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When Gaussian Process Meets Big Data: A Review

of Scalable GPs
Haitao Liu, Yew-Soon Ong, Fellow, IEEE, Xiaobo Shen, and Jianfei Cai, Senior Member, IEEE

Abstract—The vast quantity of information brought by big
data as well as the evolving computer hardware encourages suc-
cess stories in the machine learning community. In the meanwhile,
it poses challenges for the Gaussian process (GP) regression, a
well-known non-parametric and interpretable Bayesian model,
which suffers from cubic complexity to data size. To improve
the scalability while retaining desirable prediction quality, a
variety of scalable GPs have been presented. But they have not
yet been comprehensively reviewed and analyzed in order to be
well understood by both academia and industry. The review of
scalable GPs in the GP community is timely and important due
to the explosion of data size. To this end, this paper is devoted
to the review on state-of-the-art scalable GPs involving two main
categories: global approximations which distillate the entire data
and local approximations which divide the data for subspace
learning. Particularly, for global approximations, we mainly
focus on sparse approximations comprising prior approximations
which modify the prior but perform exact inference, posterior ap-
proximations which retain exact prior but perform approximate
inference, and structured sparse approximations which exploit
specific structures in kernel matrix; for local approximations,
we highlight the mixture/product of experts that conducts model
averaging from multiple local experts to boost predictions. To
present a complete review, recent advances for improving the
scalability and capability of scalable GPs are reviewed. Finally,
the extensions and open issues regarding the implementation of
scalable GPs in various scenarios are reviewed and discussed to
inspire novel ideas for future research avenues.

Index Terms—Gaussian process regression, big data, scalabil-
ity, sparse approximations, local approximations

I. INTRODUCTION

IN the era of big data, the vast quantity of information poses

the demand of effective and efficient analysis, interpretation

and prediction to explore the benefits lie ahead. Thanks to

the big data, the machine learning community tells many

success stories [1]–[4] while still leaving many challenges. We

focus on Gaussian process (GP) regression [5], also known

as Kriging in geostatistics [6], and surrogates or emulators

in computer experiments [7]. The GP is a non-parametric

statistical model which has been extensively used in various

scenarios, e.g., active learning [8], multi-task learning [9],

[10], manifold learning [11], and optimization [12].

Big data in the GP community mainly refers to one of

the 5V challenges [13]: the volume which represents the

huge amount of data points to be stored, processed and

analyzed, incurring high computational complexity for current
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GP paradigms. It is worth noting that this review mainly

focuses on scalable GPs for large-scale regression but not on

all forms of GPs or other machine learning models.

Given n training points X = {xi ∈ Rd}ni=1 and their

observations y = {yi = y(xi) ∈ R}ni=1, GP seeks to

infer the latent function f : Rd 7→ R in the function space

GP(m(x), k(x,x′)) defined by the mean m(.) and the kernel

k(., .). The most prominent weakness of standard GP is that

it suffers from a cubic time complexity O(n3) because of

the inversion and determinant of the n × n kernel matrix

Knn = k(X,X). This limits the scalability of GP and and

makes it unaffordable for large-scale datasets.

Hence, scalable GPs devote to improving the scalability of

full GP while retaining favorable prediction quality for big

data. The extensive literature review summarized in Fig. 1

classifies scalable GPs into two main categories including

(a) Global approximations which approximate the kernel

matrix Knn through global distillation. The distillation can

be achieved by (i) a subset of the training data with m
(m ≪ n) points (subset-of-data [14]), resulting in a smaller

kernel matrix Kmm; (ii) the remove of uncorrelated entries in

Knn (sparse kernels [15]), resulting in a sparse kernel matrix

K̃nn with many zero entries; and (iii) the low-rank represen-

tation measured between m inducing points and n training

points (sparse approximations [1], [16]–[18]), resulting in the

Nyström approximation Knn ≈ KnmK−1
mmKmn.

(b) Local approximations which follow the divide-and-

conquer (D&C) idea to focus on the local subsets of training

data. Efficiently, local approximations only need to tackle a

local expert with m0 (m0 ≪ n) data points at each time [19],

[20]. Additionally, to produce smooth predictions equipped

with valid uncertainty, modeling averaging has been employed

through mixture or product of experts [21]–[28].

As depicted in Fig. 2, in terms of scalability, most of

the sparse approximations using m inducing points and the

local approximations using m0 = m data points for each

expert have the same training complexity as O(nm2), and

they can be further sped up through parallel/distributed com-

puting [20], [29]–[33]. When organizing the inducing points

into Kronecker structure, sparse approximations can further

reduce the complexity to O(n) [18], [34]. In the meantime, by

reorganizing the variational lower bound, stochastic optimiza-

tion is available for sparse approximations with a remarkable

complexity of O(m3) [1], [35], [36], enabling the regression

with million- and even billion-sized data points [36], [37].

It is notable that we welcome GPs with high scalability but

require producing favorable predictions, i.e., good model capa-

bility. For example, though showing a remarkable complexity
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Fig. 1. Percentages of the categories for (a) scalable GPs including (b) global
approximations and (c) local approximations in the literature surveyed.
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Fig. 2. Comparison of scalable GPs regarding scalability and model capability,
where 0 < α < 1; m is the inducing size for sparse approximations, and the
subset size for subset-of-data and local approximations.

of O(m3), we cannot expect the subset-of-data to perform

well with increasing n. In terms of model capability, global

approximations are capable of capturing the global patterns

(long-term spatial correlations) but often filter out the local

patterns due to the limited global inducing set. In contrast, due

to the local nature, local approximations favor capturing local

patterns (non-stationary features), enabling them to outperform

global approximations for complicated tasks, see the solar

example in [38]. The drawback however is that they ignore

the global patterns to risk discontinuous predictions and local

over-fitting. Recently, attempts have been made to improve

the model capability through, for example, the inter-domain

strategy [39], hierarchical structure [40], and hybrid of global

& local approximations or neural networks (NNs) [34], [41],

[42], showcasing the state-of-the-art performance [34], [43].

The development and success of scalable GPs pose the

demand of comprehensive review including the methodolog-

ical characteristics and comparisons for better understanding.

To the best of our knowledge, a detailed survey on various

scalable GPs for large-scale regression has not been conducted

in the literature before and such a work in the GP community

is timely and important due to the explosion of data size.1

We thus consider a skeletal overview in Fig. 3 to classify,

review and analyze state-of-the-art scalable GPs. Specifically,

1The survey [16] at 14 years ago focuses on the prior approximations,
which is just a part of our review in section III-C1. The recent comparison
and survey [37], [44] provide however a quick and rough review without
detailed analysis.

with a quick introduction of standard GP regression in sec-

tion II, the two main categories of scalable GPs, global and

local approximations, are then comprehensively reviewed in

sections III and IV. Moreover, section V reviews the improve-

ments for scalable GPs in terms of scalability and capability.

Thereafter, section VI discusses the extensions of scalable GPs

in different scenarios to highlight potential research avenues.

Finally, section VII offers concluding remarks.

II. GAUSSIAN PROCESS REGRESSION REVISITED

The non-parametric GP regression (GPR) places a GP prior

over the latent function as f(x) ∼ GP(m(x), k(x,x′)) [5].

The mean function m(x) is often taken as zero. The kernel

function k(x,x′) controls the smoothness of GP and is often

taken as the squared exponential (SE) function equipped with

automatic relevance determination (ARD)

kSE(x,x
′) = σ2

f exp(−0.5(x− x′)T∆−1(x− x′)), (1)

where ∆ = diag[l21, · · · , l2d] comprises the length-scales along

d dimensions, and σ2
f is the signal variance. For other con-

ventional kernels, e.g., the Matérn kernel, please refer to [5].

Given the training data D = {X,y} where y(xi) =
f(xi)+ǫ with the iid noise ǫ ∼ N (0, σ2

ǫ ), we obtain the model

evidence (marginal likelihood) p(y|θ) =
∫

p(y|f)p(f)df =
N (y|0,Kǫ

nn),
2 where Kǫ

nn = Knn+σ
2
ǫ In, and θ comprises

the hyperparameters which could be inferred by maximizing

log p(y) = −n
2
log 2π− 1

2
log |Kǫ

nn|−
1

2
yT(Kǫ

nn)
−1y, (2)

which automatically achieves the bias-variance trade-off.

Thereafter, the predictive distribution p(f∗|D,x∗) =
N (f∗|µ(x∗), σ

2
∗(x∗)) at a test point x∗ has the mean and

variance respectively expressed as

µ(x∗) =k∗n(K
ǫ
nn)

−1y, (3a)

σ2(x∗) =k∗∗ − k∗n(K
ǫ
nn)

−1kn∗, (3b)

where k∗n = k(x∗,X) and k∗∗ = k(x∗,x∗). For y∗,

we need to consider the noise such that p(y∗|D,x∗) =
N (y∗|µ(x∗), σ

2
∗(x∗) + σ2

ǫ ).
Alternatively, we can interpret the GP from the weight-space

view as an extension of the Bayesian linear model as

f(x) = φ(x)Tw, y(x) = f(x) + ǫ, (4)

where the Gaussian prior is placed on the weights as p(w) =
N (w|0,Σ); φ(x) = [φ1(x), · · · , φv(x)]T maps the d-

dimensional input x into a v-dimensional feature space. Equiv-

alently, we derive the kernel as k(x,x′) = φ(x)TΣφ(x′).
Particularly, the SE kernel (1) can be recovered from an

infinite number (v → ∞) of Gaussian-shaped basis functions

{φc(x)}vc=1 centered everywhere.

The computational bottleneck of GP inference in (2) is

solving the linear system (Kǫ
nn)

−1y and the determinant

|Kǫ
nn|. Traditionally, we use the O(n3) Cholesky decompo-

sition Kǫ
nn = LLT such that (Kǫ

nn)
−1y = LT \ (L \ y)

and log |Kǫ
nn| = 2

∑n
i=1 logLii. As for predictions in (3),

2For the sake of clarity, the hyperparameters θ below are omitted from the
conditioning of the distribution.
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Fig. 3. A skeletal overview of scalable GPs.

the mean costs O(n) and the variance costs O(n2) per test

case through pre-computations.

In order to improve the scalability of standard GP for big

data, the scalable GPs have been extensively presented and

studied in recent years. In what follows, we classify current

scalable GPs into global approximations and local approxi-

mations, and comprehensively analyze them to showcase their

methodological characteristics.

III. GLOBAL APPROXIMATIONS

Global approximations achieve the sparsity of the full kernel

matrix Knn, which is crucial for scalability, through (i) using

a subset of the training data (subset-of-data); (ii) removing the

entries of Knn with low correlations (sparse kernels); and (iii)

employing a low-rank representation (sparse approximations).

A. Subset-of-data

Subset-of-data (SoD) is the simplest strategy to approximate

the full GP by using a subset Dsod of the training data D.

Hence, the SoD retains the standard GP inference at lower

time complexity of O(m3), since it operates on Kmm which

only comprises m (m ≪ n) data points. A recent theoretical

work [45] analyzes the error bounds for the prediction and

generalization of SoD through a graphon-based framework,

indicating a better speed-accuracy trade-off in comparison to

other approximations reviewed below when n is sufficiently

large. Though SoD produces reasonable prediction mean for

the case with redundant data, it struggles to produce overcon-

fident prediction variance due to the limited subset.

Regarding the selection of Dsod, one could (i) randomly

choose m data points from D, (ii) use clustering techniques,

e.g., k-means and KD tree [46], to partition the data into m
subsets and choose their centroids as subset points, and (iii)

employ active learning criteria, e.g., differential entropy [47],

information gain [48] and matching pursuit [49], to sequen-

tially query data points with however higher computing cost.

B. Sparse kernels

Sparse kernels [50] attempt to directly achieve a sparse

representation K̃nn of Knn via the particularly designed com-

pactly supported (CS) kernel, which imposes k(xi,xj) = 0
when |xi−xj| exceeds a certain threshold. Therefore, only the

non-zero elements in K̃nn are involved in the calculation. As

a result, the training complexity of the GP using CS kernel

scales as O(αn3) with 0 < α < 1. The main challenge in

constructing valid CS kernels is to ensure the positive semi-

definite (PSD) of K̃nn, i.e., vTK̃nnv ≥ 0, ∀v ∈ Rn [15],

[50]–[52]. Besides, the GP using CS kernel is potential for

capturing local patterns due to the truncation property.

C. Sparse approximations

Typically, we could conduct eigen-decomposition and

choose the first m eigenvalues to approximate the full-rank

kernel matrix as Knn ≈ UnmΛmmUT

nm. Thereafter, it is

straightforward to calculate the inversion using the Sherman-

Morrison-Woodbury formula

(Kǫ
nn)

−1 ≈ σ−2
ǫ In + σ−2

ǫ Unm(σ2
ǫΛ

−1
mm +UT

nmUnm)−1UT

nm,

and the determinant using the Sylvester determinant theorem

|Kǫ
nn| ≈ |Λmm||σ2

ǫΛ
−1
mm +UT

nmUnm|,
resulting in the complexity of O(nm2). However, the eigen-

decomposition is of limited interest since itself is an O(n3)
operation. Hence, we approximate the eigen-functions of Knn

using m data points, leading to the Nyström approximation

Knn ≈ Qnn = KnmK−1
mmKT

nm,

which greatly improves large-scale kernel learning [53], and

enables naive Nyström GP [54]. This scalable GP however

may produce negative prediction variances [55], since (i) it is

not a complete generative probabilistic model as the Nyström

approximation is only imposed on the training data, and (ii)

it cannot guarantee the PSD of kernel matrix.

Inspired by the influential Nyström approximation, sparse

approximations build a generative probabilistic model, which

achieves the sparsity via m inducing points (also referred to

as support points, active set or pseudo points) to optimally

summarize the dependency of the whole training data. We in-

troduce a set of inducing pairs (Xm,fm). The latent variables

fm akin to f follow the same GP prior p(fm) = N (0,Kmm).
Besides, fm is assumed to be a sufficient statistic for f , i.e.,

for any variables z it holds p(z|f ,fm) = p(z|fm). We could

recover the joint prior p(f , f∗) by marginalizing out fm as

p(f , f∗) =
∫

p(f , f∗|fm)p(fm)dfm.
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In what follows, sparse approximations have three main

categories:

- prior approximations which approximate the prior but

perform exact inference;

- posterior approximations which retain exact prior but

perform approximate inference; and

- structured sparse approximations which exploit specific

structures in kernel matrix.

1) Prior approximations: Prior approximations [16] mod-

ify the joint prior, which is the origin of the cubic complexity,

using the independence assumption f⊥f∗|fm such that

p(f , f∗) =

∫

p(f |fm)p(f∗|fm)p(fm)dfm, (5)

where the training and test conditionals write, given a Nyström

notation Qab = KamK−1
mmKmb,

p(f |fm) =N (f |KnmK−1
mmfm,Knn −Qnn), (6a)

p(f∗|fm) =N (f∗|k∗mK−1
mmfm, k∗∗ −Q∗∗). (6b)

We see here fm is called inducing variables since the depen-

dencies between f and f∗ are only induced through fm. To

obtain computational gains, we modify the training and test

conditionals as

q(f |fm) = N (f |KnmK−1
mmfm, Q̃nn), (7a)

q(f∗|fm) = N (f∗|k∗mK−1
mmfm, Q̃∗∗). (7b)

Then, log p(y) is approximated by log q(y) as

log q(y) =− n

2
log 2π − 1

2
log |Q̃nn +Qnn + σ2

ǫ In|

− 1

2
yT(Q̃nn +Qnn + σ2

ǫ In)
−1y.

(8)

It is found that specific selections of Q̃nn enable calculating

|Q̃nn + Qnn + σ2
ǫ In| and (Q̃nn + Qnn + σ2

ǫ In)
−1 with a

substantially reduced complexity of O(nm2).
Particularly, the subset-of-regressors (SoR) [56], also called

deterministic inducing conditional (DIC), imposes determinis-

tic training and test conditionals, i.e., Q̃nn = 0 and Q̃∗∗ = 0,

as

qSoR(f |fm) = N (f |KnmK−1
mmfm,0), (9a)

qSoR(f∗|fm) = N (f∗|k∗mK−1
mmfm, 0). (9b)

This is equivalent to applying the Nyström approximation to

both training and test data, resulting in a degenerate3 GP with

a rank (at most) m kernel

kSoR(xi,xj) = k(xi,Xm)K−1
mmk(Xm,xj).

Alternatively, we could interpret the SoR from the weight-

space view. It is known that the GP using a kernel with

an infinite expansion of the input x in the feature space

defined by dense basis functions {φc(x)}vc=1 is equivalent to

a Bayesian linear model in (4) with infinite weights. Hence,

the relevance vector machine (RVM) [57] uses only m basis

functions φm(x) = [φ1(x), · · · , φm(x)]T for approximation

p(f |w) = N (f |Φnmw,Knn −ΦnmΣmmΦ
T

nm), (10)

3It means the kernel k(., .) has a finite number of non-zero eigenvalues.

where Φnm = [φm(x1), · · · ,φm(xn)]
T and p(w) =

N (w|0,Σmm). As a consequence, from the function-space

view, the RVM is a GP with the kernel

kRVM(xi,xj) = φT(xi)Σmmφ(xj),

which recovers kSoR when Σmm = Im and φm(x) =
LTkT(x,Xm) where LLT = K−1

mm [36].4 However, as

depicted in Fig. 4, the SoR approximation and the RVM-type

models [57]–[59] impose too restrictive assumptions to the

training and test data such that they produce overconfident

prediction variances when leaving the training data.5

To reverse the uncertainty behavior of SoR, the RVM is

healed through augmenting the basis functions at x∗ with

however higher computing cost [60]. This augmentation by

including f∗ into fm was also studied in [16]. Alternatively,

the sparse spectrum GP (SSGP) [61] and its variational

variants [62]–[64] elegantly address this issue by reconstruct-

ing the Bayesian linear model from spectral representation

(Fourier features), resulting in the stationary kernel

k(xi,xj) =
σ2
0

m
φT

m(xi)φm(xj) =
σ2
0

m

m
∑

r=1

cos
(

2πsTr (xi − xj)
)

,

where sr ∈ Rd represents the spectral frequencies.

Another way is to impose more informative assumption

to Q̃nn and Q̃∗∗. For instance, the deterministic training

conditional (DTC) [65], [66] imposes the deterministic training

conditional

qDTC(f |fm) = N (f |KnmK−1
mmfm,0) (11)

but retains the exact test conditional Hence, the prediction

mean is the same as that of SoR, but the prediction variance

is always larger than that of SoR, and grows to the prior when

leaving the inducing points, see Fig. 4. Notably, due to the

inconsistent conditionals in (11), the DTC is not an exact GP.

Besides, the DTC and SoR often perform not so well due to

the restrictive prior assumption Q̃nn = 0.6

Alternatively, the fully independent training conditional

(FITC) [67] imposes another fully independence assumption

to remove the dependency among {fi}ni=1 such that given

Vnn = Knn −Qnn, the training conditional qFITC(f |fm)

:=

n
∏

i=1

p(fi|fm) = N (f |KnmK−1
mmfm, diag[Vnn]), (12)

whereas the test conditional retains exact. It is found that the

variances of (12) is identical to that of p(f |fm) due to the

correlation Q̃nn = diag[Vnn]. Hence, compared to SoR and

DTC which throw away the uncertainty in (9) and (11), FITC

partially retains it, leading to a closer approximation to the

4The choose of φm(x) should produce a PSD kernel matrix such that
Knn − ΦnmΣmmΦ

T
nm � 0. Alternatively, we can take the simple

form φm(x) = ΛmmkT
m(x) where Λmm is a diagonal matrix and

km(x) = k(x,Xm) [57]; or we take φm(x) = Λ
1/2UTkT

m(x) with
Λ and U respectively being the eigenvalue matrix and eigenvector matrix of

K−1
mm [58], leading to a scaled Nyström approximation.
5The degenerate kernels kSoR and kRVM only have m degrees of freedom,

and suffer from the odd property of depending on inputs.
6This could be addressed by the variational variant of DTC reviewed in

section III-C2.
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prior p(f , f∗). Moreover, the fully independence assumption

can be extended to q(f∗|fm) to derive the fully independent

conditional (FIC)7 [16], which stands as a non-degenerate GP

with the kernel

kFIC(xi,xj) = kSoR(xi,xj) + δij [k(xi,xj)− kSoR(xi,xj)],

where δij is the Kronecker’s delta. Note that kFIC
has a constant prior variance but is not stationary. Al-

ternatively, the approximation in (12) can be derived

from minimizing the Kullback-Leibler (KL) divergence

KL(p(f ,fm)||q(fm)
∏n

i=1 q(fi|fm)) [68], which quantifies

the similarity between the exact and approximated joint prior.

Particularly, the FITC produces prediction mean and vari-

ance at x∗ as µ(x∗) = k∗mΨKmnΛ
−1y and σ2(x∗) = k∗∗−

Q∗∗ +k∗mΨkm∗ where Ψ
−1 = Kmm+KmnΞ

−1Knm and

Ξ = diag[Vnn]+σ
2
ǫIn. It is found that the diagonal correlation

diag[Vnn] represents the posterior variances of f given fm.

Hence, these varying variances, which are zeros exactly at

Xm, enable FITC to capture the noise heteroscedasticity, see

Fig. 4, at the cost of (i) producing an invalidate estimation

(nearly zero) of the noise variance σ2
ǫ , and (ii) sacrificing the

accuracy of prediction mean [69].

To improve FITC, the partially independent training condi-

tional (PITC) [16] has the training conditional qPITC(f |fm)

:=

M
∏

i=1

p(fi|fm) = N (f |KnmK−1
mmfm, blkdiag[Vnn]).

(13)

This equates to partitioning the training data D into M
independent subsets (blocks) {Di}Mi=1, and taking into account

the joint distribution of fi in each subset. But it is argued that

though being a closer approximation to p(f |fm), the blocking

qPITC(f |fm) brings little improvements over FITC [41]. This

issue can be addressed by the extended partially independent

conditional (PIC) [41] discussed in section V-B.

So far, we have reviewed state-of-the-art prior approxima-

tions including SoR, DTC, FI(T)C and PITC. Regarding their

implementations, the choose of inducing points is crucial.

Alternatively, similar to SoD, we could use clustering tech-

niques to select a finite set of space-filling inducing points

from D, or we employ some querying criteria [49], [56], [66],

[70], [71] to sequentially choose informative inducing points.

More flexibly, inducing points are regarded as parameters to

be optimized together with other hyperparameters [67], which

additionally introduces m× d parameters and turns the infer-

ence into a high-dimensional optimization task. Besides, with

increasing m, the benefits brought by the optimization over

the simple selection from training data vanish. Interestingly,

a recent work [72] shows the first attempt to simultaneously

determine the number and locations of inducing points in the

Bayesian framework by placing a prior on Xm.

Finally, the heteroscedasticity of FITC raises another finding

that this approximation attempts to achieve a desirable pre-

dictive accuracy at low computing cost, rather than faithfully

recovering the standard GP with increasing m. Indeed, the

7The predictive distributions of FITC and FIC only differ when predicting
multiple test points simultaneously.

prior approximations recover the full GP when Xm = X . But

this configuration is not the global optimum when maximizing

log q(y), which makes them philosophically troubling. Be-

sides, learning inducing points via the optimization of (8) may

produce poor predictions [17]. These issues will be addressed

by the posterior approximations reviewed below.

2) Posterior approximations: Different from prior approx-

imations, posterior approximations [1], [17] retain exact prior

but perform approximate inference. The most well-known

posterior approximation is the elegant variational free energy

(VFE) [17] proposed by Titsias in 2009 by using variational in-

ference (VI) [73]. Instead of modifying the prior p(f , f∗), VFE

directly approximates the posterior p(f ,fm|y), the learning of

which is a central task in statistical models, by introducing a

variational distribution q(f ,fm|y). Then, we have their KL

divergence KL(q(f ,fm|y)||p(f ,fm|y))

:= log p(y)−
〈

log
p(y,f ,fm)

q(f ,fm|y)

〉

q(f ,fm|y)

= log p(y)− Fq,

(14)

where 〈.〉q(.) represents the expectation over the distribution

q(.).8 It is found that minimizing the rigorously defined

KL(q||p) ≥ 0 is equivalent to maximizing Fq , since log p(y)
is constant for q(f ,fm|y). Thus, Fq is called evidence lower

bound (ELBO) or variational free energy, which permits us to

jointly optimize the variational parameters9 and hyperparam-

eters. It is observed that maximizing Fq w.r.t. the hyperpa-

rameters directly improves Fq; while maximizing Fq w.r.t. the

variational parameters implicitly drives the approximation to

match both the posterior p(f ,fm|y) and the evidence p(y).
To derive a tighter bound, the calculus of variations finds

the optimal variational distribution q∗(fm|y) to remove the

dependency of Fq on q(fm|y) by taking the relevant derivative

to zero, leading to the “collapsed” bound

FVFE = log qDTC(y)−
1

2σ2
ǫ

tr[Vnn] ≥ Fq. (15)

Note that FVFE differs with log qDTC only by a trace term,

which however substantially improves the inference quality.

In order to maximize FVFE, we should decrease the trace

tr[Vnn] ≥ 0, which represents the total variance of predicting

the latent variables f given fm. Particularly, tr[Vnn] = 0
means fm = f and we recover the full GP. Hence, the trace

term (i) is a regularizer that guards against over-fitting; (ii)

seeks to deliver a good inducing set; and (iii) always improves

Fq with increasing m, see the theoretical analysis in [69], [74].

The third property implies that given enough resources the

VFE will recover the full GP, see Fig. 4. In contrast, without

this trace term, the DTC often risks over-fitting [75].

Regarding the improvements of VFE, it was extended

to continuous and discrete inputs through an efficient QR

factorization-based optimization over both inducing points

and hyperparameters [76]. The estimation of inducing points

8Matthews et al. [74] further extended the procedure to infinite index sets
using the KL divergence between stochastic processes such that the posterior
is approximated over the entire process f .

9Notably, the inducing positions are regarded as the variational parameters
in q(fm|y) rather than the model parameters.



IEEE 6

Fig. 4. Illustration of sparse approximations on a 1D toy example with y(x) = sinc(x)+ǫ where ǫ ∼ N (0, 0.04). In the panel, the + symbols represent 120
training points; the top circles represent the initial locations of inducing points, whereas the bottom triangles represent the optimized locations of inducing points;
the dot green curves represent the prediction mean of full GP; the green curves represent 95% confidence interval of the full GP predictions; the red curves
represent the prediction mean of sparse approximations; the shaded regions represent 95% confidence interval of the predictions of sparse approximations. For
SKI, it does not optimize over the positions of inducing points. It is found that among the three prior approximations, (i) the SoR suffers from over-confident
prediction variance when leaving the training data; (ii) the FITC captures heteroscedasticity in variance; and (iii) all of them are not guaranteed to converge
to the full GP, indicated by the overlapped inducing points. Differently, the VFE and its stochastic variant SVGP approximate the full GP well due to the
posterior approximation. Finally, though greatly reducing the time complexity by structured inducing set, the SKI may produce discontinuous predictions.

has also been improved in an augmented feature space [77],

which is similar to the inter-domain strategy [39]. The authors

argued that the similarity of inducing points measured in

the Euclidean space is inconsistent to that measured by the

GP kernel function. Hence, they assigned a mixture prior

on X in the latent feature space, and derived a regularized

bound for choosing good inducing points in the kernel space.

Besides, Matthews et al. [74], [78] bridged the gap between the

variational inducing-points framework and the more general

KL divergence between stochastic processes. Using this new

interpretation, Bui et al. [79] approximated the general, infi-

nite joint prior p(fm, f 6=fm
,y) = p(fm, f 6=fm

|y)p(y) which

comprises two inferential objects of interest: posterior distri-

bution and model evidence. Minimizing their KL divergence

thus encourages direct approximation to both posterior and

evidence. Hence, the FITC and VFE are interpreted jointly as

log qPEP(y) = log q(y)− 1− α

2α
tr

[

log

(

In +
α

σ2
ǫ

Vnn

)]

,

(16)

where log q(y) takes the form (8) with Q̃nn = αdiag[Vnn].
By varying α ∈ (0, 1], we recover FITC when α = 1 and

VFE when α → 0. Besides, a hybrid approximation using a

moderate α, e.g., α = 0.5, often produces better predictions.

To further improve the scalability of VFE, Hensman

et al. [1] retained the variational distribution q(fm|y) =
N (fm|m,S) in Fq to obtain a relaxed bound

Fq = 〈log p(y|f)〉p(f |fm)q(fm|y) −KL(q(fm|y)||p(fm)).
(17)

The first term in the right-hand side of Fq is the sum of n terms

due to the iid observation noises, i.e., p(y|f) = ∏n
i=1 p(yi|fi).

Hence, the stochastic gradient descent (SGD) [80], which

encourages large-scale learning, could be employed to obtain

an unbiased estimation of Fq using a mini-batch {Xb,yb} as

Fq ≈ n

|yb|
∑

yi∈yb

∫

q(fm|y)p(fi|fm) log p(yi|fi)dfidfm

−KL(q(fm|y)||p(fm)).
(18)

Due to the difficulty of optimizing variational parameters m

and S in the Euclidean space, one can employ the Stochastic

Variational Inference (SVI) [81] using natural gradients,10

resulting in a remarkable complexity of O(m3) when |yb| = 1,

and more interestingly, the online or anytime learning fashion.

Therefore, a crucial property of the stochastic variational GP

(SVGP) is that it trains a sparse GP at any time with a small

subset of the training data in each iteration [35]. Another inter-

esting property is that taking a unit step in the natural gradient

direction equals to performing an update in the Variational

Bayes Expectation Maximization (VB-EM) framework [83].

Though showing high scalability and desirable approximation,

the SVGP has some drawbacks: (i) the bound Fq is less tight

than FVFE because q(fm|y) is not optimally eliminated; (ii)

it optimizes over q(fm|y) with a huge number of variational

parameters, thus requiring much time to complete one epoch of

training; and (iii) the introduction of SVI brings the empirical

requirement of carefully turning the parameters of SGD.

Inspired by the idea of Hensman, Peng et al. [36] derived

the similar factorized variational bound for GPs by taking the

weight-space augmentation in (10). The weight-space view (i)

allows using flexible basis functions to incorporate various

low-rank structures; and (ii) provides a composite non-convex

bound enabling the speedup using an asynchronous proximal

gradient-based algorithm [84]. By deploying the variational

model in a distributed machine learning platform PARAM-

ETERSERVER [85], the authors have first scaled GP up to

billions of data points. Similarly, Cheng and Boots [86] also

derived a stochastic variational framework from the weight-

space view with the difference being that the mean and vari-

ance of p(f |w) respectively use the decoupled basis function

sets φa and φb, leading to more flexible inference. Besides, a

recent interesting work [35] presents a novel unifying, anytime

variational framework akin to Hensman’s for accommodating

existing sparse approximations, e.g., SoR, DTC, FIT(C) and

PIT(C), such that they can be trained via the efficient SGD

10The superiority of natural gradients over ordinal gradients for regression
has been verified in [82].



IEEE 7

which achieves asymptotic convergence to the predictive dis-

tribution of the chosen sparse model. The key of this work is

to conduct a reverse variational inference wherein “reverse”

means we can find a prior p(fm) = N (fm|ν,Λ) (not the

conventional GP prior) such that the variational distribution

q∗(fm|y) = p(fm|y) for FI(T)C and PI(T)C is the maximum

of the variational lower bound.11 Finally, the scalability of

Hensman’s model can be further reduced to nearly O(m) by

introducing Kronecker structures for inducing points and the

variance of q(fm|y) [87], [88].

Titsias and Hensman’s models have been further improved

by using, e.g., (i) Bayesian treatment of hyperparameters [89]–

[91] rather than traditional point estimation which risks over-

fitting when the number of hyperparameters is small; and (ii)

non-Gaussian likelihoods [90], [92], [93].

3) Structured sparse approximations: A direct speedup to

solve (Kǫ
nn)

−1y in standard GP can be achieved through fast

matrix-vector multiplication (MVM) [94], [95], which itera-

tively solves the linear system using conjugate gradients (CG)

with s (s ≪ n) iterations,12 resulting in a time complexity

of O(sn2). It was argued by [14] that the original MVM has

some open questions, e.g., the determination of s, the lack of

meaningful speedups, and the badly conditioned kernel matrix.

Alternatively, the pre-conditioned CG (PCG) [96] employs

a pre-conditioning matrix through for example the Nyström

approximation to improve the conditioning of kernel matrix

and accelerate the CG convergence.

More interestingly, when the kernel matrix Knn itself has

some algebraic structure, the MVM provides massive scalabil-

ity. For example, the Kronecker methods [97], [98] exploit the

multi-variate grid inputs x ∈ Ω1×· · ·×Ωd and the tensor prod-

uct kernel with the form k(xi,xj) =
∏d

t=1 k(x
t
i,x

t
j).

13 Then,

the kernel matrix decomposes to a Kronecker product Knn =
K1 ⊗ · · · ⊗Kd, which eases the eigen-decomposition with a

greatly reduced time complexity of O(dnd+1) where n = d
√
n

for d > 1.14 Another one is the Toeplitz methods [99]—

complementary to the Kronecker methods—that exploit the

kernel matrix built from regularly spaced one dimensional

points, resulting in the time complexity of O(dnd logn). The

severe limitation of the Kronecker and Toeplitz methods is that

they require grid inputs, preventing them from being applied

to the general arbitrary data points.15

To handle arbitrary data while retaining the efficient Kro-

necker structure, the structured kernel interpolation (SKI) [18]

imposes the grid constraint on the inducing points. Hence, the

matrix Kmm admits the Kronecker structure for d > 1 and

the Toeplitz structure for d = 1, whereas the cross kernel

11For VFE and its stochastic variant SVGP, normally, we pre-define the
prior p(fm) = N (fm|0,Kmm), and then find an optimal q∗(fm|y) to
maximize the variational lower bound.

12The solution to Ax = b is the unique minimum of the quadratic function
0.5xTAx− xTb.

13Popular kernels for example the SE kernel (1) fulfill the product structure.
14Ki (1 ≤ i ≤ d) is an n × n matrix when the number of points along

each dimension is the same. Besides, for the detailed introduction of GP with
multiplicative kernels, please refer to section 2.2 of [98].

15This limitation was relaxed in the partial grid and variable noise scenario
by introducing virtual observations and inputs [98], [100].

matrix Knm is approximated for example by a local linear

interpolation using adjacent grid inducing points as

k(xi,uj) ≈ wik(ua,uj) + (1− wi)k(ub,uj), (19)

where ua and ub are two inducing points most closely

bound xi, and wi is the interpolation weight. Inserting the

approximation (19) back into Qnn, we have

Qnn ≈ WnmK−1
mmW T

nm, (20)

where the weight matrix W is extremely sparse since it only

has two non-zero entires per row for local linear interpolation,

leading to an impressive time complexity of O(n + dmd+1)
with m = d

√
m for solving (Kǫ

nn)
−1y. Also, the sparse W in-

curs the prediction mean with constant-time complexity O(1)
and the prediction variance with complexity O(m) after pre-

computing. Furthermore, Pleiss et al. [101] derived a constant-

time prediction variance using Lanczos approximation, which

admits s iterations of MVM for calculation.

The original SKI has two main drawbacks. First, the number

m of grid inducing points grows exponentially with dimen-

sionality d, making it impractical for d > 5. To address this

issue, one could use dimensionality reduction or manifold

learning to map the inducing points into a p-dimensional

(p ≪ d) latent space [102]; or more interestingly, one can

use the hierarchical structure of neural networks to extract the

latent low-dimensional feature space [34], [103]. Furthermore,

continual efforts [88], [104], [105] have been made to directly

reduce the time complexity to be linear with d by exploiting

the row-partitioned Khatri-Rao structure of Knm, or imposing

tensor train decomposition and Kronecker product to the mean

and variance of q(fm|y) in Hensman’s variational framework.

The linear complexity with d permits the use of numerous

inducing points, e.g., m = 10d.

Second, the SKI may produce discontinuous predictions due

to the local weight interpolation, and provide overconfident

prediction variance when leaving the training data due to the

restrictive SoR framework, see Fig. 4. To smooth the pre-

dictions, Evans and Nair [104] exploited the row-partitioned

Khatri-Rao structure of Knm rather than using local weight

interpolation. To have sensible uncertainty, a diagonal corre-

lation akin to that of FITC has been considered [104], [106].

Finally, note that the permit of many inducing points is

expected to improve the model capability. But due to the grid

constraint, the structured sparse approximations (i) use fixed

inducing points, (ii) resort to dimensionality reduction for tack-

ling high-dimensional tasks, and (iii) place the vast majority

of inducing points on the domain boundary with increasing d,

which in turn may degenerate the model capability.

IV. LOCAL APPROXIMATIONS

Inspired by D&C, local approximations use localized ex-

perts to improve the scalability of GP. Besides, compared

to global approximations, the local nature enables capturing

non-stationary features. In what follows, we comprehensively

review the naive-local-experts which directly employs the pure

local experts for prediction, and the mixture-of-experts and

product-of-experts which inherit the advantages of naive-local-

experts but boost the predictions through model averaging.
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A. Naive-local-experts

It is known that a pair of points far away from each other has

a low correlation. Hence, localized experts trained on subsets

of D is expected to produce sensible predictions with low

computational complexity. Particularly, the simple naive-local-

experts (NLE) [107], [108] lets the local expert Mi completely

responsible for the subregion Ωi defined by Xi. Mathemati-

cally, we predict at x∗ ∈ Ωi as p(y∗|D,x∗) ≈ pi(y∗|Di,x∗).
According to the partition of D, we classify NLE into two

main categories: (i) inductive NLE, which first partitions the

input space and trains all the experts, and then chooses an

appropriate one for predicting at x∗; and (ii) transductive NLE,

which particularly chooses a neighborhood subset D∗ around

x∗, and trains the relevant expert M∗ for predicting at x∗.

Inductive NLE employs a static partition of the whole data

using clustering techniques, e.g., Voronoi tessellations [107]

and trees [109], [110], and trains independent local GP experts,

resulting in O(nm2
0) where m0 = n/M is the training

size for each expert. The partition and the experts are usu-

ally learned separately; or they can be learned jointly with

Bayesian treatment [111]. In contrast, transductive NLE, e.g.,

the nearest-neighbors (NeNe) [112] which could induce a valid

stochastic process [108], [113], employs a dynamic partition to

choose m0 neighbor points around x∗, resulting in O(ntm
3
0)

complexity that relies on the test size nt. A key issue in

transductive NLE is the definition of the neighborhood set

D∗ around x∗. The simplest way is using geometric closeness

criteria16 for selection, which however are not optimal without

considering the spatial correlation [114]. Hence, some GP-

based active learning methods have been employed to sequen-

tially update the neighborhood set [20], [32], [115], [116].

Whilst enjoying the capability of capturing non-stationary

features due to the localized structure, the NLE (i) produces

discontinuous predictions on the boundaries of subregions and

(ii) suffers from poor generalization capability since it misses

the long-term spatial correlations, as depicted in Fig. 5. To

address the discontinuity issue, the patched GPs [117], [118]

impose continuity conditions such that two adjacent local GPs

are patched to share the nearly identical predictions on the

boundary. But the patched GPs suffer from inconsistent and

even negative prediction variance, and are only available in low

dimensional space [72], [118]. More popularly, the model aver-

aging strategy, which is accomplished by the mixture/product

of local GP experts elaborated below, well smooths the pre-

dictions from multiple experts. To address the generalization

issue, it is possible to (i) share the hyperparameters across

experts, like [26]; or (ii) combine local approximations with

global approximations, which will be reviewed in section V-B.

B. Mixture-of-experts

The mixture-of-experts (MoE) devotes to combining the

local and diverse experts owning individual hyperparameters

for improving the overall accuracy and reliability [21], [22].17

16The selected points should be close to x∗; meanwhile, they should
distribute uniformly to avoid conveying redundant information.

17This topic has been studied in a broad regime, called ensemble learn-

ing [119], for aggregating various learning models to boost predictions.

As shown in Fig. 6, MoE generally expresses the combination

as a Gaussian mixture model (GMM) [120]

p(y|x) =
M
∑

i=1

gi(x)pi(y|x), (21)

where gi(x) is the gating function, which usually takes a

parametric form like the softmax or probit function [120],

[121], and can be thought as the probability p(z = i) = πi
that the expert indicator z is i, i.e., x is assigned to expert Mi;

pi(y|x) comes from Mi and is responsible for component i
of the mixture. In (21), the gates {gi}Mi=1 manage the mixture

through probabilistic partition of the input space for defining

the subregions where the individual experts responsible for.

The experts can be a variety of machine learning models, e.g.,

linear model and support vector machines [122], [123].

The training of MoE usually assumes that the data is

iid such that we maximize the factorized log likelihood
∑n

t=1 log p(yt|xt) to learn the gating functions and the experts

simultaneously by the gradient-based optimizers [124] and

more popularly, the EM algorithm [120], [122], [125], [126].

The joint learning permits (i) probabilistic (soft) partition of

the input space via both the data and the experts themselves,

and (ii) diverse experts specified for different but overlapped

subregions. Finally, the predictive distribution at x∗ is

p(y∗|D,x∗) =

M
∑

i=1

gi(x∗|D)pi(y∗|D,x∗), (22)

where gi(x∗|D) can be regarded as the posterior probability

p(z∗ = i|D), called responsibility.

To advance the MoE, (i) the single-layer model in Fig. 6 is

extended to a tree-structured hierarchical architecture [125];

(ii) the Bayesian approach is employed instead of the max-

imum likelihood to get rid of over-fitting and noise-level

underestimate [127]; (iii) the t-distribution is considered to

handle the outliers [128]; and finally (iv) instead of following

the conditional mixture (21), the input distribution p(x) is

considered to form the joint likelihood p(y,x) for better

assignment of experts [122].

Next, we review the mixture of GP experts for big data. It

is observed that (i) the original MoE is designed for captur-

ing multi-modal (non-stationary) features, and the individual

global experts are responsible for all the data points, leading to

high complexity; (ii) the iid data assumption does not hold for

GP experts which model the data dependencies through joint

distribution; and (iii) the parametric gating function gi is not

favored in the Bayesian non-parametric framework. In 2001,

Tresp [129] first introduced the mixture of GP experts, which

employs 3M GP experts to respectively capture the mean, the

noise variance, and the gate parameters with nearly O(3Mn3)
complexity, which is unattractive for big data.

The mixture of GP experts for big data should address two

issues: (i) how to reduce the computational complexity (model

complexity), and (ii) how to determine the number of experts

(model selection).

To address the model complexity issue, there are three core

threads. The first is the localization of experts. For instance, the
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Fig. 5. Illustration of local approximations using six individual experts on the toy example. Note that for MoE, we did not jointly learn the experts and gating
functions. For simplicity, we use the individual experts and the differential entropy as βi in the softmax gating function. It is found that the NLE suffers
from discontinuity and poor generalization. The PoE produces poor prediction mean and overconfident prediction variance due to the inability of suppressing
poor experts. To alleviate this issue, we could either use gating functions, like the MoE, to provide desirable predictions; or use input-dependent weights, like
GPoE, to boost the predictions.

…
…

…
…

Fig. 6. Illustration of mixture-of-experts.

infinite mixture of GP experts (iMGPE) [23] uses a localized

likelihood to get rid of the iid assumption as

p(y|X) =
∑

z∈Z

p(z|X)
∏

i

p(yi|z,Xi). (23)

Given an instance of the expert indicators z = [z1, · · · , zn]T,

the likelihood factorizes over local experts, resulting in

O(nm2
0) when each expert has the same training size m0.

Similar to [122], the iMGPE model was further improved

by employing the joint distribution p(y,X) rather than the

conditional p(y|X) as [130]

p(y,X) =
∑

z∈Z

p(z)
∏

i

p(yi|z,Xi)p(Xi|z). (24)

The fully generative model is capable of handling partially

specified data and providing inverse functional mappings. But

the inference over (23) and (24) should resort to the expensive

Markov Chain Monte Carlo (MCMC) sampling. Alternatively,

the localization can be achieved by the hard-cut EM algorithm

using a truncation representation, wherein the E-step assigns

the data to experts through maximum a posteriori (MAP) of

the expert indicators z or a threshold value [42], [131]–[133].

Thereafter, the M-step only operates on small subsets.

The second thread is combining global experts with the

sparse approximations reviewed in section III-C under the

variational EM framework. The dependency among outputs is

broken to make variational inference feasible by (i) interpret-

ing GP as the finite Bayesian linear model in (10) [24], [134],

or (ii) using the FITC experts that factorize over f given the

inducing set fm [42], [133]. With m inducing points for each

expert, the complexity is O(nm2M), which can be further

reduced to O(nm2) with the hard-cut EM [42], [133].

Note that the first two threads assign the data dynamically

according to the data property and the experts’ performance.

Hence, they are denoted as mixture of implicitly localized

experts (MILE) [22]. The implicit partition determines the

optimal allocation of experts, thus enabling capturing the

interaction among experts. This advantage encourages the ap-

plication on data association [135], [136]. The main drawback

of MILE however is that in the competitive learning process,

some experts may be eliminated due to the zero-coefficient

problem caused by unreasonable initial parameters [137].

To relieve the problem of MILE, the third thread is to pre-

partition the input space by clustering techniques and assign

points to the experts before model training [138], [139]. The

mixture of explicitly localized experts (MELE) [22] (i) reduces

the model complexity as well, and (ii) explicitly determines

the architecture of MoE and poses distinct local experts. In the

meantime, the drawback of MELE is that the clustering-based

partition misses the information from data labels and experts

such that it cannot capture the interaction among experts.

Finally, to address the model selection issue, the Akaike

information criterion [140] and the synchronously balancing

criterion [141] have been employed to choose over a set

of candidate M values. More elegantly, the input-dependent

Dirichlet process (DP) [23], the Polya urn distribution [130] or

the more general Pitman-Yor process [142] is introduced over

the expert indicators z to act as gating functions, which in

turn automatically infer the number of experts from data. The

complex prior and the infinite M however raise the difficulty

in inference [24]. Therefore, for simplicity, a stick-breaking

representation of DP is usually used [24], [133].

C. Product-of-experts

Different from the MoE which employs a weighted sum of

several probability distributions (experts) via an “or” opera-
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tion, the product-of-experts (PoE) [25] multiplies these prob-

ability distributions, which sidesteps the weight assignment in

MoE and is similar to an “and” operation, as

p(y|x) = 1

Z

M
∏

i=1

pi(y|x), (25)

where Z is a normalizer, which however makes the

inference intractable when maximizing the likelihood
∑n

i=1 log p(yi|xi) [143].

Fortunately, the GP experts sidestep this issue since pi(y|x)
in (25) is a Gaussian distribution. Hence, the product of

multiple Gaussians is still a Gaussian distribution, resulting

in a factorized marginal likelihood of PoE over GP experts

p(y|X) =

M
∏

i=1

p(yi|Xi), (26)

where pi(yi|Xi) ∼ N (yi|0,Ki + σ2
ǫ,iIni

) with Ki =
k(Xi,Xi) ∈ Rni×ni and ni being the training size of expert

Mi. This factorization degenerates the full kernel matrix Knn

into a diagonal block matrix diag[K1, · · · ,KM ], leading to

K−1
nn ≈ diag[K−1

1 , · · · ,K−1
M ]. Hence, the complexity is

substantially reduced to O(nm2
0) given ni = m0.

It is observed that the PoE likelihood (26) is a special case of

the MoE likelihood (23): the MoE likelihood averages the PoE

likehood over possible configurations of the expert indicators

z. Consequently, the joint learning of gating functions and

experts makes MoE achieve optimal allocation of experts

such that it may outperform PoE [144]. Generally, due to

the weighted sum form (21), the MoE will never be sharper

than the sharpest expert; on the contrary, due to the product

form (25), the PoE can be sharper than any of the experts. This

can be confirmed in Fig. 5: the PoE produces poor prediction

mean and overconfident prediction variance by aggregating the

predictions from six independent experts, due to the inability

of suppressing poor experts; on the contrary, the MoE provides

desirable predictions through gating functions.

Hence, in order to improve PoE, we retain the effective

training process but modify the predicting process. Instead of

following the simple product rule to aggregate the experts’

predictions, various aggregation criteria have been proposed

to weaken the votes of poor experts.18 Particularly, the aggre-

gations are expected to have several properties [144]: (i) the

aggregated prediction is sensible in terms of probability, and

(ii) the aggregated prediction is robust to weak experts.

Given the GP experts {Mi}Mi=1 with predictive distribu-

tions {p(y∗|Di,x∗) = N (µi(x∗), σ
2
i (x∗))}Mi=1 at x∗, the

PoEs [25], [144]–[146] aggregate the experts’ predictions

through a modified product rule as

p(y∗|D,x∗) =

M
∏

i=1

pβ∗i

i (y∗|Di,x∗), (27)

where β∗i is a weight quantifying the contribution of

pi(y∗|Di,x∗) at x∗. Using (27), we can derive the aggregated

prediction mean and variance with closed-form expressions.

18Note that the aggregation strategy is post-processing or transductive since
it is independent from model training but depends on the test point location.

The original product-rule aggregation [25] employs a con-

stant weight β∗i = 1, resulting in the aggregated precision

σ−2(x∗) =
∑M

i=1 σ
−2
i (x∗) which will explode rapidly with

increasing M . To alleviate the overconfident uncertainty, the

generalized PoE (GPoE) [144] introduces a varying weight

β∗i, which is defined as the difference in the differential

entropy between the expert’s prior and posterior, to increase or

decrease the importance of experts based on their prediction

uncertainty. But with this flexible weight, the GPoE pro-

duces explosive prediction variance when leaving the training

data [28]. To address this issue, we can impose a constraint
∑M

i=1 β∗i = 1, see the favorable predictions in Fig. 5; or we

can employ a simple weight β∗i = 1/M such that the GPoE

recovers the GP prior when leaving X , at the cost of however

producing underconfident prediction variance [26].19

Alternatively, Bayesian committee machine (BCM) [26],

[147]–[149] aggregates the experts’ predictions from another

point of view by imposing a conditional independence as-

sumption p(y|y∗) ≈ ∏M
i=1 p(yi|y∗), which in turn explicitly

introduces a common prior p(y∗|θ) for experts.20 Thereafter,

by using the Bayes rule we have

p(y∗|D,x∗, θ) =

∏M
i=1 p

β∗i

i (y∗|Di,x∗, θ)

p
∑

M
i=1

β∗i−1(y∗|θ)
. (28)

The prior correlation term helps BCM recover the GP prior

when leaving X , and the varying β∗i akin to that of

GPoE helps produce robust BCM (RBCM) predictions within

X [26]. The BCM however will produce unreliable prediction

mean when leaving X , which has been observed and analyzed

in [26], [28]. Notably, unlike PoE, the common prior in BCM

requires that all the experts should share the hyperparameters:

that is why we explicitly write (28) conditioned on θ.

It has been pointed out that the conventional PoEs and

BCMs are inconsistent [28], [150]. That is, their aggregated

predictions cannot recover that of full GP when n → ∞. To

raise consistent aggregation, the nested pointwise aggregation

of experts (NPAE) [27] removes the independence assumption

by assuming that yi has not yet been observed such that

µi(x∗) is a random variable. The NPAE provides theoretically

consistent predictions at the cost of requiring much higher

time complexity due to the inversion of a new M × M
kernel matrix at each test point. To be efficient while retaining

consistent predictions, instead of using the fixed GP prior to

correct the aggregation like (R)BCM, the generalized RBCM

(GRBCM) [28] (i) introduces a global communication expert

Mc to perform correction, i.e., acting as a base expert, and

(ii) considers the covariance between global and local experts

to improve predictions, leading to the aggregation

p(y∗|D,x∗) =

∏M
i=2 p

β∗i

+i (y∗|D+i,x∗, )

p
∑

M
i=2

β∗i−1
c (y∗|Dc,x∗)

, (29)

where pc(y∗|Dc,x∗) is the predictive distribution of Mc,

and p+i(y∗|D+i,x∗) is the predictive distribution of an en-

hanced expert M+i trained on the augmented dataset D+i =

19With β∗i = 1/M , the GPoE’s prediction mean is the same as that of
PoE, but the prediction variance blows up as M times that of PoE.

20The BCM can be interpreted as a sparse GP which treats the test inputs
as inducing points [16].
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{Di,Dc}. Different from (R)BCM, GRBCM employs the

informative pc(y∗|Dc,x∗) rather than the simple prior to

support consistent predictions when n→ ∞.

Note that the implementations of these transductive aggre-

gations usually share the hyperparameters across experts [26],

i.e., θi = θ, because (i) it achieves automatic regularization for

guarding against local over-fitting, and eases the inference due

to fewer hyperparameters; (ii) it allows to temporarily ignore

the noise term of GP in aggregation, i.e., using pi(f∗|Di,x∗)
instead of pi(y∗|Di,x∗) like [26], to relieve the inconsistency

of typical aggregations; and finally (iii) the BCMs cannot

support experts using individual hyperparameters as discussed

before. But the shared hyperparameters limit the capability

of capturing non-stationary features, which is the superiority

of local approximations.21 Besides, another main drawback of

aggregations is the Kolmogorov inconsistency [151] induced

by the separation of training and predicting such that it is not

a unifying probabilistic framework. That is, when we extend

the predictive distributions at multiple test points, e.g., x∗ and

x′
∗, we have p(y∗|D) 6=

∫

p(y∗, y
′
∗|D)dy′∗.

V. IMPROVEMENTS OVER SCALABLE GPS

A. Scalability

The reviewed global approximations, especially the sparse

approximations, have generally reduced the standard cubic

complexity to O(nm2) through m inducing points. Moreover,

their complexity can be further reduced through SVI [1] (with

O(m3)) and the exploitation of structured data [18] (with

O(n+d logm1+1/d)). Sparse approximations however are still

computationally impractical in the scenarios requiring real-

time predictions, for example, environmental sensing and mon-

itoring [152]. Alternatively, we can implement sparse approxi-

mations using advanced computing infrastructure, e.g., Graph-

ics Processing Units (GPU) and distributed clusters/processors,

to further speed up the computation.

Actually, the exact GP using GPU and distributed clusters

has been investigated [153]–[157] in the regime of distributed

learning [158]. The direct strategy implements parallel and fast

linear algebra algorithms, e.g., the HODLR algorithm [155]

and the MVM algorithm, with modern distributed memory

and multi-core/multi-GPU hardware.22

In the meantime, the GPU accelerated sparse GPs have been

explored. Since most of the terms in (15) can be factorized

over data points, the inference can be parallelized and acceler-

ated by GPU [29], [30]. Moreover, by further using the relaxed

variational lower bound (17) or grid inducing points in (20),

the TensorFlow-based GPflow library [31] and the PyTorch-

based GPyTorch library [159] have been developed to exploit

the usage of GPU hardwares.

Besides, the parallel sparse GPs, e.g., the parallel PIT(C)

and Incomplete Cholesky Factorization (ICF), have been de-

veloped using the message passing interface framework to

distribute computations over multiple machines [160], [161].

21When sharing hyperparameters, the local structure itself may have good
estimations of hyperparameter to capture some kind of local patterns [38].

22Wang et al. [157] successfully trained a MVM-based exact GP over a
million data points in three days through eight GPUs.

Ideally, the parallelization can achieve a speed-up factor close

to the number of machines in comparison to the centralized

counterparts. Recently, a unifying framework which distributes

conventional sparse GPs, including DTC, FI(T)C, PI(T)C and

low-rank-cum-markov approximation (LMA) [162], have been

built via varying correlated noise structure [43]. Impressively,

Peng et al. [36] first implemented the sparse GPs in a dis-

tributed computing platform using up to one billion training

points, and trained the model successfully within two hours.

The local approximations generally have the same com-

plexity to the global approximations if the training size m0

for each expert is equal to the inducing size m. The local

opinion however naturally encourages the parallel/distributed

implementations to further reduce computational complexity,

see for example [20], [32], [33].

B. Capability

Originated from the low-rank Nyström approximation, the

global sparse approximations have been found to work well for

approximating slow-varying features with high spatial correla-

tions. This is because in this case, the spectral expansion of the

kernel matrix Knn is dominated by a few large eigenvectors.

On the contrary, when the latent function f has quick-varying

(non-stationary) features, e.g., the complicated time series

tasks [163], the limited global inducing set struggles to exploit

the local patterns. The D&C inspired local approximations

however are capable of capturing local patterns but suffer

from the inability of describing global patterns. Hence, in

order to enhance the representational capability of scalable

GPs, the hybrid approximations are a straightforward thread

by combining global and local approximations in tandem.

Alternatively, the hybrid approximations can be accom-

plished through an additive process [41], [164], [165]. For

instance, after partitioning the input space into subregions, the

partially independent conditional (PIC) [41] and its stochastic

and distributed variants [35], [43], [91] extend PITC by

retaining the conditional independence of training and test,

i.e., f ⊥ f∗|fm, for all the subregions except the one

containing the test point x∗, thus enabling the integration

of local and global approximations in a transductive pattern.

Mathematically, suppose that x∗ ∈ Ωj we have

q(f , f∗|fm) = p(fj , f∗|fm)

M
∏

i6=j

p(fi|fm). (30)

This model corresponds to an exact GP with an additive kernel

kPIC(xi,xj) = kSoR(xi,xj)+ψij [k(xi,xj)−kSoR(xi,xj)],

where ψij = 1 when xi and xj belong to the same block;

otherwise ψij = 0. Note that the hybrid PIC recovers FIC

by taking all the subregion sizes to one; it is left with

the purely local GPs by taking the inducing size to zero.

The additive kernel similar to kPIC has also been employed

in [164]–[166] by combining the CS kernel [15], [52] and

the sparse approximation. Furthermore, as an extension of

PIC, the tree-structured GP [167] ignores most of the inter-

subregion dependencies of inducing points, but concentrates

on the dependency of adjacent subregions lying on a chained
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tree structure. The almost purely localized model reduces the

time complexity to be linear to n and allows using many

inducing points.

Hybrid approximations can also be conducted through a

coarse-to-fine process, resulting in a hierarchical structure with

multiple layers yielding multi-resolution [40], [168]–[170]. For

example, Lee et al. [40] extended the work of [167] into a

hierarchically-partitioned GP approximation. This model has

multiple layers, with the root layer being localized GPs. Partic-

ularly, each layer owns the individual kernel, the configuration

of which is determined by the density of inducing points;

the adjacent layers share a cross-covariance function which

is convolved from two relevant kernels, like [171]. Similarly,

Park et al. [168] presented a two-layer model, wherein a

GP is placed over the centroids of the subsets as g(c) ∼
GP(0, kg(c, c

′)) to construct a rough global approximation

in the top layer; then in each subregion of the root layer, a

local GP is trained by using the global-level GP as the mean

prior fi(x) ∼ GP(g(x), ki(x,x
′)). This model has also been

improved into multi-layer structure [169].

Inevitably, the combination of local approximations may

induce discontinuous predictions and inaccurate uncertainties

on the boundaries of subregions. For example, the tree-

structured GPs [40], [167] completely adopt a localized pre-

dictive distribution, which suffers from severe discontinuity.

The predictions could be smoothed by placing inducing points

on the boundaries of subregions [40], which however is hard

to implement. The PIC predictive distribution is composed of

both global and local terms [41], which partially alleviates the

discontinuity. To completely address the discontinuity, Nguyen

et al. [42], [133] combined sparse approximations with model

averaging strategies, e.g., MoE.

Finally, despite the hybrid approximations, the representa-

tional capability of sparse approximations can be enhanced

through a more powerful probabilistic framework. For in-

stance, the inter-domain GP [39], which employs an idea

similar to the convolution process in multi-output GP [10],

[171] and high-dimensional GP [172], uses a linear integral

transform g(z) =
∫

w(x, z)f(x)dx to map the inducing

points into another domain of possibly different dimensions.23

The inducing variables in the new domain can own a new

kernel and induce richer dependencies in the old domain.

The inter-domain idea has also been applied to the posterior

approximations [74], [79], [173]. Besides, from the weight-

space view in (10), it is encouraged to employ different

configurations for the basis functions to capture slow- and

quick-varying features using different scales [174], [175]. This

kind of weight-space non-stationary GP indeed can be derived

from the inter-domain view, see [39].

Alternatively, unlike the standard GP using a homoscedas-

tic noise ǫ ∼ N (0, σ2
ǫ ), the FITC has been extended by

a varying noise as p(ǫ) = N (ǫ|0, diag[h]) where h =
[σ2

ǫ (x1), · · · , σ2
ǫ (xn)]

T [176]. Moreover, Hoang et al. [43]

employed a B-th order Markov property on the correlated

noise process p(ǫ) = N (ǫ|0,Kǫ) in a distributed variational

23g(z) is still a GP by a linear transform of f(x). Besides, with w(x,z) =
δ(x − z) where δ is a Dirac delta, the inter-domain GP recovers FITC.

framework. The unifying framework accommodates existing

sparse approximations, e.g., DTC and PIC, by varying the

Markov order and noise structure.24 Yu et al. [91] further

extended this work through Bayesian treatment of hyperparam-

eters to guard against over-fitting. More elegantly, Almosallam

et al. [177] derived a scalable heteroscedastic Bayesian model

from the weight-space view by adopting an additional log

GP, which is analogous to [178], [179], to account for noise

variance as σ2
ǫ (xi) = exp(φ(xi)w + b). Differently, Liu et

al. [180] derived the stochastic and distributed variants of [178]

for scalable heteroscedastic regression. They found that the

distributed variant using experts with hybrid parameters im-

proves both scalability and capability, while the stochastic

variant using global inducing set may sacrifice the prediction

mean for describing the heteroscedastic noise.

VI. EXTENSIONS AND OPEN ISSUES

A. Scalable manifold GP

In scalable GP literature, we usually focus on the scenario

wherein the training size n is large (e.g., n ≥ 104) whereas

the number d of inputs is modest (e.g., up to hundreds of

dimensions). However, in practice we may need to handle

the task with comparable n and d or even d ≫ n, leading

to the demand of high-dimensional scalable GP. In practice,

we often impose low-dimensional constraints to restrict the

high-dimensional problems, i.e., the inputs often lie in a p-

dimensional (p < d) manifold embedded in the original d-

dimensional space. This is because high-dimensional statistical

inference is solvable only when the input size d is compatible

with the statistical power based on the training size n [181].

Hence, various manifold GPs [11], [176], which are ex-

pressed as

y = f(Υx) + ǫ, (31)

where Υ ∈ Rp×d is a mapping matrix, have been developed to

tackle high-dimensional big data through linear/nonlinear di-

mensionality reduction [176], [182], [183] or neural network-

like input transformation [184]. As a result, the kernel operates

the data in a lower dimensional space as k(Υx,Υx′). Note

that the mapping matrix and the scalable regression are learned

jointly in the Bayesian framework for producing favorable

results. Particularly, the true dimensionality of the manifold

can be estimated using Bayesian mixture models [185], which

however induce a heavy computational budget.

A recent exciting theoretical finding [181] turns out that

the learning of the intrinsic manifold can be bypassed, since

the GP learned in the original high-dimensional space can

achieve the optimal rate when f is not highly smooth. This

motivates the use of Bayesian model averaging based on

random compression over various configurations in order to

reduce computational demands [186].

Continual theoretical and empirical efforts are required

for designing specific components, e.g., the convolutional

kernel [172], for scalable manifold GPs, because of the urgent

demands in various fields, e.g., computer vision (CV).

24It achieves the state-of-the-art results on the airline dataset with up to
two million data points.
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B. Scalable deep GP

Motivated by the enormous success of deep learning in

various fields, the scalable deep GPs [34], [187] have been

investigated in recent years.25 A simple representative is

combining the structural NNs and the flexible non-parametric

GP together, wherein NNs map the original input space to the

feature space for extracting non-stationary/recurrent features,

and the last-layer sparse GP conducts standard regression over

the latent space [34], [103], [184], [190]. The parameters of

NNs and GP are jointly learned by maximizing the marginal

likelihood in order to guard against over-fitting. The NNs+GP

structure produces sensible uncertainties, and is found to be

robust to adversarial examples in CV tasks [191]. Particularly,

Cremanns and Roos [192] employed the same hybrid structure,

but used the NNs to learn input-dependent hyperparameters for

the additive kernels. Then, the NeNe algorithm is employed to

ease the GP inference. Besides, Iwata and Ghahramani [193]

used the outputs of NNs as prior mean for SVGP [1].

More elegantly, inspired by deep learning, the deep GP

(DGP) [187] and its variants [194]–[198], which employ the

hierarchical and functional composite

y(x) = fl(fl−1(· · · f1(x))) + ǫ (32)

to stack multiple layers of latent variable model (LVM) [11]

for extracting features. The DGP showcases great flexibility in

(un)supervised scenarios, resulting in however a non-standard

GP. The recently developed convolutional kernel [172] opens

up the way of DGP for CV tasks [199]. Note that the inference

in DGP is intractable and expensive, thus efficient training

requires a sophisticated approximate inference via inducing

points [196], [200], which in turn may limit the capability.

Easier inference without loss of prediction accuracy has always

been a big challenge for DGP to completely show its potential

beyond regression.

C. Scalable multi-task GP

Due to the multi-task problems that have arose in vari-

ous fields, e.g., environmental sensor networks and structure

design, multi-task GP (MTGP) [9], [10], also known as

multi-output GP, seeks to learn the latent T correlated tasks

f = [f1, · · · , fT ]T : Rd 7→ RT simultaneously as

f(x) ∼ GP(0,kMTGP(x,x
′)), y(x) = f(x) + ǫ, (33)

where ǫ = [ǫ1, · · · , ǫT ]T is the individual noises. The crucial

in MTGP is the construction of a valid multi-task kernel

kMTGP(x,x
′) ∈ RT×T , which can be built through for

example linear model of coregionalization [201] and convolu-

tion process [171]. Compared to individual modeling of tasks

which loses valuable information, the joint learning of tasks

enables boosting predictions by exploiting the task correlations

and leveraging information across tasks.

Given that each of the T tasks has n training points, MTGP

collects the data from all the tasks and fuses them in an entire

kernel matrix, leading to a much higher complexity O(T 3n3).

25GP has been pointed out as a shallow but infinitely wide neural network
with Gaussian weights [188], [189].

Hence, since the inference in most MTGPs follows the stan-

dard process, the above reviewed sparse approximations and

local approximations have been applied to MTGPs [171],

[202]–[204] to improve the scalability.

To date, scalable MTGPs are mainly studied in the scenario

where the tasks have well defined labels and share the input

space with modest dimensions. Many efforts are required for

extending current MTGPs to handle the 4V challenges in the

regime of multi-task (multi-output) learning [205].

D. Scalable online GP

Typical it is assumed that the entire data D is available

a priori to conduct the off-line training. We however should

consider the scenario where the data arrives sequentially, i.e.,

online or streaming data, in small unknown batches. For the

complicated online regression, the model [65] should (i) have

real-time adaptation to the streaming data; and (ii) handle

large-scale case since the new data is continuously arriving.

Sparse GPs are extensible for online learning since they

employ a small inducing set to summarize the whole training

data [206]–[208]. As a result, the arrived new data interacts

only with the inducing points to enhance fast online learning.

This is reasonable since the updates of µ(x∗) and σ2(x∗)
of FITC and PITC only rely on the inducing set and new

data [209], [210]. Moreover, the stochastic variants naturally

showcase the online structure [211], since the bound in (17)

supports mini-batch learning by stochastic optimization.

But there are two issues for scalable online GPs. First, some

of them [207], [209], [210] fix the hyperparameters to obtain

constant complexity per update. It is argued that empirically

the optimization improves the model significantly in the first

few iterations [211]. Hence, with the advanced computing

power and the demand of accurate predictions, it could update

hyperparameters online over a small number of iterations.

Second, the scalable online GPs implicitly assume that

the new data and old data are drawn from the same input

distribution. This however is not the case in tasks with complex

trajectories, e.g., an evolving time-series [212]. To address

the evolving online learning, Nguyen et al. [213] presented

a simple and intuitive idea using local approximations. This

method maintains multiple local GPs, and either uses the

new data to update the specific GP when they fall into the

relevant local region, or uses the new data to train a new

local GP when they are far away from the old data, resulting

in however information loss from available training data.

As the extension of [65], [214], Bui et al. [212] deployed

an elegant probabilistic framework to update the posterior

distributions and hyperparameters in an online fashion, where

the interaction happens between the old and new inducing

points. The primary theoretical bounds for this Bayesian online

inference model were also provided in [215].

E. Scalable recurrent GP

There exist various tasks, e.g., speech recognition, system

identification, energy forecasting and robotics, wherein the

datasets are sequential and the ordering matters. Here, we

focus on recurrent GP [216], [217] to handle sequential data.
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The popular recurrent GP is GP-based nonlinear auto-

regressive models with exogenous inputs (GP-NARX) [216],

which is generally expressed as

xt = [yt−1, · · · , yt−Ly
, ut−1, · · · , ut−Lu

], yt = f(xt)+ǫyt
,

(34)

where ut is the external input, yt is the output observation at

time t, Ly and Lu are the lagged parameters that respectively

indicate the numbers of delayed outputs and inputs to form

the regression vector xt, f is the emission function, and ǫyt

accounts for observation noise. Note that the observations

yt−1, · · · , yt−Ly
here are considered to be deterministic. The

transformed input xt comprising previous observations and

external inputs enables using standard scalable GPs, e.g.,

sparse approximations, to train the GP-NARX. Due to the sim-

plicity and applicability, GP-NARX has been well studied and

extended to achieve robust predictions against outliers [218],

local modeling by incorporating prior information [219], and

higher-order frequency response functions [220]. A main

drawback of GP-NARX however is that it cannot account for

the observation noise in xt, leading to the errors-in-variables

problem. To address this issue, we could (i) conduct data-

preprocessing to remove the noise from data [221]; (ii) adopt

GPs considering input noise [200]; and (iii) employ the more

powerful state space models (SSM) [217] introduced below.

The GP-SSM employs a more general recurrent structure as

xt = g(xt−1, ut−1) + ǫxt
, yt = f(xt) + ǫyt

, (35)

where xt is the state of the system which acts as an internal

memory, g is the transition function, f is the emission func-

tion, ǫxt
is the transition noise, and finally ǫyt

is the emission

noise. Note that GP-NARX is a simplified GP-SSM model

with observable state. The GP-SSM takes into account the

transition noise and brings the flexibility in requiring no lagged

parameters. But this model suffers from intractable inference

since we need to marginalize out all the latent variables, thus

requiring approximate inference [217], [222], [223].

Finally, we again see the trend in combining recurrent

GPs with neural networks. For instance, the deep recurrent

GP [224] attempts to mimic the well-known recurrent neural

networks (RNNs), with each layer modeled by a GP. Similar

to DGP [187], the inference in deep recurrent GP is intractable

and requires sophisticated approximations, like [225]. Hence,

to keep the model as simple as possible while retaining the

recurrent capability, the long short-term memory (LSTM)

model [226] is combined with scalable GPs, resulting in

analytical inference and desirable results [190].

F. Scalable GP classification

Different from the regression tasks mainly reviewed by this

article with continuous real observations, the classification has

discrete class labels. To this end, the binary GP classification

(GPC) model [227] with y ∈ {0, 1} is usually formulated as

f ∼ GP(0, k), p(y|f) = Bernoulli(π(f)), (36)

where π(.) ∈ [0, 1] is an inverse link function26 that squashes

f into the class probability space. Differently, the multi-class

GPC (MGPC) [228] with y ∈ {1, · · · , C} is

f c ∼ GP(0, kc), p(y|f) = Categorical(π(f)), (37)

where {f c}Cc=1 are independent latent functions27 for C
classes, and f = [f1, · · · , fC ]T : Rd 7→ RC .28 Due to the

non-Gaussian likelihood, exact inference for GPC however

is intractable, thus requiring approximate inference, the key

of which approximates the non-Gaussian posterior p(f |y) ∝
p(y|f)p(f) with a Gaussian q(f |y) [227].

Motivated by the success of scalable GPR, we could directly

treat GPC as a regression task [231]; or solve it as GPR by

a transformation that interprets class labels as outputs of a

Dirichlet distribution [232]. This sidesteps the non-Gaussian

likelihood. A more principled way however is adopting GPCs

in (36) and (37), and combining approximate inference, e.g.,

laplace approximation, EP and VI, with the sparse strategies

in section III-C to derive scalable GPCs [90], [233]–[237].29

The main challenges of scalable GPC, especially MGPC,

are: (i) the intractable inference and posterior, and (ii) the

high training complexity for a large C. For the first issue,

the stochastic GPC derives the model evidence expressed as

the integration over an one-dimensional Gaussian distribution,

which can be adequately calculated using Gaussian-Hermite

quadrature [234], [238]. Furthermore, the GPC equipped

with the FITC assumption owns a completely analytical

model evidence [235], [236]. Particularly, when taking the

logit/softmax inverse link function, the Pòlya-Gamma data

augmentation [239] offers analytical inference and posterior

for GPC [237], [240]. For the second issue, since the complex-

ity of MGPC is linear to the number C of classes, alternatively,

we may formulate the model evidence as a sum over classes

like [230], thus allowing efficient stochastic training.

VII. CONCLUSIONS

Although the GP itself has a long history, the non-parametric

flexibility and the high interpretability make it popular yet

posing many challenges in the era of big data. In this paper,

we have attempted to summarize the state of scalable GPs in

order to (i) well understand the state-of-the-art, and (ii) attain

insights into new problems and discoveries. The extensive

review seeks to uncover the applicability of scalable GPs

to real-world large-scale tasks, which in turn present new

challenges, models and theory in the GP community.

APPENDIX A

LIBRARIES AND DATASETS

Table I summarizes the primary libraries that implement rep-

resentative scale GPs and are well-known for both academia

26The conventional inverse link functions include the step function, the
(multinomial) probit/logit function, and the softmax function.

27In contrast, inspired by the idea of MTGP, the correlations among latent
functions have been exploited by [229].

28Similar to GPR, potential classification error can be considered through

f = f̂ + ǫ. By varying over different noise distributions, e.g., Gaussian and
logistic, we however could recover conventional inverse link functions, e.g.,
probit and logit functions, through the integration of ǫ [230].

29Different from sparse GPR, the inducing points optimized in sparse GPC
are usually pushed towards decision boundary [234].
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TABLE I
LIST OF PRIMARY LIBRARIES SUPPORTING REPRESENTATIVE SCALABLE GPS.

Package Language Global Local Others GPU supported

GPML Matlab FITC [67], VFE [17], SPEP [79], SKI [18] - - -
GPy Python VFE [17], SPEP [79], SKI [18], SVGP [1] - - X

GPstuff Matlab&R SoR [56], DTC [65], FITC [67], VFE [17], SVGP [1], CS [15] - PIC [41], CS+FIC [165] -
GPflow Python VFE [17], SVGP [1] - NNs+SVGP [191] X

pyMC3 Python DTC [65], FITC [67], VFE [17] - - -
GPyTorch Python SKI [18] - DKL (NNs+SKI) [34] X

pyGPs Python FITC [67] - - -
AugGP Julia VFE [17], SVGP [1] - - -
laGP R - NeNe [112] - X

GPLP Matlab - NeNe [112], PoE [145], DDM [241] PIC [41] -

TABLE II
BIG REGRESSION DATASETS (n ≥ 104) IN THE LITERATURE.

Dataset No. of inputs No. of observations

terrain [40] 2 40.00K
aimpeak [161] 5 41.85K
sarcos [5] 21 48.93K
natural sound [18] 1 59.31K
chem [14] 15 63.07K
kuka [242] 28 197.92K
crime [243] 2 233.09K
sdss [177] 10 300.00K
precipitation [106] 3 628.47K
mujoco [86] 23 936.35K
airline [1] 8 5.93M
bimbo [37] 147 9.05M
fortune [37] 112 10.35M
NYC taxi [36] 9 1.21B

and industry.30 It is observed that Python and hardware accel-

eration are becoming popular for the GP community. Note

that some specific scalable GP packages implementing the

advanced models reviewed in sections V and VI are not listed

here, which can be found in the relevant researchers’ webpage.

Besides, except the well-known UCI31 regression datasets

with n ∈ [15, 4.18 × 106] and d ∈ [3, 4.8 × 105], and the

LIBSVM32 regression datasets with n ∈ [152, 2.06× 104] and

d ∈ [6, 4.27×106], Table II summarizes the regression datasets

(n ≥ 104) occurred in scalable GP literature. It is found that

researchers have assessed scalable GPs with up to about one

billion training points [36].
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[2] S. Del Rı́o, V. López, J. M. Benı́tez, and F. Herrera, “On the use of
MapReduce for imbalanced big data using Random Forest,” Informa-

tion Sciences, vol. 285, pp. 112–137, 2014.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of Go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[5] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[6] G. Matheron, “Principles of geostatistics,” Economic Geology, vol. 58,
no. 8, pp. 1246–1266, 1963.

[7] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and
analysis of computer experiments,” Statistical Science, vol. 4, no. 4,
pp. 409–423, 1989.

[8] H. Liu, Y.-S. Ong, and J. Cai, “A survey of adaptive sampling for global
metamodeling in support of simulation-based complex engineering
design,” Structural and Multidisciplinary Optimization, vol. 57, no. 1,
pp. 393–416, 2018.

[9] M. A. Alvarez, L. Rosasco, N. D. Lawrence et al., “Kernels for vector-
valued functions: A review,” Foundations and Trends R© in Machine

Learning, vol. 4, no. 3, pp. 195–266, 2012.

[10] H. Liu, J. Cai, and Y.-S. Ong, “Remarks on multi-output Gaussian
process regression,” Knowledge-Based Systems, vol. 144, no. March,
pp. 102–121, 2018.

[11] N. Lawrence, “Probabilistic non-linear principal component analysis
with Gaussian process latent variable models,” Journal of Machine

Learning Research, vol. 6, no. Nov, pp. 1783–1816, 2005.

[12] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[13] S. Yin and O. Kaynak, “Big data for modern industry: challenges and
trends,” Proceedings of the IEEE, vol. 103, no. 2, pp. 143–146, 2015.

[14] K. Chalupka, C. K. Williams, and I. Murray, “A framework for
evaluating approximation methods for Gaussian process regression,”
Journal of Machine Learning Research, vol. 14, pp. 333–350, 2013.

[15] T. Gneiting, “Compactly supported correlation functions,” Journal of
Multivariate Analysis, vol. 83, no. 2, pp. 493–508, 2002.
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