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Abstract. Abbott, Altenkirch, Ghani and others have taught us that many parameter-
ized datatypes (set functors) can be usefully analyzed via container representations in terms
of a set of shapes and a set of positions in each shape. This paper builds on the observation
that datatypes often carry additional structure that containers alone do not account for.
We introduce directed containers to capture the common situation where every position
in a data-structure determines another data-structure, informally, the sub-data-structure
rooted by that position. Some natural examples are non-empty lists and node-labelled
trees, and data-structures with a designated position (zippers). While containers denote
set functors via a fully-faithful functor, directed containers interpret fully-faithfully into
comonads. But more is true: every comonad whose underlying functor is a container is
represented by a directed container. In fact, directed containers are the same as containers
that are comonads. We also describe some constructions of directed containers. We have
formalized our development in the dependently typed programming language Agda.

1. Introduction

Containers, as introduced by Abbott, Altenkirch and Ghani [2] are a neat representation
for a wide class of parameterized datatypes (set functors) in terms of a set of shapes and a
set of positions in each shape. They cover lists, colists, streams, various kinds of trees, etc.
Containers can be used as a “syntax” for programming with these datatypes and reasoning
about them, as can the strictly positive datatypes and polynomial functors of Dybjer [14],
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Moerdijk and Palmgren [24], Gambino and Hyland [15], and Kock [23]. The theory of this
class of datatypes is elegant, as they are well-behaved in many respects.

This paper proceeds from the observation that datatypes often carry additional struc-
ture that containers alone do not account for. We introduce directed containers to capture
the common situation in programming where every position in a data-structure determines
another data-structure, informally, the sub-data-structure rooted by that position. Some
natural examples of such data-structures are non-empty lists and node-labelled trees, and
data-structures with a designated position or focus (zippers). In the former case, the sub-
data-structure is a sublist or a subtree. In the latter case, it is the whole data-structure but
with the focus moved to the given position.

We show that directed containers are no less neat than containers. While containers
denote set functors via a fully-faithful functor, directed containers interpret fully-faithfully
into comonads. They admit some of the constructions that containers do, but not others:
for instance, two directed containers cannot be composed in general. Our main result is
that every comonad whose underlying functor is the interpretation of a container is the
interpretation of a directed container. So the answer to the question in the title of this
paper is: a container is a comonad exactly when it is a directed container. In more precise
terms, the category of directed containers is the pullback of the forgetful functor from the
category of comonads to that of set functors along the interpretation functor of containers.
This also means that a directed container is the same as a comonoid in the category of
containers.

In the core of the paper, we study directed containers on Set. Toward the end of
the paper we point it out that the development could also be carried out more generally
in locally Cartesian closed categories (LCCCs) and yet more generally in categories with
pullbacks.

In our mathematics, we use syntax similar to the dependently typed functional program-
ming language Agda [26, 27]. If some function argument will be derivable in most contexts,
we mark it as implicit by enclosing it/its type in braces in the function’s type declaration
and either give this argument in braces or omit it in the definition and applications of the
function.

We have formalized the central parts of the theory presented in Agda. The development
is available at http://cs.ioc.ee/~danel/dcont.html.

Structure of the Article. In Section 2, we review the basic theory of containers, showing
also some examples. We introduce containers and their interpretation into set functors. We
show some constructions of containers such as the coproduct of containers. In Section 3,
we revisit our examples and introduce directed containers as a specialization of containers
and describe their interpretation into comonads. Our main result, that a container is
a comonad exactly when it is directed, is the subject of Section 3.3. In Section 4, we
look at some constructions, in particular the cofree directed container and the focussed
container (zipper) construction. In addition, we also introduce strict directed containers
and construct the product of two strict directed containers in the category of directed
containers. Intuitively, a strict directed container is a directed container where no position
in a non-root subshape of a shape translates to its root. In Section 5, we ask whether
a similar characterization is possible for containers that are monads and hint that this is
the case. In Section 6, we show that interpreting the opposite of the category of directed
containers into set functors gives monads. In Section 7, we hint how the directed container

http://cs.ioc.ee/~danel/dcont.html
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theory (presented in the paper for Set) could be developed in the more general setting of
categories with pullbacks. We briefly summarize related work in Section 8 and conclude
with outlining some directions for future work in Section 9. The proofs of the main results
of Sections 3 and 4 appear in Appendices A and B.

We spend a section on the background theory of containers as they are central for
our paper but relatively little known, but assume that the reader knows about comonads,
monoidal categories and comonoids.

Differences from the FoSSaCS 2012 Conference Version. This article is a revised
and expanded version of the FoSSaCS 2012 conference paper [5]. We have added many of
the proofs that were omitted from the conference version. We have rearranged the different
constructions on directed containers into a separate section, namely Section 4. In Section 4.3,
we give a detailed discussion of cofree directed containers. In Section 4.2, which is entirely
new, we define strict directed containers and coideal comonads and give an explicit formula
for the product of two strict directed containers.

Likewise entirely new are the sections on cointerpreting directed containers in Section
6 and directed containers in categories with pullbacks in Section 7.

2. Containers

We begin with a recap of containers. We introduce the category of containers and the fully-
faithful functor into the category of set functors defining the interpretation of containers
and show that these are monoidal. We also recall some basic constructions of containers.
For proofs of the propositions in this section and further information, we refer the reader
to Abbott et al. [2, 1].

2.1. Containers. Containers are a form of “syntax” for datatypes. A container S ⊳ P

is given by a set S : Set of shapes and a shape-indexed family P : S → Set of positions.
Intuitively, shapes are “templates” for data-structures and positions identify “blanks” in
these templates that can be filled with data.

Example 2.1. The datatype of lists is represented by S ⊳ P where the shapes S = Nat

are the possible lengths of lists and the positions P s = Fin s = {0, . . . , s − 1} provide s

places for data in lists of length s. Non-empty lists are obtained by letting S = Nat and
P s = Fin (s+ 1) (so that shape s has s+ 1 rather than s positions).

Example 2.2. Streams are characterized by a single shape with natural number positions:
S = 1 = {∗} and P ∗ = Nat. The singleton datatype has one shape and one position: S = 1,
P ∗ = 1.

A morphism between containers S ⊳ P and S′ ⊳ P ′ is a pair t⊳ q of maps t : S → S′

and q : Π{s : S}. P ′ (t s) → P s (the shape map and position map). Note how the positions
are mapped backwards. The intuition is that, if a function between two datatypes does not
look at the data, then the shape of a data-structure given to it must determine the shape of
the data-structure returned and the data in any position in the shape returned must come
from a definite position in the given shape.

Examples 2.3.
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• The head function, sending a non-empty list to a single data item, is determined by the
maps t : Nat → 1 and q : Π{s : Nat}. 1 → Fin (s+ 1) defined by t = ∗ and q ∗ = 0.

• The tail function, sending a non-empty list to a list, is represented by t : Nat → Nat and
q : Π{s : Nat}.Fin s → Fin (s+ 1) defined by t s = s and q p = p+ 1.

• For the function dropping every second element of a non-empty list, the shape and position
maps t : Nat → Nat and q : Π{s : Nat}.Fin (s ÷ 2 + 1) → Fin (s + 1) are t s = s ÷ 2 and
q p = p ∗ 2.

• For self-append of a non-empty list, they are t : Nat → Nat and q : Π{s : Nat}.Fin (s ∗ 2+
2) → Fin (s+ 1) defined by t s = s ∗ 2 + 1 and q {s} p = p mod (s+ 1).

• For reversal of non-empty lists, they are t : Nat → Nat and q : Π{s : Nat}.Fin (s + 1) →
Fin (s+ 1) defined by t s = s and q {s} p = s− p.

(See Prince et al. [28] for more similar examples.)

The identity morphism idc{C} on a container C = S ⊳ P is defined by idc = id {S} ⊳
λ{s}. id {P s}. The composition h ◦c h′ of container morphisms h = t ⊳ q and h′ = t′ ⊳ q′

is defined by h ◦c h′ = t ◦ t′ ⊳ λ{s}. q′ {s} ◦ q {t′ s}. Composition of container morphisms is
associative, identity is the unit.

Proposition 2.4. Containers form a category Cont.

2.2. Interpretation of Containers. To map containers into datatypes made of data-
structures that have the positions in some shape filled with data, we must equip containers
with a “semantics”.

For a container C = S ⊳ P , we define its interpretation JCKc : Set → Set on sets by
JCKcX = Σs : S.P s → X, so that JCKcX consists of pairs of a shape and an assignment of
an element of X to each of the positions in this shape, reflecting the intuitive reading that
shapes are “templates” for datatypes and positions identify “blanks” in these templates
that can be filled in with data. The interpretation JCKc : ∀{X}, {Y }. (X → Y ) → (Σs :
S.P s → X) → Σs : S.P s → Y of C on functions is defined by JCKc f (s, v) = (s, f ◦ v). It
is straightforward that JCKc preserves identity and composition of functions, so it is a set
functor (as any datatype should be).

Example 2.5. Our example containers denote the datatypes intended. If we let C be the
container of lists, we have JCKcX = Σs : Nat.Fin s → X ∼= ListX. The container of streams
interprets into Σ∗ : 1.Nat → X ∼= Nat → X ∼= StrX. Etc.

A morphism h = t⊳ q between containers C = S ⊳ P and C = S′ ⊳ P ′ is interpreted
as a natural transformation between JCKc and JC ′Kc, i.e., as a polymorphic function JhKc :
∀{X}. (Σs : S.P s → X) → Σs′ : S′. P ′ s′ → X that is natural. It is defined by JhKc (s, v) =
(t s, v ◦ q {s}). J−Kc preserves the identities and composition of container morphisms.

Example 2.6. The interpretation of the container morphism h for the list head function is
JhKc : ∀{X}. (Σs : Nat.Fin (s+1) → X) → Σ∗ : 1. 1 → X defined by JhKc (s, v) = (∗, λ∗. v 0).

Proposition 2.7. J−Kc is a functor from Cont to [Set,Set].

Every natural transformation between container interpretations is the interpretation
of some container morphism. For containers C = S ⊳ P and C ′ = S′ ⊳ P ′, a natural
transformation τ between JCKc and JC ′Kc, i.e., a polymorphic function τ : ∀{X}. (Σs :
S.P s → X) → Σs′ : S′. P ′ s′ → X that is natural, can be “quoted” to a container morphism
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pτqc = t⊳ q between C and C ′ where t : S → S′ and q : Π{s : S}. P ′ (t s) → P s are defined
by pτqc = (λs. fst (τ {P s} (s, id))) ⊳ (λ{s}. snd (τ {P s} (s, id))).

For any container morphism h, pJhKcqc = h, and, for any natural transformation τ and
τ ′ between container interpretations, pτqc = pτ ′qc implies τ = τ ′.

Proposition 2.8. J−Kc is fully faithful.

2.3. Monoidal Structure. We have already seen the identity container Idc = 1 ⊳ λ∗. 1.
The composition C0 ·c C1 of containers C0 = S0 ⊳ P0 and C1 = S1 ⊳ P1 is the container
S ⊳ P defined by S = Σs : S0. P0 s → S1 and P (s, v) = Σp0 : P0 s. P1 (v p0). It has as
shapes pairs of an outer shape s and an assignment of an inner shape to every position in
s. The positions in the composite container are pairs of a position p in the outer shape
and a position in the inner shape assigned to p. The (horizontal) composition h0 ·c h1
of container morphisms h0 = t0 ⊳ q0 and h1 = t1 ⊳ q1 is the container morphism t ⊳ q

defined by t (s, v) = (t0 s, t1◦v◦q0 {s}) and q {s, v} (p0, p1) = (q0 {s} p0, q1 {v (q0 {s} p0)} p1).
The horizontal composition preserves the identity container morphisms and the (vertical)
composition of container morphisms, which means that − ·c − is a bifunctor.

Cont has isomorphisms ρ : ∀{C}. C ·c Idc → C, λ : ∀{C}. Idc ·c C → C and
α : ∀{C,C ′, C ′′}. (C ·c C ′) ·c C ′′ → C ·c (C ′ ·c C ′′), given by ρ = λ(s, v). s⊳λ{s, v}. λp. (p, ∗),
λ = λ(∗, v). v ∗ ⊳ λ{∗, v}. λp. (∗, p) and α = λ((s, v), v′). (s, λp. (v p, λp′. v′ (p, p′))) ⊳

λ{(s, v), v′}. λ(p, (p′, p′′)). ((p, p′), p′′). They satisfy Mac Lane’s coherence conditions.

Proposition 2.9. The category Cont is a monoidal category.

There are also natural isomorphisms e : Id → JIdcKc and m : ∀{C0, C1}. JC0K
c · JC1K

c →
JC0 ·c C1K

c defined by ex = (∗, λ∗. x) and m (s, v) = ((s, λp. fst (v p)), λ(p, p′). snd (v p) p′)
satisfying the appropriate coherence conditions.

Proposition 2.10. The functor J−Kc is a monoidal functor.

2.4. Constructions of Containers. Containers are closed under various constructions
such as products, coproducts and constant exponentiation, preserved by interpretation.

Products. For two containers C0 = S0 ⊳ P0 and C1 = S1 ⊳ P1, their product C0 × C1 is
the container S ⊳ P defined by S = S0 × S1 and P (s0, s1) = P0 s0 + P1 s1. It holds that
JC0 × C1K

c ∼= JC0K
c × JC1K

c.

Coproducts. The coproduct C0 + C1 of containers C0 = S0 ⊳ P0 and C1 = S1 ⊳ P1 is the
container S ⊳ P defined by S = S0 + S1, P (inl s) = P0 s and P (inr s) = P1 s. It is the case
that JC0 + C1K

c ∼= JC0K
c + JC1K

c.

Exponentials. For a set K ∈ Set and a container C0 = S0 ⊳ P0, the exponential K → C0

is the container S ⊳ P where S = K → S0 and P f = Σk : K.P (f k). We have that
JK → C0K

c ∼= K → JC0K
c.
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3. Directed Containers

We now proceed to our contribution, directed containers. We define the category of directed
containers and a fully-faithful functor interpreting directed containers as comonads, and
discuss some examples and constructions.

3.1. Directed Containers. Parametrized datatypes often carry some additional structure
that is worth making explicit. For example, each node in a list or non-empty list defines
a sublist (a suffix). In container terms, this corresponds to every position in a shape
determining another shape, the subshape corresponding to this position. The theory of
containers alone does not account for such additional structure. Directed containers, studied
in the rest of this paper, axiomatize subshapes and translation of positions in a subshape
into the global shape.

Definition 3.1. A directed container is a container S ⊳ P together with three operations

• ↓ : Πs : S.P s → S (the subshape corresponding to a position),
• o : Π{s : S}. P s (the root),
• ⊕ : Π{s : S}.Πp : P s. P (s ↓ p) → P s (translation of subshape positions into positions
in the global shape).

satisfying the following two shape equations and three position equations:

(1) ∀{s}. s ↓ o = s,
(2) ∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,
(3) ∀{s, p}. p ⊕ {s} o = p,
(4) ∀{s, p}. o {s} ⊕ p = p,
(5) ∀{s, p, p′, p′′}. (p ⊕ {s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

(Using ⊕ as an infix operation, we write the first, implicit, argument next to the opera-
tion symbol when we want to give it explicitly.) Modulo the fact that the positions involved
come from different sets, laws 3–5 are the laws of a monoid. In the special case S = 1, we
have exactly one set of positions, namely P ∗, and that is a monoid. If S is general, but
s ↓ p does not depend on p (in this case s ↓ p = s thanks to law 1), then each P s is a
monoid. (One might also notice that laws 1–2 bear similarity to the laws of a monoid action.
If none of P s, o {s}, p⊕ {s} p′ depends on s, then we have one single monoid and ↓ is then
a right action of that monoid on S.)

To help explain the operations and laws, we sketch in Fig. 1 a data-structure with
nested sub-data-structures.

The global shape s is marked with a solid boundary and has a root position o {s}. Then,
any position p in s determines a shape s′ = s ↓ p, marked with a dotted boundary, to be
thought of as the subshape of s given by this position. The root position in s′ is o {s′}. Law
3 says that its translation p ⊕ o {s′} into a position in shape s is p, reflecting the idea that
the subshape given by a position should have that position as the root.

By law 1, the subshape s ↓ o {s} corresponding to the root position o{s} in the global
shape s is s itself. Law 4, which is only well-typed thanks to law 1, stipulates that the
translation of position p in s ↓ o {s} into a position in s is just p (which is possible, as
P (s ↓ o {s}) = P s).

A further position p′ in s′ determines a shape s′′ = s′ ↓ p′. But p′ also translates
into a position p ⊕ p′ in s and that determines a shape s ↓ (p ⊕ p′). Law 2 says that
s′′ and s ↓ (p ⊕ p′) are the same shape, which is marked by a dashed boundary in the
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Figure 1: A data-structure with two nested sub-data-structures
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Figure 2: The shape and positions for non-empty lists of length 6

figure. Finally, law 5 (well-typed only because of law 2) says that the two alternative ways
to translate a position p′′ in shape s′′ into a position in shape s agree with each other.

Example 3.2. Lists cannot form a directed container, as the shape 0 (for the empty list),
having no positions, has no possible root position.

But the container of non-empty lists (with S = Nat and P s = Fin (s+1)) is a directed
container with respect to non-empty suffixes as sublists. The subshape given by a position
p in a shape s (for lists of length s + 1) is the shape of the corresponding suffix, given by
s ↓ p = s − p. The root o {s} is the position 0 of the head node. A position in the global
shape is recovered from a position p′ in the subshape of the position p by p ⊕ p′ = p+ p′.

Fig. 2 shows an example of the shape and positions of a non-empty list with length 6,
i.e., with shape s = 5. This figure also shows that the subshape determined by a position
p = 2 in the global shape s is s′ = s ↓ p = 5−2 = 3 and a position p′ = 1 in s′ is rendered as
the position p ⊕ p′ = 2 + 1 = 3 in the initial shape. Clearly one could also choose prefixes
as subshapes and the last node of a non-empty list as the root, but this gives an isomorphic
directed container.

Example 3.3. Non-empty lists also give rise to an entirely different directed container
structure that has cyclic shifts as “sublists” (this example was suggested to us by Jeremy
Gibbons). The subshape at each position is the global shape (s ↓ p = s). The root is
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Figure 3: The shape and positions for streams

still o {s} = 0. The interesting part is that translation into the global shape of a subshape
position is defined by p ⊕ {s} p′ = (p+ p′) mod (s+ 1), satisfying all the required laws.

Example 3.4. The container of streams (S = 1, P ∗ = Nat) carries a very trivial directed
container structure given by ∗ ↓ p = ∗, o = 0 and p ⊕ p′ = p + p′. Fig. 3 shows how a
position p = 2 in the only possible global shape s = ∗ and a position p′ = 2 in the equal
subshape s′ = s ↓ p = ∗ give back a position p+ p′ = 4 in the global shape.

This directed container is nothing else than the monoid (Nat, 0,+) seen as a directed
container.

Similarly to the theory of containers, one can also define morphisms between directed
containers.

Definition 3.5. A morphism between two directed containers (S ⊳ P, ↓, o,⊕) and
(S′ ⊳ P ′, ↓′, o′,⊕′) is a morphism t ⊳ q between the containers S ⊳ P and S′ ⊳ P ′ that
satisfies three laws:

(1) ∀{s, p}. t (s ↓ q p) = t s ↓′ p,
(2) ∀{s}. o {s} = q (o′ {t s}),
(3) ∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′).

In the special case S = S′ = 1, laws 2 and 3 are the laws of a monoid morphism.
Recall the intuition that t determines the shape of the data-structure that some given

data-structure is sent to and q identifies for every position in the data-structure returned
a position in the given data-structure. These laws say that the positions in the sub-data-
structure for any position in the resulting data-structure must map back to positions in the
corresponding sub-data-structure of the given data-structure. This means that they can re-
ceive data only from those positions, other flows are forbidden. Morphisms between directed
containers representing node-labelled tree datatypes are exactly upwards accumulations—
this was one of the motivations for choosing the name ‘directed containers’.

Example 3.6. The container representations of the head and drop-even functions for non-
empty lists are directed container morphisms for the directed container of non-empty lists
and suffixes (and the identity directed container). But those of self-append and reversal are
not.

Example 3.7. For the directed container of non-empty lists and cyclic shifts, not only the
representations of the head and drop-even functions but also the self-append function are
directed container morphisms.
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The identities and composition of Cont can give the identities and composition for
directed containers, since for every directed container E = (C, ↓, o,⊕), the identity container
morphism idc {C} is a directed container morphism and the composition h ◦c h′ of two
directed container morphisms is also a directed container morphism.

Proposition 3.8. Directed containers form a category DCont.

3.2. Interpretation of Directed Containers. As directed containers are containers with
some operations obeying some laws, a directed container should denote not just a set functor,
but a set functor with operations obeying some laws. The correct domain of denotation for
directed containers is provided by comonads on sets.

Definition 3.9. Given a directed container E = (S⊳P, ↓, o,⊕), we define its interpretation
JEKdc to be the set functor D = JS⊳P Kc (i.e., the interpretation of the underlying container)
together with two natural transformations

ε : ∀{X}. (Σs : S.P s → X) → X

ε (s, v) = v (o {s})
δ : ∀{X}. (Σs : S.P s → X) → Σs : S.P s → Σs′ : S.P s′ → X

δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′)))

The directed container laws ensure that the natural transformations ε, δ make the counit
and comultiplication of a comonad structure on D.

Intuitively, the counit extracts the data at the root position of a data-structure (e.g.,
the head of a non-empty list), the comultiplication, which produces a data-structure of data-
structures, replaces the data at every position with the sub-data-structure corresponding
to this position (e.g., the corresponding suffix or cyclic shift).

The interpretation JhKdc of a morphism h between directed containers
E = (C, ↓, o,⊕), E′ = (C ′, ↓′, o′,⊕′) is defined by JhKdc = JhKc (using that h is a con-
tainer morphism between C and C ′). The directed container morphism laws ensure that
this natural transformation between JCKc and JC ′Kc is also a comonad morphism between
JEKdc and JE′Kdc.

Since the category Comonads(Set) inherits its identities and composition from
[Set,Set], the functor J−Kdc also preserves the identities and composition.

Proposition 3.10. J−Kdc is a functor from DCont to Comonads(Set).

Similarly to the case of natural transformations between container interpretations, one
can also “quote” comonad morphisms between directed container interpretations into di-
rected container morphisms. For any directed containers E = (C, ↓, o,⊕), E′ = (C ′, ↓′, o′,⊕′)
and any morphism τ between the comonads JEKdc and JE′Kdc (which is a natural transforma-
tion between JCKc and JC ′Kc), the container morphism pτqdc = pτqc between the underlying
containers C and C ′ is also a directed container morphism between E and E′. The directed
container morphism laws follow from the comonad morphism laws.

From what we already know about interpretation and quoting of container morphisms,
it is immediate that pJhKdcqdc = h for any directed container morphism h and that pτqdc =
pτ ′qdc implies τ = τ ′ for any comonad morphisms τ and τ ′ between directed container
interpretations.

Proposition 3.11. J−Kdc is fully faithful.
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The identity container Idc = 1⊳λ∗. 1 extends trivially to an identity directed container
whose denotation is isomorphic to the identity comonad. But, similarly to the situation
with functors and comonads, composition of containers fails to yield a composition monoidal
structure on DCont.

We have elsewhere [7] shown that, similarly to the functors and comonads case [10],
the composition of the underlying containers of two directed containers carries a compatible

directed container structure if and only if there is a distributive law between these directed
containers. Compatible compositions of directed containers turn out to generalize Zappa-
Szép products of monoids [33, 11], with distributive laws playing the role of matching pairs
of mutual actions.

3.3. Containers ∩ Comonads = Directed Containers. Since not every functor can
be represented by a container, there is no point in asking whether every comonad can be
represented as a directed container. An example of a natural comonad that is not a directed
container is the cofree comonad on the finite powerset functor Pf (node-labelled nonwell-
founded strongly-extensional trees) where the carrier of this comonad is not a container (Pf

is also not a container). But, what about those comonads whose underlying functor is an
interpretation of a container? It turns out that any such comonad does indeed define a
directed container that is obtained as follows.

Given a comonad (D, ε, δ) and a container C = S ⊳ P such that D = JCKc, the counit
ε and comultiplication δ induce container morphisms

hε : C → Idc

hε = tε ⊳ qε = pe ◦ εqc

hδ : C → C ·c C
hδ = tδ ⊳ qδ = pm {C,C} ◦ δqc

using that J−Kc is fully faithful. From (D, ε, δ) satisfying the laws of a comonad we
can prove that (C, hε, hδ) satisfies the laws of a comonoid in Cont (i.e., an object in
Comonoids(Cont)). Further, we can define

s ↓ p = snd (tδ s) p
o {s} = qε{s} ∗
p ⊕ {s} p′ = qδ {s} (p, p′)

and the comonoid laws further enforce the laws of the directed container for (C, ↓, o,⊕).
It may seem that the maps tε and fst ◦ tδ are not used in the directed container struc-

ture, but tε : S → 1 contains no information (∀{s}. tε s = ∗) and the comonad/comonoid
right counital law forces that ∀{s}. fst (tδ s) = s, which gets used in the proofs of each of
the five directed container laws. The latter fact is quite significant. It tells us that the
comultiplication δ of any comonad whose underlying functor is the interpretation of a con-
tainer preserves the shape of a given data-structure as the outer shape of the data-structure
returned.

The situation is summarized as follows.

Proposition 3.12. Any comonad (D, ε, δ) and container C such that D = JCKc determine

a directed container ⌈(D, ε, δ), C⌉.

Proposition 3.13. ⌈JC, ↓, o,⊕Kdc, C⌉ = (C, ↓, o,⊕).

Proposition 3.14. J⌈(D, ε, δ), C⌉Kdc = (D, ε, δ).
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These observations combine into the following theorem.

Proposition 3.15. The following is a pullback in CAT:

DCont
U //

J−Kdc f.f.

��

Cont

J−Kc f.f.

��
Comonads(Set)

U // [Set,Set]

A structured way to prove this theorem is to first note that a pullback is provided by
Comonoids(Cont) and then verify that Comonoids(Cont) is isomorphic to DCont.

Sam Staton pointed it out to us that the proof of the first part only hinges on Cont and
[Set,Set] being monoidal categories and J−Kc : Cont → [Set,Set] being a fully faithful
monoidal functor. Thus we actually establish a more general fact, viz., that for any two
monoidal categories C and D and a fully-faithful monoidal functor F : C → D, the pullback
of F along the forgetful functor U : Comonoids(D) → D is Comonoids(C).

In summary, we have seen that the interpretation of a container carries the structure
of a comonad exactly when it extends to a directed container.

4. Constructions of Directed Containers

We now show some constructions of directed containers. While some standard constructions
of containers extend to directed containers, others do not.

4.1. Coproducts of Directed Containers. Given two directed containers E0 = (S0 ⊳

P0, ↓0, o0,⊕0), E1 = (S1 ⊳ P1, ↓1, o1,⊕1), their coproduct is E = (S ⊳ P, ↓, o,⊕) where
the underlying container C = S ⊳ P is the coproduct of containers C0 = S0 ⊳ P0 and
C1 = S1 ⊳ P1. All of the directed container operations are defined either using ↓0, o0,⊕0

or ↓1, o1,⊕1 depending on the given shape. This means that the subshape operation is
given by inl s ↓ p = inl (s ↓0 p) and inr s ↓ p = inr (s ↓1 p), the root position is given by
o {inl s} = o0 {s} and o {inr s} = o1 {s} and the subshape position translation operation is
given by p ⊕ {inl s} p′ = p ⊕0 {s} p′ and p ⊕ {inr s} p′ = p ⊕1 {s} p′. The interpretation of
E is isomorphic to the coproduct of comonads JE0K

dc and JE1K
dc.

Proposition 4.1. E defined above is a coproduct of the given directed containers E0 and E1.

It interprets to a coproduct of the comonads JE0K
dc and JE1K

dc, whose underlying functor

is isomorphic to JC0K
c + JC1K

c.

4.2. Products of (Strict) Directed Containers. There is no general way to endow the
product of the underlying containers of two directed containers E0 = (S0 ⊳ P0, ↓0, o0,⊕0)
and E1 = (S1 ⊳ P1, ↓1, o1,⊕1) with the structure of a directed container. One can define
S = S0 × S1 and P (s0, s1) = P0 s0 + P1 s1, but there are two choices o0 and o1 for o.
Moreover, there is no general way to define p ⊕ p′. But this should not be surprising, as
the product of the underlying functors of two comonads is not generally a comonad. Also,
the product of two comonads would not be a comonad structure on the product of the
underlying functors.
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However, for monads it is known that, although the coproduct of two arbitrary monads
may not always exist and is generally relatively difficult to construct explicitly [22], there
is a feasible explicit formula for the coproduct of two ideal monads [17]. The duality with
comonads gives a formula for the product of two coideal comonads.

Definition 4.2. A coideal comonad on Set is given by a functor D+ : Set → Set and a
natural transformation δ+ : D+ → D+ ·D such that the diagrams below commute

D+

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

δ+ // D+ ·D

D+·ε

��

D+

δ+

��

δ+ // D+ ·D

D+·δ

��
D+ D+ ·D

δ+·D
// D+ ·D ·D

for a functor D : Set → Set and natural transformations ε : D → Id and δ : D → D · D
defined by

• DX = X ×D+X

• ε : ∀{X}.X ×D+X → X

ε = fst

• δ : ∀{X}.X ×D+X → DX ×D+ (DX)
δ = 〈id, δ+ ◦ snd〉

The design of this definition ensures that the data (D, ε, δ) make a comonad as soon as the
data (D+, δ+) satisfy the coideal comonad laws.1

Given two coideal comonads (D+
0 , δ

+
0 ) and (D+

1 , δ
+
1 ), the functor D given by

• DX = D+
0 X ×D+

1 X

where

• (D+
0 X,D+

1 X) = ν(Z0, Z1). (D
+
0 (X × Z1),D

+
1 (X × Z0))

(assuming the existence of the final coalgebra) carries a coideal comonad structure that is
a product, in the category of all comonads, of the given ones.

Next we define the corresponding specialization of directed containers and give an
explicit product construction for this case. A strict directed container is, intuitively, a
directed container where no position in a non-root subshape of a shape translates to its
root, i.e., p ⊕ p′ should not be o when p 6= o.

Definition 4.3. A strict directed container is specifiable by the data

• S : Set
• P+ : S → Set

• ↓+: Πs : S.P+ s → S

• ⊕+: Π{s : S}.Πp : P+ s. P+ (s ↓+ p) → P+ s

satisfying the laws

(1) ∀{s, p, p′}. s ↓+ (p ⊕+ p′) = (s ↓+ p) ↓+ p′

(2) ∀{s, p, p′, p′′}. (p ⊕+ {s} p′) ⊕+ p′′ = p ⊕+ (p′ ⊕+ p′′)

It induces a directed container (S ⊳ P, ↓, o,⊕) via

1The term ‘coideal comonad’ is motivated by (D+, δ+) being a right comodule of the comonad (D, ε, δ).
For the same concept, also the term ‘ideal comonad’ has been used.
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• P s = Maybe (P+s)
• s ↓ nothing = s

s ↓ just p = s ↓+ p

• o = nothing

• nothing ⊕ p = p

just p ⊕ nothing = just p

just p ⊕ just p′ = just (p ⊕+ p′)

Similarly to coideal comonads, the design of this definition also ensures that the data
(S ⊳ P, ↓, o,⊕) make a directed container as soon as the data (S ⊳ P+, ↓+,⊕+) satisfy
the strict directed container laws.2

Strict directed containers are the pullback of the interpretation of directed containers
and the inclusion of coideal comonads into comonads.

Notice that the special case S = 1 describes monoids without right-invertible non-unit
elements (such monoids are trivially also without left-invertible non-unit elements; they
arise from adding a unit to a semigroup freely). For example, the datatype of lists and
suffixes is a strict directed container; on the other hand, the datatype of lists and cyclic
shifts is not.

We take inspiration from the construction of the product of two coideal comonads and
construct the product of two strict directed containers.

Given two strict directed containers E0 = (S0⊳P+
0 , ↓+0 ,⊕

+
0 ) and E1 = (S1⊳P+

1 , ↓+1 ,⊕
+
1 ),

we define the data E = (S ⊳ P+, ↓+,⊕+) by

• S = S0 × S1

where

(S0, S1) = ν(Z0, Z1). (Σs0 : S0. P
+
0 s0 → Z1,Σs1 : S1. P

+
1 s1 → Z0)

• P+(s0, s1) = P+
0 s0 + P+

1 s1

where

(P+
0 , P+

1 ) = µ(Z0, Z1).
(λ(s0, v0).Σp0 : P

+
0 s0.Maybe (Z1 (v0 p0)), λ(s1, v1).Σp1 : P

+
1 s1.Maybe (Z0 (v1 p1)))

• ↓+: Πs : S.P+s → S

(s0, s1) ↓
+ inl p = s0 ↓

+
0 p

(s0, s1) ↓
+ inr p = s1 ↓

+
1 p

where

↓+0 : Πs : S0. P
+
0 s → S

↓+1 : Πs : S1. P
+
1 s → S

(by mutuual recursion)

(s0, v0) ↓
+
0 (p0, nothing) = ((s0 ↓

+
0 p0, λp. v0 (p0 ⊕

+
0 p)), v0 p0)

2You may notice a small “mismatch” between the definitions of strict directed containers and coideal
comonads. We have given ⊕+ the type Π{s : S}.Πp : P+ s. P+ (s ↓+ p) → P+ s while the δ+ has type
D+ ·D → D+, not D+ ·D+ → D+. The reason is that the first option for the type of δ+ is more general and
really the “correct” one for comonads. For comonads whose underlying functors are containers, however,
the corresponding type Π{s : S}.Πp : P+ s. P (s ↓+ p) → P+ s buys no additional generality.
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(s0, v0) ↓
+
0 (p0, just p) = v0 p0 ↓

+
1 p

(s1, v1) ↓
+
1 (p1, nothing) = (v1 p1, (s1 ↓

+
1 p1, λp. v1 (p1 ⊕

+
1 p)))

(s1, v1) ↓
+
1 (p1, just p) = v1 p1 ↓

+
0 p

• ⊕+: Π{s : S}.Πp : P+s.P+(s ↓+ p) → P+s

inl p ⊕+ p′ = inl (p ⊕+
0 p′)

inr p ⊕+ p′ = inr (p ⊕+
1 p′)

where

⊕+
0 : Π{s : S0}.Πp : P+

0 s. P+(s ↓+0 p) → P+
0 s

⊕+
1 : Π{s : S1}.Πp : P+

1 s. P+(s ↓+1 p) → P+
1 s

(by mutual recursion)

(p0, nothing) ⊕
+
0 inl (p′0, p

′
1) = (p0 ⊕

+
0 p′0, p

′
1)

(p0, nothing) ⊕
+
0 inr p = (p0, just p)

(p0, just p1) ⊕
+
0 p = (p0, just (p1 ⊕

+
1 p))

(p1, nothing) ⊕
+
1 inr (p′1, p

′
0) = (p1 ⊕

+
1 p′1, p

′
0)

(p1, nothing) ⊕
+
1 inl p = (p1, just p)

(p1, just p0) ⊕
+
1 p = (p1, just (p0 ⊕

+
0 p))

Proposition 4.4. E is a product, in the category of all directed containers, of the strict

directed containers E0 and E1. It interprets to a product, in the category of all comonads,

of their interpreting coideal comonads.

The definitions above a considerable amount of detail, but the intuition behind them
is not difficult. The product of two strict directed containers generalizes the coproduct of
two monoids without non-unit right-invertible elements. The elements of this monoid are
finite alternating sequences of non-unit elements of the two given monoids. The definitions
above arrange for alternations of a similar nature.

4.3. Cofree Directed Containers. Given a container C0 = S0 ⊳ P0, let us define E =
(S ⊳ P, ↓, o,⊕) by

• S = νZ.Σs : S0.P0 s → Z

• P = µZ. λ(s, v). 1 + Σp : P0 s. Z (v p)
• (by recursion)
(s, v) ↓ inl ∗ = (s, v)
(s, v) ↓ inr (p, p′) = v p ↓ p′

• o {s, v} = inl ∗
• (by recursion)
inl ∗ ⊕ {s, v} p′′ = p′′

inr (p, p′) ⊕ {s, v} p′′ = inr (p, p′ ⊕ {v p} p′′)

Proposition 4.5. E is a cofree directed container on C0. It interprets into a cofree comonad

on the functor JC0K
c, which has its underlying functor isomorphic to DX = νZ.X×JC0K

c Z.

Example 4.6. In the special case S0 = 1, we get that S = νZ. Σ∗ : 1. P0 ∗ → Z ∼= 1 and
this example degenerates to the free monoid on a given set P0 ∗, i.e., the monoid of lists over
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P0 ∗ (with the empty list as the unit and concatenation as the multiplication operation).
This directed container interprets into the comonad of nonwellfounded node-labelled P0 ∗-
branching trees.

4.4. Cofree Recursive Directed Containers. A recursive comonad is a coideal comonad
(D+, δ+) such that, for any map f : D+ (X × Y ) → Y , there exists a unique map f † :
D+X → Y such that

D+X
f†

//

δ+

��

Y

D+ (DX)
D+ (X×f†)

// D+ (X × Y )

f

OO

Recursive directed containers are the pullback of the interpretation of strict directed
containers and the inclusion of recursive comonads into coideal comonads.

Now the cofree recursive directed container on a given container C is obtained by
replacing the ν in the definition of the shape set S of the cofree directed container with µ.
The interpretation has its underlying functor isomorphic to DX = µZ.X × JCKcZ, which
is the cofree recursive comonad on JCKc.

While cofree directed containers represent datatypes of node-labelled nonwellfounded
trees, cofree recursive directed containers correspond to node-labelled wellfounded trees.
The simplest interesting example is the datatype of non-empty lists (with its suffixes struc-
ture), which is represented by the cofree recursive directed container on the “maybe” con-
tainer 1+ 1⊳ λ{(inl ∗). 0 ; (inr ∗). 1}, i.e., two shapes, one with no positions, the other with
one position.

4.5. Data-structures with a Focus. Below we discuss directed containers equipped a
notion of focus. We present a construction for turning any container into a directed container
with a designated focus. We also show that the zipper types of Huet [20] have a direct
representation as directed containers.

Focussing. Any container C0 = S0 ⊳ P0 defines a directed container E = (S ⊳ P , ↓, o,⊕)
as follows. We take S = Σs : S0. P0 s, so that a shape is a pair of a shape s, the “shape
proper”, and an arbitrary position p in that shape, the “focus”. We take P (s, p) = P0 s,
so that a position in the shape (s, p) is a position in the shape proper s, irrespective of the
focus. The subshape determined by position p′ in shape (s, p) is given by keeping the shape
proper but changing the focus: (s, p) ↓ p′ = (s, p′). The root in the shape (s, p) is the focus
p, so o {s, p} = p. Finally, we take the translation of positions from the subshape (s, p′)
given by position p′ to shape (s, p) to be the identity, by defining p′ ⊕ {s, p} p′′ = p′′. All
directed container laws are satisfied.

The directed container E so obtained interprets into the canonical comonad structure on
the functor ∂JC0K

c× Id, where ∂F denotes the derivative of the functor F . (For derivatives
of set functors and containers, see Abbott et al. [4].)

Differently from, e.g., the cofree directed container construction, this construction is
not a functor from Cont to DCont. Instead, it is a functor from the category of containers
and Cartesian container morphisms (where position maps are bijections).
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Zippers. Inductive (tree-like) datatypes with a designated focus position are isomorphic to
the zipper types of Huet [20]. A zipper data-structure encodes a tree with a focus as a pair
of a context and a tree. The tree is the subtree of the global tree rooted by the focus and
the context encodes the rest of the global tree. On zippers, changing the focus is supported
via local navigation operations for moving one step down into the tree or up or aside into
the context.

Zipper datatypes are directly representable as directed containers. We illustrate this
on the example of zippers for lists (which are, in fact, the same as zippers for non-empty
lists, as one cannot focus on a position in the empty list).

Example 4.7. A list zipper is a pair of a list (the context) and a non-empty list (the suffix
determined by the focus position). Accordingly, by defining S = Nat × Nat, the shape of
a zipper is a pair (s0, s1) where s0 is the shape of the context and s1 is the shape of the
suffix. For positions, it is convenient to choose P (s0, s1) = {−s0, . . . , s1} by allocating the
negative numbers in the interval for positions in the context and non-negative numbers for
positions in the suffix. The root position is o {s0, s1} = 0, i.e., the focus. The subshape for
each position is given by (s0, s1) ↓ p = (s0+ p, s1− p) and translation of subshape positions
by p ⊕ {s0, s1} p

′ = p+ p′.
Fig. 4 gives an example of a non-empty list with focus with its shape fixed to s = (5, 6).

It should be clear from the figure how the ⊕ operation works on positions p = 4 and p′ = −7
to get back the position p ⊕ p′ = −3 in the initial shape. The subshape operation ↓ works
as follows: s ↓ p gives back a subshape s′ = (9, 2) and s ↓ (p ⊕ p′) gives s′′ = (2, 9).

• • • • • •

p=4

44

p⊕p=+p
′=−3

hh

s=(5,6)
①①①①①①①①①①①

❋❋
❋❋

❋❋
❋❋

❋❋
❋

❋❋❋❋❋❋❋❋❋❋❋

①①
①①
①①
①①
①①
① • • • •

p
′=−7

rr

s
′=(9,2)

• •

Figure 4: The shape and positions for non-empty lists of length 12 focussed at position 5

The isomorphism of the directed container representation of the list zipper datatype
and the directed container of focussed lists is t : Nat × Nat → Σs : Nat. {0, . . . , s − 1},
t (s0, s1) = (s0 + s1 + 1, s0), q : Π{(s0, s1) : Nat × Nat}. {0, . . . , s0 + s1} → {−s0, . . . , s1},
q {s0, s1} p = p− s0.

We refrain here from delving deeper into the topic of derivatives and zippers, leaving
this discussion for another occasion.

5. Containers ∩ Monads = ?

Given that comonads whose underlying functor is the interpretation of a container are the
same as directed containers, it is natural to ask whether a similar characterization is possible
for monads whose underlying functor can be represented as a container. The answer is “yes”,
but the additional structure is more involved than that of directed containers.

Given a container C = S ⊳P , the structure (η, µ) of a monad on the functor T = JCKc

is interdefinable with the following structure on C
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• e : S (for the shape map for η),
• • : Πs : S.(P s → S) → S (for the shape map for µ),
• 0 : Π{s : S}.Πv : P s → S.P (s • v) → P s and
• 1 : Π{s : S}.Πv : P s → S.Πp : P (s • v). P (v (v 0 {s}p)) (both for the position map for
µ)

subject to three shape equations and five position equations. Perhaps not unexpectedly, this
amounts to having a monoid structure on C. We refrain from a more detailed discussion of
this variation of the concept of containers.

Example 5.1. To get some intuition, consider the monad structure on the datatype of
lists. The unit is given by singleton lists and multiplication is flattening a list of lists by
concatenation. For the list container S = Nat, P s = Fin s, we get that e = 1, s • v =∑

p:Fin s v p, v 0 {s} p = [greatest p′ : Fin s such that
∑

p′′:Fin p′ v p
′′ ≤ p] and v 1 {s} p =

p−
∑

p′′:Fin (v0{s} p) v p
′′. The reason is that the shape of singleton lists is e while flattening

a list of lists with outer shape s and inner shape v p for every position p in s results in a list
of shape s•v. For a position p in the shape of the flattened list, the corresponding positions
in the outer and inner shapes of the given list of lists are v 0 {s} p and v 1 {s} p.

6. Cointerpreting Directed Containers into Monads

What we have just described is not the only way to relate containers to monads. In a
recent work [8], we defined cointerpretation of containers as the functor 〈〈−〉〉c : Contop →
[Set,Set] given by

〈〈S ⊳ P 〉〉cX = Πs : S.Ps×X ∼= (Πs : S.P s)× (S → X)

Differently from J−Kc, the functor 〈〈−〉〉c is neither full nor faithful. It also fails to be
monoidal for the monoidal structure on Contop (taken from Cont). But it is lax monoidal.

It is straightforward that DContop ∼= (Comonoids(Cont))op ∼= Monoids(Contop).
Lax monoidal functors send monoids to monoids. Hence 〈〈−〉〉c lifts to a functor 〈〈−〉〉dc :
DContop → Monads(Set) that equips each set functor 〈〈S ⊳P 〉〉c with a monad structure

η : ∀{X}.X → Πs : S.P s×X

η x s = (o {s}, x)
µ : ∀{X}. (Πs : S. P s×Πs′ : S. P s′ ×X) → Πs : S.P s×X

µf s = let {(p, g) = f s; (p′, x) = g (s ↓ p)} in (p ⊕ p′, x)

Due to the resemblance to compatible compositions of reader and writer monads, we call
monads in the image of this functor “dependently typed update monads”. It is instructive
to think of shapes in S as states, positions in Ps as updates applicable to a state s (or
programs safe to evaluate from state s), s ↓ p as the result of applying an update p to the
state s (or the result of evaluating p from s), o {s} as the nil update in state s and p ⊕ p′

as accumulation of two consecutive updates (skip and sequential composition).

Example 6.1. The directed container for the nonempty list comonad, S = Nat, P s = [0..s],
s ↓ p = s − p, o = 0, p ⊕ p′ = p + p′, gives us a monad on the set functor T given by
T X = Πs : Nat. [0..s] × X. The states are natural numbers; the updates applicable to a
state s are numbers not greater than s; applying an update means decrementing the state.
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We can see that directed containers are not more “comonadic” inherently than they
are “monadic”. We see them first of all as an algebraic-like structure in their own right, a
generalization of monoids.

7. Directed Containers in Categories with Pullbacks

Container theory can be carried out in locally Cartesian closed categories (LCCCs)—the
LCCC generalization of containers being well known under the name of polynomials [15,
23]—and even more generally in categories with pullbacks [32]. It is natural to expect the
same of directed container theory.

This is the case indeed. The proofs in this paper can be seen as having been carried out
in the internal language of an LCCC (with the assumptions of existence of initial algebras
and final coalgebras corresponding to assumptions about availability of W- and M-types).

In the weaker setting of a category with pullbacks, one has to be a lot more careful. It
is possible to define the concepts required from the first principles.

We show the definitions of the counterparts of directed containers and directed container
morphisms; we call them “directed polynomials” and “directed polynomial morphisms” in
the local scope of this section.

In all diagrams below, bullet-labelled nodes with a pair of unlabelled outgoing arcs
denote pullbacks defined by a pair of maps that are given directly or constructed. Dashed
arrows denote unique maps into a pullback. The polygon actually required to commute is
marked with a small circular arrow.

Given a category with pullbacks C, a directed polynomial is given by

• two objects S and P (“sets” of shapes and positions) and an exponentiable map s (as-
signing every position a shape)

P

s

��
S

• a morphism ↓ picking out a shape for each position (the corresponding subshape)

P
↓

// S

• a map o picking out, for every shape, a position in that shape (the root position)

P

s

��
S

�

S

o

__❄❄❄❄❄❄❄❄❄❄

• a map ⊕ sending a position in a given, global shape and a position in the corresponding
to subshape to a position in the global shape (translation of the subshape position to the
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global shape)

P

s

��

•

⊕

__❅❅❅❅❅❅❅❅❅❅❅

��

//

	

P

s

��
P

↓
//

s

��

S

S

satisfying the following five laws:

(1)

P
↓ // S

	

S

o

__❄❄❄❄❄❄❄❄❄❄

(2)

P ↓

!!
•

�⊕

__❅❅❅❅❅❅❅❅❅❅❅

��

// P

s

��

↓
// S

P
↓

// S

(3)

P

❅❅
❅❅

❅❅
❅❅

❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
•

��

//⊕oo

�

P

s

��

P

OO

S

o

OO

P
↓

// S



20 D. AHMAN, J. CHAPMAN, AND T. UUSTALU

(4)

P

❅❅
❅❅

❅❅
❅❅

❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

•

��

%%

⊕

OO

	

Poo P

s

��
P

↓

%%
S

o
oo S

(5)

P

�

•
⊕oo

��

// P

s

��

•

��

))

⊕

OO

•

��

//

OO

oo •

��

//

⊕

OO

P

s

��
P

↓

))
•

⊕
oo

��

// P
↓

//

s

��

S

P
↓

// S

The data S, ↓, o, ⊕ here correspond to the homonymous data of a directed container while
P and s together correspond to P . The five laws governing them correspond exactly to the
five laws of a directed container.

A morphism between two directed polynomials (S,P, s, ↓, o,⊕) and (S′, P ′, s′, ↓′, o′,⊕′)
is given by two maps t and q (of shapes and positions)

P

s

��

� •

q
__❅❅❅❅❅❅❅

��⑧⑧
⑧⑧
⑧⑧
⑧

  ❆
❆❆

❆❆
❆❆

S

t

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇ P ′

s
′

��
S′

satisfying the following three laws:
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(1)

P
↓ // S

t

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃

•
q

__❅❅❅❅❅❅❅

��⑧⑧
⑧⑧
⑧⑧
⑧

  ❆
❆❆

❆❆
❆❆

�

S

t

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇ P ′

s
′

��

↓′ // S′

S′

(2)

P

� •

q
__❅❅❅❅❅❅❅❅

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

  ❅
❅❅

❅❅
❅❅

S

o

OO

??

P ′

s
′

��

S

t

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

S′

o′

OO

S′
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(3)

P

�

•

⊕

OO

//

��

P

s

��

•

q

``❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇

vv

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

P
↓

//

s

��

S

t

��

•

uu❦❦❦❦
❦❦❦❦

❦❦❦❦
❦❦❦❦

❦❦❦

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂

//

��

XX OO

•

q

__❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄ P ′

s′

��

S

t

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

•

q

^^❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

•

⊕′

OO

//

��

P ′

s′

��
P ′

↓′
//

s′

��

S′

S′

The data t, q correspond to the homonymous data of a directed container morphism
and the three laws to the three laws of a directed container morphism.

In the special case C = Set, the definitions of a directed polynomial and directed
polynomial morphism are equivalent to those of a directed container and directed container
morphism.

Remarkably, the definition of a directed polynomial is completely symmetric in s and
↓—swapping them over we also get a directed polynomial. The definition of a directed
polynomial morphism is symmetric, if q is an isomorphism.

The definitions of the interpretation of a directed polynomial resp. directed polynomial
morphism into a comonad resp. comonad morphism require using distributivity pullbacks
in C (or pullbacks in its slice categories).
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8. Related Work

The core of this paper builds on the theory of containers as developed by Abbott, Altenkirch
and Ghani [2, 1] to analyze strictly positive datatypes. Some generalizations of the concept
of containers are the indexed containers of Altenkirch and Morris [9, 25] and the quotient
containers of Abbott et al. [3]. In our work we look at a specialization of containers rather
than a generalization. Recently [7], we have also studied compatible compositions of directed
containers and how they generalize Zappa-Szép products [33] of two monoids.

Simple/indexed containers are intimately related to strongly positive datatypes/families
and simple/dependent polynomial functors as appearing in the works of Dybjer [14], Mo-
erdijk and Palmgren [24], Gambino and Hyland [15], Kock [23]. Girard’s normal functors
[18] and Joyal’s analytic functors [21] functors are similar to containers resp. quotient con-
tainers, but only allow for finitely many positions in a shape. Gambino and Kock [16] also
treat polynomial monads.

Abbott, Altenkirch, Ghani and McBride [4] have investigated derivatives of datatypes.
Derivatives provide a systematic way to explain Huet’s zipper type [20].

Brookes and Geva [12] and later Uustalu with coauthors [29, 30, 19, 13] have used
comonads to analyze notions of context-dependent computation such as dataflow computa-
tion, attribute grammars, tree transduction and cellular automata. Uustalu and Vene’s [31]
observation of a connection between bottom-up tree relabellings and containers with extra
structure started our investigation into directed containers.

9. Conclusions and Future Work

We introduced directed containers as a specialization of containers for describing a certain
class of datatypes (data-structures where every position determines a sub-data-structure)
that occur very naturally in programming. It was a pleasant discovery for us that directed
containers are an entirely natural concept also from the mathematical point of view: they
are the same as containers whose interpretation carries the structure of a comonad. They
also generalize monoids in an interesting way. In a recent piece of work [6], we have witnessed
that coalgebras of comonads interpreting directed containers are relevant for bidirectional
transformations as a flavor of lenses (“dependently typed update lenses”).

As future work, we intend to take a closer look at focussing and related concepts, such
as derivatives. A curious special case of directed containers supports translation of the
root of a shape into every subshape. Such bidirectional containers include, e.g., focussed
containers and generalize groups in the same way as directed containers generalize monoids.
We would like to find out if this specialization of directed containers is an interesting and
useful concept. We wonder whether our explicit formula for the product of two directed
containers can be scaled to the general, non-strict, case. Last, we would like to analyze
containers that are monads more closely.

Acknowledgments. We are indebted to Thorsten Altenkirch, Jeremy Gibbons, Peter Morris,
and Sam Staton for comments and suggestions. We thank our anonymous referees for the
useful feedback that helped us improve the article.



24 D. AHMAN, J. CHAPMAN, AND T. UUSTALU

References

[1] M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.
[2] M. Abbott, T. Altenkirch, N. Ghani. Containers: Constructing strictly positive types. Theor. Comput.

Sci., 342(1):3–27, 2005.
[3] M. Abbott, T. Altenkirch, N. Ghani, C. McBride. Constructing polymorphic programs with quotient

types. In D. Kozen, ed., Proc. of 7th Int. Conf. on Mathematics of Program Construction, MPC 2004,
vol. 3125 of Lect. Notes in Comput. Sci., pp. 2–15. Springer, 2004.

[4] M. Abbott, T. Altenkirch, N. Ghani, C. McBride. ∂ is for data: differentiating data structures. Fund.
Inform., 65(1–2):1–28, 2005.

[5] D. Ahman, J. Chapman, T. Uustalu. When is a container a comonad? In L. Birkedal, ed., Proc. of 15th
Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2012, vol. 7213
of Lect. Notes in Comput. Sci., pp. 74–88. Springer, 2012.

[6] D. Ahman, T. Uustalu. Coalgebraic update lenses. In B. Jacobs, A. Silva, S. Staton, eds., Proc. of 30th
Conf. on Mathematical Foundations of Programming Semantics, MFPS XXX, Electron. Notes in Theor.
Comput. Sci., Elsevier, to appear.

[7] D. Ahman, T. Uustalu. Distributive laws of directed containers. Progress in Informatics, 10:3–18, 2013.
[8] D. Ahman, T. Uustalu. Update monads: cointerpreting directed containers. In R. Matthes, A. Schubert,

eds., Proc. of 19th Conf. on Types for Proofs and Programs, TYPES 2013, vol. 26 of Leibniz Int. Proc.
in Inform., pp. 1–23. Dagstuhl Publishing, 2014.

[9] T. Altenkirch, P. Morris. Indexed containers. In Proc. of 24th Ann. IEEE Symp. on Logic in Computer
Science, LICS 2009, pp. 277–285. IEEE CS Press, 2009.

[10] J. Beck. Distributive laws. In B. Eckmann, ed., Seminar on Triples and Categorical Homology, ETH
1966/67, vol. 80 of Lect. Notes in Math., pp. 119–140. Springer, 1969.

[11] M. G. Brin. On the Zappa-Szép product. Commun. in Algebra, 33(2):393–424, 2005.
[12] S. Brookes, S. Geva. Computational comonads and intensional semantics. In M. P. Fourman, P. T.

Johnstone, A. M. Pitts, eds., Applications of Categories in Computer Science, vol. 77 of London Math.
Society Lect. Note Series, pp. 1–44. Cambridge Univ. Press, 1992.

[13] S. Capobianco, T. Uustalu. A categorical outlook on cellular automata. In J. Kari, ed., Proc. of 2nd
Symp. on Cellular Automata, JAC 2010, vol. 13 of TUCS Lecture Note Series, pp. 88–89. Turku Centre
for Comput. Sci., 2011.

[14] P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory. Theor.
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énumerative, vol. 1234 of Lect. Notes in Math., pp. 126–159. Springer, 1987.
[22] G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits,

associated sheaves and so on. Bull. of Austral. Math. Soc., 22(1):1–83, 1980.
[23] J. Kock. Polynomial functors and trees. Int. Math. Research Notices, 2011(3):609–673, 2011.
[24] I. Moerdijk, E. Palmgren. Wellfounded trees in categories. Ann. of Pure and Appl. Logic 104(1–3):189–

218, 2000.
[25] P. Morris. Constructing Universes for Generic Programming. PhD thesis, University of Nottingham,

2007.
[26] U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis,

Chalmers University of Technology, 2007.



WHEN IS A CONTAINER A COMONAD? 25

[27] U. Norell. Dependently typed programming in Agda. In P. Koopman, R. Plasmeijer, and D. Swierstra,
eds., Revised Lectures from 6th Int. School on Advanced Functional Programming, AFP 2008, vol. 5832
of Lect. Notes in Comput. Sci., pp. 230–266. Springer, 2009.

[28] R. Prince, N. Ghani, C. McBride. Proving properties about lists using containers. In J. Garrigue,
M. Hermenegildo, eds., Proc. of 9th Int. Symp. on Functional and Logic Programming, FLOPS 2008,
vol. 4989 of Lect. Notes in Comput. Sci., pp. 97–112. Springer, 2008.

[29] T. Uustalu, V. Vene. The essence of dataflow programming. In K. Yi, ed., Proc. of 2nd Asian Symp.
on Programming Languages and Systems, APLAS 2004, vol. 3780 of Lect. Notes in Comput. Sci., pp.
2–18. Springer, 2004.

[30] T. Uustalu, V. Vene. Comonadic functional attribute evaluation. In M. van Eekelen, ed., Trends in
Functional Programming 6, pp. 145–162. Intellect, 2007.

[31] T. Uustalu, V. Vene. Comonadic notions of computation. In J. Adámek, C. Kupke, eds., Proc. of 9th
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Appendix A. Proofs for Section 3

Proof of Proposition 3.10.

Proof. We must check that the interpretation JEKdc = (D, ε, δ) of the given directed con-
tainer E = (C, ↓, o,⊕) is a comonad.
Proof of the right counital law:

D ε (δ (s, v))
= {definition of D}

(λ(s, v). (s, λp. ε (v p))) (δ (s, v))
= {definitions of ε, δ}

(s, λp. v (p ⊕ o))
= {directed container law 3}

(s, v)

Proof of the left counital law:

ε (δ (s, v))
= {definitions of ε, δ}

(s ↓ o, λp′. v (o ⊕ p′))
= {directed containers laws 1 and 4}

(s, v)

Proof of the coassociativity law:

D δ (δ (s, v))
= {definition of D}

(λ(s, v). (s, λp. δ (v p))) (δ (s, v))
= {definition of δ}

(s, λp. (s ↓ p, λp′. ((s ↓ p) ↓ p′, λp′′. v (p ⊕ (p′ ⊕ p′′)))))
= {directed container laws 2 and 5}

(s, λp. (s ↓ p, λp′. (s ↓ (p ⊕ p′), λp′′. v ((p ⊕ p′) ⊕ p′′))))
= {definition of δ}

δ (δ (s, v))
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We must also verify that the interpretation JhKdc = τ of a morphism h = t⊳ q between
two directed containers E = (C, ↓, o,⊕) and E′ = (C ′, ↓′, o′,⊕′) is a comonad morphism
between JEKdc = (D, ε, δ) and JE′Kdc = (D′, ε′, δ′).
Proof of the counit preservation law:

ε (s, v)
= {definition of ε}

v o

= {directed container morphism law 2}
v (q o′)

= {definitions of τ , ε′}
ε′ (τ (s, v))

Proof of the comultiplication preservation law:

D τ (τ (δ (s, v)))
= {definition of D}

(λ(s, v). (s, λp. τ (v p))) (τ (δ (s, v)))
= {definitions of τ , δ}

(t s, λp. (t (s ↓ q p), λp′. v (q p ⊕ q p′)))
= {directed container morphism laws 1 and 3}

(t s, λp. (t s ↓′ p, λp′. v (q (p ⊕′ p′))))
= {definitions of τ , δ′}

δ′ (τ (s, v))

Proof of Proposition 3.11.

Proof. From Proposition 2.8, we know that the interpretation of containers is fully faithful.
It remains to show that, for directed containers E = (C, ↓, o,⊕), E′ = (C ′, ↓′, o′,⊕′) and a
morphism τ between the comonads JEKdc and JE′Kdc, the container morphism h = t⊳ q =
pτqc between C and C ′ is also a directed container morphism between E and E′.

The counit and comultiplication ε and δ of the comonad JEKdc induce container mor-
phisms hε : C → Idc and hδ : C → C ·c C by hε = tε⊳ qε = pe ◦ εqc, hδ = tδ ⊳ qδ = pm ◦ δqc.
Similarly ε′ and δ′ give us container morphisms hε

′
: C ′ → Idc and hδ

′
: C ′ → C ′ ·c C ′ by

hε
′
= tε

′
⊳ qε

′
= pe ◦ ε′qc, hδ

′
= tδ

′
⊳ qδ

′
= pm ◦ δ′qc.

Let us express hε and hδ directly in terms of ↓, o, ⊕.
First, from the definitions of ε, e we get

hε = pe ◦ εqc = pλ(s, v). (∗, λ∗. v (o {s}))qc

The definition of p−qc further gives us

tε s = ∗

qε {s} ∗ = o {s}

Second, the definitions of δ, m dictate that

hδ = pm {C,C} ◦ δqc = pλ(s, v). (s, λp. s ↓ p), λ(p, p′). v (p ⊕ {s} p′)qc

The definition of p−qc allows us to infer that

tδ s = (s, λp. s ↓ p)

qδ {s} (p, p′) = p ⊕ {s} p′
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Analogous direct expressions in terms of ↓′, o′, ⊕′ hold for hε
′
, hδ

′
.

Now, using hε, hδ , hε
′
, hδ

′
above, we can repackage the two comonad morphism laws for

τ = JhKc in terms of container interpretations as depicted in the following two diagrams.

JIdcKc

Id

e

OO

def. hε
′

def. hε

JCKc
JhKc //

ε

BB✆✆✆✆✆✆✆✆

JhεKc

88

counit pres.

JC′Kc

ε′

]]✿✿✿✿✿✿✿✿

Jhε
′

Kc

gg JC ·c CKc
Jh·chKc // JC′ ·c C′Kc

JCKc · JCKc
JhKc·JhKc//

m {C,C}

OO

nat. m

comult. pres.

def. hδ

JC′Kc · JC′Kc

m {C′,C′}

OO

def. hδ
′

JCKc
JhKc //

δ

OO
JhδKc

88

JC′Kc

δ′

OO Jhδ
′

Kc

ff

Going a step further, we can quote these two diagrams to get their reformulations in
terms of containers, resulting in the two diagrams below.

Id
c

C
h //

hε

DD✟✟✟✟✟✟✟
C′

hε
′

[[✼✼✼✼✼✼✼

C ·c C
h·ch // C′ ·c C′

C
h //

hδ

OO

C′

hδ
′

OO

We are now in a position to prove that h = pτqc satisfies directed container morphism
laws.

From the counit preservation law by going clockwise we get that

s
✤ // tεs

C
hε // Idc

qε {s} ∗ ∗
✤oo

and by going counter-clockwise

s
✤ // ts ✤ // tε

′

(t s)

C
h // C′ hε

′

// Idc

q {s} (qε
′

{t s} ∗) qε
′

{t s} ∗
✤oo ∗

✤oo

which gives us the second directed container morphism law:

o {s} = qε {s} ∗ = q {s} (qε
′
{t s} ∗) = q {s} (o′ {t s})

Clockwise traversal of the comultiplication preservation law gives us that

s
✤ // tδ s ✤ //

(t (fst (tδ s)),

λp. t (snd (tδ s)

(q {fst (tδ s)} p)))

C
hδ // C ·c C

h·ch // C′ ·c C′

qδ{s}

(q {fst (tδ s)} p,

q {snd (tδ s) (q {fst (tδ s)} p)} p′)

(q {fst (tδ s)} p,

q{snd (tδ s) (q {fst (tδ s)} p)} p′)

✤oo (p, p′)
✤oo
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and counter-clockwise traversal that

s
✤ // t s ✤ //tδ

′

(t s)

C
h // C′ hδ

′

// C′ ·c C′

q {s} (qδ
′

{t s} (p, p′)) qδ
′

{t s} (p, p′)
✤oo (p, p′)

✤oo

from where we can derive both the first and the third directed container morphism laws:

t (s ↓ q {s} p) = t (snd (tδ s) (q {s} p)) = t (snd (tδ s) (q {fst (tδ s)} p))

= snd (tδ
′
(t s)) p = t s ↓′ p

q {s} p ⊕ {s} q {s ↓ q {s} p} p′ = qδ{s} (q {s} p, q {snd (tδ s) (q {s} p)} p′)

= qδ{s} (q {fst (tδ s)} p, q {snd (tδ s) (q {fst (tδ s)} p)} p′)

= q {s} (qδ
′
{t s} (p, p′)) = q {s} (p ⊕′ {t s} p′)

Proof of Proposition 3.12.

Proof. We need to verify that (C, ↓, o,⊕) satisfies the directed container laws and can assume
that (D, ε, δ) satisfies the comonad laws.

The comonad laws can be rewritten in terms of container interpretations as outlined in
the following commuting diagrams:

JC ·c CKc
JC·chεKc // JC ·c Id

cKc

JρKc



nat. m

JCKc · JIdcKc

m {C,Id}

OO

mon. f. r. unit

JCKc · JCKc
JCKc·ε //

m {C,C}

OO

JCKc·JhεKc
33

def. hε

def. hδ

JCKc · Id

JCKc·e

OO

JCKc

JCKc

δ

OO

JhδKc

__

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

com. r. counit

JIdc ·c CKc

JλKc

��

JC ·c CKc
Jhε·cCKcoo

JIdcKc · JCKc
mon. f. l. unit

nat. mm {Id,C}

OO

JCKc Id · JCKc

e·JCKc

OO

JCKc · JCKc
ε·JCKcoo

m {C,C}

OO

JhεKc·JCKc
kk

def. hε

def. hδ

JCKc

δ

OO❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

com. l. counit

JhδKc

��

JCKc

com. coass.

δ
//

δ

��

JhδKc

def. hδ

++

JhδKc

""

JCKc · JCKc
m {C,C} //

δ·JCKc

��

JhδKc·JCKc

##
def. hδ

JC ·c CKc

Jhδ·cCKc

||

JCKc · JCKc

def. hδ

def. hδ

m {C,C}

��

JCKc·δ //

JCKc·JhδKc ))

JCKc · (JCKc · JCKc)

JCKc·m {C,C}

��

mon. f. ass.

(JCKc · JCKc) · JCKc
m {C,C}·JCKc

// JC ·c CKc · JCKc

m {C·cC,C}

��

nat. m

JC ·c CKc

JC·chδKc

66JCKc · JC ·c CKc
m {C,C·cC}//

nat. m

JC ·c (C ·c C)Kc J(C ·c C) ·c CKc
JαKcoo
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Next we quote these three diagrams to get the comonad laws in terms of containers in
the next three commuting diagrams.

C ·c C
C·chε // C ·c Id

c ρ // C

C

hδ

OO ✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

C Id
c ·c C

λoo C ·c C
hε·cCoo

C

hδ

OO❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

C
hδ //

hδ

��

C ·c C

hδ ·cC

��
C ·c C

C·chδ// C ·c (C ·c C) (C ·c C) ·c C
αoo

From the comonad right counital law we get by going clockwise

s
✤ // tδs ✤ //(fst (t

δ s),
λ . ∗)

✤ // fst (tδ s)

C
hδ // C ·c C

C·chε // C ·c Id
c ρ // C

qδ{s} (p,

qε {snd (tδ s) p} ∗)

(p,

qε{snd (tδ s) p} ∗)
✤oo (p, ∗)

✤oo p
✤oo

from where it follows that δ preserves the shape of the given data-structure as the outer
shape of the composite data-structure returned and that the third directed container law
holds:

s = fst (tδ s)

p = qδ{s}(p, qε{snd (tδs) p} ∗) = p ⊕ {s} o {s ↓ p}

Similarly, from the comonad left counital law we get by going counter-clockwise

s
✤ // tδs ✤ //(∗, λ∗. snd (t

δ s)

(qε {fst (tδ s)}))

✤ // snd (tδ s)

(qε {fst (tδ s)} ∗)

C
hδ // C ·c C

hε·cC // Idc ·c C
λ // C

qδ {s}

(qε {fst (tδ s)} ∗, p)

(qε {fst (tδ s)} ∗,
p)

✤oo (∗, p)
✤oo p

✤oo

from where the first and fourth directed container laws follow:

s = snd (tδ s) (qε {fst (tδ s)} ∗) = snd (tδ s) (qε {s}) = s ↓ o {s}

p = qδ{s} (qε {fst (tδ s)} ∗, p) = qδ{s} (qε {s} ∗, p) = o {s} ⊕ {s} p

The last two directed container laws are derivable from the comonad coassociativity
law. By going clockwise we get

s
✤ // tδs ✤ //

(tδ (fst (tδ s)),

snd (tδ s)◦

(qδ {fst (tδ s)}))

✤ //

(fst (tδ (fst (tδ s))),

(λp. snd (tδ (fst (tδs))) p,

λp′. snd (tδ s)

(qδ {fst (tδ s)} (p, p′))))

C
hδ // C ·c C

hδ ·cC // (C ·c C) ·c C
α // C ·c (C ·c C)

(qδ{s}

(qδ {fst (tδ s)}
(p, p′), p′′)

(qδ{fst (tδ s)}
(p, p′), p′′)

✤oo ((p, p′), p′′)
✤oo (p, (p′, p′′))

✤oo
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and by going counter-clockwise we get

s
✤ // tδs ✤ //

(fst (tδ s),

(λp. fst (tδ (snd (tδ s) p)),

λp′. snd (tδ (snd (tδs) p)) p′))

C
hδ // C ·c C

C·chδ // C ·c (C ·c C)

(qδ {s} (p,

qδ {snd (tδ s) p} (p′, p′′)))

(p,

qδ {snd (tδ s) p} (p′, p′′))
✤oo (p, (p′, p′′))

✤oo

from where the second and fifth directed container laws follow

s ↓ (p ⊕ p′) = snd (tδ s) (qδ {s} (p, p′)) = snd (tδ s) (qδ {fst (tδ s)} (p, p′)) =

snd (tδ (snd (tδ s) p)) p′ = (s ↓ p) ↓ p′

(p ⊕ {s} p′) ⊕ {s} p′′ = qδ {s} (qδ {s} (p′, p′′), p′′) = qδ {s} (qδ {fst (tδ s)} (p′, p′′), p′′) =

qδ {s} (p, qδ {snd (tδ s) p} (p′, p′′)) = p ⊕ {s} (p′ ⊕ {s ↓ p} p′′)

Proof of Proposition 3.13.

Proof. By interpreting the given directed container (C, ↓, o,⊕) we get a comonad (D, ε, δ)
whereby D = JCKc, ε (s, v) = v (o {s}) and δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′))).

From the comonad, we get a directed container (C, ↓′, o′,⊕′) = ⌈(D, ε, δ), C⌉ by taking
s ↓′ p = snd (tδ s) p, o′ {s} = qε {s} ∗, p ⊕′ {s} p′ = qδ {s} (p, p′).

This directed container must be equal to the original directed container (C, ↓, o,⊕), i.e.,
we need to prove that s ↓′ p = s ↓ p and o′ {s} = o {s} and p ⊕′ p′ = p ⊕ p′.

By the definitions of e, m, p−qc, for the container morphisms tε ⊳ qε = pe ◦ εqc and
tδ ⊳ qδ = pm ◦ δqc we have that

tε s = ∗

qε {s} ∗ = ε (s, id)

tδ s = (fst (δ (s, id)), λp. fst (snd (δ (s, id)) p))

qδ {s} (p, p′) = snd (snd (δ (s, id)) p) p′

Using the definitions of ↓′, o′, ⊕′, ε, δ, we calculate:

s ↓′ p = snd (tδ s) p = fst (snd (δ (s, id)) p)) = s ↓ p

o′ {s} = qε {s} ∗ = ε (s, id) = o {s}

p ⊕′ {s} p′ = qδ {s} (p, p′) = snd (snd (δ (s, id)) p) p′ = p ⊕ {s} p′

Proof of Proposition 3.14.

Proof. The comonad (D, ε, δ) induces a directed container (S⊳P, ↓, o,⊕) = ⌈(D, ε, δ), S⊳P ⌉
whereby

s ↓ p = fst (snd (δ (s, id)) p)

o {s} = ε {P s} (s, id)

p ⊕ {s} p′ = snd (snd (δ (s, id)) p) p′

By interpreting this directed container, we get a comonad (D′, ε′, δ′) = JS⊳P, ↓, o,⊕Kdc

by taking ε′ (s, v) = v (o {s}) and δ′ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′))).
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This comonad must equal (D, ε, δ), i.e., we need to prove thatD′ = D and ε′ {X} (s, v) =
ε {X} (s, v) and δ′ {X} (s, v) = δ {X} (s, v).

First of all, from the definition of directed container interpretation, we know that the
underlying functors are equal: D′ = JS ⊳ P Kc = D.

Using the definitions of ε′, δ′, ↓, o, ⊕ we can calculate

ε′ {X}(s, v) = v (o {s}) = v (qε {s} ∗) = v (ε {P s} (s, id))

δ′ {X}(s, v) = (s, λp. s ↓ p , λp′. v (p ⊕ {s} p′)) =

= (s, λp. (fst (snd δ {P s} (s, id) p), λp′. v (snd (snd δ {P s} (s, id) p) p′)))

Now, because of naturality of ε and δ expressed in the diagrams

(s, id)
✤ //✳

((

ε {P s} (s, id)
✏

ww

Σs : S.P s → P s
ε {P s} //

λ(s,v′). (s,v◦v′)

��

P s

v

��
Σs : S.P s → X

ε {X}
// X

(s, v)
✤ // ε {X} (s, v) = v (ε {P s} (s, id))

(s, id)
✤ //✲

((

δ {Ps} (s, id)
✘

ss

Σs : S.P s → P s
δ {P s} //

λ(s,v′). (s,v◦v′)

��

Σs : S.P s → Σs′ : S.P s′ → P s

λ(s,v′). (s,λp. (fst (v′ p),v◦snd (v′ p)))

��
Σs : S.P s → X

δ {X}
// Σs : S.P s → Σs′ : S.P s′ → X

(s, v)
✤ //

δ {X} (s, v) =
(fst (δ {P s} (s, id)),

λp. (fst (snd δ {P s} (s, id) p),
λp′. v (snd (snd δ {P s} (s, id) p) p′)))

it is evident that the counit and comultiplication of (D, ε, δ) and (D′, ε′, δ′) are equal:

ε′ {X} (s, v) = ε {X} (s, v)

δ′ {X} (s, v) = δ {X} (s, v)

Appendix B. Proofs for Section 4

Proof of Proposition 4.4.
We must show that the definitions yield a strict directed container that is a product of

two given strict directed containers in the category of all directed containers.
We first check that E is a strict directed container.
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Lemma B.1. The data ↓+ and ⊕+ equip the container S ⊳ P+ with a strict directed

container structure.

Proof. Auxiliary statements s ↓+0 (p ⊕+
0 p′) = (s ↓+0 p) ↓+ p′ and s ↓+1 (p ⊕+

1 p′) = (s ↓+1
p) ↓+ p′ for law 1, by mutual induction on the two ps. We show only the cases for the first
auxiliary statement; those of the second are symmetric.
Case p = (p0, nothing), p

′ = inl (p′0, nothing):

(s0, v0) ↓
+
0 ((p0, nothing) ⊕

+
0 inl (p′0, nothing))

= {definitions of ↓+0 , ⊕
+
0 }

((s0 ↓
+
0 (p0 ⊕

+
0 p′0), λp. v0 ((p0 ⊕

+
0 p′0) ⊕

+
0 p)), v0 (p0 ⊕

+
0 p′0))

= {strict directed container laws 1, 2}
(((s0 ↓

+
0 p0) ↓

+
0 p′0, λp. v0 (p0 ⊕

+
0 (p′0 ⊕

+
0 p))), v0 (p0 ⊕

+
0 p′0))

= {definitions of ↓+0 , ↓
+}

((s0, v0) ↓
+
0 (p0, nothing)) ↓

+ inl (p′0, nothing)

Case for p = (p0, nothing), p
′ = inl (p′0, just p

′
1):

(s0, v0) ↓
+
0 ((p0, nothing) ⊕

+
0 inl (p′0, just p

′
1))

= {definitions of ↓+0 , ⊕
+
0 }

v0 (p0 ⊕
+
0 p′0) ↓

+
1 p′1

= {definitions of ↓+0 , ↓
+}

((s0, v0) ↓
+
0 (p0, nothing)) ↓

+ inl (p′0, just p
′
1)

Case p = (p0, nothing), p
′ = inr p′:

(s0, v0) ↓
+
0 ((p0, nothing) ⊕

+
0 inr p′)

= {definitions of ↓+0 , ⊕
+
0 }

v0 p0 ↓
+
1 p′

= {definitions of ↓+0 , ↓
+}

((s0, v0) ↓
+
0 (p0, nothing)) ↓

+ inr p′

Case p = (p0, just p1):

(s0, v0) ↓
+
0 ((p0, just p1) ⊕

+
0 p′)

= {definitions of ↓+0 , ⊕
+
0 }

v0 p0 ↓
+
1 (p1 ⊕

+
1 p′)

= {inductive hypothesis for p1}

(v0 p0 ↓
+
1 p1) ↓

+ p′)

= {definition of ↓+0 }

((s0, v0) ↓
+
0 (p0, just p1)) ↓

+ p′
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Strict directed container law 1. Case s = (s0, s1), p = inl p:

(s0, s1) ↓
+ (inl p ⊕+ p′)

= {definition of ⊕+}

(s0, s1) ↓
+ inl (p ⊕+

0 p′)
= {definition of ↓+}

s0 ↓
+
0 (p ⊕+

0 p′)
= {first aux. statement}

(s0 ↓
+
0 p) ↓+ p′

= {definition of ↓+}
((s0, s1) ↓

+ inl p) ↓+ p′

Case p = inr p is symmetric.

Auxiliary statements (p ⊕+
0 p′) ⊕+

0 p′′ = p ⊕+
0 (p′ ⊕+ p′′) and (p ⊕+

1 p′) ⊕+
1 p′′ = p ⊕+

1
(p′ ⊕+ p′′) for law 2, by mutual induction on the two ps. We show only the cases of the first
statement. Case p = (p0, nothing), p

′ = inl (p′0, nothing), p
′′ = inl (p′′0, p

′′
1):

((p0, nothing) ⊕
+
0 inl (p′0, nothing)) ⊕

+
0 inl (p′′0 , p

′′
1)

= {definition of ⊕+
0 }

((p0 ⊕
+
0 p′0) ⊕

+
0 p′′0, p

′′
1)

= {strict direct container law 2}
(p0 ⊕

+
0 (p′0 ⊕

+
0 p′′0), p

′′
1)

= {definitions of ⊕+
0 , ⊕

+}

(p0, nothing) ⊕
+
0 (inl (p′0, nothing) ⊕

+ inl (p′′0, p
′′
1))

Case p = (p0, nothing), p
′ = inl (p′0, nothing), p

′′ = inr p′′:

((p0, nothing) ⊕
+
0 inl (p′0, nothing)) ⊕

+
0 inr p′′

= {definition of ⊕+
0 }

(p0 ⊕
+
0 p′0, just p

′′)

= {definitions of ⊕+
0 , ⊕

+}

(p0, nothing) ⊕
+
0 (inl (p′0, nothing) ⊕

+ inr p′′)

Case p = (p0, nothing), p
′ = inl (p′0, just p

′
1):

((p0, nothing) ⊕
+
0 inl (p′0, just p

′
1)) ⊕

+
0 p′′

= {definition of ⊕+
0 }

(p0 ⊕
+
0 p′0, just (p

′
1 ⊕

+
1 p′′))

= {definitions of ⊕+
0 , ⊕

+}

(p0, nothing) ⊕
+
0 (inl (p′0, just p

′
1) ⊕

+ p′′)

Case p = (p0, nothing), p
′ = inr p′:

((p0, nothing) ⊕
+
0 inr p′) ⊕+

0 p′′

= {definition of ⊕+
0 }

(p0, just (p
′ ⊕+

1 p′′))

= {definitions of ⊕+
0 , ⊕

+}

(p0, nothing) ⊕
+
0 (inr p′ ⊕+ p′′)
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Case p = (p0, just p1):

((p0, just p1) ⊕
+
0 p′) ⊕+

0 p′′

= {definition of ⊕+
0 }

(p0, just ((p1 ⊕
+
1 p′) ⊕+

1 p′′))
= {inductive hypothesis for p1}

(p0, just (p1 ⊕
+
1 (p′ ⊕+ p′′)))

= {definition of ⊕+
0 }

(p0, just p1) ⊕
+
0 (p′ ⊕+ p′′)

Strict directed container law 2. Case p = inl p:

(inl p ⊕+ p′) ⊕+ p′′

= {definition of ⊕+}

inl (p ⊕+
0 p′) ⊕+ p′′

= {definition of ⊕+}

inl ((p ⊕+
0 p′) ⊕+

0 p′)
= {first aux. statement}

inl (p ⊕+
0 (p′ ⊕+ p′′)

= {definition of ⊕+}
inl p ⊕+ (p′ ⊕+ p′′)

Case p = inr p is symmetric.

To check that E is a product of E0 and E1 we can either verify it directly that it satisfies
the required universal property or prove that it interprets to a product of the interpreting
comonads. Here we have chosen to pursue the first route.

For E to be a product of E0 and E1, it must come with directed container morphisms
π0 = tπ0 ⊳ qπ0 : E0 → E, π1 = tπ1 ⊳ qπ1 : E1 → E. We claim that they can be defined by

• tπ0 : S → S0

tπ0 ((s0, v0), (s1, v1)) = s0
• tπ1 : S → S1

tπ1 ((s0, v0), (s1, v1)) = s1
• qπ0 : Π{s : S}. P0 (t

π0 s) → P s

qπ0 nothing = nothing

qπ0 (just p) = just (inl (p, nothing))
• qπ1 : Π{s : S}. P1 (t

π1 s) → P s

qπ1 nothing = nothing

qπ1 (just p) = just (inr (p, nothing))

Moreover, any directed container E′ = (S′ ⊳ P ′, ↓′, o′,⊕′) with two directed container mor-
phisms f0 = tf0 ⊳ qf0 : E′ → E0 and f1 = tf1 ⊳ qf1 : E′ → E1 must jointly determine
a unique directed container morphism f = tf ⊳ qf : E′ → E such that the following two
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triangles commute.

(S′ ⊳ P ′, ↓′, o′,⊕′)

tf0⊳qf0

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

tf1⊳qf1

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

tf⊳qf

��
(S0 ⊳ P0, ↓0, o0,⊕0) (S ⊳ P, ↓, o,⊕)

tπ0⊳qπ0
oo

tπ1⊳qπ1
// (S1 ⊳ P1, ↓1, o1,⊕1)

(†)

We claim that f is given by

• tf : S′ → S

tf s = (tf0 s, tf1 s)
where
tf0 : S′ → S0

tf1 : S′ → S1

(by mutual corecursion)

tf0 s = (tf0 s, λp. tf1 (s ↓′ qf0 (just p)))

tf1 s = (tf1 s, λp. tf0 (s ↓′ qf1 (just p)))

• qf : Π{s : S′}. P (tf s) → P ′ s

qf nothing = o′

qf (just (inl p)) = qf0 p

qf (just (inr p)) = qf1 p

where
qf0 : Π{s : S′}. P+

0 (tf0 s) → P ′ s

qf1 : Π{s : S′}. P+
1 (tf1 s) → P ′ s

(by mutual recursion)

qf0 (p0, nothing) = qf0 (just p0)

qf0 (p0, just p1) = qf0 (just p0) ⊕
′ qf1p1

qf1 (p1, nothing) = qf1 (just p1)

qf1 (p1, just p1) = qf1 (just p1) ⊕
′ qf0p0

Lemma B.2. The container morphisms π0, π1 are directed container morphisms.3

Proof. We give the proof only for π0. The proof for π1 is symmetric.
Directed container morphism law 1. Case p = nothing:

tπ0 (s ↓ (qπ0 nothing))
= {definition of qπ0}

tπ0 (s ↓ nothing)
= {definition of ↓}

tπ0 s

= {definition of ↓0}
tπ0 s ↓0 nothing

3They are in fact strict directed container morphisms, but we will not prove this here, as we have not
defined this concept.
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Case p = just p:
tπ0 (((s0, v0), (s1, v1)) ↓ qπ0 (just p))

= {definition of qπ0}
tπ0 (((s0, v0), (s1, v1)) ↓ just (inl (p, nothing)))

= {definition of ↓}
tπ0 (((s0, v0), (s1, v1)) ↓

+ inl (p, nothing))
= {definition of ↓+}

tπ0 ((s0, v0) ↓
+
0 (p, nothing))

= {definition of ↓+0 }
tπ0 ((s0 ↓

+
0 p, λp′. v0 (p ⊕+

0 p′)), v0 p)
= {definition of tπ0}

s0 ↓
+
0 p

= {definition of tπ0}
tπ0 ((s0, v0), (s1, v1)) ↓

+
0 p

= {definition of ↓0}
tπ0 ((s0, v0), (s1, v1)) ↓0 just p

Directed container morphism law 2:

qπ0 o0
= {definition of o0}

qπ0 nothing

= {definition of qπ0}
nothing

= {definition of o}
o

Directed container morphism law 3. Case p = nothing:

qπ0 (nothing ⊕0 p
′)

= {definition of ⊕0}
qπ0 p′

= {definition of ⊕}
nothing ⊕ qπ0 p′

Case p = just p, p′ = nothing:

qπ0 (just p ⊕0 nothing)
= {definition of ⊕0}

qπ0 (just p)
= {definition of qπ0}

just (inl (p, nothing))
= {definition of ⊕}

just (inl (p, nothing)) ⊕ nothing

= {definition of qπ0}
qπ0 (just p) ⊕ nothing
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Case p = just p, p′ = just p′:

qπ0 (just p ⊕0 just p
′)

= {definition of ⊕0}
qπ0 (just (p ⊕+

0 p′))
= {definition of qπ0}

just (inl (p ⊕+
0 p′, nothing))

= {definition of ⊕+
0 }

just (inl ((p, nothing) ⊕+
0 inl (p′, nothing)))

= {definition of ⊕+}
just (inl (p, nothing) ⊕+ inl (p′, nothing))

= {definition of ⊕}
just (inl (p, nothing) ⊕ just (inl (p′, nothing))

= {definition of qπ0}
qπ0 (just p) ⊕ qπ0 (just p′))

Lemma B.3. The container morphism f = tf ⊳ qf is a directed container morphism.

Proof. Auxiliary statements tf (s ↓′ qf0 p) = tf0 s ↓+0 p and tf (s ↓′ qf1 p) = tf1 s ↓+1 p for
law 1, by mutual induction on the ps, showing the cases of the first statement; those of the
second one are symmetric. Case p = (p0, nothing).

tf (s ↓′ qf0(p0, nothing))

= {definition of qf0}
tf (s ↓′ qf0 (just p0))

= {definition of tf}

(tf0 (s ↓′ qf0 (just p0)), tf1 (s ↓
′ qf0 (just p0)))

= {definition of tf0}

((tf0 (s ↓′ qf0 (just p0)), λp. tf1 ((s ↓′ qf0 (just p0)) ↓
′ qf0 (just p))), tf1 (s ↓′ qf0 (just p0)))

= {directed container law 2}

((tf0 (s ↓′ qf0 (just p0), λp. tf1 (s ↓
′ (qf0 (just p0) ⊕

′ qf0 (just p))))), tf1 (s ↓′ qf0 (just p0)))
= {directed container morphism laws 1, 3}

((tf0 s ↓0 just p0, λp. tf1 (s ↓
′ (qf0 (just p0 ⊕0 just p))))), tf1 (s ↓

′ qf0 (just p0)))
= {definitions of ↓0, ⊕0}

((tf0 s ↓+0 p0, λp. tf1 (s ↓
′ (qf0 (just (p0 ⊕

+
0 p))))), tf1 (s ↓′ qf0 (just p0)))

= {definition of ↓+0 }

(tf0 s, λp. tf1 (s ↓′ qf0 (just p))) ↓+0 (p0, nothing)

= {definition of tf0}

tf0 s ↓+0 (p0, nothing)
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Case p = (p0, just p1):

tf (s ↓′ qf0 (p0, just p1))

= {definition of qf0}

tf (s ↓′ (qf0 (just p0) ⊕
′ qf1 p1))

= {directed container law 2 }

tf ((s ↓′ qf0 (just p0)) ↓
′ qf1 p1)

= {inductive hypothesis for p1}

tf1 (s ↓′ qf0 (just p0)) ↓
+
1 p1

= {definition of ↓+0 }

(tf0 s, λp. tf1 (s ↓′ qf0 (just p))) ↓+0 (p0, just p1)

= {definition of tf0}

tf0 s ↓+0 (p0, just p1)

Directed container morphism law 1. Case p = nothing:

tf (s ↓′ qf nothing)
= {definition of qf}

tf (s ↓′ o′)
= {directed container law 1}

tf s

= {definition of ↓}
tf s ↓ nothing

Case p = just (inl p):
tf (s ↓′ qf (just (inl p)))

= {definition of qf}

tf (s ↓′ qf0 p)
= {aux. statement}

tf0 s ↓+0 p

= {definition of tf , ↓}
tf s ↓ just (inl p)

Case p = just (inr p) is symmetric.
Directed container morphism law 2:

qf o

= {definition of o}
qf nothing

= {definition of qf}
o′

Auxiliary statements qf0 (p ⊕+
0 p′) = qf0 p ⊕′ qf (just p′) and qf1 (p ⊕+

1 p′) = qf1 p ⊕′

qf (just p′) for law 3, by mutual induction on the ps, showing the cases of the first statement.
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Case p = (p0, nothing), p
′ = inl (p′0, nothing):

qf0 ((p0, nothing) ⊕
+
0 inl (p′0, nothing))

= {definition of ⊕+
0 }

qf0 (p0 ⊕
+
0 p′0, nothing)

= {definition of qf0}
qf0 (just (p0 ⊕

+
0 p′0))

= {definition of ⊕0}
qf0 (just p0 ⊕0 just p

′
0)

= {directed container morphism law 3}
qf0 (just p0) ⊕

′ qf0 (just p′0)

= {definition of qf0}

qf0 (p0, nothing) ⊕
′ qf0 (p′0, nothing)

= {definition of qf}

qf0 (p0, nothing) ⊕
′ qf (just (inl (p′0, nothing)))

Case p = (p0, nothing), p
′ = inl (p′0, just p

′
1):

qf0 ((p0, nothing) ⊕
+
0 inl(p′0, just p

′
1))

= {definition of ⊕+
0 }

qf0 (p0 ⊕
+
0 p′0, just p

′
1)

= {definition of qf0}

qf0 (just (p0 ⊕
+
0 p′0)) ⊕

′ qf1 p′1
= {definition of ⊕0}

qf0 (just p0 ⊕0 just p
′
0) ⊕

′ qf1 p′1
= {directed container morphism law 3}

(qf0 (just p0) ⊕
′ qf0 (just p′0)) ⊕

′ qf1 p′1
= {directed container law 5}

qf0 (just p0) ⊕
′ (qf0 (just p′0) ⊕

′ qf1 p′1)

= {definition of qf0}

qf0 (p0, nothing) ⊕
′ qf0 (p′0, just p

′
1)

= {definition of qf}

qf0 (p0, nothing) ⊕
′ qf (just (inl (p′0, just p

′
1)))

Case p = (p0, nothing), p
′ = inr p′:

qf0 ((p0, nothing) ⊕
+
0 inr p′)

= {definition of ⊕+
0 }

qf0 (p0, just p
′)

= {definition of qf0}

qf0 (just p0) ⊕
′ qf1 p′

= {definitions of qf0 and qf}

qf0 (p0, nothing) ⊕
′ qf (just (inr p′))
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Case p = (p0, just p1):

qf0 ((p0, just p1) ⊕
+
0 p′)

= {definition of ⊕+
0 }

qf0 (p0, just (p1 ⊕
+
1 p′))

= {definition of qf0}

qf0 (just p0) ⊕
′ qf1 (p1 ⊕

+
1 p′)

= {inductive hypothesis for p1}

qf0 (just p0) ⊕
′ (qf1 p1 ⊕

′ qf (just p′))
= {directed container law 5}

(qf0 (just p0) ⊕
′ qf1 p1) ⊕

′ qf (just p′)

= {definition of qf0}

qf0 (p0, just p1) ⊕
′ qf (just p′)

Directed container law 3. Case p = nothing:

qf (nothing ⊕ p′)
= {definition of ⊕ }

qf p′

= {directed container law 4}
o′ ⊕′ qf p′

= {definition of qf}
qf nothing ⊕′ qf p′

Case p = just p, p′ = nothing:

qf (just p ⊕ nothing)
= {definition of ⊕}

qf (just p)
= {directed container law 3}

qf (just p) ⊕′ o′

= {definition of qf}
qf (just p) ⊕′ qf nothing

Case p = just (inl p), p′ = just p′:

qf (just (inl p) ⊕ just p′)
= {definition of ⊕ }

qf (just (inl p ⊕+ p′))
= {definition of ⊕+ }

qf (just (inl (p ⊕+
0 p′)))

= {definition of qf}

qf0 (p ⊕ p′)
= {first aux. statement}

qf0 p ⊕′ qf (just p′)

= {definition of qf0 }
qf (just (inl p)) ⊕′ qf (just p′)

Case p = just (inr p), p′ = just p′ is symmetric.
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Lemma B.4. The product triangles (†) commute, i.e., π0 ◦ f = f0 and π1 ◦ f = f1.

Proof. We verify only the left triangle π0 ◦ f = f0. The right triangle is symmetric.
Statement for shapes:

tπ0 (tf s)
= {definition of tπ0}

fst (fst (tf s))
= {definition of tf}

fst (tf0 s)

= {definition of tf0}
tf0 s

Statement for positions. Case p = nothing:

qf (qπ0 nothing)
= {definition of qπ0}

qfnothing

= {definition of qf}
o′

= {directed container morphism law 2}
qf0 o0

= {definition of o0}
qf0 nothing

Case p = just p:
qf (qπ0 (just p))

= {definition of qπ0}
qf (just (inl (p, nothing)))

= {definition of qf}

qf0 (p, nothing)

= {definition of qf0}
qf0 (just p)
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Lemma B.5. The directed container morphism f = tf ⊳ qf is unique, i.e., if there is a

directed container morphism h = th ⊳ qh : E′ → E such that π0 ◦ h = f0 and π1 ◦ h = f1,

then f = h.

Proof. Auxiliary statements tf0 s = fst (th s) and tf1 s = snd (th s) for shapes, by mutual
coinduction, showing only the case of the first statement.

tf0 s

= {definition of tf1}

(tf0 s, λp0. tf1 (s ↓
′ qf0 (just p0)))

= {assumption}

(tπ0 (th s), λp0. tf1 (s ↓
′ qf0 (just p0)))

= {coinductive hypothesis}
(tπ0 (th s), λp0. snd (t

h (s ↓′ qh (qπ0 (just p0))))
= {directed container morphism law 1}

(tπ0 (th s), λp0. snd (t
h s ↓ qπ0 (just p0)))

= {definition of qπ0}
(tπ0 (th s), λp0. snd (t

h s ↓ just (inl (p0, nothing))))
= {definition of ↓}

(tπ0 (th s), λp0. snd (t
h s ↓+ inl (p0, nothing)))

= {definition of ↓+}

(tπ0 (th s), λp0. snd (fst (t
h s) ↓+0 (p0, nothing)))

= {definition of ↓+0 }
(tπ0 (th s), λp0. snd (fst (t

h s)) p0)
= {definition of tπ0}

fst (th s)

Statement for shapes, i.e., tf = th:

tf s

= {definition of tf}

(tf0 s, tf1 s)
= {aux. statements}

th s

Auxiliary statements qf0 p = qh (just (inl p)) and qf1 p = qh (just (inr p)) for positions, by
mutual induction on the ps, showing the cases of the first statement. Case p = (p0, nothing):

qf0 (p0, nothing)))

= {definition of qf0}
qf0 (just p0)

= {assumption}
qh (qπ0 (just p0))

= {definition of qπ0}
qh (just (inl (p0, nothing)))
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Case p = (p0, just p1):

qf0 (p0, just p1)))

= {definition of qf0}

qf0 (just p0) ⊕
′ qf1 p1

= {assumption}

qh (qπ0 (just p0))) ⊕
′ qf1 p1

= {inductive hypothesis for p1}
qh (qπ0 (just p0))) ⊕

′ qh (just (inr p1))
= {definition of qπ0}

qh (just (inl (p0, nothing))) ⊕
′ qh (just (inr p1))

= {directed container morphism law 3}
qh (just (inl (p0, nothing)) ⊕ just (inr p1))

= {definition of ⊕}
qh (just (inl (p0, nothing) ⊕

+ inr p1))
= {definition of ⊕+}

qh (just (inl ((p0, nothing) ⊕
+
0 inr p1)))

= {definition of ⊕+
0 }

qh (just (inl (p0, just p1)))

Statement for positions, i.e., qf = qh. Case p = nothing:

qf nothing

= {definition of qf}
o′

= {directed container morphism law 2}
qh o

= {definition of o}
qh nothing

Case p = just (inl p):
qf (just (inl p)

= {definition of qf}

qf0 p

= {first aux. statement}
qh (just (inl p))

Case p = just (inr p) is symmetric.
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Proof of Proposition 4.5.
We must prove that E = (S ⊳ P, ↓, o,⊕) is a cofree directed container on the container

C0 = S0 ⊳ P0.

Lemma B.6. The data ↓, o, ⊕ provide a directed container structure on the container

C = S ⊳ P .

Proof. Directed container law 1:

(s, v) ↓ o {s, v}
= {definition of o}

(s, v) ↓ (inl ∗)
= {definition of ↓}

(s, v)

Directed container law 2 by induction on p. Case p = inl ∗:

(s, v) ↓ (inl ∗ ⊕ p′)
= {definition of ⊕}

(s, v) ↓ p′

= {definition of ↓}
((s, v) ↓ inl ∗) ↓ p′

Case p = inr (p, p′):
(s, v) ↓ (inr (p, p′) ⊕ p′′)

= {definition of ⊕}
(s, v) ↓ (inr (p, p′ ⊕ p′′))

= {definition of ↓}
v p ↓ (p′ ⊕ p′′)

= {inductive hypothesis for p′}
(v p ↓ p′) ↓ p′′

= {definition of ↓}
((s, v) ↓ inr (p, p′)) ↓ p′′

Directed container law 3 by induction on p. Case p = inl ∗:

inl ∗ ⊕ o {(s, v) ↓ inl ∗}
= {definitions of ⊕, ↓}

o {s, v}
= {definition of o}

inl ∗

Case p = inr (p, p′):
inr (p, p′) ⊕ o {(s, v) ↓ inr (p, p′)}

= {definitions of ⊕, ↓}
inr (p, p′ ⊕ o {v p ↓ p′})

= {inductive hypothesis for p′}
inr (p, p′)
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Directed container law 4.
o {s, v} ⊕ p

= {definition of o}
inl ∗ ⊕ p

= {definition of ⊕}
p

Directed container law 5 by induction on p. Case p = inl ∗:

(inl ∗ ⊕ p′) ⊕ p′′

= {definition of ⊕}
p′ ⊕ p′′

= {definition of ⊕}
inl ∗ ⊕ (p′ ⊕ p′′)

Case p = inr (p, p′):
(inr (p, p′) ⊕ p′′) ⊕ p′′′

= {definition of ⊕}
inr (p, p′ ⊕ p′′) ⊕ p′′′

= {definition of ⊕}
inr (p, (p′ ⊕ p′′) ⊕ p′′′)

= {inductive hypothesis for p′}
inr (p, p′ ⊕ (p′′ ⊕ p′′′))

= {definition of ⊕}
inr (p, p′) ⊕ (p′′ ⊕ p′′′)

That the directed container E = (S⊳P, ↓, o,⊕) is cofree on the container C0 = S0⊳P0 can
be shown either directly or by proving that it interprets into a cofree comonad on JC0K

c. In
the following, we illustrate the first route. This involves a fair amount of straightforward,
but tedious inductive and coinductive reasoning in the lemmas below.

For the directed container E to be cofree on the container C0, there must be a container
morphism π = tπ ⊳ qπ : S ⊳ P → S0 ⊳ P0. This is defined by

• tπ : S → S0

tπ (s, v) = s

• qπ : Π{(s, v) : S}. P0 s → P (s, v)
qπ p = inr (p, inl ∗)

The universal property of cofreeness states that, for any other directed container E′ =
(S′ ⊳ P ′, ↓′, o′,⊕′) and container morphism f0 = tf0 ⊳ qf0 : S′ ⊳ P ′ → S0 ⊳ P0, there must
exist a unique directed container morphism f = tf ⊳ qf : E′ → E such that the following
triangle commutes:

S′ ⊳ P ′

f

��

f0

%%▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲

S ⊳ P
π // S0 ⊳ P0

(‡)

We claim that this directed container morphism f is given by

• tf : S′ → S

(by corecursion)
tf s = (tf0 s, λp. tf (s ↓′ qf0 p))
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• qf : Π{s : S′}. P (tf0 s, λp. tf (s ↓′ qf0 p)) → P ′ s

(by recursion)
qf (inl ∗) = o′

qf (inr (p, p′)) = qf0p ⊕′ qf p

and prove it with the lemmas below.

Lemma B.7. The container morphism f is a directed container morphism.

Proof. Directed container morphism law 1 by induction on p. Case p = inl ∗:

tf (s ↓′ qf (inl ∗))
= {definition of qf}

tf (s ↓′ o′)
= {directed container law 1}

tf s

= {definition of ↓}
tf s ↓ inl ∗

Case p = inr (p, p′):
tf (s ↓′ qf (inr (p, p′)))

= {definition of qf}
tf (s ↓′ (qf0 p ⊕′ qf p))

= {directed container law 2}
tf ((s ↓′ qf0 p) ↓′ qf p′)

= {inductive hypothesis for p′}
tf (s ↓′ qf0 p) ↓ p′

= {definition of ↓}
(tf0 s, λp. tf (s ↓′ qf0 p)) ↓ inr (p, p′)

= {definition of tf}
tf s ↓ inr (p, p′)

Directed container morphism law 2.

qf o

= {definition of o}
qf (inl ∗)

= {definition of qf}
o′

Directed container morphism law 3 by induction on p. Case p = inl ∗:

qf (inl ∗ ⊕ p′)
= {definition of ⊕}

qfp′

= {directed container law 4}
o′ ⊕′ qf p′

= {definition of qf}
qf (inl ∗) ⊕′ qf p′
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Case p = inr (p, p′):
qf (inr (p, p′) ⊕ p′′)

= {definition of ⊕}
qf (inr (p, p′ ⊕′ p′′))

= {definition of qf}
qf0 p ⊕′ qf (p′ ⊕′ p′′)

= {inductive hypothesis for p′}
qf0 p ⊕′ (qf p′ ⊕′ qf p′′)

= {directed container law 5}
(qf0 p ⊕′ qf p′) ⊕′ qf p′′

= {definition of qf}
qf (inr (p, p′)) ⊕′ qf p′′

Lemma B.8. The cofreeness triangle (‡) commutes, i.e., π ◦ f = f0.

Proof. Statement for shapes, i.e., tπ ◦ tf = tf0 :

tπ (tf s)
= {definition of tf}

tπ (tf0 s, λp. tf (s ↓′ qf0 p))
= {definition of tπ}

tf0 s

Statement for positions, i.e., qf ◦ qπ = qf0 :

qf (qπ p)
= {definition of qπ}

qf (inr (p, inl ∗))
= {definition of qf}

qf0 p ⊕′ qf (inl ∗)
= {definition of qf}

qf0 p ⊕′ o′

= {directed container law 3}
qf0 p
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Lemma B.9. The directed container morphism f is unique, i.e., if there is a directed

container morphism h = th ⊳ qh : E′ → E such that π ◦ h = f0, then f = h.

Proof. Statement for shapes, i.e., tf = th, by coinduction.

tf s

= {definition of tf}
(tf0 s, λp. tf (s ↓′ qf0 p))

= {coinductive hypothesis}
(tf0 s, λp. th (s ↓′ qf0 p))

= {assumption, i.e., tπ ◦ th = tf0 and qh ◦ qπ = qf0}
(tπ (th s), λp. th (s ↓′ qh (qπ p)))

= {directed container morphism law 1}
(tπ (th s), λp. th s ↓ qπp)

= {definitions of tπ, qπ}
(fst (th s), λp. th s ↓ inr (p, inl ∗))

= {definition of ↓}
(fst (th s), λp. snd (th s) p ↓ inl ∗)

= {definition of ↓}
th s

Statement for positions, i.e., qf = qh, by induction on position p. Case p = inl ∗:

qf (inl ∗)
= {definition of qf}

o′

= {directed container morphism law 2}
qh o

= {definition of o}
qh (inl ∗)

Case p = inr (p, p′):

qf (inr (p, p′))
= {definition of qf}

qf0 p ⊕′ qf p′

= {inductive hypothesis for p′}
qf0 p ⊕′ qh p′

= {assumption for positions, i.e., qh ◦ qπ = qf0}
qh (qπ p) ⊕′ qh p′

= {directed container morphism law 3}
qh (qπ p ⊕ p′)

= {definition of qπ}
qh (inr (p, inl ∗) ⊕ p′)

= {definition of ⊕}
qh (inr (p, inl ∗ ⊕ p′)

= {definition of ⊕}
qh (inr (p, p′))
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