WHEN IS A MULTIPLICATIVE DERIVATION ADDITIVE?

MOHAMAD NAGY DAIF
Department of Mathematics
Faculty of Education
U'mm Al-Qura University
Taif, Saudi Arabia

(Received March 29, 1990 and in revised form December 19, 1990)

ABSTRACT. Our main objective in this note is to prove the following. Suppose R is a ring having an idempotent element e (e $\neq 0$, e $\neq 1$) which satisfies:
$\left(M_{1}\right) \times R=0$ implies $x=0$.
$\left(\mathrm{N}_{2}\right)$ eRx=0 implies $\mathrm{x}=0$ (and hence $\mathrm{Rx}=0$ implies $\mathrm{x}=0$).
$\left(\mathrm{N}_{3}\right)$ exeR(1-e) $=0$ implies exe $=0$.
If d is any multiplicative derivation of R, then d is additive.

KEY WORDS AND PHRASES. Ring, idempotent element, derivation, Peirce decomposition. 1980 AMS SUBJECT CLASSIFICATION CODES. 16A15, 16 A70.

1. INTRODUCTION.

In [1], Martindale has asked the following question : When is a multiplicative mapping additive ? He answered his question for a multiplicative isomorphism of a ring R under the existence of a family of idempotent elements in R which satisfies some conditions.

Over the past few years, many results concerning derivations of rings have been obtained. In this note, we introduce the definition of a multiplicative derivation of a ring R to be a mapping d of R into R such that $d(a b)=d(a) b+a d(b)$, for all a,b in R. As Martindale did, we raise the following question : When is a multiplicative derivation additive? Fortunately, we can give a full answer for this question using Martindale's conditions when assumed for a single fixed idempotent in R .

In the ring R, let e be an idempotent element so that $e \neq 0$, $e \neq 1$ (R need not have an identity). As in [2], the two-sided Peirce decomposition of R relative to the idempotent e takes the form $R=e \operatorname{Re} \oplus e R(1-e) \oplus(1-e) R e \oplus(1-e) R(1-e)$. We will formally set $e_{1}=e$ and $e_{2}=1-e$. So letting $R_{m n}=e_{m} R e_{n} ; m, n=1,2$, we may write $R=R_{11} \oplus$ $R_{12} \oplus R_{21} \oplus R_{22}$. Moreover, an element of the subring $R_{m n}$ will be denoted by $x_{m n}$ 。

From the definition of d we note that $d(0)=d(00)=d(0) 0+0 d(0)=0$. Moreover, we have $d(e)=d\left(e^{2}\right)=d(e) e+e d(e)$. So we can express $d(e)$ as $a_{11}+a_{12}+a_{21}+a_{22}$ and use the value of $d(e)$ to get that $a_{11}=a_{22}$, that is, $a_{11}=0=a_{22}$. Consequently, we have $d(e)=a_{12}+a_{21}$.

Now let f be the inner derivation of R determined by the element $a_{12}-a_{21}$, that is $f(x)=\left[x, a_{12}-a_{21}\right]$ for all x in R. Therefore, $f(e)=\left[e, a_{12}-a_{21}\right]=a_{12}+a_{21}$.

In the sequel, and without loss of generality, we can replace the multiplicative derivation d by the multiplicative derivation $d-f$, which we denote by D, that is, $D=d-f$. This yields $D(e)=0$. This simplification is of great importance, for, as we will see, the subrings $R_{m n}$ become invariant under the multiplicative derivation D.
2. a KEy lemma.

LEMMA 1. $D\left(R_{m n}\right) C_{m n}, m, n=1,2$.
PROOF. Let x_{11} be an arbitrary element of R_{11}. Then $D\left(x_{11}\right)=D\left(e x_{11} e\right)=e D\left(x_{11}\right) e$ which is an element of R_{11}. For an element x_{12} in R_{12}, we have $D\left(x_{12}\right)=D\left(e x_{12}\right)=$ $e D\left(x_{12}\right)=b_{11}+b_{12}$. But $0=D(0)=D\left(x_{12} e\right)=D\left(x_{12}\right) e=b_{11}$, hence $D\left(x_{12}\right)=b_{12}$ which belongs to R_{12}. In a similar fashion, for an element x_{21} in R_{21}, we have $D\left(x_{21}\right)$ belongs to R_{21}. Now take an element x_{22} in R_{22}. Write $D\left(x_{22}\right)=c_{11}+c_{12}+c_{21}+c_{22}$. So, $0=D\left(e x_{22}\right)=e D\left(x_{22}\right)=c_{11}+c_{12}$, whence $c_{11}=c_{12}=0$. Likewise $c_{21}=0$, and thus $D\left(x_{22}\right)=c_{22}$ which is an element of R_{22}. This proves the lemma.
3. CONDITIONS OF MARTINDALE.

In his note [1], Martindale has given the following conditions which are imposed on a ring R having a family of idempotent elements $\left\{e_{i}: i \in I\right\}$.
(1) $x R=0$ implies $x=0$.
(2) If $e_{i} R x=0$ for each i in I, then $x=0$ (and hence $R x=0$ implies $x=0$).
(3) For each i in $I, e_{i} x e_{i} R\left(1-e_{i}\right)=0$ implies $e_{i} x e_{i}=0$.

In our note, we find it appropriate to simply dispense with conditions (1), (2) and (3) altogether and instead substitute the following conditions :

$$
\begin{aligned}
& \left(M_{1}\right) x R=0 \text { implies } x=0 \\
& \left(M_{2}\right) \text { eRx }=0 \text { implies } x=0 \text { (and hence } R x=0 \text { implies } x=0 \text {). } \\
& \left(M_{3}\right) \text { exeR(l-e) }=0 \text { implies exe }=0 .
\end{aligned}
$$

4. AUXILIARY LEMMAS.

LEMMA 2. For any $x_{m m}$ in $R_{m m}$ and any $x_{p q}$ in $R_{p q}$ with $p \neq q$, we have

$$
D\left(x_{m m}+x_{p q}\right)=D\left(x_{m m}\right)+D\left(x_{p q}\right) .
$$

PROOF. Assume $m=p=1$ and $q=2$.
Consider the sum $D\left(x_{11}\right)+D\left(x_{12}\right)$. Let $t_{1 n}$ be an element of $R_{l_{n}}$. Using Lemm 1 , we have $\left[D\left(x_{11}\right)+D\left(x_{12}\right)\right]_{t_{1 n}}=D\left(x_{11}\right) t_{1 n}=D\left(x_{11} t_{1 n}\right)-x_{11} D\left(t_{1 n}\right)=D\left[\left(x_{11}+x_{12}\right) t_{1 n}\right]-$ $x_{11} D\left(t_{1 n}\right)=D\left(x_{11}+x_{12}\right) t_{1 n}+\left(x_{11}+x_{12}\right) D\left(t_{1 n}\right)-x_{11} D\left(t_{1 n}\right)=D\left(x_{11}+x_{12}\right) t_{1 n}$. Thus, $\left[D\left(x_{11}\right)+D\left(x_{12}\right)-D\left(x_{11}+x_{12}\right)\right] t_{1 n}=0$.
In the same fashion, for any $t_{2 n}$ in $R_{2 n}$, we can get the following

$$
\left[D\left(x_{11}\right)+D\left(x_{12}\right)-D\left(x_{11}+x_{12}\right)\right] t_{2 n}=0
$$

Combining these results, we have $\left[D\left(x_{11}\right)+D\left(x_{12}\right)-D\left(x_{11}+x_{12}\right)\right] R=0$. By condition $\left(M_{1}\right)$, we obtain

$$
D\left(x_{11}+x_{12}\right)=D\left(x_{11}\right)+D\left(x_{12}\right)
$$

In view of the symmetry resulting from condition $\left(N_{1}\right)$ and the implication of condition $\left(M_{2}\right)$, we can find that the other three cases are easily shown in a similar fashion.

LEMMA 3. D is additive on R_{12}.
PROOF . Let x_{12} and y_{12} be two elements in the subring R_{12}, and consider the sum
$D\left(x_{12}\right)+D\left(y_{12}\right)$.
(A) For an element $t_{1 n}$ in $R_{1 n}$, we have $\left[D\left(x_{12}\right)+D\left(y_{12}\right)\right] t_{1 n}=D\left(x_{12}+y_{12}\right) t_{1 n}$, since each side is zero by Lemma 1 , so

$$
\left[D\left(x_{12}\right)+D\left(y_{12}\right)-D\left(x_{12}+y_{12}\right)\right] t_{1 n}=0 .
$$

(B) Consider an element $t_{2 n}$ in $R_{2 n}$. We have $\left(x_{12}+y_{12}\right) t_{2 n}=\left(e+x_{12}\right)\left(t_{2 n}+\right.$ $\left.\mathrm{y}_{12} \mathrm{t}_{2 \mathrm{n}}\right)$. Thus, $\mathrm{D}\left[\left(\mathrm{x}_{12}+\mathrm{y}_{12}\right) \mathrm{t}_{2 \mathrm{n}}\right]=\mathrm{D}\left(\mathrm{e}+\mathrm{x}_{12}\right)\left(\mathrm{t}_{2 \mathrm{n}}+\mathrm{y}_{12} \mathrm{t}_{2 \mathrm{n}}\right)+\left(\mathrm{e}+\mathrm{x}_{12}\right) \mathrm{D}\left(\mathrm{t}_{2 \mathrm{n}}+\mathrm{y}_{12} \mathrm{t}_{2 \mathrm{n}}\right)$ $=\left(D(e)+D\left(x_{12}\right)\right)\left(t_{2 n}+y_{12} t_{2 n}\right)+\left(e+x_{12}\right)\left(D\left(t_{2 n}\right)+D\left(y_{12} t_{2 n}\right)\right)=D\left(x_{12}\right) t_{2 n}+x_{12} D\left(t_{2 n}\right)$ $+D\left(y_{12} t_{2 n}\right)$, by Lemmas 1 and 2. Thus, $D\left(\left(x_{12}+y_{12}\right) t_{2 n}\right)=D\left(x_{12}{ }_{2 n}\right)+D\left(y_{12} t_{2 n}\right)$. But $\left(D\left(x_{12}\right)+D\left(y_{12}\right)\right) t_{2 n}=D\left(x_{12}\right) t_{2 n}+D\left(y_{12}\right) t_{2 n}=D\left(x_{12} t_{2 n}\right)+D\left(y_{12} t_{2 n}\right)-\left(x_{12}+y_{12}\right) D\left(t_{2 n}\right)=$ $D\left(\left(x_{12}+y_{12}\right) t_{2 n}\right)-\left(x_{12}+y_{12}\right) D\left(t_{2 n}\right)=D\left(x_{12}+y_{12}\right) t_{2 n}$. Hence,

$$
\left[D\left(x_{12}\right)+D\left(y_{12}\right)-D\left(x_{12}+y_{12}\right)\right] t_{2 n}=0 .
$$

Consequently, from (A) and (B) we have

$$
\left[D\left(x_{12}\right)+D\left(y_{12}\right)-D\left(x_{12}+y_{12}\right)\right] R=0
$$

By condition (M_{1}), we have

$$
D\left(x_{12}+y_{12}\right)=D\left(x_{12}\right)+D\left(y_{12}\right) .
$$

LEMMA 4. D is additive on R_{11}.
PROOF. Let x_{11} and y_{11} be arbitrary elements in R_{11}. For an element t_{12} in R_{12}, we have $\left(D\left(x_{11}\right)+D\left(y_{11}\right)\right) t_{12}=D\left(x_{11}\right) t_{12}+D\left(y_{11}\right) t_{12}=D\left(x_{11} t_{12}\right)+D\left(y_{11} t_{12}\right)-\left(x_{11}+\right.$ $\left.\mathrm{y}_{11}\right) \mathrm{D}\left(\mathrm{t}_{12}\right)$. But $\mathrm{x}_{11} \mathrm{t}_{12}$ and $\mathrm{y}_{11} \mathrm{t}_{12}$ are in R_{12}, and D is additive on R_{12} by Lemma 3, hence $\left(D\left(x_{11}\right)+D\left(y_{11}\right)\right) t_{12}=D\left(x_{11} t_{12}+y_{11} t_{12}\right)-\left(x_{11}+y_{11}\right) D\left(t_{12}\right)=D\left(\left(x_{11}+y_{11}\right) t_{12}\right)$ $-\left(x_{11}+y_{11}\right) D\left(t_{12}\right)=D\left(x_{11}+y_{11}\right) t_{12}$. thus we have

$$
\left[D\left(x_{11}\right)+D\left(y_{11}\right)-D\left(x_{11}+y_{11}\right)\right] t_{12}=0 .
$$

Therefore,

$$
\left[D\left(x_{11}\right)+D\left(y_{11}\right)-D\left(x_{11}+y_{11}\right)\right] R_{12}=0 .
$$

From Lemma 1, $D\left(x_{11}\right)+D\left(y_{11}\right)-D\left(x_{11}+y_{11}\right)$ is an element in R_{11}, hence the above result with condition $\left(M_{3}\right)$ give

$$
D\left(x_{11}+y_{11}\right)=D\left(x_{11}\right)+D\left(y_{11}\right) .
$$

LEMMA 5. D is additive on $R_{11}+R_{12}=e R$.
PROOF. Consider the arbitrary elements x_{11}, y_{11} in R_{11} and x_{12}, y_{12} in R_{12}. So, Lemmas 2,3,4 give $D\left(\left(x_{11}+x_{12}\right)+\left(y_{11}+y_{12}\right)\right)=D\left(\left(x_{11}+y_{11}\right)+\left(x_{12}+y_{12}\right)\right)=D\left(x_{11}+\right.$ $\left.y_{11}\right)+D\left(x_{12}+y_{12}\right)=D\left(x_{11}\right)+D\left(y_{11}\right)+D\left(x_{12}\right)+D\left(y_{12}\right)=\left(D\left(x_{11}\right)+D\left(x_{12}\right)\right)+\left(D\left(y_{11}\right)\right.$ $\left.+D\left(y_{12}\right)\right)=D\left(x_{11}+x_{12}\right)+D\left(y_{11}+y_{12}\right)$. Thus D is additive on $R_{11}+R_{12}$. This proves the desired result.
5. MAIN THEOREM.

THEOREM. Let R be a ring containing an idempotent e which satisfies conditions $\left(M_{1}\right),\left(M_{2}\right)$ and (M_{3}). If d is any multiplicative derivation of R, then d is additive.

PROOF. As we mentioned before, and without loss of generality, we can replace d by D. Let x and y be any elements of R. Consider $D(x)+D(y)$. Take an element t in $e R$ $=R_{11}+R_{12}$. Thus, $t x$ and $t y$ are elements of eR. According to Lemma 5 , we can obtain $t(D(x)+D(y))=t D(x)+t D(y)=D(t x)+D(t y)-D(t)(x+y)=D(t x+t y)-D(t(x+y))$
$+t D(x+y)$. Thus, $t(D(x)+D(y))=t D(x+y)$. Since t is arbitrary in $e R$, we obtain $e R(D(x)+D(y)-D(x+y))=0$. By condition $\left(M_{2}\right)$, we get

$$
D(x+y)=D(x)+D(y)
$$

which shows that the multiplicative derivation D is additive.
ACKNOWLEDGEMENT. The author is indebted to the referee for his helpful suggestions and valuable comments which helped in appearing the paper in its present shape.

REFERENCES

1. MARTINDALE III, h.S. When are Multiplicative Mappings Additive ?, Proc. Amer. Math. Soc. 21 (1969), 695-698.
2. JACOBSON, N. Structure of Rings, Amer. Math. Soc. Collog. Publ. 37 (1964).

