eigenvectors{vi} and eigenvalues{λi} of
S̃−1

t S̃b.

7. Sort the eigenvectorsvi according toλi in decreasing
order,
λ1 ≥ λ2 ≥ · · · ≥ λk > λk+1 = · · · = λrt = 0.

8. The final projection matrixΦF = QV, whereV =
{vi}. Note that we can choose the subspaces based on
the columns ofV.

Figure 2. Algorithm: Apply QR decomposi-
tion to compute LDA/FKT.

3.3 Algorithm

Although we proved that FKT is equivalent to GSVD on
the LDA problem, LDA/GSVD is computationally expen-
sive. The running time of LDA/GSVD isO(D(N + C)2),
whereD is the dimensionality,N is the number of training
samples andC is the number of classes. In this paper, we
propose an efficient way to compute the Subspaces1, 2 and
3 of LDA/FKT based on QR decomposition because Sub-
space4 contains no discriminant information. Moreover,
we use smaller matricesHb andHt because matricesSb,
Sw andSt may be too large to be formed. Our LDA/FKT
algorithm is shown in Fig. 2. The running time isO(DN2).

4. Experiments

4.1. A Toy Problem

First, we experiment on synthetic data: three single
Gaussian classes with the same covariance matrix and dif-
ferent means. In 3D space, the three classes share the same
covariance matrix:diag([1, 1, 0]), and each class has10
points. They have different means:[0, 0, 0]T , [0, 1, 2]T , and
[0, 1, 0]T (See Fig. 3(a)).



Table 1. Eigenvalue and eigenvalue ratio of
the toy problem.

LDA/FKT LDA/GSVD LDA
λb/λw α2/β2 λ

1/0 = ∞ (1.6709× 1016)2 →∞ ∞
0.29286/0.70714 0.643542

= 0.4141 = 0.4141 0.4141
0/1 = 0 (1.0616× 10−16)2 → 0 0

As shown in Fig. 4, LDA/FKT decomposes the whole
data space into three subspaces:1, 2 and3. Here Subspace4
does not exist because the number of samples (30) is larger
than the dimension (3). Note that each subspace consists of
only one eigenvector. In terms of the eigenvalue ratio, Sub-
space1 is the most discriminative subspace, followed by
Subspaces2 and3. But if we use Fisherface (PCA followed
by LDA), we cannot obtain Subspace1 because Fisherface
restricts to the Subspaces2 and3 whereλw 6= 0 so that
Sw is invertible. In doing so, Fisherface is discarding the
most discriminative information (Subspace1). To compare
LDA/FKT with Fisherface, we project the original 3D data
to Subspace1 and Subspace2, and we also project to 2D
space via Fisherface. As illustrated in Fig. 3(b) and 3(c),
the 2D projection of FKT is more separable than the projec-
tion of Fisherface. This is consistent with our theory.

Let us recall the Corollary: the eigenvalue ratio of
LDA/FKT is equal to the square of the generalized singular
value of LDA/GSVD. To check this, we also apply GSVD
on Hb andHw, which is known as LDA/GSVD [5]. Then
we obtain the generalized singular valueα/β. From Table
1, we see thatα2/β2 ' λb/λw

2. Thus we show the validity
of our theory experimentally. Moreover, this means we can
compute the generalized eigenvalueλ of LDA, although it
cannot be obtained directly whenSw is singular.

4.2. Face Recognition

We now apply LDA/FKT on a real problem: face recog-
nition. We perform experiments on the CMU-PIE [7] face
dataset. The CMU-PIE database consists of over400, 000
images of68 subjects. Each subject was recorded across
13 different poses, under43 different illuminations (with
and without background lighting), and with4 different ex-
pression. Here we use a subset of PIE for our experiments.
We choose67 subjects3, and each subject has24 frontal
face images with background lighting. All of these face im-
ages are aligned based on eyes coordinates, and cropped to

2The difference depends on the machine precision.
3In CMU-PIE, there are68 subjects together, we only choose67 sub-

jects because one subject has fewer frontal face images.
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Figure 3. Original 3 classes (triangle, circle
and cross) in 3D space (a) and 2D projection
by (b) LDA/FKT and (c) Fisherface. Observe
that the 2D projection of FKT is more separa-
ble than that of Fisherface.

70× 80. Fig. 5 shows a sample of PIE face images used in
our experiments. It is easy to see that the major challenge
on this data set is to do face recognition under different il-
luminations.

Here, to evaluate the performance of LDA/FKT, we com-
pare it with PCA and Fisherface. We employ 1-NN to do
face recognition after projection onto the respective sub-
spaces. For PCA, the projected subspace contains66 di-
mensions; for Fisherface, we take the first100 principal
components to makeSw nonsingular, then followed by
LDA. For LDA/FKT, we project data to Subspaces1, 2.

In face recognition, we usually have an undersampled
problem, which is also the reason for the singularity of
Sw. To evaluate the performance under such situation,
we randomly choosen training samples from each sub-
ject, n = 2, · · · , 12, and the remaining images are used
for testing. Moreover, for each set ofn training samples,
we repeat sampling10 times to compute the mean and stan-
dard deviation of classification accuracies. As illustrated
in Fig. 6, we observe that the more the training samples,
the better the recognition accuracy. To be more specific,
for each method, increasing the number of training samples
increases the mean recognition rate and decreases the stan-
dard deviation.

Fig. 6 also shows that no matter how many training sam-
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Figure 4. Eigenvalue curve for the toy prob-
lem by LDA/FKT. Note that each subspace
consists of only one eigenvector.

Figure 5. A sample of face images from PIE
dataset. Each subject has 24 frontal face im-
ages under different lighting conditions.

ples are used, LDA/FKT consistently outperforms PCA and
Fisherface. This is easily explained by the subspaces used
in each method. LDA/FKT uses Subspaces1 and2, which
are the most discriminative. Fisherface ignores Subspace
1 and operates in Subspaces2 and3. PCA has no notion
of discriminative subspaces at all, since it is designed for
pattern representation, rather than classification [2, 3].

Note that even when we have only2 or4 training samples
from each subject, LDA/FKT can still obtain the best recog-
nition accuracy (∼ 99%) with the smallest standard devia-
tion (< 1%). This means LDA/FKT can handle small sam-
ple size problem with high and stable performance, which
is not the case for PCA or Fisherface.

5 Conclusion

In this paper, we showed how FKT provides valuable in-
sights into LDA by exposing the four subspaces that make
up the entire data space. These subspaces differ in discrim-
inability because each has a different value for the Fisher’s
Criterion. We also proved that the common technique of
applying PCA followed by LDA (a.k.a. Fisherface) is not
optimal because this discards Subspace 1, which is the most
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Figure 6. The accuracy curve on PIE with
varying training samples. We show the rate
and standard deviation from 10 runs.

discriminative subspace.
Our result also showed how FKT, originally proposed

for 2-class problems, can be generalized to handle multiple
classes. This is achieved by replacing the autocorrelation
matricesS1 andS2 with the scatter matricesSb andSw.

In the near future, we intend to investigate further the
insights that FKT reveals about LDA. Another interesting
direction to pursue is the extend our theory to nonlinear
discriminant analysis. One way is to use the kernel trick
employed in SVM, e.g., construct kernelized between-class
scatter and within-class scatter matrices. FKT may yet
again reveal new insights into kernelized LDA.
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