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Abstract
Standard chi-square-based fit indices for factor analysis and related models have a little known
property: They are more sensitive to misfit when unique variances are small than when they are large.
Consequently, very small correlation residuals indicating excellent fit can be accompanied by
indications of bad fit by the fit indices when unique variances are small. An empirical example of
this incompatibility between residuals and fit indices is provided. For illustrative purposes, an
artificial example is provided that yields exactly the same correlation residuals as the empirical
example but has larger unique variances. For this example, the fit indices indicate excellent fit. A
theoretical explanation for this phenomenon is provided using relationships between unique
variances and eigenvalues of the fitted correlation matrix.

When assessing structural equation models, it is helpful to use a fit index as a single summary
measure and to also inspect the matrix of residual covariances or correlations in case it suggests
sources of lack of fit. In the hypothetical situation in which a model holds exactly, the chi-
square goodness-of-fit statistic, on which standard fit indices are based, will have a value of
zero and all residuals will also be zero (e.g., Bollen, 1989, p. 263). It is tempting to assume,
therefore, that the standard fit indices and the usual residuals measure lack of fit of a structural
equation model in a compatible manner. In this article, we show that this assumption is not
true, particularly when the model fits closely, but not exactly, and when unique variances of
manifest variables are very small. Small unique variances imply that both the error variances
and specific variances of manifest variables are small so that the manifest variables yield
accurate measures of the latent variables under consideration. It is disturbing that standard fit
indices appear to indicate a bad fit by the model when very accurate measurements are used
and even when all the residuals indicate a very good fit.

This anomaly is examined in some detail. First, a numerical illustration of the problem is given.
A matrix of correlations among eight variables from an empirical study in health psychology
is subjected to an exploratory maximum-likelihood (ML) factor analysis extracting two factors.
Values of several standard fit indices indicate an unsatisfactory fit. The usual residual
correlation matrix is then presented. Elements are all small in magnitude, indicating a very
good fit of the model and contradicting the fit indices. This illustrates that serious conflicts
between the standard fit indices and the correlation residuals can occur in practice.
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An artificial correlation matrix, also with eight variables, is then presented. When this
correlation matrix is factor analyzed by ML extracting two factors, exactly the same residuals
are obtained as in the empirical study. Unique variances, however, are larger for the artificial
example than for the empirical example. The fit indices now indicate a very good fit of the
model, thereby agreeing with the residuals. Thus, ML factor analyses of two different
correlation matrices result in exactly the same residuals but yield fit indices that indicate a very
poor fit when some unique variances are small and an excellent fit when they are larger.

A theoretical explanation for this phenomenon is given. It is shown that fit indices based on
the chi-square test of fit are influenced by eigenvalues of the fitted, or implied, correlation
matrix as well as by the residuals. These fit indices therefore contain information not present
in the correlation residuals and are consequently not entirely compatible with them. The
incompatibility is most striking when some of the eigenvalues are very small. Because no
eigenvalue can be smaller than the smallest unique variance, severe incompatibility of fit
indices and residuals cannot occur when no unique variances are small. Transformed residuals
that incorporate information about the fitted correlation matrix are then suggested. Chi-square-
based fit indices can be calculated directly from the transformed residuals, also using sample
size, number of variables, and degrees of freedom. Because the transformed residuals contain
all additional information required by the fit indices and not present in the usual residuals, they
may be regarded as entirely compatible with the fit indices.

In some situations (but not all; see Costner & Schoenberg, 1973), the usual residuals may be
used to locate sources of lack of fit of the model. Comparisons of the transformed residuals
and the usual residuals obtained in the two examples are made. The transformed residuals
exhibit similar patterns to those of the usual residuals but differ in magnitude. Thus the
transformed residuals reflect the magnitude of the standard fit indices. The relative magnitude
of the transformed residuals should also provide information for locating sources of lack of fit
in situations in which this is possible with the usual residuals.

The findings about the influence of small unique variances on the magnitude of the chi-square
test statistic are shown to have implications for the power of the chi-square test of fit. Effect
size will be large, and consequently power will be high, when the manifest variables used have
small unique variances.

Incompatible fit indices and residuals occur only in the presence of small unique variances.
Because highly accurate measurements are seldom available in the social sciences, this
incompatibility is not often obvious in practice. Obvious incompatibilities do, however,
sometimes occur, particularly in experimental contexts in which closely related or repeated
biologic, physical, or other highly reliable measurements are collected. Steiger (2000, pp. 160–
161) has commented independently on this problem, and colleagues have, on occasion, been
very puzzled by the phenomenon and consulted some of us. These puzzled consultations have
provided the impetus for the present article.

An Illustrative Example
The data come from a clinical trial of the efficacy of a psychological intervention to reduce
stress, enhance quality of life, improve health behaviors, and enhance biologic responses for
women with breast cancer (Andersen et al., 1998; Andersen, Kiecolt-Glaser, & Glaser,
1994). One focus of this work was on biologic responses to the intervention, specifically, the
response of the immune system. In the present analyses, we make use of two immune measures:
natural killer (NK) cell lysis (cytotoxicity) and the response of NK cells to recombinant
interferon gamma (rIFNγ). Higher levels of these variables indicate a stronger response of the
immune system. For each measure, the corresponding laboratory assay was conducted with
four replicates, differing in terms of the ratios of effector to target (E:T) cells. For NK cell
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lysis, the four E:T ratios were 100:1, 50:1, 25:1, and 12.5:1. For rIFNγ, the four E:T ratios were
50:1, 25:1, 12.5:1, and 6.25:1. The replicates provided information about the reliability of the
immune response. These eight variables were assayed using peripheral blood leukocytes
obtained from blood samples taken from the 72 women initially assigned to the trial. These
variables were used in subsequent models as indicators of latent variables representing
different, but related, aspects of the NK cell response. The four cytotoxicity measures were
regarded as indicators of an NK cell lysis immune-response construct, and the four measures
of rIFNγ were regarded as indicators of NK cell lysis in response to a specific cytokine
(rIFNγ). The correlation matrix of the eight variables is shown in Table 1.

An ML factor analysis was carried out hypothesizing two factors, NK cell lysis and NK cell
lysis augmented with rIFNγ, and the likelihood ratio test statistic was calculated. This is the
usual approximate chi-square statistic used to test the hypothesis that the common factor model
holds exactly in the population with the given number of factors. In addition, some well-known
fit indices were computed. Seven are based on chi-square test statistics. These are the goodness-
of-fit index (GFI; Jöreskog & Sörbom, 1984); the adjusted goodness-of-fit index (AGFI;
Jöreskog & Sörbom, 1984); the measure of centrality (MC; McDonald, 1989); the root-mean-
square error of approximation (RMSEA; Steiger, 1989; Steiger & Lind, 1980; also advocated
by Browne & Cudeck, 1993); the nonnormed fit index (NNFI; Bentler & Bonnett, 1980; Tucker
& Lewis, 1973); the normed fit index (NFI; Bentler & Bonnett, 1980); and the relative
noncentrality index (RNI; Bentler, 1990; McDonald & Marsh, 1990).1 Another common index,
the root-mean-square residual (RMR; Jöreskog & Sörbom, 1984), is based exclusively on
elements of the residual matrix. Appendix A provides formulas for these fit indices and
supplementary information. Additional information may be found in Bollen (1989, pp. 256–
289) and in Hu and Bentler (1998).

These eight indices can be seen as representing three categories of fit measures: (a) measures
of absolute fit, which increase as fit improves; (b) measures of absolute misfit, which decrease
as fit improves; and (c) measures of comparative fit, which involve a comparison of the
specified model to a worst-case baseline model often called a null model. The absolute fit
indices, the GFI, the AGFI, and the MC, depend only on the fit of the hypothesized model and
increase as goodness of fit improves. The GFI and the AGFI are bounded above by one, but
the MC can exceed one. The absolute misfit indices, the RMR and the RMSEA, also depend
only on the fit of the hypothesized model but decrease as goodness of fit improves and attain
their lower bound of zero when the model fits perfectly. The comparative fit indices, the NFI,
the NNFI, and the RNI, depend on the fit of both the hypothesized model and of the baseline
model, the latter of which is intended to give a poor fit to the data. The usual diagonal model
for the covariance matrix (permitting variances but requiring zero covariances) is used as the
baseline model in this article. Comparative fit indices increase if the fit of the hypothesized
model improves and if the fit of the baseline model remains constant. Comparative fit indices
also increase if the fit of the baseline model deteriorates and the fit of the hypothesized model
remains constant. Consequently, comparative fit indices simultaneously measure the goodness
of fit of the hypothesized model and the badness of fit of the baseline model. The comparative
fit indices NFI and RNI can exceed one when fit is excellent.

In empirical studies, all fit indices mentioned are based on a sample and consequently are point
estimates of corresponding population quantities. Interval estimates (confidence intervals) may
be obtained for the absolute fit indices GFI, AGFI, and MC and the absolute misfit index
RMSEA, using their monotonic relationships with the likelihood ratio test statistic (cf. Browne
& Cudeck, 1993; Maiti & Mukherjee, 1990; Steiger, 1989). Such interval estimates provide

1Another popular fit index, the comparative fit index (CFI; Bentler, 1990), is almost the same as the RNI. The CFI and the RNI have the
same value whenever they are between 0 and 1, but the CFI is constrained to have no values less than 0 or greater than 1.
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valuable information about the precision of an estimate of model fit. Confidence intervals are
not available for measures of comparative fit, nor for the RMR.

The two-factor solution for the correlation matrix in Table 1 yielded a χ2(13, N = 72) = 103.59,
p < 10−15, indicating rejection of the hypothesis of exact fit of the two-factor model. Point
estimates of the eight fit indices are shown in the first row of Table 2, with lower and upper
limits of the associated 90% confidence intervals, when available, in the next two rows. The
three absolute fit indices are far from their upper bound of one and indicate a poor fit of the
model. The RMR absolute misfit index, which depends only on the residuals, is close to its
lower bound of zero and indicates an excellent fit. In contrast, the other absolute misfit index,
the RMSEA, which does not depend only on the residuals, indicates an extremely poor fit. It
is well over an approximate cutoff of 0.10 indicating poor fit (Browne & Cudeck, 1993, p. 144;
Steiger, 1989, p. 81). The comparative fit indices have markedly higher values than the absolute
fit indices because of the influence of the extremely bad fit of the baseline model, χ2(28, N =
72) = 1,122.51, p < 10−15.

Given that the common measures of fit in Table 2 indicate that the two-factor model fits poorly,
one would next examine the residual correlation matrix to attempt to locate the source of
unsatisfactory fit. The elements of the residual correlation matrix represent differences between
elements of the correlation matrix of Table 1 and the fitted or implied correlation matrix
reproduced according to the model. These residuals are shown in Table 3. Examination of the
residuals shows that they are negligible from a practical point of view. The largest is 0.115,
and the rest are all less than 0.04 in absolute value. There is thus a clear contradiction between
the fit indices in Table 2 and the residuals in Table 3. The exception is the RMR in Table 2,
which is computed directly from the residuals in Table 3 and is thus small. Apparently, the
other seven fit indices indicate poor fit because of some other characteristic of the analysis that
is not reflected in the residuals.

To illustrate this point further, we conducted a computerized search, using the Simplex
algorithm (Nelder & Mead, 1965), for an artificial correlation matrix that yields the same
residuals as those of Table 3 under ML factor analysis with a two-factor model. The artificial
correlation matrix is shown in Table 4. It differs markedly from the empirical correlation matrix
in Table 1 in that all the intercorrelations are lower, although intercorrelations within the last
four variables are still fairly high. (Although only three decimal places are reported here, the
artificial correlation matrix that was subjected to a factor analysis was stored to computer
accuracy.)

Factor analysis of the artificial correlation matrix by ML, extracting two factors, verified that
the residuals are the same as those reported in Table 3. Considering this correlation matrix to
represent a sample of 72, χ2(13, N = 72) = 2.06, p = .9997, indicating failure to reject the
hypothesis of exact fit of the model. Given that analyses of the empirical and artificial
correlation matrices yielded the same residuals (as in Table 3), the contrast between the values
of the likelihood ratio statistics for the two analyses is striking. The test statistic for the empirical
data lies in the extreme upper tail of the chi-square distribution, indicating strong rejection of
the model, whereas the test statistic for the artificial data lies in the extreme lower tail of the
distribution, indicating extraordinarily good fit, even better than what would be expected in a
random sample from a population in which the model was exactly correct. As would be
expected, this difference impacts fit measures that are based on the likelihood ratio statistic.
Fit measures for analysis of the artificial data and associated confidence intervals are given in
the last three rows of Table 2. The normal-theory-based absolute fit indices indicate a far better
fit for the artificial data than for the empirical data, even though the two data sets yield the
same residuals.2 Better fit is also indicated by the comparative fit indices, but the improvement
is less marked because of the influence of the baseline model; that is, the baseline model fits
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far less poorly for the artificial data, χ2(28, N = 72) = 195.25, p < 10−15, than for the empirical
data, χ2(28, N = 72) = 1,122.51, p < 10−15.

We therefore have two correlation matrices, shown in Tables 1 and 4, that yield the same
residuals and different fit indices when fitted by the same two-factor model. The chi-square-
based absolute fit indices, in particular, indicate a very poor fit of the model for the empirical
data and an excellent fit for the artificial data.

Reasons for differences in fit indices between data sets, despite the same residual matrix, are
investigated. First, some theory is required. Note that algebraic notation is interspersed with
verbal descriptions.

Assessing the Fit of a Covariance Structure
In this section, we present some theoretical background to provide a basis for understanding
the cause and nature of potential incompatibility between fit measures and residuals. The
following material is presented in the context of modeling the structure of a covariance matrix.
In practice, it is common to fit models to correlation matrices rather than to covariance matrices.
For a broad class of models, the material in this section generalizes to modeling correlation
structures, and our running example uses a correlation matrix. This issue is discussed in more
detail in the Extensions and Generalizations section of this article.

Let S be a p × p sample covariance matrix based on a sample of size N. Suppose we have a
covariance structure model (e.g., a factor analysis model or structural equation model) that we
wish to fit to S. Let q stand for the number of free parameters of the model, and let θ be a vector
consisting of these parameters. The model itself can then be represented using the notation 
(θ), where (θ) is a function of θ that produces a p × p implied covariance matrix reconstructed
by the model. The function (θ) is called a matrix valued function because it yields a matrix.
Thus, (θ) is a symmetric p × p matrix valued function of a q × 1 parameter vector θ. For
example, when (θ) represents the factor analysis model, (θ) = ΛΛ′ + Dψ, the parameter
vector θ consists of free elements of the factor loading matrix Λ and diagonal elements of the
diagonal unique covariance matrix Dψ.

Initially, when the effect of the implied covariance matrix on incompatibility between fit
indices and residuals is investigated, (θ) will represent any covariance structure.
Subsequently, when the effect of measurement accuracy is investigated, attention will be
restricted to a class of structural equation models that are related to the factor analysis model.

Minimum Discrepancy Estimation
Given the covariance matrix S and the model (θ), we wish to obtain estimates of the
parameters in θ. Most currently used estimation methods in the analysis of covariance
structures are minimum discrepancy methods of one type or another. That is, these methods
work by finding parameter estimates that minimize the discrepancy, as measured by a
discrepancy function, between the model and the data. A discrepancy function F[S, (θ)] is
a function of a sample covariance matrix S and a model covariance matrix (θ) that is positive
if (θ) ≠ S and is equal to zero if (θ) = S. It is regarded as a measure of the dissimilarity
of the model covariance matrix and of the data covariance matrix.

2For the artificial data, the upper and lower limits of each 90% confidence interval for a population absolute fit measure are equal. They
both lie on the same bound for the population fit measure and do not contain the point estimate. This is because the constructed chi-
square test statistic value lies in the lower 5% tail of the associated central chi-square distribution.
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Parameter estimates, θ̂, are obtained by minimizing the discrepancy function F[S, (θ)] with
respect to θ, thereby choosing the estimates so as to make the model as close as possible to the
data. The fitted or implied covariance matrix then is

(1)

the residual matrix is

(2)

and the minimum discrepancy function value is

A number of specific discrepancy functions have been proposed. The two that are most
commonly used in practice are ordinary least squares (OLS) and ML. The OLS discrepancy
function is defined as the sum of squares of the elements of the residual matrix:

(3)

where the tr operator refers to the trace of a matrix, meaning the sum of the diagonal elements.
The minimum F̂OLS of FOLS[S, (θ)] may be expressed as a function of the residual matrix
defined in Equation 2:

(4)

Currently, the OLS discrepancy function in Equation 3 is not used as often as the ML
discrepancy function, defined as

(5)

which yields the ML estimate θ̂ML and associated fitted covariance matrix Σ̂ML = (θ̂ML) at
its minimum:

(6)

Note that the likelihood ratio test statistic is defined as nF̂ML, where the multiplier n is normally
defined as (N − 1). The preference for ML over OLS is possibly due to little being known about
the distribution of F̂OLS, whereas approximations to the distribution of F̂ML are available under
normality assumptions. As a result, ML provides more capacity for statistical inference (e.g.,
tests of model fit, confidence intervals for fit measures) than does OLS.

Residuals as Diagnostics for Investigating Lack of Fit
Although discrepancy function values such as those defined in Equations 4 and 6 provide some
indication of model fit, additional information may be contained in the residual matrix, E,
defined in Equation 2, which is calculated by most structural equation modeling programs.
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This residual matrix is sometimes (but not always; see Costner & Schoenberg, 1973) helpful
for investigating the reasons for a poor approximation by the model. If the residual matrix is
null (i.e., all elements are zero) the model is said to fit the data perfectly. In applications to
empirical data this will never be true, but a model may fit sufficiently closely to be considered
a reasonably good approximation to reality. The elements of E may be inspected to see if they
are all sufficiently close to zero for the covariance structure to be accepted as a reasonable
approximation to S. Because E may have a substantial number of elements, it may be difficult
to decide whether they are all sufficiently close to zero. It is convenient therefore to have an
overall measure of goodness of fit of the model, that is, of the extent to which the elements of
E depart from zero. By the definition of a discrepancy function, F̂ is nonnegative, and F̂ = 0
if and only if E = 0. Consequently, F̂ provides a single measure of lack of fit. It is common to
transform this fit measure to a convenient scale by using a monotonic function of F̂. Such a
transformation of F̂ is known as a fit index.

One common fit index, the RMR, is a direct function of the elements of E, representing the
root mean square of those residuals (see Appendix A).3 Because RMR is a function of the
residuals, eij, alone it is compatible with them in the sense that large values of RMR will occur
only if there are large residuals. Many other currently used fit indices are functions of F̂ML. A
critical point is that unlike F̂OLS in Equation 4, one cannot compute F̂ML from the residual
matrix E alone. Another difference between the two discrepancy functions is that F̂ML is a
complex function in which the residuals do not appear in an obvious manner. The ML
discrepancy function F̂ML is more difficult to handle algebraically and conceptually than the
simple sum of squared residuals of F̂OLS.

Conveniently, there is a simpler discrepancy function that is relatively close to F̂ML in relation
to F̂OLS. This is the generalized least squares function:

(7)

It can be seen that F̃ML is a weighted function of the residual matrix (S − Σ̂ML), with 
serving as the weight matrix. It is related to F̂OLS in the sense that replacing the weight matrix

 in Equation 7 by the identity matrix I yields F̂OLS. Note, however, that the value of
F̃ML cannot be computed from the residuals (S − Σ̂ML) alone, because the weight matrix

 is required. In this sense, the generalized least squares discrepancy function F̃ML
resembles the ML discrepancy function F̂ML and differs from the OLS discrepancy function
F̂OLS.

The F̃ML discrepancy function in Equation 7 is used for defining some fit indices, namely, the
GFI, the AGFI, and some implementations of the RMSEA (see Appendix A). It is therefore of
interest in its own right when investigating incompatibility of these particular fit indices with
residual correlations. Comparison of F̃ML with F̂OLS, the latter of which is compatible with
the usual residuals, will indicate the source of incompatibility between the residuals and
F̃ML.

It is not as straightforward to investigate the incompatibility between the residuals and the more
complex discrepancy function F̂ML. The incompatibility of F̂ML and the residuals can,

3In the examples considered here, the RMR is equivalent to the standardized root-mean-square residual. The standardization is implied
by use of a correlation matrix.
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however, be investigated indirectly by approximating F̂ML using the simpler function F̃ML.
The closeness of F̂ML to F̃ML relative to F̂OLS enables the distance of F̂ML to F̂OLS to be
approximated by the distance of F̃ML to F̂OLS. This, in turn, enables the incompatibility of fit
indices based on F̂ML with the residuals to be investigated.

Transformed Residuals That Are Compatible With F̂ML and F̃ML
We now examine the fact that the values of the functions F̂ML and F̃ML cannot be computed
using only the information in the residual matrix E. We show here that it is possible to define
a transformed residual matrix, E*, that can be used to compute F̂ML and F̃ML without additional
information. Consequently, elements of E* provide information that can be used to explain the
magnitudes of F̃ML and F̂ML Fit indices based on F̃ML and F̂ML are therefore compatible with
elements of E* rather than with those of E. We also show how certain eigenvalues, in
conjunction with the residuals, influence the magnitude of F̃ML and F̂ML.

We make use of the eigen decomposition of the fitted matrix Σ̂ML = (θ̂ML). Let the
standardized eigenvectors of Σ̂ML be represented as columns in a p × p matrix U, and let the
corresponding eigenvalues be diagonal elements in a p × p matrix Dl. The eigenvalues are
designated l1, l2, …, lp. Thus, the eigen decomposition of Σ̂ML is represented by

(8)

Our attention is restricted to standard situations in which Σ̂ML is positive definite. We make
use of the symmetric square root (e.g., Harville, 1997, Theorem 21.9.1) of Σ̂ML. The symmetric
square root of a matrix is a symmetric matrix that can be multiplied by itself, with the resulting
product yielding the original matrix. The symmetric square root of Σ̂ML is given by

(9)

where the diagonal elements of  are positive square roots of the eigenvalues of Σ̂ML.

We then define the following transformed residual matrix

(10)

where  is the inverse of the symmetric square root . Then (see
Appendix B) F̂ML in Equation 6 may be written as

(11)

so that F̂ML depends on E* alone. It is worth bearing in mind that nearly all models used in
practice, including the factor analysis model considered earlier, have the property that tr[E*]
= 0 (Browne & Shapiro, 1991, Corollary 1.1). In this situation, Equation 11 simplifies to

It is apparent from Equation 11 that F̂ML = 0 if and only if E* = 0. Departures of elements of
E* from zero will move F̂ML away from its lower bound and consequently increase it. Because
the symmetric square root (Equation 9) has been used for defining E* in Equation 10, it is
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possible to associate elements of E* with corresponding elements of S (see Appendix B). The
exact nature of the dependence of the value of F̂ML on individual elements  of E* is
complicated, however, as it involves an expansion in products of elements of E* (see Appendix
B).

The relationship of F̃ML in Equation 7 to the elements of the transformed residual matrix E*
is much simpler:

(12)

so that the contribution of any element of E* to F̃ML is given by its square, . Consequently,
the larger elements of E* may be sought to determine the elements of S that contribute most
to lack of fit of the model as indicated by an unacceptably large F̃ML. But F̂ML closely
approximates F̂ML, F̂ML ≈ F̃ML, when all eigenvalues of E* are small (see Appendix B).

Consequently,  may also be regarded as an approximation to the contribution of an element
of E* to F̂ML in this situation.

The transformed residual matrix E* therefore gives much the same information about F̃ML and
F̂ML as the usual residual matrix E does about F̃OLS. Both indicate sources of lack of fit, with
elements of E contributing to F̂OLS and elements of E* contributing to F̃ML and F̂ML.

To illustrate the nature of the approximate relationship between F̂ML and F̃ML, we present their
values obtained from fitting the two-factor model and the baseline model to both the empirical
and artificial data in Table 5. Also shown is the ratio F̃ML/F̂ML. Differences between F̂ML and
F̃ML are small for the model of interest, the factor analysis model, especially so for the artificial
data but also reasonably so for the empirical data. The difference between F̃ML and F̃ML is
large when the baseline model is applied to the empirical data, for which fit is extremely poor.
This does not matter, because the effect of E* on F̂ML for the baseline model is of little interest.
The baseline model is used only as a reference point and for incremental indices alone. Thus,
the exact relationship between F̃ML and the scaled residuals  in Equation 12 serves as a
reasonable approximation for the relationship between F̂ML and the scaled residuals when the
model of interest is considered. The baseline model was included in Table 5 only to demonstrate
that there are circumstances, not of interest in this case, in which F̃ML does not serve as a
reasonable approximation to F̂ML.

Also shown in Table 5 are values of the error sum of squares F̃OLS defined by

(13)

It is important to note the distinction between F̃OLS defined here and F̂OLS defined in Equation
4. The value of F̂OLS is the minimized value of the OLS discrepancy function, whereas the
value of F̃OLS is the value of the OLS discrepancy function computed using the ML parameter
estimates. That is, F̃OLS is the residual sum of squares computed from the ML solution. The
contribution of an element of E* to F̃ML in Equation 12 is similar to the contribution of an
element of E = S − Σ̂ML to F̃OLS in Equation 13. Values in Table 5 show that for the factor
analysis of empirical data, the value of F̃ML is substantially greater than the corresponding
value of F̃OLS, indicating that the elements of E* are larger on average than those of E. For
the artificial data, the values of F̃ML and F̃OLS are much more similar, indicating that the
elements of E* are only slightly larger in average magnitude than those of E.
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It is instructive to compare the original and transformed residuals for the empirical data. The
transformed residuals are shown above and including the diagonal in Table 6, and the usual
residuals from Table 3 are shown below the diagonal for comparative purposes.4 Transformed
residuals  tend to be substantially larger than the usual residuals eij. This must be so, because
F̃ML = 1.329 is substantially larger than F̃OLS = 0.019 in Table 5, and both of these quantities
are produced by sums of squares of corresponding residuals (cf. Equations 12 and 13).

The elements of E and E* differ in magnitude but display fairly similar patterns of values. This
is illustrated further in Figure 1, which shows off-diagonal elements of E* plotted against
corresponding elements of E. There is a trend, albeit imperfect, for elements of E* to increase
as corresponding elements of E increase.

Residuals and transformed residuals for the artificial data are shown in Table 7. They are similar
in magnitude. This makes sense, because now F̃ML = 0.029 but F̃OLS = 0.019 as before, because
the raw residuals are the same.

The patterns of elements in E* and E are now very similar, and the plot of elements of E*
against elements of E in Figure 2 is close to being linear.

Thus, the elements of the usual residual matrix E are entirely compatible with the OLS
discrepancy function F̃OLS in Equation 13, in that they provide all the information required to
calculate it and completely determine its magnitude. The elements of E are not entirely
compatible with the ML discrepancy function F̃ML and associated generalized least squares
function F̃ML, as they do not completely determine the functions’ magnitudes. A transformed
residual matrix E* has been provided in Equation 10. The elements of E* are entirely
compatible with both F̂ML and F̃ML, as they provide all the information needed to calculate
the functions, using Equations 11 and 12, and to completely determine the functions’
magnitudes. They are consequently entirely compatible with all fit measures based on either
F̂ML or F̃ML (see Appendix A.)

Other transformed residual matrices are possible (see Appendix B), but the choice of a
symmetric square root in Equation 9 ensures that the value of the element of E* associated
with the element in S representing the covariance between two specific variables remains the
same when the ordering of variables is changed. Equivalently, the elements of S and E* change
positions in the same way when variables are reordered (see Appendix B). Because the elements
of E are also associated with the corresponding elements of S, it makes sense to plot the
elements of E* against corresponding elements of E to determine whether the pattern of
contributions of elements of E* to F̃ML is similar to that of elements of E to F̃OLS. This was
found to be the case to a reasonable extent with the empirical data, for which the elements of
E* and E differ considerably in magnitude, and more clearly with the artificial data, for which
the difference in magnitude of elements of E* and E is small.

Characteristics of the Analysis That Influence F̃ML and F̂ML

Inflation of F̃ML and F̂ML by Small Eigenvalues Σ̂
In the section titled An Illustrative Example, we showed that it is possible for the standard fit
indices, which depend on E*, to give a contrary impression of goodness of fit when compared
with the usual residuals (E). This incompatibility between fit indices and elements of E is most
striking when elements of E* and E differ considerably in magnitude. In the present section,
we examine reasons for these differences and investigate situations in which substantial

4Diagonal elements of E are all zero, which is a characteristic of the ML solution in unrestricted factor analysis.
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incompatibilities between the usual residuals and the standard fit indices occur. Rather than
compare individual elements of E* and E, it is convenient to compare the corresponding sums
of squares, F̃ML in Equation 12 and F̃OLS in Equation 13.

To do this, we use the matrix

(14)

Recall that matrix U contains standardized eigenvectors of Σ̂ML. It can be shown that the
elements of matrix Ẽ yield exactly the same sum of squares as the elements of E:

(15)

Consequently, the root mean squares of elements of E and Ẽ are the same.

A key relationship for understanding the problem at hand involves the association between the
elements of Ẽ and the values of F̂ML and F̃ML. That relationship is given by

(16)

Recall that li and lj represent eigenvalues i and j of Σ̂ML. Thus, F̃ML is a weighted sum of

squares of the elements of Σ̂ with weights . The value of F̃OLS, on the other hand, as
shown in Equation 15, is an unweighted sum of squares of the elements of Ẽ. This distinction
is critical for our understanding of why the normal-theory-based fit measures can at times
contradict indications of fit given by residuals. Consider the possible situation in which the
implied covariance matrix Σ̂ML has one or more very small eigenvalues. In that situation, the
inverses of those eigenvalues will be very large, resulting in the value of the quantity defined
in Equation 16 becoming much larger than that in Equation 15. This observation suggests that
large inverse eigenvalues of Σ̂ML are primarily responsible for a value of F̃ML that is much
larger than that of F̃OLS. Thus, under such conditions, fit measures based on F̃ML or F̂ML would
indicate much poorer fit than would be indicated by the usual residuals or fit measures, such
as the RMR, that are based on F̃OLS.

Examination of results from analysis of our empirical and artificial data sets shows that the
phenomenon just described does indeed account for the difference between indications of fit
provided by fit measures and raw residuals. Table 8 shows eigenvalues and inverse eigenvalues
of Σ̂ for the empirical and artificial data. It is clear that Σ̂ for the empirical data yields several
very small eigenvalues, whereas Σ̂ for the artificial data does not. As a result, the largest inverse
eigenvalues for the empirical data are many times larger than the largest inverse eigenvalues
for the artificial data. This explains why in Table 5 F̃ML and F̂ML are many times larger than
F̃OLS for the empirical data and much closer to the same value of F̃OLS for the artificial data.
For the same reason, the elements of the transformed residual matrix E* are on average much
larger for the empirical data in Table 6 than for the artificial data in Table 7.

The eigenvalues of Σ̂ will be close to those of S when E has small elements. Because the same
near-zero E matrix applies to both data sets, the patterns of eigenvalues of Σ̂ and of S in Table
9 are similar in both cases. Small eigenvalues of Σ̂ are accompanied by small eigenvalues of
S for the empirical data.
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Because all fit indices in Table 2 (and Table A1 in Appendix A), except for the RMR, are
monotonic functions of either F̂ML or F̃ML, these indices will tend to indicate an unsatisfactory
fit when some eigenvalues of Σ̂ are near zero. It is important to note that the phenomenon
becomes more extreme as the number of near-zero eigenvalues increases. Each such eigenvalue
contributes a large inverse eigenvalue to the quantity defined in Equation 13 and thus to further
inflation of fit indices based on F̂ML and corresponding incompatibility with raw residuals.

Measurement Characteristics That Result in Striking Incompatibilities Between Residuals
and Fit Measures

The preceding subsection showed that small eigenvalues of the fitted covariance matrix Σ̂ are
responsible for the indications of unsatisfactory fit by all indices in Table 2 except for the RMR.
This section examines practical circumstances that result in the small eigenvalues that are
responsible for the indications of poor fit.

Whereas previous derivations concerning small eigenvalues of the implied covariance matrix
Σ̂ did not make specific assumptions about the model, we now consider models that are of the
class

(17)

where Λ̂ is a p × m factor matrix of rank m, and D ̂ψ is a diagonal unique factor covariance
matrix with nonnegative diagonal elements. In particular, situations in which the number of
common factors, m, is substantially less than the number of variables, p, are of interest. Equality
constraints may be imposed on the elements of Λ̂, and the elements of the positive definite
symmetric matrix Φ ̂ may be functions of other parameters. Consequently, Λ̂ and D ̂ψ may be
specified so as to account for the measurement model in LISREL (Jöreskog & Sörbom,
1996), and Φ ̂ may be used to account for the structural model. Equation 17 therefore
incorporates many LISREL models as special cases and represents a wide class of models that
are used in practice.

The question under consideration is in what circumstances will models of the class in Equation
17 have some very small eigenvalues for Σ̂ and consequently yield striking incompatibilities
between the residuals output by most computer programs and the fit indices output by the same
computer programs. Examination of Equation 17 shows that the reproduced covariance matrix
Σ̂ is the sum of two matrices. The first, Λ̂Φ ̂Λ̂′, is a p × p matrix of rank m and will consequently
have p − m zero eigenvalues. The second is the diagonal matrix D ̂ψ, with unique variance
estimates as diagonal elements. If all these unique variance estimates were zero, Σ̂ would be
equal to Λ̂Φ ̂Λ̂′ and would therefore have p − m zero eigenvalues. It would be impossible to
compute any of the ML fit indices because ln|Σ̂| and Σ̂−1 would not exist.

Lemma C1 in Appendix C shows how the unique variance estimates in D ̂ψ strongly influence
the p − m smallest eigenvalues of Σ̂ and consequently strongly influence the magnitude of the
ML fit indices. It states that the p − m smallest eigenvalue of Σ̂ will lie between the largest
diagonal element, ψ̂(1), and the smallest diagonal element, ψ̂(p), of D ̂ψ. This lemma has three
implications: (a) If all manifest variables have small unique variances, then marked inflation
of the fit indices will occur; (b) if some manifest variables have small unique variances, marked
inflation of the fit indices can occur; and (c) if none of the manifest variables have small unique
variances, then marked inflation of the fit indices cannot occur.

Table 10 shows unique variance estimates for the eight variables in both the empirical and
artificial data. It can be seen that in the empirical data, the last three indicators of the IFN factor
have very small unique variances (≤0.022). Because inflation of fit indices was striking for the

Browne et al. Page 12

Psychol Methods. Author manuscript; available in PMC 2008 June 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



empirical data, this illustrates implication (b). For the artificial data, all unique variances exceed
0.100. Because no obvious inflation of fit indices occurred for the artificial data, this illustrates
implication (c).

The influence of unique variances on eigenvalues, specified in Lemma C1, may be verified by
comparing unique variances in Table 10 with eigenvalues in Table 8. For the empirical data,
the smallest unique variance is 0.009, and there are several eigenvalues of Σ̂ that are only
slightly larger than this lower bound. As a consequence, the absolute chi-square-based fit
indices in Table 2 indicate severe lack of fit. It is of interest to verify also that the smallest p
− m = 6 eigenvalues are all smaller than the largest unique variance, 0.292. For the artificial
data, the lower bound for eigenvalues provided by the smallest unique variance is 0.124, and
the smallest eigenvalue is 0.151. The consequence is that the absolute chi-square-based fit
indices in Table 2 indicate good fit for the artificial data.

A unique variance is small when both the error variance and specific variance are small so that
the manifest variable not only measures with little error but also measures only characteristics
that are measured by other manifest variables as well. Consequently, the fit indices can be
inflated markedly only if both the specific variance and error variance of some manifest
variables are small. One circumstance that can yield small specific variances and error
variances would arise when highly reliable measures are used to measure the same
characteristic several times. The measurements therefore are accurate in the sense of measuring
the required characteristic with little error, thereby implying little specificity of the
measurement process and little error of measurement.

High correlations among repeated measures of the same characteristic are symptomatic of this
situation. The empirical data used in our illustration have this feature because measures of
cellular immune function are quite reliable, and multiple measures using different cell
concentrations are a type of repeated measure of the same characteristic. Note from Table 1
that the last three variables are very highly correlated (rij > .98) and appear to measure the IFN
factor very accurately. Correlations between some of the NK indicators are only moderately
high, and yet the chi-square-based fit indices are highly inflated. It is not essential for all
correlations in the matrix to be very large for striking incompatibility between residuals and
chi-square-based fit indices to be apparent.

Implications for Statistical Power
The results considered here are relevant to statistical power of tests of model fit. It is possible
for a model for a population covariance matrix to be almost, but not exactly, correct and for
the likelihood ratio test of exact fit to have high power. Let Σ0 represent a population covariance
matrix that fits the model under consideration closely. Suppose that θ0 represents the vector of
parameter values that minimizes FML[Σ0, (θ)] so that the fitted matrix Σ̂ML0 = (θ0) is the
best approximation to the population covariance matrix that satisfies the model. This yields
the population discrepancy function value F̂ML0 = FML(Σ0, Σ̂ML0). Even if the elements of the
residual matrix (Σ0 − Σ̂ML0) are very small, it is possible for the effect size ηFML (Σ0, Σ̂ML0)
to be large if some eigenvalues of Σ̂ML0 are close to zero. This leads to high power of the
likelihood ratio goodness-of-fit test, even though the model in question may fit very well, but
not exactly. In other words, the probability of rejection of an almost, but not exactly, true null
hypothesis will be high when some eigenvalues of Σ̂ML0 are close to zero.

This phenomenon can be viewed as a matter of sensitivity to misspecification. The phenomena
examined in this article indicate that the likelihood ratio test is differentially sensitive to
misspecification of the model, depending on the eigenvalues of Σ̂ML0. When some of those
eigenvalues are near zero, then the likelihood ratio test is highly sensitive to misspecification,
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yielding high power. When none of those eigenvalues is close to zero, the test is less sensitive,
resulting in lower power.

This observation has implications for some approaches to power analysis in structural equation
modeling and factor analysis. MacCallum, Browne, and Sugawara (1996) proposed an
approach to power analysis based on the RMSEA fit index. Under this approach, the
investigator establishes a null hypothesis value of RMSEA, ε0, as well as an alternative value,
εa. Given N, α and degrees of freedom of the model, one can then calculate the power of the
test of the null hypothesis assuming the specified value εa for the population RMSEA. As εa
deviates further from ε0, the calculated power increases. The developments in the current article
have implications for the alternative value εa. For a model that yields a Σ̂ML0. that has
eigenvalues near zero, the actual RMSEA is likely to be very large, resulting in very high actual
power of the test of the model. If the user of the power analysis procedure sets the specified
value εa at some conventional value, 0.08 for example, that is considerably less than the actual
RMSEA, actual power will be drastically underestimated. In a similar manner, if power analysis
is used to choose sample size in advance, a larger sample size than necessary will be suggested
when small eigenvalues result in an actual RMSEA that is considerably larger than the
conventional value that is specified.

Extensions and Generalizations
We have examined the phenomenon of incompatibility between fit measures and residuals
using a theoretical framework for analysis of covariance structures considering a particular
class of models. However, our findings extend beyond the boundaries of this framework. In
particular, as mentioned earlier, our findings apply in most cases to analysis of correlation
structures as well as covariance structures (i.e., fitting models to correlation matrices or
covariance matrices). A correlation matrix can be viewed as a rescaled covariance matrix
according to

(18)

where Ds = Diag[S]. If a model is fitted to both R and S and if the same values of F̂ML are
obtained, then the model is said to be scale invariant. For models that are scale invariant, all
of the developments presented in this article hold under changes of scale of the manifest
variables, such as conversion from a covariance matrix to a correlation matrix. The factor
analysis model used as the hypothesized model in our illustration as well as the diagonal
baseline model used for some fit indices satisfy these conditions. Most structural equation
models used in practice are scale invariant. Factor analysis and structural equation models that
are not scale invariant typically include specification of equality constraints or other types of
constraints on parameters. For further discussion of scale invariance and the analysis of
correlation structures, as opposed to covariance structures, see Cudeck (1989).

Findings presented in this article also generalize well beyond the factor analysis model used
in our illustration. In an earlier section, we pointed out that the common factor covariance
structure given by Σ = ΛΦΛ′ + Dψ includes a rather broad range of structural equation models
in the sense that the correlation matrix Φ for common factors can be expressed as a function
of other parameters to represent a structural model for the relations among latent variables. In
addition, it can be shown that our results also generalize to models that include both covariance
and mean structures.5 Such models are commonly used for analysis of repeated measures data,
for example, the latent curve models (e.g., Browne, 1993;Meredith & Tisak, 1990). In fact, the
phenomenon described in this article could be especially common in such a modeling context

5Further research on this topic is being undertaken by Michael W. Browne and Robert C. MacCallum.
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because of the potential for low unique variances in highly correlated repeated measures of the
same variable.

Summary and Conclusions
We have examined a phenomenon that occurs at times in applications of factor analysis and
structural equation modeling, whereby a model that appears to fit well, as reflected by small
residuals, also simultaneously yields fit indices that indicate very poor fit. It has been shown
that this incompatibility can be expected when some common factors have very accurate
indicators with little specificity or error. That is, marked incompatibility between residuals and
chi-square-based fit indices can be expected in the presence of manifest variables with excellent
measurement properties. This noticeable incompatibility is not an indication of poor research
design and is not a phenomenon to be avoided. Rather it is a sign of an excellent choice of
measurement instruments. One can guarantee that the incompatibility between residuals and
chi-square-based fit indices is unobtrusive by choosing manifest variables with mediocre
measurement properties. Obviously, this is not desirable. This phenomenon seldom occurs,
however, because manifest variables in the social sciences usually have substantial errors.

It was seen that the usual correlation residuals, E, are entirely compatible with the OLS
discrepancy function value, F̃OLS, and the associated fit index, RMR. On the other hand, the
transformed residuals, E*, are entirely compatible with the two alternative ML discrepancy
function values, F̃ML and F̂ML, and all the associated ML fit indices. If one is searching for
possible information explaining a large F̃OLS, E should be examined. On the other hand, if one
wishes to explain a large value of F̃ML or F̂ML, it would make sense to examine E*.

The occasionally noticeable incompatibility between E and F̂ML, for example, has become
apparent because most computer programs output both E and the chi-square-based fit indices.
This incompatibility is, however, only a reflection of the difference between F̃OLS and F̂ML.
These two discrepancy function values are not measures of the same thing.

For exactness, let F̃OLS be regarded as an estimate of the corresponding quantity, F̃OLS0,
evaluated using the population covariance matrix Σ0, and let F̂ML be regarded as an estimate
of the population quantity F̂ML0. The population value F̃OLS0. is a measure of misfit of the
model alone and is not influenced by other characteristics of the model. As seen earlier,
nF̂ML0 is the effect size associated with the chi-square test statistic nF̂ML. Consequently, as
F̂ML0 increases, the probability that the likelihood ratio test will correctly detect lack of fit of
the model increases. If F̂ML0 = 0, then the probability that the chi-square test will correctly
detect misfit is zero. The population value F̂ML0 is therefore best regarded as a measure of
correct detectability of misfit of the model by the chi-square test. In a similar manner, the
population value F̃ML0 is a measure of misfit detectability using the alternative chi-square test
statistic nF̃ML.

Detectability of misfit depends not only on misfit but also on accuracy of measurement, as
reflected in the unique variances. If the model fits exactly in the population, there is no misfit
so that F̃OLS0 is equal to zero. There is also no misfit to be detected so that F̂ML0 and F̃ML0
are also equal to zero, regardless of whether measurements are accurate. If F̃OLS0 is small, but
not zero, minimal misfit is indicated. If this small F̃OLS0 is accompanied by large values of
F̂ML0 and F̃ML0, high detectability of minimal misfit is suggested. This situation appears to
apply to the empirical example. The estimates F̂ML and F̃ML are large, and the estimate
F̃OLS is small.

Any monotonic function of a measure of misfit is an alternative measure of misfit, and any
monotonic function of a measure of misfit detectability is an alternative measure of misfit
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detectability. Thus, the RMR estimates a measure of misfit, and the chi-square-based fit indices
estimate measures of misfit detectability. These measures of misfit detectability are functions
of effect size and, although related to power, are on nonprobabilistic scales. Residuals in E
may indicate reasons for misfit, but the cautions of Costner and Schoenberg (1973) should be
borne in mind. If the null hypothesis in a test of fit is rejected, the rescaled residuals in E* may
indicate the elements of S most responsible for this rejection.

The main advantage of chi-square-based absolute fit indices is that they have associated
confidence intervals (Browne & Cudeck, 1993; Maiti & Mukherjee, 1990; Steiger, 1989) that
give the information supplied by chi-square goodness-of-fit tests and also provide a range of
plausible values for the index estimated. One needs to bear in mind, however, that these indices
are not measuring misfit alone and that apparently large values need not in fact be unacceptable.
They may be a reflection primarily of very accurate repeated measurements of the same
characteristic rather than of excessive misfit.

In practice, then, when high values of chi-square-based fit measures are observed, one should
not automatically conclude that the model in question is a poor one. Instead, one should
carefully inspect the correlation residuals in E. If many or some of these are large, then the
model may be inadequate, and the large residuals in E, or correspondingly in E*, can serve to
account for the high values of misfit indices and help to identify sources of misfit. However,
if all, or nearly all, of the residuals are quite small, then the phenomenon described in this
article is probably operating. That is, actual model misfit is low, but that misfit is highly
detectable by chi-square-based fit measures because of the presence of very low unique
variances for at least some manifest variables. The investigator can verify this circumstance
by examining the unique variances. In such situations, it is appropriate to conclude that the
model in fact is providing a good approximation to the data but that the high indications of
misfit are attributable to a high level of misfit detectability.
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Appendix A

Fit Indices
The fit indices considered are functions of F̂ML, the ML discrepancy function value for the
hypothesized model (the unrestricted factor analysis model in our example) given in Equation
6 or of the corresponding generalized least squares measure F̃ML in Equation 7. Some fit indices
also use the ML discrepancy function value (see Equation 18),

(A1)

for the diagonal baseline model (σ) = Dσ.

Let d represent the degrees of freedom for the model under consideration and let dBase = p(p
− 1)/2 represent the degrees of freedom for the baseline model. Ratios of the discrepancy
function values to degrees of freedom for the hypothesized model and baseline model are given
by
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and

(A2)

respectively. A bias-adjusted estimate of the population ML discrepancy function value for the
hypothesized model is given by

(A3)

and a corresponding bias-adjusted estimate for the baseline model is given by

(A4)

Formulas for the fit indices reported in Table 2 are given in Table A1. The computational
formulas used for the GFI were developed independently by Maiti and Mukherjee
(1990,Equation 9) and Steiger (1989, Equation 51). They are applicable to any model that is
invariant under a constant scaling factor (Browne & Shapiro, 1991, Corollary 1.1). This applies
to most models currently in use, including the models used in this article.

The formula given for the RMSEA in Table A1, and used for the present article, follows the
approach of Browne and Cudeck (1993), in which the discrepancy function used for fitting the
model is also used for the RMSEA. Steiger (1995) and Jöreskog and Sörbom (1996) compute
the point estimate of the RMSEA using

where F̃uHyp = F̃ML − d/n, thereby replacing F̂ML of Equation A2 by the generalized least
squares fit measure F̃ML in Equation 7. Differences between the values given by the two
alternative formulas for the ML RMSEA are small when the hypothesized model fits closely.
This may be seen from a comparison of F̂ML and F̃ML in Table 5.

Appendix B

Properties of F̂ML, F̃ML, and E*
Relationship Between the ML Discrepancy Function Value F̂ML and E*

Use of Equations 6 and 10 gives

which is Equation 11.
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The Sum of Squared Residuals Approximation F̃ML to F̂ML
Use of the matrix generalization of the power series expansion of ln(1 + x) shows that the
expression in Equation 11 may be expressed as the infinite series

which converges if the eigenvalues of E* are all less than one in magnitude. Discarding terms
with k > 2 yields the approximation F̂ML ≈ F̃ML = tr[E*2]/2. The approximation will be close
if all eigenvalues of E* are sufficiently close to zero for powers greater than two to be
disregarded ( , ∀i, k > 2). When this is the case, F̃ML will be small.

Associating Elements of E* With Corresponding Elements of S
The elements of the residual matrix E may be said to be associated with corresponding elements
of S in the following sense: Any reordering of the rows and columns of S, retaining symmetry,
will result in exactly the same reordering of rows and columns of E. This association of
elements of E with elements of S follows from the definition of E in Equation 2.

To prove that the elements of E* are associated with corresponding elements of S, we require
some notation. A permutation matrix (Harville, 1997, pp. 86–88), P, is a matrix with a single
1 in each row and each column and all remaining elements equal to 0. Premultiplication of the
matrix S by P reorders its rows, and postmultiplication of S by P′ reorders its columns in the
same manner. Also, the symbol → represents is replaced by, ⇒ represents implies that, and
⇏ represents does not imply that.

Thus, elements of E are associated with corresponding elements of S because S → PSP′ ⇒
E → PEP′.

To prove that the elements of E* in Equation 10 are associated with corresponding elements

of S if  is the symmetric square root, defined in Equation 9, we use the orthogonality
property of a permutation matrix, P−1 = P′, and consider

Thus, S → PSP′ ⇒ E* → PE* P′, and we have shown that the elements of E* are associated
with corresponding elements of S.

If the symmetric square root  in Equation 10 is replaced by a nonsymmetric square root,

, then the expressions for F̂ML in Equation 11 and F̃ML in Equation 12 will still apply,

but the elements of  can no longer be associated with corresponding
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elements of S. This follows because , so that S → PSP′
⇏ E□* PE□* P′.

It is instructive to consider a particular nonsymmetric square root of Σ̂ML, namely, the principal

components square root . Then the transformed residual matrix is

 and does not change when variables are reordered. Consequently,
reordering of variables does not reorder the rows and columns of E□* in a manner that
corresponds to the reordering of rows and columns of S. Any attempt to associate elements of
E□* with those of S would therefore be arbitrary and would become invalid as soon as the
ordering of variables is changed.

When a Cholesky (triangular) square root is used, the values of elements of the matrix square
root change when the variables are reordered. Consequently, the values of elements of the
transformed residual matrix also change with any reordering of variables.

Appendix C

Relationships Between Unique Variances and Eigenvalues
This appendix states a lemma that is helpful when investigating the relationship between
accuracy of measurement and closeness of the smallest eigenvalues of a reproduced covariance
matrix Σ to zero.

Definitions
Suppose that Φ is a m × m nonnegative definite matrix, Λ is a p × m matrix of rank m, and
Dψ is a p × p nonnegative definite diagonal matrix. Let the eigenvalues, λi, i = 1, …, p, of Σ
be arranged in decreasing order of magnitude. Elements of Dψ are not arranged in descending
order of magnitude. The largest will be represented by ψ(1) and the smallest by ψ(p).

Lemma C1
The smallest p − m eigenvalues of Σ are contained in the interval between the largest and the
smallest unique variances:

Proof
Let λi (W) represent the ith eigenvalue of a symmetric matrix W, arranged in descending order
of magnitude. Lemma 1 of Ostrowski (1959) shows that

where λ1(Dψ) ≥ εi ≥ λp(Dψ), i = 1,…, p. Because the smallest p − m eigenvalues of ΛΦΛ′ are
zero, the result follows.
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Figure 1.
Plot of the transformed residuals  against the usual residuals eij using the empirical data.
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Figure 2.
Plot of the transformed residuals  against the usual residuals eij using the artificial data.
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Table A1
Formulas for Point Estimates of Fit Indices

Fit index Formula Definitionsa

Absolute fit
 GFI Equation 7

 AGFI

 MC Equations A3 and 6

Absolute misfit
 RMSEA Equations A3 and 6

 RMR Equation 13

Comparative fit
 NNFI Equation A2

 NFI Equations A1 and 6

 RNI Equations A3 and A4

Note. GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; MC = measure of centrality; RMSEA = root-mean-square error of the
approximation; RMR = root-mean-square residual; NNFI = nonnormed fit index; NFI = normed fit index; RNI = relative noncentrality index.

a
The formula in the second column involves notation defined in the specified equations.
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Table 5
Discrepancy Function Values

Factor analysis Baseline model

Discrepancy function Empirical Data Artificial data Empirical data Artificial data

F̂ML 1.459 0.029 15.81 2.75
F̃ML 1.329 0.029 10.12 2.74
F̃OLS 0.019 0.019 10.12 2.74
F̃ML/F̂ML 0.910 1.021 0.64 1.00

Note. ML = maximum likelihood; OLS = ordinary least squares.
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