
When High-Quality Face Images Match Poorly

J. Ross Beveridge, P. Jonathon Phillips, Geof H. Givens, Bruce A. Draper,

Mohammad Nayeem Teli and David S. Bolme

Abstract— In face recognition, quality is typically thought
of as a property of individual images, not image pairs. The
implicit assumption is that high-quality images should be easy to
match to each other, while low quality images should be hard to
match. This paper presents a relational graph-based evaluation
technique that uses match scores produced by face recognition
algorithms to determine the “quality” of images. The resulting
analysis demonstrates that only a small fraction of the images in
a well-studied data set (FRVT 2006) are low-quality images. It
is much more common to find relationships in which two images
that are hard to match to each other can be easily matched with
other images of the same person. In other words, these images
are simultaneously both high and low quality. The existence of
such contrary images represents a fundamental challenge for
approaches to biometric quality that cast quality as an intrinsic
property of a single image. Instead it indicates that quality
should be associated with pairs of images. In exploring these
contrary images, we find a surprising dependence on whether
elements of an image pair are acquired at the same location,
even in circumstances where one would be tempted to think
of the locations as interchangeable. The results presented have
important implications for anyone designing face recognition
evaluations as well as those developing new algorithms.

I. INTRODUCTION

In the field of biometrics, there is considerable interest

in identifying quality measures [6]. A quality measure can

be defined as any measurable property of an image that is

predictive of face recognition performance. An example of

a quality measure is edge density in the facial region of

an image, which was shown by Beveridge et al. to relate to

face recognition performance in the Face Recognition Vendor

Test (FRVT) 2006 evaluation [13]. The motivation for finding

quality measures is to provide feedback to operators to help

them collect good images, and to predict how well a face

recognition algorithm will work on a new data set or in the

context of a federated1 system.

An open question is whether most face recognition failures

are caused by low-quality images or by pair-wise inconsis-

tencies between target and query images. This paper presents

a novel analysis suggesting that, at least for the FRVT

2006 data set, low-quality images are relatively rare. More
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common are what we call ”contrary images”: images that

have a contrary nature with respect to quality in so much as

their quality is simultaneously high and low as defined by

how they match to other images of the same person.

We compare the relative frequency of these two types of

failures by analyzing a graph of pair-wise similarity scores

for the FRVT 2006 data set. This graph allows us to single

out low-quality images which match poorly against every

other image of the same person. It also allows us to single

out contrary image by defining an appropriate relationship

between a 4-tuple of images. The resulting analysis shows

that low-quality images are less common than contrary

images, and this in turn suggests that two high-quality face

images may, when compared to each other, match poorly.

This result leads to the question of what factors might

cause two high-quality images of the same face not to

match. In all likelihood there are many factors, including

differences in lighting, pose and expression, but our analysis

also strongly suggests another culprit: location. For all the

contrary images we found, the match pair leading us to

consider the contrary image to be of high quality was almost

always taken at the same location, and the match pair leading

us to consider the contrary image to be of low quality was

always taken at a different location. This does not imply that

traditional factors such as lighting are not important. Lighting

angles are in part a function of location, so the two factors

are inherently confounded. Nonetheless, it is striking that

same/different location is such a strong predictor of whether

two images will match well.

The findings presented here underscore the importance of

characterizing facial biometric quality in terms of pairs of

images as opposed to single images. This is important to

the biometrics community as a whole, and particularly to

those endeavoring to establish quality guidelines for facial

biometrics. The findings with respect to the importance of

location have significant implications for the design of future

face recognition systems, particularly federated systems.

This even holds for situations where the locations might

be thought of as interchangeable, for example when both

locations are indoors under fluorescent lighting. Finally, the

importance of location suggests factors at work within state-

of-the-art face recognition algorithms that make them unex-

pectedly sensitive to environmental factors associated with

location. Better understanding why this sensitivity exists,

and then developing algorithms robust with respect to such

factors, is clearly an important challenge.

The next section provides background on prior work

related to biometric quality in the context of face recognition.



Section III introduces the data set and algorithm used in our

analysis. Section IV presents the match and non-match score

distributions used in our analysis and provides empirical

justification for our decision to concentrate our analysis on

match scores. Section V introduces our new methodology for

framing questions about match quality in terms of patterns

in a match graph, and presents the results that give rise the

conclusion that quality is often a property of a match pair

rather than a single image. Section VI presents our findings

with respect to the critical role that location is playing in

making a pair of images easier or harder to recognize.

II. BACKGROUND

While this paper clearly demonstrates a fundamental lim-

itation of approaches which define quality for individual

images, as is so often the case, the fact that a task cannot be

achieved in all cases does not mean it is not worth pursuing.

Considerable work has already been done in the area of

predicting face recognition performance based on measures

associated with images, and here we review briefly some of

this work.

To begin with definitions, Grother and Tabassi [6] define a

quality measure as a number that relates an image’s quality

to a recognition system and is predictive of how well the

system will perform recognition. This definition is consistent

with most work on biometric quality, and a number of recent

papers [8], [16], [5],[18], [17], [7], [4], [10] have looked at

general image properties, such as contrast, sharpness, and

illumination intensity. Luo [8] presents an instance of a

general framework where quality is measured using Radial

Basis Function (RBF) without relying on reference images

for assessing quality. Subasic et al. [16] evaluate the quality

of face images in travel documents according to the guide-

lines set by the International Civil Aviation Organization

(ICAO). The quality of an image is represented by a fuzzy

value. Fronthaler et al. [5] study an orientation tensor of

an image with a set of symmetry descriptors which can be

varied according to the application. They provide empirical

results on fingerprints and show the applicability of the

approach to assess face quality as well. Werner et al. [18] and

Weber [17] recommend combining photographic (brightness,

contrast, etc.,) and feature level (pose, expression, etc.,)

scores to assess quality of images. Hsu et al. [7] showed the

consistency and discrepancy between human quality ratings

and machine quality scores using a classification-based score

normalization process for various quality metrics. Fourney

et al. [4] define an image’s quality based on its potential to

lead to a correct identification when used with existing face

recognition software. Nasrollahi et al. [10] measure quality

of faces in video sequences by combining features like out-

of-plane rotation, sharpness, brightness and resolution.

Defining quality based upon properties of a pair of bio-

metric signatures being matched is becoming more com-

mon. For example, in the context of iris and fingerprint

recognition, Nandakumar et al. [9] define a single quality

metric for each template-pair query based on the local image

quality measures rather than estimating the quality of the

template and the query images individually. Also, Phillips

and Beveridge[11] in a theoretical exploration of the limits

of quality measures define quality as a function of a pair of

images, not a single image. Their key finding is theoretical,

showing that the task of producing a perfect quality measure

reduces to the problem of constructing a perfect recognition

algorithm.

There is also a line of work [1], [2] that uses statistical

models to relate covariates to recognition performance, and

this work has resulted in a number of findings regarding how

image properties influence the probability a person will be

correctly verified given a query and target match pair. One

finding in particular shows that edge density in the region of

the face is a strong predictor of recognition performance.

Sheirer and Boult [14], [15] have pursued a different line

of work closely related to biometric quality concerned with

explicitly predicting when a recognition algorithm has failed.

A notable aspect of this work is the formal characterization of

the non-match distribution as a Weibull distribution and the

subsequent ability to frame questions of when an algorithm

has succeeded as a hypothesis test relative to the underlying

distribution.

There is also a literature concerned with how people assess

quality, and while this avenue of work does not meet the

standard of relating a measurable property of an image to

recognition performance, it is nonetheless interesting and of

importance to people responsible for fielding systems and

training individuals to use these systems. One recent example

of such work [3] presents a study involving 87 people and

their subjective assessment of a number possible face image

quality factors.

III. THE GOOD, THE BAD & THE UGLY CHALLENGE

The face image data for the Good, the Bad & the Ugly

Challenge Problem (GBU) comes from the Notre Dame

multi-biometric data set collected as part of FRVT 2006 [13],

[12]. The challenge problem is partitioned into three subsets:

the Good, the Bad, and the Ugly. Each partition contains

2170 images of 437 people. These images are further split

into two equal sized groups, a target set and a query

set. Evaluation is carried out by measuring how well face

recognition algorithms recognize images from the query set

matched against the target set.

The three partitions were carefully constructed to intro-

duce a wide range of difficulty, and this was done using sim-

ilarity scores from a fusion algorithm created out of results

from three distinct top-performing FRVT 2006 algorithms.

The resulting verification rates for the fusion algorithm at a

false accept rate (FAR) of 0.001 are 0.98, 0.80, and 0.15 for

the good, the bad, and the ugly partitions respectively. The

match and non-match distributions for this fusion algorithm

across the three partitions are shown in Figure 1 and will be

discussed further in the next section.

The images in the GBU were selected from a larger pool

of 9307 images of 570 people. In addition to introducing a

preference for easy matches in the good partition and very

difficult matches in the ugly partition, the selection process
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Fig. 1. Match score and non-match score distributions for the Good, the Bad & the Ugly partitions. More negative scores are better, match score
distributions are green and non-match distributions are yellow. The FAR=0.001 thresholds for the three distributions are nearly the same and are indicated
by red horizontal lines.

took account of several other constraints. First, no image

could be a member of more than one partition. Second,

images of the same 437 people are present in each partition

and there are between 1 and 4 images per person in the target

and query sets. Further, for each person, the same number

of images are present in every partition. Finally, no pair of

query and target images of the same person in the same

partition are taken on the same day. We will return to the

larger superset of 9307 images later in this paper, since we

will use the superset of similarity scores in our relational

match graph constructions.

In the Good, the Bad & the Ugly Challenge Problem, all

images were acquired using a high quality digital camera,

specifically a six megapixel Nikon D 70. All the photographs

were posed with a person standing in front of a camera

mounted at eye level on a tripod in a well lit setting. Indoors,

the settings were typically hallways. Outdoors, the settings

were either in an open area or against a building backdrop. In

all of the images, the person being photographed was asked

to look at the camera.

IV. TRUE MATCHES GONE BAD

Our analysis focuses exclusively on match scores, and

more generally on the properties of these pairs of images of

the same person. In so doing, we are neglecting the role that

non-match pairs might play in complicating the recognition

task. In essence, we are studying true matches gone bad

while ignoring the case where false matches turn good. The

justification for this simplification is apparent in the non-

match score distributions shown in Figure 1.

For the non-match scores, the distributions appears essen-

tially equivalent for the three partitions. In contrast, the shift

in the match score distributions moving between partitions

is striking. Absent the evidence shown in these distributions,

one might wonder if part of what makes the Bad and Ugly

partitions more difficult is false matches being assigned

uncharacteristically good similarity scores. However, given

the stability of the non-match distribution between partitions,

this does not seem to be the case.

Further, note the red lines in Figure 1. They represent the

verification thresholds based upon FAR = 0.001 and each

of the three non-match distributions. These thresholds are

−10.21, −8.90 and −9.59 for the good, the bad, and the

ugly partitions respectively.

As another measure of the stability of the tails of the non-

match distributions, we calculated a verification threshold

over all three partitions taken as a whole (−9.68). We then

counted how many false accepts occur in each of the three

partitions using this pooled threshold. For the good, the bad,

and the ugly partitions there are 1683, 724 and 1133 false

accepts, respectively. Considering that we are looking at

only the tip of each distribution’s tail, the fact that there

are a significant number of false accepts in every partition

provides additional evidence that the non-match distributions

are behaving similarly to each other.

V. QUALITY COMES IN PAIRS

For face recognition, it has become clear to us that given

a choice between discussing biometric quality in terms of

single images, or instead in terms of pairs of images, it

is more useful to think about biometric quality in terms

of pairs of images. Here we lay out some of the strongest

empirical evidence we have encountered so far in support of

the maxim: “quality comes in pairs.”



To develop the argument, consider for a moment the

implications of presuming the opposite. In other words,

consider what must logically follow from a presumption that

the primary responsibility for failures in face recognition

is explained by properties of individual images. The first

implication is that it should be relatively straightforward to

identify the best and worst quality images by the simple

fact they are either always easy or always hard to recognize.

The second implication is that once a match pair indicates

an image is hard to recognize, that same image should never

participate in a different easily recognized match pair. As we

are about to illustrate, both situations above can be formally

expressed in terms of subgraphs in a match graph.

A. Match Graphs

Consider a graph in which there is one vertex for each face

image in an evaluation. Next, create annotated edges between

vertices based upon similarity scores. The most elemental

form of such a graph would include an edge annotated with

a similarity score for every comparison carried out by a face

recognition algorithm. For our purposes here, edges will only

be defined between pairs of images of the same person. This

simplification results in a clean partition of the full match

graph into a series of connected subgraphs, one per person.

For simplicity, similarity scores are mapped to the cat-

egorical labels ”Hard”, ”Easy” and ”Medium”, and in this

analysis ”Medium” edges will be ignored. One can imagine

a multitude of ways of coming up with such a categoriza-

tion; we define an easy match pair based upon the match

scores from the good partition. Specifically, we determine

the similarity score threshold that defines the best 40% of

the matches in that partition and assign any match with a

score better than this threshold the label ”easy”. To define

a hard match pair, we turn to the ugly partition and find

the similarity score threshold that defines the worst 40% of

the matches. For the fusion algorithm these two threshold

scores are −24.0 and −6.1; a match pair with a score less

than −24.0 is easy and a match pair with a score greater

than −6.1 is hard.

As commonly carried out, an evaluation over the good, the

bad, and ugly data sets would not include similarity scores

between pairs of images straddling two of the partitions. In

other words, we would not have a similarity score relating

an image of a person in the good partition to a different

image of the same person in the bad or ugly partition.

Such a limitation is unnecessary and undesirable for our

match graphs. Therefore, we have chosen to expand our

analysis to use all the available images and match scores

from the original superset of data used to construct the GBU

partitions. Specifically, 9307 images of 570 people.

Applying our definitions of easy and hard to the match

pairs derived from these images, we obtain 14, 517 easy pairs

and 10, 868 hard pairs. That leaves 35, 564 pairs as neither

easy nor hard, for a total of 60, 949 match pairs. Recall from

above that because it is well understood that images taken

at or near the same time are more easily recognized, we
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Fig. 2. Examples illustrating subgraph patterns associated with images that
are: a) always easy to recognize and, b) always hard to recognize.

removed from consideration match pairs taken on the same

day.

B. Once Easy Always Easy and Once Hard Always Hard

If one believes quality is intrinsic to single face images,

then it follows that an image which is easy to recognize

in one circumstance should always be easy to recognize.

Similarly, an image which is intrinsically hard to recognize

should always be hard to recognize. These ideas may be

formalized as patterns in the match graph.

Specifically, the pattern illustrated in Figure 2a is one in

which all edges leaving a specific vertex are labeled easy.

Note that while in the illustration there are three edges,

in general there will be more. The pattern illustrated in

Figure 2b is one in which all edges leaving a specific vertex

are labeled hard. Again, while the illustration shows three

edges, in general the number of edges will vary and typically

be greater than three.

When we search the match graph for instances of the

once-easy-always-easy pattern, we find no instances. In

other words, not one of the 9307 face images satisfies the

constraint that it easily matches every other image of the

same person. The total absence of such consistently easy to

recognize images may in part be explained by an asymmetry

in recognition. In other words, one would expect an overall

low quality match from a comparison between a high-quality

image and a low quality image. Still, it is striking that the

pattern is never observed.



E
E

E

H

H H

M

H

E

M

M

MH

M

M

M

M

E

E

Fig. 3. An example illustrating a subgraph pattern in which images are
simultaneously ”hard” and ”easy” to recognize.

When we search the match graph for the once-hard-

always-hard pattern, we find 86 examples, and the scarcity of

such images is more difficult to explain if one truly believes

quality resides intrinsically within individual images. If one

believes the asymmetry argument used above, one would

expect many images to satisfy the once-hard-always-hard

pattern. Such a belief seems unsupported given that we see

fewer than 100 images out of over 9000 that are consistently

hard to recognize.

C. Contrary Images

We can go further with the analysis of the match graph,

and define a four way interaction between images that

indicates that an image is hard to recognize in one match pair

and easy to recognize in another match pair, and further, that

the other image for which matching is hard is itself easily

recognized when compared to yet a different image. As stated

above, we call these contrary images. While the English

becomes a bit strained when describing contrary images, the

concept is clearly illustrated in terms of the match graph as

shown in Figure 3. Note while our previous relations were

defined over all the edges leaving a single image, this pattern

is defined over a 4-tuple of images related through three

edges where the center edge is labeled hard and the two

adjacent edges are labeled easy.

If we can find instances of such 4-tuples, then we will have

found contrary images. When we search the match graph for

this pattern, we not only find an instance, we found 221 such

4-tuples that include 214 distinct contrary images. Clearly,

contrary images are not that unusual, and what is interesting

is to begin to try to understand why these situations arise.

VI. LOCATION, LOCATION, LOCATION

To explore what might be giving rise to images that

are simultaneously easy and hard to recognize, we created

quadrature graphics showing the four images involved in

such a way that we could rapidly scan for the hard rela-

tionship across the top row and the two easy relationships

down the two columns. An example is shown in Figure 4

where both images in the top row are contrary images.

Hard to Match 

Easy to Match Easy to Match 

Fig. 4. The four images shown share an easy-hard-easy relationship. The
two images across the top are hard to recognize. The pairs of images in the
left and right columns are easy to recognize..

It would be a mistake to dismiss too quickly the many

factors that likely play some role in creating images that are

both hard to recognize and easy to recognize depending upon

the other image involved. Certainly lighting is important in

this context, and of course lighting and location are related.

Also, facial expression is certainly playing some role.

Those caveats aside, the most singularly striking aspect of

the 221 image 4-tuples we inspected is that the columns are

almost always taken at the same location. Indeed, when both

images are taken indoors, they are always taken at the same

location. Further, there is never a case where a hard pair, the

top row, are taken at the same location.

A. Same vs. Different Location Performance across the GBU

The tuple analysis indicates images taken at the same

location are more easily matched than those taken at different

locations. However, as solid a finding as this is, it represents

behavior in the extremes of the data set, specifically the

easiest match pairs in the Good partition and the hardest

match pairs in the Ugly partition. Therefore, how location

effects verification rates over all the data in each of the GBU

partitions still remains to be seen.

To address this question, we carried out a statistical

analysis of the fusion algorithm performance data for the

GBU partitions. While we could have simply reported

single numbers, the verification rates for same and different

locations across the GBU partitions, this would tell us

nothing about variability in these performance numbers. So

instead we’ve carried out a bootstrap analysis in order to

estimate the distribution of verification rates over these cases.

The details of this analysis follow. The punchline is evident

directly from the results presented in Figure 5a: changing

location significantly drops verification rates in all three

partitions.

To explain our analysis more precisely, we bootstrapped

verification rates for the good, bad, and ugly partitions split

by whether the target and query image locations matched.
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Same Versus Different Locations

Fig. 5. Verification rates and odds ratios comparing images acquired at
the same versus different locations. a) for each partition, the different and
same location rates, b) for each partition the odds ratio for same relative to
different.

For each of the 3 × 2 combinations of these variables, we

calculated the empirical verification rate in our sample. This

can also be viewed as the population-weighted predicted

verification rates marginalized over the random effects.

Next, a bootstrap dataset was created by resampling sub-

jects2 with replacement. The new dataset was assembled

using the accumulated data from this collection of pseudo-

subjects. Each bootstrap dataset may, therefore, have a differ-

ent number of trials than the original one. From this pseudo-

dataset a new set of verification rates were calculated. We

repeated this process 1000 times.

Figure 5a shows boxplots of the bootstrap distributions

2We are not sampling images or image pairs because our analysis assumes
people/subjects are interchangeable.

of verification rates at FAR = 0.001 split by partition and

whether locations were the same or different. The difference

in verification rates between the good, the bad, and the

ugly partitions are self-explanatory. Next, note that for each

partition verification rate tends to be higher when locations

are the same. Notwithstanding these two observations, it is

noteworthy that neither the incremental benefit of transition

up from ugly to bad to good, nor the incremental benefit

of same-location within each of these partitions, is constant.

Instead, both are reduced as partition quality increases. For

the good partition, this can be explained by the overall

excellent verification performance: there is little room left

for improvement.

As we delve deeper, however, more subtle differences are

also apparent. We can see that for the ugly and bad partitions,

the bootstrap variance of verification rates is considerably

greater when location matches than when it doesn’t. This

suggests that matching location, while important, does not

fully explain verification. Moreover, the effect is deceptively

large. Remember that each of the thousand points in one

boxplot is the mean of about 1000 individual verification

outcomes over a pseudo-dataset representative of the sort

one might obtain in the intended sampling population. Thus,

to see the downward whisker of a same-location box overlap

with the upward whisker of a different-location box is not to

observe that some individuals are poorly verified even when

the location is held constant, but instead to learn that the

verification rate for an entire population is highly variable

when same-location matches are attempted.

The magnitude of variation here is very large, considering

that these large samples of subjects should be interchange-

able. This suggests that there must be a strong subject-

specific effect on verification of same-location images, and

that there must likely be substantial effects of other unob-

served variables as well.

Another way to examine these results is to consider odds

ratios. Figure 5b shows boxplots of odds ratios for verifica-

tion for same-location relative to different-location, split by

the good/bad/ugly partitioning variable. These bootstrapped

values were calculated in the same manner described above.

Note that the vertical axis uses a log
2

scale. Thus, for

example, the median odds ratio for the ugly partition is

about 3, meaning that if a population of subjects with ugly

different-location images were somehow transformed into a

population of subjects with ugly same-location images, the

overall population-weighted verification odds would more

than triple. The actual medians and 90% probability intervals

are 3.2 (1.8, 5.5), 1.4 (1.0, 2.1), and 4.2 (1.7, 18.0) for the

ugly, the bad, and the good partitions, respectively.

VII. CONCLUSION

Two aspects of the work just presented have broad impli-

cations for face recognition research. First, the discovery of

more contrary images than always-hard images highlights the

difficulty inherent in thinking of face quality as an intrinsic

property of one image. Recall that a contrary image is of

high-quality as implied by at least one match, but nonetheless



gives rise to a poor match when compared to an alternative

high-quality image.

The second major finding is a surprising and important

dependence upon the location where images are acquired.

This dependence suggests a sensitivity to location in sce-

narios where one might expect one location to behave more

or less like another. This location dependency has important

implications for those designing algorithm evaluations and

also for algorithm developers for whom the challenge will

be to lessen such dependencies.

In terms of methodology, formulating questions about

pairs of matching face images in terms of a relational match

graph is, to our knowledge, new. We expect it is an approach

to the study of how algorithms behave that will be open to

expansion and elaboration in the future.
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