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0. Introduction
As it often happens, everything began with a mistake. I was teaching for the third year
in a row a linear algebra course to engineering freshmen. One of the highlights of the
course was eigenvector theory, and in particular the diagonalization of linear operators on
finite-dimensional vector spaces (i.e., of square real or complex matrices). Toward the end
of the course I assigned a standard homework: prove that the matrix

A =

∣∣∣∣∣∣
−1 −1 2
−1 0 1
0 −1 1

∣∣∣∣∣∣ ,

is diagonalizable. Easy enough, I thought. The characteristic polynomial is

pA(λ) = det(A− λI3) = −λ3 + λ,

whose roots are evidently 0, 1, −1. We have three distinct eigenvalues in a three-dimen-
sional space, and a standard theorem ensures that A is diagonalizable.

To my surprise, the students came complaining that they were unable to solve the
exercise. Perplexed (some of the complaining students were very bright), I looked over the
exercise again—and I understood. What happened was that, in the homework, I actually
gave them the matrix

B =

∣∣∣∣∣∣
−1 −1 2
−1 0 1
0 −1 −1

∣∣∣∣∣∣ ,

whose characteristic polynomial is

pB(λ) = −λ3 − 2λ2 − λ + 2,

which has no rational roots. The students were unable to compute the eigenvalues of B,
and they got stuck.

This accident started me wondering whether it might be possible to decide when a
linear operator T on a finite-dimensional real or complex vector space is diagonalizable
without computing the eigenvalues. If one is looking for an orthonormal basis of eigenvec-
tors, the answer is well known to be yes: the spectral theorem says that such a basis exists
in the complex case if and only if T is normal (i.e., it commutes with its adjoint), and if
and only if T is symmetric in the real case. The aim of this note is to give an explicit
procedure to decide whether a given linear operator on a finite-dimensional real or complex
vector space is diagonalizable. By “explicit” I mean that it can always be worked out with
pen and paper; it can be long, it can be tedious, but it can be done. Its ingredients (the
minimal polynomial and Sturm’s theorem) are not new; but putting them together yields
a result that can be useful as an aside in linear algebra classes.
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1. The minimal polynomial

The first main ingredient in our procedure is the minimal polynomial. Let T : V → V be a
linear operator on a finite-dimensional vector space over the field K. We shall denote by T k

the composition of T with itself k times, and for any polynomial p(t) = aktk+· · ·+a0 ∈ K[t]
we put

p(T ) = akT k + · · ·+ a1T + idV ,

and say that p is monic if ak = 1. A minimal polynomial µT ∈ K[t] of the linear operator T
is a monic polynomial of minimal degree such that µ(T ) = 0.

The theory of the minimal polynomial is standard. For completeness’ sake, I briefly
recall the results we shall need. First of all:

Proposition 1.1: Let T :V → V be a linear operator on a finite-dimensional vector
space V over the field K. Then:

(i) the minimal polynomial µT of T exists, has degree at most n = dimV , and is unique;
(ii) if p ∈ K[t] is such that p(T ) = 0, then there is some q ∈ K[t] such that p = qµT .

For our procedure it is important to show that the minimal polynomial can be explic-
itly computed. Take v ∈ V , and let d be the minimal non-negative integer such that the
vectors {v, T (v), . . . , T d(v)} are linearly dependent. Clearly d ≤ n always; d = 0 if and
only if v = 0, and d = 1 if and only if v is an eigenvector of T . Choose a0, . . . , ad−1 ∈ K
such that

T d(v) + ad−1T
d−1(v) + · · ·+ a1T (v) + a0v = 0

(note that we can assume the coefficient of T d(v) to be 1 because of the minimality of d),
and then set

µT,v(t) = td + ad−1t
d−1 + · · ·+ a1t + a0 ∈ K[t].

By definition, v ∈ Ker µT,v(T ); more precisely, µT,v is the monic polynomial p ∈ K[t] of
least degree such that v ∈ Ker p(T ).

Now, if p ∈ K[t] is any common multiple of µT,v1 and µT,v2 for any two vectors v1

and v2, then both v1 and v2 belong to Ker p(T ). More generally, if B = {v1, . . . , vn} is
a basis of V , and p is any common multiple of µT,v1 , . . . , µT,vn , then B ⊂ Ker p(T ), and
thus p(T ) = 0. Hence the following result comes as no surprise:

Proposition 1.2: Let T :V → V be a linear operator on a finite-dimensional vector
space V over the field K. Let B = {v1, . . . , vn} be a basis of V . Then µT is the least
common multiple of µT,v1 , . . . , µT,vn .

Proof : Let p ∈ K[t] be the least common multiple of µT,v1 , . . . , µT,vn . We have al-
ready remarked that p(T ) = 0, and so µT divides p. Conversely, for j = 1, . . . , n write
µT = qjµT,vj + rj , with deg rj < deg µT,vj . Then

0 = µT (T )vj = qj(T )
(
µT,vj (T )vj

)
+ rj(T )vj = rj(T )vj ,

and the minimality of the degree of µT,vj forces rj ≡ 0. Since every µT,vj divides µT , their
least common multiple p also divides µT , and hence p = µT .
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Thus one method to compute the minimal polynomial is to compute the polynomials
µT,v1 , . . . , µT,vn and then their least common multiple. To avoid unnecessary calculations,
it could be useful to remember that deg µT ≤ n.

Example 1. Let us compute the minimal polynomials of the matrices A and B of
the introduction. Let B = {e1, e2, e3} be the canonical basis of R3. We have

Ae1 = Be1 =

∣∣∣∣∣∣
−1
−1
0

∣∣∣∣∣∣ , A2e1 = B2e1 =

∣∣∣∣∣∣
2
1
1

∣∣∣∣∣∣ ,

A3e1 =

∣∣∣∣∣∣
−1
−1
0

∣∣∣∣∣∣ = Ae1, B3e1 =

∣∣∣∣∣∣
−1
−1
−2

∣∣∣∣∣∣ = −2B2e1 −Be1 + 2e1;

therefore
µA,e1(t) = t3 − t, µB,e1(t) = t3 + 2t2 + t− 2.

Since deg µA,e1 = 3 and the minimal polynomial of A should be a monic multiple of µA,e1 of
degree at most three, we can conclude that µA = µA,e1 without computing µA,e2 and µA,e3

(and it is easy to check that µA,e2(t) = t2 − t and µA,e3(t) = t3 − t). For the same reason
we have µB = µB,e1 .

Let λ1, . . . , λk ∈ K be the distinct eigenvalues of T . If T is diagonalizable, then
Proposition 1.2 immediately yields µT (t) = (t − λ1) · · · (t − λk). This is the standard
characterization of diagonalizable linear operators:

Theorem 1.3: Let T :V → V be a linear operator on a finite-dimensional vector space V
over the field K. Then T is diagonalizable if and only if µT is of the form

µT (t) = (t− λ1) · · · (t− λk), (1.1)

where λ1, . . . , λk are distinct elements of K.

Therefore to decide whether a given linear operator on a finite-dimensional vec-
tor space is diagonalizable it suffices to check whether its minimal polynomial is of the
form (1.1).

2. The procedure
Our aim now is to find an effective procedure to decide whether a given polynomial p ∈ K[t]
can be written in the form (1.1). To do so, we need to know when all the roots of p have
multiplicity one, and when they all belong to the field K. The first question has a standard
answer:

Proposition 2.1: Let p ∈ K[t] be a non-constant polynomial, and let p′ ∈ K[t] denote its
derivative. Then the following assertions are equivalent:

(i) p admits a root in K of multiplicity greater than 1;
(ii) p and p′ have a common root in K;
(iii) the greatest common divisor g.c.d.(p, p′) of p and p′ has a root in K.

Recalling Theorem 1.3 we get the following
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Corollary 2.2: Let T :V → V be a linear operator on a finite-dimensional vector space V
over the field K. Then:

(i) If K is algebraically closed (e.g., K = C), then T is diagonalizable if and only if
g.c.d.(µT , µ′T ) = 1;

(ii) If K is not algebraically closed (e.g., K = R), then T is diagonalizable if and only if
all the roots of µT are in K and g.c.d.(µT , µ′T ) = 1.

To decide whether a complex linear operator T is diagonalizable it then suffices to
compute the greatest common divisor of µT and µ′T . On the other hand, if K = R this is
not enough; to complete the picture we need Sturm’s theorem—and to state it we need a
few more definitions.

Let c = (c0, . . . , cs) ∈ Rs+1 be a finite sequence of real numbers. If c0 · · · cs 6= 0, the
number of variations in sign of c is the number of indices 1 ≤ j ≤ s such that cj−1cj < 0
(that is, such that cj−1 and cj have opposite sign). If some element of c is zero, then the
number of variations in sign of c is the number of variations in sign of the sequence of
non-zero elements of c. We denote the number of variations in sign of c by Vc.

Now let p ∈ R[t] be a non-constant polynomial. The standard sequence associated
with p is the sequence p0, . . . , ps ∈ R[t] defined by

p0 = p, p1 = p′,

p0 = q1p1 − p2, with deg p2 < deg p1,
...

...
pj−1 = qjpj − pj+1, with deg pj+1 < deg pj ,

...
...

ps−1 = qsps, (that is, ps+1 ≡ 0).

In other words, the standard sequence is obtained changing the sign in the remain-
der term of the Euclidean algorithm for the computation of g.c.d.(p, p′). In particular,
g.c.d.(p, p′) = 1 if and only if ps is constant.

Sturm’s theorem then says:

Theorem 2.3: Let p ∈ R[t] be a polynomial such that g.c.d.(p, p′) = 1, and take a < b
such that p(a)p(b) 6= 0. Let p0, . . . , ps ∈ R[t] be the standard sequence associated with p.
Then the number of roots of p in [a, b] is equal to Va − Vb, where a =

(
p0(a), . . . , ps(a)

)
and b =

(
p0(b), . . . , ps(b)

)
.

For a proof see [1, pp. 295–299].
Now, for any polynomial p(t) = adt

d+ · · ·+a0 ∈ R[t] there exists M > 0 such that p(t)
has the same sign as ad, the leading coefficient of p, if t ≥M and the same sign as (−1)dad

if t ≤ −M . In particular, all the roots of p are contained in [−M, M ], and Sturm’s theorem
implies the following:

Corollary 2.4: Let p ∈ R[t] be a non-constant polynomial such that g.c.d.(p, p′) = 1.
Let p0, . . . , ps ∈ R[t] be the standard sequence associated with p, and let dj be the de-
gree and cj ∈ R the leading coefficient of pj for j = 0, . . . , s. Then the number of real
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roots of p is given by V− − V+, where V− is the number of variations in sign of the se-
quence

(
(−1)d0c0, . . . , (−1)dscs

)
, and V+ is the number of variations in sign of the sequence

(c0, . . . , cs).

Proof : It suffices to choose M > 0 large enough so that pj(t) has the same sign as cj

when t ≥M and the same sign as (−1)dj cj when t ≤ −M , for each j = 0, . . . , s, and then
apply Sturm’s theorem with a = −M and b = M .

We finally have all the ingredients necessary to state the desired procedure. Let
T :V → V be a linear operator on a finite-dimensional vector space V over K = R or C.
Then:

(1) Compute the minimal polynomial µT .
(2) Compute the standard sequence p0, . . . , ps associated with µT . If ps is not constant,

then T is not diagonalizable. If ps is constant and K = C, then T is diagonalizable.
If ps is constant and K = R, go to Step (3).

(3) Compute V− and V+ for µT . Then T is diagonalizable if and only if V−−V+ = deg µT .

Thus we are always able to decide whether a given linear operator on a finite-dimensional
real or complex vector space is diagonalizable or not. One feature that I find particularly
interesting in this procedure is that the solution of a typical linear algebra problem is
reduced to an apparently totally unrelated manipulation of polynomials, showing in a
simple case how different parts of mathematics can be connected in unexpected ways.

We end this note with some examples of application of our procedure.

Example 2. First of all, we solve the original homework. We have already computed
the minimal polynomial µB(t) = t3+2t2+t−2. The standard sequence associated with µB

is

p0(t) = t3 + 2t2 + t− 2, p1(t) = 3t2 + 4t + 1, p2(t) = 2
9 t + 20

9 , p3(t) = −261.

Since p3 is constant, B is diagonalizable over C. To compute V−−V+ we count the number
of variations in sign of the sequences (−1, 3,−2

9 ,−261) and (1, 3, 2
9 ,−261). We obtain

V− − V+ = 2− 1 = 1 < 3 = deg µB ,

and so B is not diagonalizable over R. On the other hand, the standard sequence associated
with µA is

p0(t) = t3 − t, p1(t) = 3t2 − 1, p2(t) = 2
3 t, p3(t) = 1.

The number of variations in sign of (−1, 3,− 2
3 , 1) is V− = 3, and of (1, 3, 2

3 , 1) is V+ = 0;
therefore V− − V+ = 3− 0 = 3, and thus A is diagonalizable over R (as it should be).

Both these matrices were diagonalizable over C; since their minimal polynomials have
degree 3, necessarily their (complex) eigenvalues are all distinct. In the next example this
is not the case:
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Example 3. Let

C =

∣∣∣∣∣∣∣
0 −2 2 6
2 4 −1 −5
−3 −4 3 7
1 2 −1 −3

∣∣∣∣∣∣∣ .

To compute the minimal polynomial of C we start, as in Example 1, by applying the
iterates of C to e1. We get

Ce1 =

∣∣∣∣∣∣∣
0
2
−3
1

∣∣∣∣∣∣∣ , C2e1 =

∣∣∣∣∣∣∣
−4
6
−10
4

∣∣∣∣∣∣∣ , C3e1 =

∣∣∣∣∣∣∣
−8
6
−14
6

∣∣∣∣∣∣∣ , C4e1 =

∣∣∣∣∣∣∣
−4
−8
0
0

∣∣∣∣∣∣∣ .

It is easy to check that {e1, Ce1, C
2e1, C

3e1} are linearly independent and that

C4e1 − 4C3e1 + 8C2e1 − 8Ce1 + 4e1 = 0;

therefore deg µC,e1 = 4 and, as in Example 1, we can conclude that

µC(t) = µC,e1(t) = t4 − 4t3 + 8t2 − 8t + 4.

The standard sequence associated with µC starts with

p0(t) = t4 − 4t3 + 8t2 − 8t + 4, p1(t) = 4t3 − 12t2 + 16t− 8, p2(t) = −t2 + 2t− 2.

Since p2 divides p1, it is the last polynomial in the sequence; since it is not constant, we
conclude that C is not diagonalizable even over C (and in particular it cannot have four
distinct eigenvalues).

Our final example involves a minimal polynomial of degree strictly less than the di-
mension of the space:

Example 4. Let

D =

∣∣∣∣∣∣∣
2 −2 2 8
−2 4 −1 −9
1 −4 3 11
−1 2 −1 −5

∣∣∣∣∣∣∣ .

To compute the minimal polynomial of D we start again by applying the iterates of D
to e1. We get

De1 =

∣∣∣∣∣∣∣
2
−2
1
−1

∣∣∣∣∣∣∣ , D2e1 =

∣∣∣∣∣∣∣
2
−4
2
−2

∣∣∣∣∣∣∣ = 2De1 − 2e1;
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therefore µD,e1(t) = t2 − 2t + 2, and we cannot conclude right now that µD,e1 = µD.
Proceeding with the computations we get

De2 =

∣∣∣∣∣∣∣
−2
4
−4
2

∣∣∣∣∣∣∣ , D2e2 =

∣∣∣∣∣∣∣
−4
6
−8
4

∣∣∣∣∣∣∣ = 2De2−2e2; De3 =

∣∣∣∣∣∣∣
2
−1
3
−1

∣∣∣∣∣∣∣ , D2e3 =

∣∣∣∣∣∣∣
4
−2
4
−2

∣∣∣∣∣∣∣ = 2De3−2e3;

De4 =

∣∣∣∣∣∣∣
8
−9
11
−5

∣∣∣∣∣∣∣ , D2e4 =

∣∣∣∣∣∣∣
16
−18
22
−12

∣∣∣∣∣∣∣ = 2De4 − 2e4;

hence we have µD,e2 = µD,e3 = µD,e4 = µD,e1 and µD(t) = t2 − 2t + 2. In particular, D
has (at most) two distinct complex eigenvalues.

The standard sequence associated with µD is

p0(t) = t2 − 2t + 2, p1(t) = 2t− 2, p2(t) = −1.

Since p2 is constant, D is diagonalizable over C. The number of variations in sign of the
sequences (1,−2,−1) and (1, 2,−1) is

V− − V+ = 1− 1 = 0 < 2 = deg µD,

and so D is not diagonalizable over R.
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Brief Descriptive Summary

Have you ever wondered whether that mystifying 10×10 matrix were diagonalizable?
Computing the characteristic polynomial is useless; there are no self-evident eigenvalues
in view. And you don’t know how to write a program to make the computer do the work.
And you are losing your sleep about it (well, almost). Grieve no more! We are proud to
present an explicit pen-and-paper procedure to let you decide whether any given square
matrix is diagonalizable, both over the complex and over the real numbers! Read and try
yourself; your sleep won’t be troubled anymore.

[If this is too much of a joke, the following summary can be used instead.]

To decide whether a given square matrix is diagonalizable the usual techniques depend
on precisely computing the eigenvalues, which often is a hopeless task. This paper describes
instead an explicit pen-and-paper procedure to check diagonalizability without using any
information about the eigenvalues; the most difficult operation needed is just the Euclidean
algorithm for computing the greatest common divisor of two polynomials.

E-mail: abate@anvax1.unian.it
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