
Journal of Arti�cial Intelligence Research 7 (1997) 249-281 Submitted 7/1997; published 12/1997

When Gravity Fails: Local Search Topology

Jeremy Frank frank@tiziano.arc.nasa.gov

Caelum Research Corp.

NASA Ames Research Center

Mail Stop N269-1

Mo�ett Field, CA 94035-1000

Peter Cheeseman cheesem@ptolemy.arc.nasa.gov

RIACS

NASA Ames Research Center

Mail Stop N269-1

Mo�ett Field, CA 94035-1000

John Stutz stutz@ptolemy.arc.nasa.gov

NASA Ames Research Center

Mail Stop N269-1

Mo�ett Field, CA 94035-1000

Abstract

Local search algorithms for combinatorial search problems frequently encounter a se-
quence of states in which it is impossible to improve the value of the objective function;
moves through these regions, called plateau moves, dominate the time spent in local search.
We analyze and characterize plateaus for three di�erent classes of randomly generated
Boolean Satis�ability problems. We identify several interesting features of plateaus that
impact the performance of local search algorithms. We show that local minima tend to be
small but occasionally may be very large. We also show that local minima can be escaped
without unsatisfying a large number of clauses, but that systematically searching for an
escape route may be computationally expensive if the local minimum is large. We show
that plateaus with exits, called benches, tend to be much larger than minima, and that
some benches have very few exit states which local search can use to escape. We show that
the solutions (i.e., global minima) of randomly generated problem instances form clusters,
which behave similarly to local minima. We revisit several enhancements of local search al-
gorithms and explain their performance in light of our results. Finally we discuss strategies
for creating the next generation of local search algorithms.

1. Introduction

Local search algorithms have been heavily studied as an alternative to complete search
for NP-Hard problems. A typical local search algorithm, such as gradient descent or
greedy search, employs an objective function to rank states, and picks a \neighboring"
state maximizing the improvement to the objective function. A compelling (if inexact)
analogy is that of dropping a marble on a smooth surface and observing it roll downhill into
a local valley. The typical greedy objective function acts like gravity, pulling the current
state downhill. This procedure can result in the algorithm becoming trapped in a local
minimum. Local search algorithms tend to �nd solutions to satis�able decision problems
more quickly than complete search algorithms. However, these algorithms may terminate

c1997 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Frank, Cheeseman, & Stutz

procedure GSAT(�,MaxFlips, MaxTries)
# � is the problem instance to be solved
# A is the current variable assignment

for i=1 to MaxTries

A = N -bit string selected uniformly at random
for j = 1 to MaxFlips

if solved problem(A;�)
return A

else

PossFlips = neighbors of A minimizing the number of unsatis�ed clauses
A = one element of Possips selected uniformly at random

end else

end for

end for

return FAIL
end

Figure 1: GSAT Algorithm Sketch

either without �nding a solution when one exists or guaranteeing that a problem instance
does not have a solution.

GSAT is a local search procedure for the Boolean Satis�ability problems (Selman,
Levesque, & Mitchell, 1992) that has proven to be e�ective at quickly �nding solutions
to satis�able problem instances. A sketch of GSAT appears in Figure 1. In the �gure, �
refers to the problem instance GSAT is to solve. GSAT's search space is the space of all
complete assignments of values to variables. The GSAT algorithm is typically given a �xed
number of tries (denoted in the �gure as MaxTries) and a �xed number of moves per try
(denoted MaxFlips) to solve a problem instance. During each move, GSAT examines all
states reachable by changing the value of a single variable, and selects moves that minimize
the number of unsatis�ed clauses. GSAT typically encounters a sequence of states where
the best move available at each state leaves the number of unsatis�ed clauses unchanged.
These moves are referred to as plateau moves or sideways moves, studied in (Gent & Walsh,
1993a) and (Hampson & Kibler, 1995). Plateau moves dominate the time GSAT spends do-
ing search (Gent & Walsh, 1993a). It is believed that all combinatorial search problems with
discrete objective functions have plateaus that cause plateau moves during local search, but
it is unlikely that search problems with real-valued objective functions have plateaus. When
GSAT encounters a plateau, it randomly searches until it either runs out of ips or �nds a
neighboring state with fewer unsatis�ed clauses, thereby exiting the plateau. Returning to
the marble analogy, there is no gravity on the plateaus, and hence the marble simply rolls at
random until it �nds an exit or runs out of momentum. Numerous variants of GSAT have
been developed to avoid random plateau search and improve GSAT performance (Gent &
Walsh, 1993b; Selman & Kautz, 1993; Gent & Walsh, 1995).

The nature of plateau behavior of local search algorithms is not well understood. Some
researchers suggest that algorithms like GSAT become trapped in local minima, i.e., parts

250



When Gravity Fails: Local Search Topology

of the search space from which there is no escape to a better part of the search space. If this
is true, local minima detection and avoidance is the most important problem in local search
algorithm development. Other researchers have suggested that local search could become
trapped in \at" regions of the search space that have exits to better states, which we call
benches. This may happen because benches are large, or because they contain few exits and
random plateau search has a small probability of �nding an exit. Rather than designing
algorithms and testing them on problem classes, we undertook an empirical examination of
the nature of plateaus for a variety of 3-SAT problems.

This paper presents several surprising discoveries concerning the topological structures
leading to plateau behavior and their impact on local search. We de�ne plateaus as a feature
of the search space and break plateaus into two classes: local minima and benches. Plateaus
are de�ned as any maximally connected region of the local search space over which the
objective function is constant. Local minima are plateaus surrounded by regions of the
search space where the objective function takes on values exceeding that of the plateau,
with the result that purely greedy local search cannot escape once �nding a state on the
local minimum. Benches are de�ned as plateaus with exits to regions of the search space
with lower values of the objective function. Our results show that local minima are more
common than benches when the number of unsatis�ed clauses is close to 1, but local minima
also occur frequently at higher numbers of unsatis�ed clauses. Most local minima tend to be
small, but their size exhibits high variability; often the largest local minima exceeds 10,000
states in a problem instance containing 100 variables. Also surprising was the behavior
of solutions: solutions are grouped together into global minima of highly variable size.
Our results also show that benches tended to be much larger than local minima. Most
benches have a large number of exits, but a small fraction have very few exits, with the
result that local search can spend a large amount of time trying to escape them. Plateau
characteristics are dependent on many features of a problem instance; we found di�erences in
plateau characteristics based on the ratio of clauses to variables, solvability of the problem
instances, and problem classes. The results on plateau characteristics allowed us to re-
interpret the success of many modi�cations to local search, including history lists (Gent &
Walsh, 1993b), random walk (Kautz & Selman, 1996) and tabu search (Glover, 1989).

The paper is organized as follows: In Section 2 we present some de�nitions used through-
out the rest of the paper. Next in Sections 3 and 4 we present an empirical analysis of
properties of plateaus for several problem spaces. In Section 5 we present an analysis of
previous results in light of our �ndings. We then suggest how to apply our work to the
creation of new local search algorithms in Section 6, and �nally in Section 7 we conclude
and discuss ideas for future work.

2. De�nitions

In this section we will de�ne some terms used throughout the paper. We restrict our discus-
sion to the Boolean Satis�ability problems in conjunctive normal form with three distinct
literals per clause, abbreviated 3-SAT, but many of the concepts presented here translate
to other discrete combinatorial search problems. We �rst present informal de�nitions, and
provide more formal de�nitions at the end of the section.

251



Frank, Cheeseman, & Stutz

A way of visualizing the local search space for 3-SAT is by mapping each full variable
assignment to a node of an N dimensional hypercube, where N is the number of variables
in the problem instance. If two assignments di�er by one variable assignment they are
adjacent nodes in the hypercube. Each problem instance I de�nes a function on nodes of
the hypercube, mapping the node to the number of unsatis�ed clauses of the instance under
the assignment of values corresponding to the node. We refer to the number of unsatis�ed
clauses under an assignment as the level of the assignment. A plateau is a maximal connected
region of the assignment space where all states have the same level, and the level of the
plateau is the level of the states in the plateau. Even a single state can be a plateau, if all of
its neighbors are of a di�erent level than the state itself. We de�ne the border of a plateau
to be the set of nodes in the hypercube that are neighbors of some state on the plateau but
have a di�erent level than the plateau. A plateau is a minimum if all states on the border
have a higher level than the plateau. If a plateau is not a minimum, then there is some
state on the border with a lower level than the states on the plateau; states on the plateau
that are adjacent to these lower level states are called exits. Plateaus with exits are called
benches. Some benches consist entirely of exits; a local search algorithm may then explore
only one state of such a bench before moving o� of it. We call these benches contours. For
3-SAT, a plateau is a global minimum if it is of level 0, but unsatis�able problem instances
can have global minima of levels higher than 0.

Plateau

Minima Bench

Global Minima Local Minima

No exits Exits

Contour

Lowest Level Higher Level All States Exits

Figure 2: A Taxonomy of Plateaus

In summary: A plateau is a part of the space that is \at" from the perspective of the
objective function. All the states neighboring the plateau are of a di�erent level from the
plateau. If all the neighboring states are at a higher level, the plateau is a local or global
minimum, otherwise it is a bench. If every state on the plateau is a neighbor of a state of
lower level, the bench is a contour. Figure 2 shows a taxonomy of di�erent types of plateaus.
A further illustration of these de�nitions using a simple problem instance is presented in
Appendix A.

We realize that there are di�erent ways of de�ning topological structures of local search
spaces. Our de�nition of plateaus includes structures which do not lead to plateau behavior;
local search will not exhibit plateau behavior as it passes a contour, for example. These
de�nitions show that the observed plateau behavior of local search can be caused by a variety
of structures in the local search topology. In retrospect, it is clear that a de�nition of benches
that speci�cally excludes contours would better serve to characterize the plateau behavior
of greedy algorithms. We caution the reader that our results for benches are contingent
upon our current de�nition of benches, and that there is at least one reasonable alternate

252



When Gravity Fails: Local Search Topology

de�nition that is expected to give somewhat di�erent results. This will be discussed further
in Section 7.

We end this section by providing more formal de�nitions of these ideas. Throughout
the following de�nitions, let H be an N dimensional hypercube representing the possible
assignments of a 3-SAT problem instance I. Two vertices of the hypercube h1; h2 are
neighbors, i.e., have an edge between them, if they correspond to assignments di�ering in
exactly 1 variable.

De�nition 2.1 (Level) Let I : H ! Z+ be a function mapping assignments to integers

such that I(h) = z if and only if the assignment corresponding to h results in z unsatis�ed

clauses in problem instance I. Then z is de�ned as the level of the assignment.

De�nition 2.2 (Plateau) Let P be a connected subgraph of H and let z 2 Z+ be a con-

stant. Then P is a plateau if P is a maximal connected subgraph of H such that I(p) = z

for all p 2 P . Further, z is de�ned to be the level of the plateau.

De�nition 2.3 (Border) Let P be a plateau in a hypercube H. Let N(p) be the set of

neighboring vertices of vertex p in the hypercube. Let V (P ) be a function that returns the

vertex set of a graph P . De�ne B(P ) = ([p2PN(p))� V (P ), i.e., the set B(P ) contains b

if b is a neighbor of a vertex p 2 P and b is not in P itself. Then B(P ) is the border of

the plateau.

De�nition 2.4 (Minimum, Local Minimum, Global Minimum) Let P be a plateau

in a hypercube H. Then P is a minimum if all vertices in B(P ) have higher level than the

level of P . Also, P is a local minimum if P is a minimum and there is another minimum

Q such that the level of Q is smaller than the level of P . If P is a minimum that is not a

local minimum then P is a global minimum.

De�nition 2.5 (Bench, Exit, Contour) Let P be a plateau of a hypercube H. Then P

is a bench if P is not a minimum, and hence there exists b 2 B(P ) such that the level

of b is smaller than the level of P . Also, p is an exit from the bench if p 2 P and p is a

neighbor of b 2 B(P ) such that the level of b is smaller than the level of P . Finally, P is a

contour if every state of P is an exit from P .

3. Probabilistically Painting Plateaus

Armed with the de�nitions from the previous section we examined the landscape of plateaus
for randomly generated 3-SAT problem instances. We generated problem instances for
which the ratio of the number of clauses C to the number of variables N ranged from
3.8 to 4.6 according to the Uniform3-SAT problem generation model (Selman et al., 1992;
Crawford & Auton, 1993); the algorithm for generating these instances is presented in
Appendix B. Problems in this region straddle the \phase transition" in satis�ability, for
which the satis�ability of randomly generated problems exhibits a rapid transition with
respect to the ratio of clauses to variables, and for which complete search and GSAT require
the longest time on the average to �nd solutions (Cheeseman, Kanefsky, & Taylor, 1991;
Crawford & Auton, 1993; Clark, Frank, Gent, MacIntyre, Tomov, & Walsh, 1996). Problem

253



Frank, Cheeseman, & Stutz

instances with C
N

< 4:3 are referred to as \under-constrained" since they lie below the
observed transition in satis�ability, while problem instances with C

N
> 4:3 are called \over-

constrained." We guaranteed that each problem instance used in this set of experiments
was satis�able by �nding a solution using a complete search algorithm.

Local search seems to have the most di�culty when the level of the assignment becomes
close to 0; consequently, we decided to analyze plateaus at these levels. It is quite di�cult to
randomly sample plateaus of a �xed level for a problem instance; the probability of randomly
generating an assignment with one unsatis�ed clause, for instance, is very small for problem
instances with 100 variables. We used GSAT to �nd the plateaus analyzed in this paper.
This biases our investigation of plateaus to those found by one local search method, but
hopefully provides a �rst picture of the plateau structure of local search spaces. Due to the
clumsiness of language, we do not remind the reader throughout the text that our �ndings
are dependent on our plateau sampling methodology. Further, because GSAT employs
random starting points, the bias of our results depends only on the gradient following
procedure. To sample plateaus we �rst used GSAT to �nd a state of a pre-determined level.
That is, we generated an initial state and ran a single try of GSAT until it encountered a
state with the speci�ed number of unsatis�ed clauses. We then used Breadth-First Search to
�nd all of the states on the plateau found by GSAT. Naturally Breadth-First Search records
each state found so that redundant states are not double-counted. We then recorded the
size of the plateau (i.e., the number of states on the plateau), and the number of exits the
plateau contained.

3.1 Characterizing Plateaus

We �rst analyzed the relative proportions of benches and minima of satis�able problem
instances for plateaus whose level was close to 0. We generated problem instances of 100
variables and 380-460 clauses in increments of 10 clauses. For each problem size we generated
1000 problem instances and guaranteed each instance had a solution using a complete search
algorithm. Using the procedure described above, for each problem instance generated we
found one plateau of each level from 0 to 5 and measured the proportion of these plateaus
that are local minima and benches. This analysis does not provide any idea of the number
of benches or local minima in these problem instances. Note that all plateaus of level 0 are
global minima of satis�able problem instances.

Figure 3 shows the proportion of plateaus that are local minima graphed against the
number of clauses in the problem instances. As described above, we used GSAT to �nd
plateaus and Breadth-First Search to determine whether the plateaus were local minima
or benches. Here we see that the proportion of plateaus that are minima grows with the
number of clauses in the problem instance for plateaus of levels 2-5; hence there are more
local minima of identical levels in over-constrained problems than in under-constrained
problems. The rate of growth diminishes as the plateau level decreases, until it is roughly
at for plateaus of level 1. About 85% of plateaus of level 1 are minima for 100 variable
problem instances over all numbers of clauses investigated.

Figures 4 shows the same data, except in this case we have graphed against the level
of the plateau. As the level grows the proportion of local minima declines for problem
instances of all numbers of clauses. However, plateaus at level 5 may still be local minima

254



When Gravity Fails: Local Search Topology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

380 390 400 410 420 430 440 450 460

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Number of Clauses

Level 1 Plateaus
Level 2 Plateaus
Level 3 Plateaus
Level 4 Plateaus
Level 5 Plateaus

Figure 3: Proportion of Plateaus that are Local Minima vs. Number of Clauses for Ran-
domly Generated 100 Variable Problem Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Plateau Level

460 Clauses
450 Clauses
440 Clauses
430 Clauses
420 Clauses
410 Clauses
400 Clauses
390 Clauses
380 Clauses

Figure 4: Proportion of Plateaus that are Local Minima vs. Plateau Level for 100 Randomly
Generated Variable Problem Instances With Varying Numbers of Clauses

255



Frank, Cheeseman, & Stutz

even for problems with 100 variables and 380 clauses. Hence local minima are a fact of life
even for under-constrained problems, and become more likely for over-constrained problems.
Finally, we note that between plateaus of level 1 and 2 there is a reordering of the proportion
of local minima. For example, problems with 450 clauses have the lowest proportion of local
minima of level 1, but the highest proportion of local minima of level 2. We do not have an
explanation for this result.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150 175

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Problem Size

Level 0 Plateaus
Level 1 Plateaus
Level 2 Plateaus
Level 3 Plateaus
Level 4 Plateaus
Level 5 Plateaus

Figure 5: Proportion of Plateaus that are Local Minima vs. Plateau Level for Variable
Sized Randomly Generated Problem Instances with C/N=4.3

We also analyzed how the relative proportions of benches to minima changed as problems
grew larger. We found one plateau each of levels 1-5 for each of 1000 problem instances
with 25 to 175 variables in increments of 25, with C

N
= 4:3. Figure 5 shows the proportion

of plateaus of levels 1-5 that are local minima for C
N

= 4:3 graphed against the problem
size. We see that, for each level, the proportion of minima grows with the problem size,
which bodes ill for the performance of local search on larger problem instances. We see
that the proportion of local minima of higher level decreases less rapidly for these larger
problems. We conjecture that, for larger problems, the proportion of local minima decreases
signi�cantly for plateaus of levels higher than 5, but we cannot predict the exact behavior
from the data at hand.

The cost of detecting local minima is proportional to the size of the local minima, so
understanding the size distribution of local minima is important. The cost of escaping
benches is dependent on the size of the bench and the proportion of the states on a bench
that are exits, and so understanding these properties is also important. In the next two
sections we analyze these characteristics of benches and minima. To do so, we generated
statistics from the plateaus we found in the experiment used to generate Figure 4. For
instance, 60% of the plateaus of level 2 for problem instances of 380 clauses are local

256



When Gravity Fails: Local Search Topology

minima, so we had 600 local minima and 400 benches to analyze the characteristics of
plateaus. In all cases we had over 100 data points available for analysis.

3.2 Minima Characteristics

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 M

in
im

a

Size of Minima

100 variables, 430 clauses

Figure 6: Histogram of Sizes of Level 1 Minima for Randomly Generated Problem Instances
of 100 Variables, 430 Clauses. Note that some minima exceeded 1000 states.

In this section we analyze the size distribution of local minima. Figure 6 shows the
distribution of the size of the level 1 minima for problem instances with 100 variables and
430 clauses. The median minima size is 48, yet the tail shows that some minima are larger
than 1000 states. In fact, 35 of the 900 minima are larger than 1000 states and some had
as many as 10,000 states. We examined the distribution of minima sizes for levels other
than 1 and found similar results; the main di�erences are in the lengths of the tails of the
histograms. A consequence of this discovery is that escaping local minima by explicit local
minima detection is normally very easy, but occasionally can be very expensive. Figure 7
shows the distribution of sizes of minima that are smaller than 100 states. We see here that
there are fewer minima of size 0-5 than of size 5-10; a detailed analysis reveals that there
are three minima of size 1, and �fteen minima of size 2.

Due to the long tails of the distribution of minima size, the median provides a more
stable summary statistic than the mean. We therefore examined the median size of local
minima of levels 0-5 for di�erent numbers of clauses to determine how the size of local
minima varies. Figure 8 shows the median size of local minima plotted against the number
of clauses in the problem instances. The most striking feature of these results is that most
minima tend to be quite small. This suggests it is possible to devise local search algorithms
to detect local minima using exhaustive search and then propel themselves into a more
fruitful part of the search space. While the distribution shown in Figure 6 indicates that

257



Frank, Cheeseman, & Stutz

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
um

be
r 

of
 M

in
im

a

Size of Minima

100 variables, 430 clauses

Figure 7: Histogram of Sizes of Level 1 Minima Smaller than 100 States for Randomly
Generated Problem Instances of 100 Variables, 430 Clauses

0

25

50

75

100

125

150

380 390 400 410 420 430 440 450 460

M
ed

ia
n 

M
in

im
a 

S
iz

e

Number of Clauses

Level 0 Minima
Level 1 Minima
Level 2 Minima
Level 3 Minima
Level 4 Minima
Level 5 Minima

Figure 8: Median Size of Minima vs. Problem Size for 100 Variable Randomly Generated
Problem Instances with Varying Numbers of Clauses

258



When Gravity Fails: Local Search Topology

some local minima can be very large, explicit detection of minima below a �xed size (the
median, for instance) may be a successful addition to local search. The second feature of
note is that the median size of level 0 minima (i.e., solutions) follows the same pattern
as local minima, but that level 0 minima tend to be smaller than local minima. The last
feature of note is that the median size of local minima decreases for minima of level 0-3 as
the number of clauses in the problem instances increases. The median size of local minima
of level 4 and 5 increases for problems with 450-460 clauses. One possible explanation for
this is that the sampled problem instances were guaranteed to have solutions, which means
that the added clauses must contribute to larger minima and benches at higher levels. If
this is true it is not clear why the minima of levels 0-3 do not increase in size. Another
possible explanation is the small amount of data for plateaus of levels 4 and 5 relative to
the amount available for the other plateau sizes as indicated in Figure 4.

0

20

40

60

80

100

120

25 50 75 100 125 150 175

M
ed

ia
n 

M
in

im
a 

S
iz

e

Problem Size

Level 1 Minima
Level 2 Minima
Level 3 Minima
Level 4 Minima
Level 5 Minima

Figure 9: Median Size of Minima vs. Plateau Level for Variable Sized Randomly Generated
Problem Instances with C/N=4.3

We also examined the median size of local minima of levels 1-5 as the number of variables
in the problem instances increases. Figure 9 shows the median minima size for the various
levels of minima graphed against problem size for problem sizes from 25 to 175 variables for
C
N
= 4:3. We observe that, as problem sizes grow large (beyond 100 variables), the median

size of minima of lower levels appears smaller than that of minima of higher levels. We
also observe that for �xed minima level, there appears to be a problem instance size that
maximizes the median minima size. We do not have an explanation for the large number
of minima of level 1 for problem instances of 50 variables.

Recall that a global minima for a satis�able problem instance is a plateau where all
states are solutions. How many global minima are there in satis�able problem instances?
Is there only one, or are the solutions broken into multiple global minima? If there is more

259



Frank, Cheeseman, & Stutz

than a single global minima, can the size of the global minima tell us anything about how
likely it is that local search will encounter a particular solution? To answer these questions
we used GSAT to �nd 1000 global minima for a single problem instance with 100 variables
and 430 clauses, and determined which minima were distinct. We found that 436 of the
1000 minima were unique, and that the global minima for this instance ranged in size from
1 to 2880 states. Furthermore, we found that the vast majority of the minima are small,
with the median size being around 48. We repeated the experiment for 20 more problem
instances and found that solutions for these problem instances are typically divided into
separate global minima and that the global minima vary widely in size. Due to space
considerations we do not present this data in the paper.

Assuming we could detect local minima, how di�cult is it for local search to escape
minima in order to explore a new part of the search space? If local search is in a local
minimum it must temporarily move to states of higher level in order to �nd a more promising
part of the search space. Two sources of computational complexity contribute to the cost
of escaping minima: the cost of detecting the minimum, and the cost of �nding a path to
a better part of the search space. The size of the minimum is a measure of the detection
cost; we chose the minimum increase in level as a measure of the di�culty of escaping local
minima. To understand this idea, consider all sequences of neighboring states out of a
minimum such that the level increases, then decreases. We are interested in the minimum
increase required before the level decreases again. To determine this we generated 1000
problem instances of 50 variables and 215 clauses each, generated an initial state, and then
ran GSAT for 1000 ips. This was su�cient to reach a local or global minimum. 1 In order
to �nd the minimum level required to escape, we used Breadth-First Search. We begin
with the states of the local minimum. We then explore a state on the border, queuing all
those states not explored before in increasing order of level. This ensures states of lower
level are explored �rst. Once we encounter a state of lower level than its neighbor, we have
found a path out of the local minimum; the level of the state with a neighbor of lower
level is the minimum level required to escape the local minimum. Our results indicate
that local minima can usually be escaped by increasing the level by only 1, that is, only
unsatisfying one additional clause. However, it is not obvious which border state to use
to escape; Breadth-First Search may expand tens of thousands of states before �nding an
escape route, and so this may not always be an e�ective escape strategy.

In summary, the data presented in Figures 6 to 9 shows that local minima tend to be
very small much of the time, and therefore may be easily detectable and escaped. Local
minima can typically be escaped by unsatisfying only a single additional clause, but it is
still not clear how to escape local minima e�ectively. Further, the size distribution of global
minima behaves much like the size distribution of local minima. Instances tend to have
many global minima of highly variable size, and there is evidence that local search is more
likely to encounter small sized local minima and global minima than large ones.

3.3 Bench Characteristics

1. The local minima ranged in level from 1 to 6; we did not measure the level required to escape from

benches or global minima.

260



When Gravity Fails: Local Search Topology

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r 

of
 B

en
ch

es

Size of Benches

100 variables, 430 clauses

Figure 10: Histogram of Bench Sizes of Level 1 for Randomly Generated Problem Instances
of 100 Variables, 430 Clauses

Recall that a bench is a plateau that has exits to other states of lower level. Two
important characteristics of benches that impact the performance of local search are the
size of the benches and the number of exits. We �rst analyzed the distribution of the size of
benches; Figure 10 shows the distribution of bench sizes of level 1 for problem instances of
100 variables and 430 clauses. Again we found long tails, implying that while most benches
are small, some can be very large. The distributions tend to be much atter than those for
minima.

We next analyzed how median bench size varies with the number of clauses in the
problem. The appearance of long tails of the distribution of bench sizes again indicates
that the median is a more stable measure than the mean. Figure 11 shows how the median
size of benches varies with the number of clauses in problems for di�erent levels of benches.
The most interesting feature is the very large median size of the benches when compared
to the size of local minima. Benches are typically 10-30 times as large as local minima,
depending on the level and number of clauses in the problem instance. Problem instances
with more clauses tend to have smaller benches, while for some of the under-constrained
instances the median bench size begins growing rapidly with bench level even for the small
range of plateau levels analyzed here.

We also examined how bench size depends on problem size. For small problems, i.e., 25-
50 variables, benches tended to be much larger than for problems with more variables. Our
explanation for this is that there are so few clauses that they do not adequately distinguish
between assignments when we examine states at low enough levels. Problems with 100

261



Frank, Cheeseman, & Stutz

0

1000

2000

3000

4000

5000

6000

7000

380 390 400 410 420 430 440 450 460

M
ed

ia
n 

B
en

ch
 S

iz
e

Number of Clauses

Level 1 Benches
Level 2 Benches
Level 3 Benches
Level 4 Benches
Level 5 Benches

Figure 11: Median Size of Benches vs. Problem Size for 100 Variable Randomly Generated
Problem Instances

variables have few benches with more than 10,000 states; we exclude these benches from
our analysis. 2

Large benches may be di�cult to escape if the number of exits is small, or if exits are
clustered together. Some benches have very few exits, while others have many exits. We
used the ratio of exits from benches to the bench size as a measure of the di�culty of
escaping from benches. We did not investigate whether or not exits from benches are close
together, which may also have an impact on the di�culty of escaping benches.

Figure 12 shows the distribution of proportion of exits to bench size for benches of level
1 for problems with 100 variables and 430 clauses. The distribution of these proportions
indicates that plateaus have highly variable numbers of exits. We note that some benches
are in fact contours; in Figure 12 contours show up as benches whose ratio of exits to bench
size is 1. We observed that all six of the benches with ratio of exits to bench size at least
0.95 in Figure 12 are in fact contours. Figure 13 shows the distribution of the proportion of
exits for benches of level 5; there are proportionally more contours (65 of the 78 benches in
the rightmost column of the histogram are contours), and the mean ratio of exits to bench
size has increased. The di�erence between these two plots indicates that benches of lower
levels tend to have fewer exits than benches of higher level, even if we exclude contours
from the measurements.

To further understand how to escape benches of di�erent levels, we next present plots
of the mean proportion of the number of exits to bench size graphed against problem size

2. Breadth-First Search stores an enormous number of states, and as such we terminated the program if

the bench size exceeded 10,000 states. Since we had so few large benches and used the median statistic,

this caused few di�culties in the analysis.

262



When Gravity Fails: Local Search Topology

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 O

cc
ur

en
ce

s

Proportion of Exits to Bench Size

100 Variables, 430 Clauses, Level 1 Benches

Figure 12: Exits from Level 1 Benches for Randomly Generated Problem Instances of 100
Variable, 430 Clauses

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 O

cc
ur

en
ce

s

Proportion of Exits to Bench Size

100 Variables, 430 Clauses, Level 5 Benches

Figure 13: Exits from Level 5 Benches for Randomly Generated Problem Instances of 100
Variables, 430 Clauses

263



Frank, Cheeseman, & Stutz

in Figure 14. When taken in consideration with the histograms in Figure 12, we hope this
will create an accurate picture of how benches tend to look.

We see in Figure 14 that the proportion of exits from benches increases with the level of
the benches. For problems with 430 to 460 clauses the mean number of exits of benches of
level 1 increases sharply, indicating that for over-constrained solvable problems benches of
level 1 are less of an obstacle to �nding solutions. We should point out that our inclusion
of contours in the de�nition of benches may arti�cially inate these proportions, in some
cases considerably.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

380 390 400 410 420 430 440 450 460

M
ea

n 
P

ro
po

rt
io

n 
of

 E
xi

ts
 t

o 
B

en
ch

 S
iz

e

Number of Clauses

Level 1 Benches
Level 2 Benches
Level 3 Benches
Level 4 Benches
Level 5 Benches

Figure 14: Mean Proportion of Exits From Benches vs Problem Size for Randomly Gener-
ated Problem Instances of 100 Variables

We analyzed benches to determine whether or not there was some relationship between
the number of exits from a bench and its size, but found no such relationship for all clause
sizes and benches of all levels we investigated. This lack of relationship is unfortunate, since
it tells us little about how to escape large benches.

In summary, the data presented in �gures 10 to 14 shows that benches are occasionally
very large, but there are often many exits from benches. As a result, only occasionally
will local search become trapped on a very large bench from which there is little chance
to escape. We also found that benches of higher level have more exits than benches of
lower level. We showed that contours are common for benches of level 5 but may also occur
at level 1. Finally, we found no obvious relationship between bench size and the number
of exits. We conclude that local minima are more often a problem for local search than
benches since most benches seem to be easy to escape.

264



When Gravity Fails: Local Search Topology

4. Plateau Characteristics Across Problem Classes

In the previous section we analyzed plateaus for satis�able 3-SAT problem instances from
one problem instance class. There is little reason to suspect that plateaus behave similarly
across problem instance classes. There may also be di�erences between satis�able and
unsatis�able instances of the same class. In recent years numerous algorithm designers
have begun testing algorithms on random problem classes that have pre-speci�ed desirable
properties. Among these are problem instances that have guaranteed solutions (Tsuji &
Gelder, 1993), and problems that have some structure that is hidden from the algorithm.
A class of \cluster" problems was presented by Kask and Dechter (1995); these problems
consist of a number of satis�ability problems over independent sets of variables with some
number of clauses connecting the clusters. We repeated our experiments on these problem
distributions to determine if plateaus in these instances exhibit di�erent properties than
the Uniform3-SAT class, and how this might alter the e�ectiveness of local search. We also
repeated the experiments on unsatis�able instances of the Uniform3-SAT distribution. Due
to space considerations we do not repeat in full the analysis performed above, but discuss
some di�erences between the characteristics of the classes we investigated.

4.1 Unsatis�able Problems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Plateau Level

Satisfiable Problems
Unsatisfiable Problems

Figure 15: Proportion of Plateaus that are Local Minima for Randomly Generated Satis�-
able and Unsatis�able Problems of 100 Variables, 430 Clauses

A major drawback to local search is its inability to distinguish satis�able problem in-
stances from unsatis�able problems. We analyzed the plateau structure of unsatis�able
problem instances from the Uniform3-SAT instance distribution to determine whether there
are di�erences which would allow local search to determine that a problem instance is un-
satis�able. We repeated the previous empirical studies and collected data on the proportion

265



Frank, Cheeseman, & Stutz

and size of plateaus but limited our investigation to problems with 100 variables and 430
clauses. We �rst present data on the proportion of plateaus that are local minima for unsat-
is�able problem instances of 100 variables and 430 clauses. We generated 1000 unsatis�able
instances using the same problem generation technique used in the previous set of exper-
iments and guaranteed the problem instances were unsatis�able using a complete search
algorithm. We used GSAT to �nd states of level 1-10, then generated the corresponding
plateaus. We contrast this data with the same data for satis�able problem instances of 100
variables and 430 clauses in Figure 15.

Figure 15 shows that the proportion of plateaus that are local minima is similar for
satis�able and unsatis�able problems as the plateau level decreases, except that for plateaus
of levels 0 to 5 the proportion is shifted to the right by ome level. A possible interpretation
of this result comes from noting that frequently adding a single randomly generated clause
can turn a random satis�able instance into an unsatis�able instance. Hence local search
may become trapped at a higher level in local minima for unsatis�able problems than for
satis�able problems.

0

10

20

30

40

50

60

70

0 1 2 3 4 5

M
ed

ia
n 

M
in

im
a 

S
iz

e

Plateau Level

Satisfiable Problems
Unsatisfiable Problems

Figure 16: Median Size of Local Minima for Randomly Generated Satis�able and Unsatis-
�able Problems of 100 Variables, 430 Clauses

Next we analyzed the median size of local minima of unsatis�able problem instances for
minima of levels 1 to 5. Again we analyzed the data from the plateaus found to generate
Figure 15. Since the number of minima is very small for minima of levels 6-10, we could
not gather su�cient data for analysis in a reasonable amount of time. However, as Figure
16 shows, local minima for unsatis�able problems tend to be much smaller than local min-
ima for satis�able problems. Figure 17 shows the median size of benches for unsatis�able
problem instances. We found that the median bench size for unsatis�able instances tended
to be smaller than benches for satis�able problems. We conjecture that local search may
converge to local minima faster for unsatis�able problems and that the minima tend to be

266



When Gravity Fails: Local Search Topology

at a higher level; since minima and benches are smaller and there are more minima at higher
levels, local search should be able to descend faster on the average and become stuck earlier.
Unfortunately, the di�erences are slight enough that there seems little hope of using these
results to improve the ability of local search to identify unsatis�able problem instances.

0

200

400

600

800

1000

1 2 3 4 5

M
ed

ia
n 

B
en

ch
 S

iz
e

Plateau Level

Satisfiable Problems
Unsatisfiable Problems

Figure 17: Median Size of Benches for Randomly Generated Satis�able and Unsatis�able
Problems of 100 Variables, 430 Clauses

4.2 Instances With Guaranteed Solutions

We next present data on problems with guaranteed solutions as described in (Tsuji &
Gelder, 1993). This generator is the HardSolvable3-SAT generator presented in Appendix
B. Briey, this generator selects an assignment to be a guaranteed solution, then during
generation rejects both clauses that are not satis�ed by the assignment and a set of addi-
tional clauses that enforce an even distribution of signs for each variable. As before, we
generated 1000 problem instances, each with 100 variables and 380-460 clauses. For each
problem instance we used GSAT to �nd a state with 1-5 unsatis�ed clauses, then determined
whether the corresponding plateau was a bench or a local minimum. Figure 18 shows the
proportion of plateaus that are minima graphed against the number of clauses in problem
instances of 100 variables. The proportion of local minima for these problems is similar but
not identical to the proportions of local minima for the Uniform3-SAT class as shown in
Figure 3. One di�erence is that local minima appear more prevalent for over-constrained
problems from the HardSolvable3-SAT class than for the Uniform3-SAT class. The second
di�erence is in the data for plateaus of level 1. The proportion of minima rises slightly from
380 clauses to 430 clauses, then dips sharply; hence there are more benches of level 1 in
Figure 18 than in Figure 3. A detailed analysis of the reasons for the di�erences is beyond
the scope of this paper, but the generation process seems to eliminate clause combinations

267



Frank, Cheeseman, & Stutz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

380 390 400 410 420 430 440 450 460

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Number of Clauses

Level 1 Plateaus
Level 2 Plateaus
Level 3 Plateaus
Level 4 Plateaus
Level 5 Plateaus

Figure 18: Proportion of Plateaus that are Local Minima vs. Number of Clauses for 100
Variable Problem Instances With Guaranteed Solutions

that make for level 1 local minima at the expense of making more minima of higher levels.
The higher percentages of local minima for over-constrained problem instances indicate that
local search may have a harder time solving these problems.

We analyzed the median size of local minima of di�erent levels for the HardSolvable3-
SAT class and found results similar to those reported for the Uniform3-SAT class in Figure
8. The median minima size for most levels of the HardSolvable3-SAT class are larger than
those of the Uniform3-SAT class for under-constrained instances and somewhat smaller
for over-constrained instances. We also found that the bench size distribution for the
HardSolvable3-SAT class matched that of the Uniform3-SAT class. The median bench size
is somewhat smaller for HardSolvable3-SAT instances than for Uniform3-SAT instances
as the number of clauses in the problem instances grows. We also found that problems
that were guaranteed to have solutions had a higher proportion of exits to bench size than
randomly generated problems. It should not be surprising that this problem class is very
similar to the previously investigated class since the problem generation algorithms are
similar.

4.3 Cluster Problem Instances

We next present an analysis of plateaus for cluster problem instances; the generation
procedure Cluster3-SAT is presented in Appendix B. These instances were created by gener-
ating 10 clusters of 10 variables and 34-40 clauses such that no variables are shared between
clusters. The clusters are then linked with 20 connecting clauses such that each linking
clause contains variables from distinct clusters. The total number of clauses in these in-
stances ranges from 360 to 420. As in the earlier experiments, we guaranteed each instance

268



When Gravity Fails: Local Search Topology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

360 370 380 390 400 410 420

P
ro

po
rt

io
n 

of
 P

la
te

au
s 

w
hi

ch
 a

re
 M

in
im

a

Number of Clauses

Level 1 Plateaus
Level 2 Plateaus
Level 3 Plateaus
Level 4 Plateaus
Level 5 Plateaus

Figure 19: Proportion of Plateaus that are Local Minima vs. Number of Clauses for 100
Variable Cluster Problem Instances

had a solution using complete search. For each number of clauses in the clusters, we gen-
erated 1000 instances and again used GSAT to �nd plateaus at di�erent levels. We found
these instances took considerably longer to solve than the previous classes, similar to the
results reported in Kask and Dechter (1995) (CPU times are not shown in this paper).

Figure 19 shows the proportion of plateaus that are local minima graphed against the
total number of clauses for cluster problem instances of 100 variables. The proportion of
plateaus that are local minima are less dependent on the number of clauses in comparison
to Figures 3 and 18. As a result there tend to be proportionally fewer local minima for over-
constrained cluster problem instances in comparison to Uniform3-SAT instances. Figure 20
shows the median local minima size plotted against the number of clauses in the problem
instances. The local minima for these problem instances are larger than the minima of
Uniform3-SAT instances analyzed by a factor of about 5-10, as seen in Figure 8. We were
unable to collect data for level 0 minima due to the excessive CPU requirements.

Figure 21 shows the median bench sizes plotted against the number of clauses in the
problem instances. When compared to the median bench size of Uniform3-SAT instances
in Figure 11, we see that the median size of benches for cluster problems is dramatically
di�erent. Cluster problem instances with fewer clauses per cluster resulted in enormous
benches, in some cases larger than benches for Uniform3-SAT instances by a factor of 10.

The increase in the size of benches of cluster problem instances over randomly generated
instances is accompanied by a decrease in the proportion of exits to bench size. Figure 22
shows the mean proportion of exits to bench size versus total number of clauses for cluster
problem instances. In comparison to the same measure for Uniform3-SAT instances, shown
in Figure 14, we see that benches for cluster problems have fewer exits than benches for
Uniform3-SAT instances for all bench sizes from 1 to 5. The increase in bench size coupled

269



Frank, Cheeseman, & Stutz

0

250

500

750

1000

1250

1500

360 370 380 390 400 410 420

M
ed

ia
n 

M
in

im
a 

S
iz

e

Number of Clauses

Level 1 Minima
Level 2 Minima
Level 3 Minima
Level 4 Minima
Level 5 Minima

Figure 20: Median Size of Local Minima vs. Total Number of Clauses for 100 Variable
Cluster Problem Instances

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

360 370 380 390 400 410 420

M
ed

ia
n 

B
en

ch
 S

iz
e

Number of Clauses

Level 1 Benches
Level 2 Benches
Level 3 Benches
Level 4 Benches
Level 5 Benches

Figure 21: Size of Benches vs. Total Number of Clauses for 100 Variable Cluster Problem
Instances

270



When Gravity Fails: Local Search Topology

with the decrease in exits means that local search is likely to have a much harder time
escaping benches for cluster problems than for the other problem classes. This counters the
good news that there are fewer minima for these problems.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

360 370 380 390 400 410 420

M
ea

n 
P

ro
po

rt
io

n 
of

 E
xi

ts
 t

o 
B

en
ch

 S
iz

e

Number of Clauses

Level 1 Benches
Level 2 Benches
Level 3 Benches
Level 4 Benches
Level 5 Benches

Figure 22: Mean Proportion of Exits to Bench Size vs. Size of Benches for 100 Variable
Cluster Problem Instances

4.4 Summary

In summary, we see that the behavior of plateaus in unsatis�able Uniform3-SAT problem
instances di�ers from the behavior of satis�able instances from the same class. Unsatis�-
able instances have proportionally more local minima, smaller minima and smaller benches
than satis�able instances. Problems from the HardSolvable3-SAT class have more minima
than those from the Uniform3-SAT class, and benches in the HardSolvable3-SAT class in-
stances have more exits than benches in the Uniform3-SAT instances. As a result we expect
problems in the HardSolvable3-SAT class to be harder for local search because local search
algorithms will be more frequently trapped in local minima. Cluster problem instances
have fewer local minima than Uniform3-SAT instances, but tend to have larger benches
with fewer exits. We expect these problems to be harder because local search will have
more trouble escaping benches.

5. Previous Work

Numerous researchers have studied local search techniques for NP-Hard problems, address-
ing plateau behavior and local minima and how to escape them. However, the research has
largely centered on analyzing the performance of the algorithms and less on the structure
of the problem. Hence, improvements in algorithms are credited to a mechanism without

271



Frank, Cheeseman, & Stutz

a clear understanding of the properties of the problem that make the mechanism work. In
this section we review some previous analysis of both algorithms and properties of local
search spaces in light of our new discoveries. While this discussion focuses on GSAT and
similar local search algorithms for the 3-SAT problem, we discuss the potential impact of
our work on local search for other algorithms in the next section.

5.1 Analyzing Properties of Problem Spaces

Clark et al. (1996) studied how the number of solutions a�ected local search algorithm per-
formance for both 3-SAT problems and for Constraint Satisfaction Problems. They showed
that both the number of solutions and number of constraints play a role in determining
how well GSAT works. Our work complements this study by adding to the understanding
of how local search is a�ected by problem instance structure. We also add to their results
by showing that solutions tend to occur in disconnected subgraphs of variable size.

Hampson and Kibler (1995) studied how plateaus a�ect local search's ability to solve
3-SAT problem instances and showed how a local search algorithm could be modi�ed by
performing complete search when a plateau is encountered. They analyzed the ratio of the
number of exits o� of benches versus the size of the benches for randomly generated problem
instances at C

N
=4.25. They found that benches at higher levels are easier to escape on the

average, which is consistent with our �ndings. However, they failed to mention the high
variance in the proportion of exits of benches, and also failed to report the existence of local
minima. They also report that local search, augmented with complete search of plateaus,
generally performed worse than the original local search. We believe that large plateaus,
while rare, contributed to the large CPU times reported in their paper.

Gent and Walsh (1993a) investigated how GSAT solved problem instances by aggregat-
ing statistics of GSAT performance. They collected information on the number of satis�ed
clauses as a function of GSAT's ip number, the number of best ips as a function of ip
number, and other statistics averaged over many runs and problem instances. Their study
indicates that GSAT satis�es an average of 99% of the clauses after 2N ips on instances
with C

N
= 4:3. This works out to be 425 clauses for instances with 100 variables. Our evi-

dence that there are local minima and hard-to-escape benches at level 5 (i.e., 425 satis�ed
clauses) is consistent with these results. Gent and Walsh also report that the number of
ips GSAT spends on benches before escaping is highly variable during the second half of
search, when the number of satis�ed clauses is very high (Gent & Walsh, 1993a). This is
consistent with our �nding that benches can be either very easy or very hard to escape.

5.2 Revisiting Local Search Algorithms

When GSAT encounters a plateau it randomly searches the plateau. If the plateau is a
bench, then GSAT can escape; however it may take a very long time if the bench has very
few exits relative to its size, or if the exits are highly clustered in one region of the bench.
If GSAT encounters a local minimum it will never escape; even if it made a move o� the
minimum to a state of higher level, GSAT will simply move back to the minimum, because
every state on the minimum looks better than every state leading away from it. We should
point out that GSAT can escape a local minimum of size 1 because it is forced to make
a move. However, either GSAT will return immediately to this minimum or to another

272



When Gravity Fails: Local Search Topology

adjacent to the neighbor; as we found so few minima of size 1 and since GSAT doesn't
exhibit such cycling behavior this is a minor consideration.

HSAT (Gent & Walsh, 1993b) augments GSAT with a heuristic designed to break ties.
If HSAT has several ips that are equally good in terms of the number of satis�ed clauses,
then it ips the variable ipped longest ago. HSAT will explore benches more e�ectively
than GSAT by ensuring that variables are ipped \fairly"; as long as HSAT remains on a
bench it will not ip a variable that keeps HSAT on the bench until all other such variables
are ipped. Therefore, HSAT's improved performance may be due to its ability to escape
benches faster than GSAT. However, HSAT is still unable to escape local minima.

Tabu search (Glover, 1989; Mazure, S�ais, & Gr�egoire, 1997) augments local search with
a �xed length list of previously made moves. The algorithm is not allowed to reverse a move
that is on the tabu list. Local search augmented with tabu lists may escape local minima.
The memory structure will either explicitly or implicitly store states on the plateau and
force local search to make moves away from that part of the space. However, due to the
nature of the tabu list, it is possible that local search with one of these variants will ignore
a move which reduces the objective function simply because it is on the Tabu list. This is
because Tabu search frequently stores moves, not states. As a result, di�erent tabu search
implementations allow moves to states with fewer unsatis�ed clauses than ever detected to
date, even if the required move is on the tabu list, and thus can avoid this problem. This can
result in tabu search missing exits from benches; whether this results in poor performance
is unknown.

GSAT with random walk (Gent & Walsh, 1995) ips a randomly selected variable with
probability p and uses the standard criteria to select ips with probability 1�p. This feature
will allow GSAT to escape either local minima or benches, but does not guarantee that the
next move will not simply bring GSAT back into the minima it escaped from This will not
happen if there are multiple, equivalently good moves available. Gent and Walsh (1993a)
report that, when the number of unsatis�ed clauses is very small, the number of available
moves leading to a reduction in level for GSAT tends to be 1. However, the e�ectiveness
of random walk suggests that a random ip will move GSAT into a place where it can
proceed to a solution. Also, if p is large, then two random walk steps can follow each other
in succession, improving the chances of escaping local minima. The fact that this variant
results in substantial improvements even when used with other modi�cations to GSAT such
as tie-breaking heuristics (Gent & Walsh, 1995) complements our discovery in Section 3
that local minima tend to be shallow; random walk may e�ectively promote escape from
these local minima into other parts of the search space.

WalkSAT (Kautz & Selman, 1996) does not examine all possible neighbors before mov-
ing. Instead, WalkSAT randomly selects an unsatis�ed clause and only investigates states
reachable by ipping variables in the selected clause. As a result the neighborhood exam-
ined changes from ip to ip, and the reverse move may not be in the next neighborhood
examined. WalkSAT performs much of its search blind to the features we have uncovered.
WalkSAT can escape local minima by simply not choosing a neighborhood containing moves
back onto the minima, or it may take a series of worse moves to escape a bench with many
exits simply because its neighborhood did not contain them.

Simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) only examines a single neigh-
bor of the current assignment. Moves leading to improvements in the objective function are

273



Frank, Cheeseman, & Stutz

always accepted, while moves that worsen the objective function are accepted probabilis-
tically; the probability is based on how much worse the move is and how long the search
has progressed. Like WalkSAT, simulated annealing conducts much of its search blind to
plateau features. Simulated annealing can make a backwards move on a bench or minimum
even if a neighboring state results in a forward move; while this can help escape minima
and large benches, it may be a sub-optimal strategy early in search.

6. Next Generation Local Search Algorithms

We have identi�ed and analyzed a number of features of local search topology that may
inuence the success of local search. How can our results be used to improve local search
algorithms? One contribution of this study is to identify features of the local search space
that are worth investigating before beginning construction of a local search algorithm to
solve a new problem. A rapid exploration of the properties of benches and local minima
can be undertaken to determine which local search tactics are likely to work best for this
search problem class. For instance, such an examination might reveal that for one problem
local minima are very prevalent but uniformly small, indicating that explicit local minima
detection and avoidance is likely to be an e�ective tactic. Also, it is possible to use results
such as those in Figure 3 to determine an adaptive schedule for resetting the probability of
random walk or optimizing the size of the tabu list, as is done in Mazure et. al. (1997). It is
also possible that new classes of local search algorithms could learn which tactics work best
in a manner similar to MultiTac (Minton, 1996). Our study provides a �rst step towards
identifying features that should be tracked by these self-modifying local search algorithms.

When a local search algorithm starts exhibiting plateau behavior, it may be on a small
minima, a large minima, a bench with many exits, or a bench with few exits. (We ignore
the case of a small bench, since it is not too hard to escape in these cases.) The problem
is to identify which case the search process is stuck in, and then choose the proper tactic
to handle it. Standard tactics include continuing search as normal, invoking a special
detection procedure, randomly ipping one variable as in random walk, randomly ipping
a small number of variables as in Jump-SAT (Gent & Walsh, 1995) or randomly generating
new values for all variables as in randomly restarting.

Small minima can be detected easily using an algorithm such as Breadth-First Search,
as was done by Hampson and Kibler (1995). Once a local search algorithm has detected
and escaped a local minima, it is desirable to prevent it from revisiting the minima it
has escaped. Local search could proceed by \�lling in" local minima as they are found
in order to prevent revisiting them. This is approximately how tabu search works, and
other schemes can be used as well. The small size of most local minima indicates that
memory requirements for such a scheme are small as long as only small numbers of minima
are encountered. An algorithm using this mechanism could then explore numerous local
minima that are close together in the solution space without restarting.

Large benches and minima are more di�cult to recognize and escape. The question
becomes one of determining the utility of continuing to search versus changing tactics. The
studies we have done provide algorithm designers the information required to implement
the utility computation so that a local search algorithm can intelligently choose from among
its tactics. For instance, knowing that a problem instance is a cluster problem is indicative

274



When Gravity Fails: Local Search Topology

that large benches with few exits are more likely to inhibit local search than local minima.
Hence explicit local minima detection is not a good strategy for this problem class; jumping
or random restart might be a better strategy.

We should point out that while many enhancements like those proposed above are in
place for local search algorithms to solve 3-SAT problems, these enhancements have not been
applied to other problem classes such as Graph k-Coloring. We expect these extensions to be
successful at improving the performance of local search algorithms to solve these problems.
One way to approach new problems is to spend time gathering information on the topology
of the search space, as we have done in this paper. A second option, as we mentioned
above, is to use knowledge of the local search topology to learn the best tactics while
solving instances. Detailed information on the appearance of local minima, distribution of
local minima size, bench size, and prevalence of exits from benches can then be used to
construct very good local search procedures that explicitly take these factors into account.

7. Conclusions and Future Work

We have presented an analysis of important properties of plateau structures in local search
spaces that can be used by local search algorithm designers to construct better local search
algorithms. We have de�ned a set of topological structures of local search spaces and shown
how they a�ect local search. We have provided conclusive evidence of the existence of local
minima in search spaces, and shown that they become more prevalent as the number of
unsatis�ed clauses becomes close to 0. We have also shown that plateau behavior in local
search is caused by both local minima and benches. Our results show that both local minima
and benches vary widely in size; while both are most often small, large local minima and
benches may defy detection and avoidance by local search algorithms. We also show how
the characteristics of these structures change with di�erent problem classes. Our analysis
has made it possible to interpret previous work on improving local search in terms of the
search space structure, illuminating the importance of escaping benches early in search and
detecting local minima later in search.

We have made suggestions in the previous section that might be used to create new
versions of local search that are better than the current crop of algorithms. An obvious
next step is to implement these algorithms and analyze their performance, especially in
comparison to existing algorithms that already attempt to escape plateaus.

We have barely begun analyzing the topology of plateaus. While we have some empirical
evidence that local minima of low level (i.e., near 0) can be escaped by unsatisfying only
one additional clause, this may not be true for more structured problem classes. The
evidence that benches may have many exits does not always imply they are easy to escape;
highly clustered exits may make benches hard to escape. Further analysis of the topology
of plateaus for a variety of problem instances will lead to more concrete results that can
inuence local search algorithm development.

It is clear that the nature of plateaus is highly dependent on the problem class being
tested. Extending this form of analysis to other problem classes might reveal di�erences
in plateau structure that motivate substantially di�erent GSAT variants. Furthermore,
plateaus in Graph Coloring Problem and the Traveling Salesperson Problem may manifest
themselves in di�erent ways than those for 3-SAT, and local search algorithms for these

275



Frank, Cheeseman, & Stutz

problems will explore plateaus di�erently. These di�erences must be studied in order to
determine how best to apply a new understanding of local search topology. It is also unclear
how this study will extend to such problems as Traveling Salesperson Problem where the
search space may be much \smoother."

While we have collected a large amount of data on local search spaces, we have not
had much success in modeling the features we de�ned. While it is possible to compute the
probability that an individual state in a search space is on a local minima or is on a bench
with exits, it is very di�cult to compute the expected size of a bench or minimum without
making horrendous independence assumptions. Further work on such modeling may result
in a better understanding of local search topology.

As mentioned in Section 2, it is possible to alter our de�nition of benches to speci�cally
exclude contours as a type of bench. The rationale is that contours provide no impediment
to greedy local search, and very little impediment to the semi-greedy variations. One
possibility is to change the de�nition of plateau to only include states without neighbors of
both higher and lower level. There are several predictable e�ects of this change. First, we
know that some of our reported benches are pure contour regions. These would be eliminated
from consideration in reporting proportions of plateaus that are benches. Second, the size
of the benches would exclude these states, and so we expect to �nd smaller benches under
the exclusive bench de�nition. Third, the measurements of the mean proportion of states
on benches that are exits would also change, because excluding contours reduces the mean.
Fourth, these states provide a potential means of linking bench regions that would be disjoint
under the exclusive de�nition. Thus it is possible that use of the exclusive de�nition will
cause a dramatic reduction in average bench size, accompanied by an increase in bench
numbers. It might even eliminate the large size tails in the bench size distributions that
we observed using the inclusive de�nition. This would signi�cantly alter our conclusions
regarding how benches impede local greedy search, and our recommendations regarding
how to deal with such benches. Exploring the impact of such revised de�nitions in the
explanation of plateau behavior is worth investigating.

Finally, our analysis of topological structures is geared towards analyzing local search
algorithms with greedy objective functions based on the number of unsatis�ed constraints.
Many local search algorithm designers are experimenting with new objective functions that
are modi�ed continuously throughout search, as in clause weighting schemes (Selman &
Kautz, 1993). Work of this type may lead to more innovations in the design of objective
functions. Since plateau behavior is rooted in the objective function used, our analysis is
not suitable for analyzing these methods, but may provide insight into how to conduct a
similar study for self-modifying algorithms of this type.

Acknowledgements

We gratefully acknowledge the comments of the JAIR reviewers and editors; we also ac-
knowledge the comments of Phil Rogaway and Chip Martel, both of U.C. Davis.

276



When Gravity Fails: Local Search Topology

Appendix A. Sample Problem

This section illustrates some of the terms de�ned in Section 2. Consider the following 4
variable, 14 clause 3-SAT problem instance:

(A _B _ C)^ (A _B _ C)^ (A _B _ C)^
(A _B _ C)^ (A _B _ C)^ (A _B _ C)^
(A _B _ C)^ (A _B _D)^ (A _B _D)^
(A _C _D)^ (A _B _D)^ (A _B _D)^
(A _C _D)^ (A _C _D)

For the duration of this section we will abbreviate assignments of values to variables in
the following way: 0 is False, 1 is True, and hence a string of 0s and 1s of length 4 encodes
an assignment to the variables ABCD in order.

This problem instance has a global minimum comprised of a single solution at 1111.
The single state 0000 is local minimum of size 1 and level 1, i.e., has one unsatis�ed clause.
The border of this local minimum consists of the states 1000,0100,0010,0001; states 0001
and 1000 have level 3 and the other two states have level 2.

The following states constitute a bench of level 1: 1001, 1101 and 1011. 1101 is an exit
since ipping C results in 1111, the solution. Similarly, 1011 is also an exit since ipping B
results in the solution. The neighbors of 1001 that are not on the bench are 0001 and 1000;
each of these has level three, so 1001 is not an exit.

State Comment Level Unsatis�ed Clauses

1111 Solution 0

0000 Local Minimum 1 (A _B _ C)
0010 Border of Minimum 2 (A _B _ C); (A _C _D)
0100 Border of Minimum 2 (A _B _ C); (A _B _D)
0001 Border of Minimum 3 (A _B _ C); (A _B _D); (A _ C _D)
1000 Border of Minimum 2 (A _B _ C); (A _B _D)

1001 Bench 1 (A _B _ C)
1011 Bench 1 (A _B _ C)
1101 Bench 1 (A _B _ C)
1111 Border of Bench 0
0001 Border of Bench 3 (A _B _ C); (A _B _D); (A _ C _D)
1000 Border of Bench 2 (A _B _ C); (A _B _D)

0010 Contour 2 (A _B _ C); (A _C _D)
1010 Contour 2 (A _B _D); (A _B _ C)
0011 Contour 2 (A _B _ C); (A _B _D)
0000 Border of Contour 1 (A _B _ C)
1110 Border of Contour 1 (A _B _D)
0111 Border of Contour 1 (A _B _ C)

Figure 23: Some Topological Structures of the Sample Problem Instance

The states 0010, 1010 and 0011 form a level 2 bench which also is a contour. 0010 is a
neighbor of the local minimum at level 1, 1010 is adjacent to 1110 which is at level 1, and
0011 is adjacent to 0111 which is at level 1.

277



Frank, Cheeseman, & Stutz

The states 1000 and 1100 form a bench of level 3 which is a contour. Each of the states
0110, 0001 are also contours of level 3 by themselves. Since there are no states unsatisfying
more than three clauses these contours are in fact local maxima.

These features are summarized in Figure 23.

Appendix B. Random Problem Generation

This appendix contains pseudo-code for the random problem classes studied in this paper.
First we present the Uniform3-SAT class. Parameters to this generator are C the number
of clauses and N the number of variables. In this class the procedure selects three literals
without replacement from N and assigns each a negative sign with probability 1

2 . This
procedure was �rst presented in Crawford and Auton (1993) and appears in Figure 24.

procedure Uniform3-SAT(C,N)
� = ;

for (i=1 to C)
Clause= 3 distinct variables selected uniformly from 1..N
Negate each variable in Clause with probability 1

2

� = � [ Clause

end for

return �
end

Figure 24: Random Problem Generation Algorithm Sketch

Next we present the Cluster3-SAT problem generator. The parameters are the number of
clauses C, the number of variables N per cluster, the number of clustersM , and the number
of linking clauses L. This generator builds instances by �rst creating M independent sub-
problems of C clauses and N variables each, using the Uniform3-SAT generation procedure
described above. The variables of these sub-problems are relabeled so that no sub-problem
shares variables with any other sub-problem; sub-problems are then linked by generating
L linking clauses. Each linking clause contains variables from three distinct sub-problems.
Kask and Dechter generate these problems using the HardSolvable3-SAT procedure de�ned
below as described in Kask and Dechter (1995). The procedure appears in Figure 25.

Finally we present the HardSolvable3-SAT generator. The parameters are the number
of clauses C and the number of variables N . Instances are generated by �rst selecting
an assignment S to be a guaranteed solution. Clauses are generated as in Uniform3-SAT,
however if a clause has either zero or two satis�ed literals under the selected assignment it is
rejected. For instance, the clause (A_B_C) would be rejected if the assignment S was 110
since it has two satis�ed literals under this assignment. This preserves a uniform balance of
signs for each variable in the limit, resulting in little information about the solution being
present in sign balances in the problem instance. This method is discussed further in Tsuji
and Van Gelder (1993) and the algorithm is given in Figure 26.

278



When Gravity Fails: Local Search Topology

procedure Cluster3-SAT(C,N ,M ,L)
# First generate M sub-problems with distinct variables
for i=1 to M
�i=Uniform3-SAT(�,C,N)
Re-label literals in �i so that no sub-problem shares variables
� = [M

i=1
�i

end for

# Next generate linking clauses
for i = 1 to L
Randomly select 3 distinct sub-problems �a;�b;�c from the �is
Clause= one variable randomly selected from each of �a;�b;�c
Negate each variable in Clause with probability 1

2

� = � [ Clause

end for

return �
end

Figure 25: Cluster Problem Generation Algorithm Sketch

procedure HardSolvable3-SAT(C,N)
� = ;

S = randomly generated assignment to the variables
while (i < C)
Clause= 3 distinct variables selected uniformly from 1..N
Negate each variable in Clause with probability 1

2

# Check to make sure Clause allowed in formula under S
if (1 or 3 literals of Clause true under S)
� = � [ Clause

i++
end if

end while

return �
end

Figure 26: \Hard" Guaranteed Satis�able Problem Generation Algorithm Sketch

279



Frank, Cheeseman, & Stutz

A �nal note on random problem instance generation is in order. None of these procedures
guarantees that the resulting problem instance will contain all the variables. If a large
number of variables and a small number of clauses are used as parameters, then the resulting
problem may not contain all variables. However, for the ranges of clauses and variables used
in this work all problem instances had the full range of variables.

References

Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really hard problems are.
12th International Joint Conference on Arti�cial Intelligence, 163{169.

Clark, D., Frank, J., Gent, I., MacIntyre, E., Tomov, N., & Walsh, T. (1996). Local
search and the number of solutions. Proceedings of the 2d International Conference

on Principles and Practices of Constraint Programming, 119{133.

Crawford, J., & Auton, L. (1993). Experimental results on the crossover point in satis�abil-
ity problems. Proceedings of the 11th National Conference on Arti�cial Intelligence,
21{27.

Gent, I., & Walsh, T. (1993a). An empirical analysis of search in GSAT. Journal of Arti�cial
Intelligence Research, 1, 47{59.

Gent, I., & Walsh, T. (1993b). Towards an understanding of hill-climbing procedures for
SAT. Proceedings of the 11th National Conference on Arti�cial Intelligence, 28{33.

Gent, I., & Walsh, T. (1995). Unsatis�ed variables in local search. In Hallam, J. (Ed.),
Hybrid Problems, Hybrid Solutions, pp. 73{85. IOS Press.

Glover, F. (1989). Tabu search part I. ORSA Journal on Computing, 1 (3), 190{206.

Hampson, D., & Kibler, S. (1995). Large plateaus and plateau search in boolean satis�a-
bility problems: When to give up searching and start again. In Johnson, D., & Trick,
M. (Eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence: Cliques, Colors and Satis�ability, Vol. 26, pp. 437{456. American Mathematical
Society.

Kask, K., & Dechter, R. (1995). GSAT and local consistency. Proceedings of the 14th

International Conference on Arti�cial Intelligence, 616{622.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic and
stochastic search. Proceedings of the 13th National Conference on Arti�cial Intelli-

gence, 1194{1201.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing.
Science, 220 (4598), 671{680.

Mazure, B., S�ais, L., & Gr�egoire, E. (1997). Tabu search for GSAT. Proceedings of the 14th
National Conference on Arti�cial Intelligence, 281{286.

280



When Gravity Fails: Local Search Topology

Minton, S. (1996). Automatically con�guring constraint satisfaction programs: A case
study. Constraints, 1 (2), 7{43.

Selman, B., & Kautz, H. (1993). Domain independent versions of GSAT: Solving large
structured satis�ability problems. 13th International Joint Conference on Arti�cial

Intelligence, 290{295.

Selman, B., Levesque, H., &Mitchell, D. (1992). A new method for solving hard satis�ability
problems. Proceedings of the 11th National Conference on Arti�cial Intelligence, 440{
446.

Tsuji, Y., & Gelder, A. V. (1993). Incomplete thoughts about incomplete satis�ability
procedures. Proceedings of the 2d DIMACS Challenge.

281


