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ABSTRACT. Our main objective in this note is to prove the following. Suppose R is a
ring having an idempotent element e (e#0, e#1) which satisfies:

(Ml) xR=0 implies x=0.

(MZ) eRx=0 implies x=0 (and hence Rx=0 implies x=0).

(M3) exeR(1-e)=0 implies exe=0.

If d is any multiplicative derivation of R, then d is additive.
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1. INTRODUCTION.

In [1], Martindale has asked the following question : When is a multiplicative
mapping additive ? He answered his question for a multiplicative isomorphism of a
ring R under the existence of a family of idempotent elements in R which satisfies
some conditions.

Over the past few years, many results concerning derivations of rings have been
obtained. In this note, we introduce the definition of a multiplicative derivation
of aring R to be a mapping d of R into R such that d(ab) = d(a)b + ad(b), for
all a,b in R. As Martindale did, we raise the following question : When is a multipl-
icative derivation additive? Fortunately, we can give a full answer for this question
using Martindale's conditions when assumed for a single fixed idempotent in R.

In the ring R, let e be an idempotent element so that e # 0, e # 1 ( R need not
have an identity). As in [2], the two-sided Peirce decomposition of R relative to the
idempotent e takes the form R = eRe(:)eR(l-e)(:)(l-e)Re(:)(l—e)R(l-e). We will forma-
11y set e;= e and ey= l-e. So letting Rmn= emRen ; myn = 1,2, we may write R = RIICD
R12<:)R21(:)R22' Moreover, an element of the subring Rmn will be denoted by Xun®

From the definition of d we note that d(0) = d(00) = d(0)0 + 0d(0) = 0. Moreover,
we have d(e) = d(e2) = d(e)e + ed(e). So we can express d(e) as a)* a )t a1t a5y
and use the value of d(e) to get that 311 = 3y that is, a;; = 0= a5y Consequently,
we have d(e) = ayjp *ay-

Now let £ be the inner derivation of R determined by the element a1, = aZI.that

is f(x) = [x,a for all x in R. Therefore, f(e) = [e,a12 - 321] =a, + agy.
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In the sequel, and without loss of generality, we can replace the multiplicative
derivation d by the multiplicative derivation d - f, which we denote by D,that is,
D=4d - f. This yields D(e) = 0. This simplification is of great importance, for, as
we will see, the subrings Rmn become invariant under the multiplicative derivation
D.

2. A KEY LEMMA,

LEMMA 1. D(Rmn)(:ijn, m,n = 1,2,

PROOF. Let X1 be an arbitrary element of Rll' Then D(xll) = D(exlle)=eD(xll)e
which is an element of Rll' For an element X{o in RlZ’ we have D(x12) = D(exlz) =
eD(le) = bl] + b12' But 0 = D(0) = D(xlze) = D(xlz)e = bll'

which belongs to R12. In a similar fashion, for an element %51 in R21. we have D(x21)

hence D(XIZ) = b12

belongs to R21. Now take an element X9y in R22. Write D(x22) = c11+c12+c21+c22. So,
0= D(exzz) = eD(x22) = ¢y *+ ¢y, whence ¢y =c;, = 0. Likewise c,; = 0, and thus
D(xzz) = ¢y which is an element of R22. This proves the lemma.
3. CONDITIONS OF MARTINDALE.

In his note [1], Martindale has given the following conditions which are imposed
on a ring R having a family of idempotent elements {ei: ie I} .

(1) xR = 0 implies x = O.

(2) If ein = 0 for each i in I, then x = 0 (and hence Rx = 0 implies x = 0).

(3) For each i in I, eixeiR(l—ei) = 0 implies e xe; = 0.

In our note, we find it appropriate to simply dispense with conditions (1), (2)
and (3) altogether and instead substitute the following conditions :

(Ml) xR = 0 implies x = O.

(M?) eRx = 0 implies x = 0 (and hence Rx = 0 implies x = 0).

(N;) exeR(1-e) = 0 implies exe = O,
4, AUXILIARY LEMMAS.

LEMMA 2, For any Xom in Rmm and any qu in qu with p ¥ q, we have

D(xmm + qu) = D(xmm) + D(qu).
PROOF. Assume m = p = 1 and q = 2.
Consider the sum D(xll) + D(xlz). Let tln be an element of Rln' Using Lemm 1, we
have  [D(xy)) + D(xyp) ]ty = Dlxyp ey = Dlxpyey ) = xp Dty ) = DlCxyy + xpp)ty ) =

%y DCey ) = Dlxpy * xpp)ty # Gxpg * xg D0y ) = xg Dty ) = Dlxyy + xgp)ty . Thus,

[DCxyy) + D(xyp) = Dlxyy + xpp)]ep, = 0.
In the same fashion, for any t2n in R2n’ we can get the following

[D(xyq) *+ D(x;p) = Dlxpy + xp5) ]ty = 0.
Combining these results, we have [D(xll) + D(xlz) - D(x11 + x12)]R = 0. By condition
(Ml), we obtain
D(xjy + xpp) = Dlxyp) + Dlxypy).
In view of the symmetry resulting from condition (Nl) and the implication of

condition (MZ)' we can find that the other three cases are easily shown in a similar

fashion,
LEMMA 3. D is additive on RlZ'
PROOF, Let x,, and Y12 be two elements in the subring R12' and consider the sum
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D(xlz) + D(le).

(A) For an element tin in Rln' we have [D(xlz) + D(ylz)]tln = D(x12 + ylZ)tln'

since each side is zero by Lemma 1, so
[D(xy,) + D(y;,) = D(xy, + y12)1t, = 0.

(B) Consider an element t), in R2n' We have (x12 + y12)t2n = (e + x12)( ton t
Yit2n)+ Thus, DICxpy + v )ty ] = Dle + x))) (e, + yypty ) + (e + x)))D(ty + yyyty)
=(D(e) + Dlxy eyt yygtyy) + (e + xypd(D(ty) + Dlypoty )) = Dlxp))t,, + x)oD(t,)
+ D(ylztzn), by Lemmas 1 and 2. Thus, D((x12 + y12)t2n) = D(xlztzn) + D(yl2t2n)' But
(Dlxpp) + Dy )ty = Dlxpdty, + Dlyppty, = Dlxppty,)) + Dly oty )=(x)y+yy,)D(t, )=
DUxpp * yypdtyy) = (xpg # v ID(ky ) = D(xpy + yy,)t, . Hence,

[D(x,,) + D{y;p) = D(xyy * ¥y 1t, = 0.
Consequently, from (A) and (B) we have
[D(x;,) + D(y;5) = D(x;, *+ v ) IR = 0.
By condition (Ml)' we have
D(x;, +y;,) = D(x;,) + D(y,).
LEMMA 4. D is additive on Rll'
PROOF. Let X1 and Y11 be arbitrary elements in Rll‘ For an element t2 in R12’

we have (D(x,)) + D(yy)))tyy = D(xyp)ty, + Dlyy ey, = Dlxp ty,) + Dlyp tp,) = (xpp+
yll)D(tlz). But X1t and Y11ty are in R;,, and D is additive on Ry, by Lemma 3,

hence (D(x ;) + D(y; ), = Dlxp tyy + yyyt) = (xgp + ¥y ID(e ) = D(xp 4y 0ty ,)
- (xll + yll)D(tlz) = D(xll + yll)t12' thus we have

[D(x;;) + D(y; ) = D(xyq + yy)]t, = 0.
Therefore,

[DCx;) # D(ypp) = Dlxyy + y,) 1Ry, = 0.

From Lemma 1, D(xll) + D(yll) - D(xll + yll) is an element in Rll' hence the above
result with condition (M3) give
D(x11 + yll) = D(xll) + D(yll).
LEMMA 5. D is additive on Rll + R12 = eR.
PROOF. Consider the arbitrary elements X110 Y11 in R11 and X120 Y12 in R12' So,

Lemmas 2,3,4 give D((x11 + xlz) + (y]1 + ylz)) = D((x11 + yll) + (xl2 + ylz))=D(x11+
vt D(x;, +y;,) = D(x;) + D(y ) + D(xlz) + D(y;,) = (D(x;;) + D(xlz)) + (D(yyy)

+ D(ylz)) = D(x11 + x12) + D(yll + y12). Thus D is additive on Ry + R,,. This proves
the desired result.
5. MAIN THEOREM.
THEOREM. Let R be a ring containing an idempotent e which satisfies conditions
(Ml)' (M2) and (M3). If d is any multiplicative derivation of R, then d is additive.
PROOF. As we mentioned before, and without loss of generality, we can replace d
by D. Let x and y be any elements of R. Consider D(x) + D(y). Take an element t in eR
= R11 + R12' Thus, tx and ty are elements of eR. According to Lemma 5, we can obtain
t(D(x) + D(y)) = tD(x) + tD(y) = D(tx) + D(ty) - D(t)(x +y) = D(tx + ty)- D(t(x + v))
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+ tD(x + y). Thus, t(D{x) + D(y)) = tD(x + y). Since t is arbitrary in eR, we obtain
eR(D(x) + D(y) - D(x + y)) = 0. By condition (MZ)' we get
D(x + y) = D(x) + D(y),
which shows that the multiplicative derivation D is additive.
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