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The external load of a team-sport athlete can be measured by tracking technologies,

including global positioning systems (GPS), local positioning systems (LPS), and

vision-based systems. These technologies allow for the calculation of displacement,

velocity and acceleration during a match or training session. The accurate quantification

of these variables is critical so that meaningful changes in team-sport athlete external

load can be detected. High-velocity running, including sprinting, may be important

for specific team-sport match activities, including evading an opponent or creating a

shot on goal. Maximal accelerations are energetically demanding and frequently occur

from a low velocity during team-sport matches. Despite extensive research, conjecture

exists regarding the thresholds by which to classify the high velocity and acceleration

activity of a team-sport athlete. There is currently no consensus on the definition of

a sprint or acceleration effort, even within a single sport. The aim of this narrative

review was to examine the varying velocity and acceleration thresholds reported in

athlete activity profiling. The purposes of this review were therefore to (1) identify the

various thresholds used to classify high-velocity or -intensity running plus accelerations;

(2) examine the impact of individualized thresholds on reported team-sport activity

profile; (3) evaluate the use of thresholds for court-based team-sports and; (4) discuss

potential areas for future research. The presentation of velocity thresholds as a single

value, with equivocal qualitative descriptors, is confusing when data lies between two

thresholds. In Australian football, sprint efforts have been defined as activity >4.00 or

>4.17 m·s−1. Acceleration thresholds differ across the literature, with >1.11, 2.78, 3.00,

and 4.00 m·s−2 utilized across a number of sports. It is difficult to compare literature

on field-based sports due to inconsistencies in velocity and acceleration thresholds,

even within a single sport. Velocity and acceleration thresholds have been determined

from physical capacity tests. Limited research exists on the classification of velocity and

acceleration data by female team-sport athletes. Alternatively, data mining techniques

may be used to report team-sport athlete external load, without the requirement of

arbitrary or physiologically defined thresholds.

Keywords: velocity thresholds, acceleration, data mining, player tracking, match analysis

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00432
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00432&domain=pdf&date_stamp=2017-06-20
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:robert.aughey@vu.edu.au
https://doi.org/10.3389/fphys.2017.00432
http://journal.frontiersin.org/article/10.3389/fphys.2017.00432/abstract
http://loop.frontiersin.org/people/374471/overview
http://loop.frontiersin.org/people/418204/overview
http://loop.frontiersin.org/people/338493/overview


Sweeting et al. Review of Activity Profile Analysis

INTRODUCTION

The quantification of athlete external load is of interest to
scientists and practitioners, for the planning and monitoring of
training or competition. Team-sport athlete external load can
be quantified using accelerometers, global positioning systems
(GPS), local positioning systems (LPS), and optical tracking
systems. Except for accelerometers, these systems calculate
displacement, velocity and acceleration over time. The analysis
of external load over a match or training session is termed
activity profile (Aughey, 2011a). Information from the activity
profile is used to monitor change across a competitive season or
tournament (Bradley et al., 2009; Jennings, D. et al., 2012) and
allow for the design of specific training drills (Boyd et al., 2013).

The activity profile of field-based team-sport athletes is well-
documented (Aughey, 2011a; Mooney et al., 2011; Jennings,
D. H. et al., 2012; Bradley et al., 2013). Activity profile
analysis typically includes time spent in velocity or acceleration
zones. These zones are defined according to threshold values
and determined arbitarily, by the proprietary software of
tracking systems or expressed relative to a physiological test.
Currently, there is no consensus on how to determine a
velocity or acceleration threshold. Large discrepancies exist in the
classification of a sprint effort. The comparison of activity profiles
across and within team-sports is consequently difficult.

The aim of this narrative review is to examine the varying
velocity and acceleration thresholds used to analyze team-sport
athlete external load. Applying a global velocity or acceleration
threshold does not account for individual differences. Whilst
thresholds can be individualized, physiological tests comprising
continuous or linear movement do not reflect changes of
direction and acceleration. The current techniques used to
analyze external load are therefore inappropriate. Alternate
methods, including unsupervised data mining techniques, are
considered. These techniques find trends within external data
and may be useful in informing thresholds.

ATHLETE TRACKING TECHNOLOGIES

Team-sport athlete external load is collected by tracking
technologies. Manual video analysis is an inexpensive method
to estimate external load. Athletes are filmed by cameras
positioned around a playing area, with footage subjectively coded
into locomotor categories (Spencer et al., 2004). Manual video
analysis requires substantial time demand to examine activity.
Validity also has not been established, due to the subjective
estimation of athlete movement. A tracking system must be valid
so meaningful changes in athlete activity profile can be detected.
The capacity of a human to consistently reproduce results is also
a major limitation of manual video analysis. Semi-automated
tracking systems were designed to remove the laborious and
subjective classification of athlete activity. Commercial systems,
including ProZone (Di Salvo et al., 2006) and Amisco (Castellano
et al., 2014), can detect the position of multiple team-sport
athletes. However, the required equipment is expensive and non-
portable. Activity profiles therefore cannot be collected without
the elaborate infrastructure. Athletemovement is also collected in

a two-dimensional plane, with changes in position due to vertical
movement going undetected (Barris and Button, 2008).

Accelerometers are wearable sensors that directly quantify
athlete load in three-dimensional planes. Accelerometers have
been utilized in field-based (Mooney et al., 2013) and court-based
(Cormack et al., 2014) team-sports however, accelerometers
cannot calculate an athlete’s position relative to a playing area.
Consequently, the time and distance covered by an athlete at
varying velocities are unable to be quantified. The use of GPS
to collect the distance and velocities of field-based team-sport
athletes is well-documented (Buchheit et al., 2010b; Jennings, D.
H. et al., 2012; Varley et al., 2013b). A recent review has examined
factors influencing the setup, analysis and reporting of GPS data,
for use in team-sports (Malone et al., 2016).

Large variations exist in GPS estimates of changes in velocity,
betweenmodels and units from the samemanufacturer (Buchheit
et al., 2014). During simultaneous capture of a sled dragging
exercise, small to very large between-model and unit differences
were observed in 15Hz GPS units (Buchheit et al., 2014). These
units were manufactured with a 10Hz GPS but upsampled
to 15Hz (Aughey, 2011a). In 10Hz GPS, acceleration and
deceleration movements have a large between-unit coefficient
of variation (CV) of 31–56% (Varley et al., 2012). A variety of
factors may influence GPS measures of acceleration and velocity.
The accuracy of GPS to measure instantaneous velocity is limited
by unit processing speed, location, antenna volume, and chipset
capacity. Quantification of instantaneous velocity is up to three
timesmore accurate in 10HzGPS units compared to 5Hz (Varley
et al., 2012). When measuring acceleration and deceleration,
10Hz units still differ by ∼10% when compared to a laser device
(Varley et al., 2012).

Whilst GPS quantifies the position and velocities of field-
based team-sport athletes (Aughey, 2011a), GPS cannot be
used with court-based sports held indoors, due to no satellite
reception. The development of radio-frequency (RF) based LPS,
including the Wireless ad hoc System for Positioning (WASP),
allows athlete movement to be captured indoors (Hedley et al.,
2010). Local position systems (LPS) sample at up to 1000Hz
with generally superior accuracy compared to GPS (Stevens et al.,
2014). During varying speed and change of direction movement,
the average acceleration and deceleration derived from LPS was
within 2% of Vicon (Stevens et al., 2014). Although, accuracy for
peak acceleration and deceleration is limited, LPS can measure
average change in velocity or time spent in various acceleration
thresholds.

DISTANCE COVERED

A common athlete activity profile measure is the total distance
covered. English Premier League athletes cover an average
of 10,714m during matches (Bradley et al., 2009), less than
One Day International (ODI) cricketers at 15,903m per match
(Petersen et al., 2009). Elite Australian footballers may record
total distances of up to 12,939m (Coutts et al., 2010). The
total distance covered during matches varies across athlete age
(Buchheit et al., 2010a), position and competition level (Jennings,
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D. H. et al., 2012). When total distance covered is expressed per
minute of match duration, soccer athletes cover 104 m·min−1

(Varley et al., 2013b). Australian footballers may average 157
m·min−1 (Aughey, 2011b) whilst elite rugby league players
cover up to 97 m·min−1 (Varley et al., 2013b). Sport-specific
constraints, including positional or tactical roles, may contribute
to these differences. The higher total distance in Australian
football may be attributed to the unlimited interchange policy
(removed in 2015), and the smaller field size available to soccer
and rugby league athletes (Varley et al., 2013b). The total distance
covered should be presented per minute of match duration or
time spent on field/ in a training drill (Aughey, 2011a).

Court-based athletes have a smaller playing area compared
to their field-based counterparts, yet cover similar meters per
minute. There is limited activity profile research on court-based
athletes. State-level female basket ballers cover 127–136m·min−1

during matches (Scanlan et al., 2012), higher than junior males
(115 m·min−1) and similar to state- (126–132 m·min−1) and
national (130–133m·min−1) male basketballers (Scanlan et al.,
2011). In semi-elite netball, center (C) athletes cover up to
133m·min−1 compared to goal keepers (GK) and goal shooters
(GS), who average 71 and 70m·min−1, respectively (Davidson
and Trewartha, 2008). These differences could be due to the
spatial restrictions imposed by each playing position although
manually estimating distance covered from video may also
provide unreliable estimates (Barris and Button, 2008).

In court-based sports, the ball may frequently and chaotically
change direction. Court-based athletes must be responsive to
movement of the ball, their team-mates and opposition in a
small area. Athletes may change direction and complete short,
high-intensity movements to cover or create space. Although,
there are more spatial limitations compared to field-based sports,
the high frequency of these actions performed by court-based
athletes may result in a comparable meters per minute profile.
Whilst reporting meters per minute gives an understanding of
intensity, granular periods of activity at different velocities are
lost by aggregating to the total distance covered. Quantifying
the time spent and distance covered at varying velocities may be
useful in programming training and monitoring load.

VELOCITY THRESHOLDS

During matches or training, the instantaneous velocity of an
athlete is binned into different zones via threshold values.
Velocity thresholds are defined by proprietary software providers
(Cunniffe et al., 2009), modified from published research
(Jennings, D. H. et al., 2012) or determined arbitrarily (Mohr
et al., 2003). There is no consensus on how to determine a velocity
threshold and large discrepancies exist, even within a single team-
sport (Table 1). The comparison of activity profile research is
consequently difficult.

The inconsistency between velocity thresholds extends
to qualitative descriptors. For example, activity may be
labeled as low-velocity or low-intensity movement. Low-velocity
movement, including walking and jogging, could be activity
between 0 and up to 5.40m·s−1 (Varley et al., 2013b). Yet in

the same sport, activity >4.00m·s−1 was classed as high-speed
running (Sullivan et al., 2013). The classification of high-velocity
or high-intensity movement is also without consistent definition.
The varying definitions make for a difficult comparison between
studies. In Australian football, sprint efforts have been defined
as activity >4.00m·s−1 (Sullivan et al., 2013) while a threshold
of >4.17m·s−1 has also been utilized (Aughey, 2010; Mooney
et al., 2011). The presentation of thresholds as a single > or <

value, with ambiguous descriptors, is confusing when velocity
data falls between two thresholds. For example, running by
professional soccer athletes is described as velocities between
4.00 and 5.47m·s−1 whilst activity >5.50m·s−1 was considered
high-intensity movement (Carling et al., 2012). It is unclear if
velocities within the 0.03m·s−1 upper and lower ranges of the
two classifications were removed from analysis. Deletion of these
values may influence the frequencies and durations reported.
Research describing thresholds in this manner should detail
how instantaneous velocities are binned into different zones. If
researchers use discrete values, it is recommended that thresholds
be presented as ≥ or ≤ values.

The confusion in velocity thresholds also extends to the
duration of a sprint. In elite female rugby union (Clarke et al.,
2014), hockey (Vescovi, 2014), and professional male soccer
(Carling et al., 2012) matches, sprinting must occur for a
minimum of 1 s. However, in other studies (Buchheit et al.,
2010a; Jennings, D. H. et al., 2012; Varley et al., 2013b; Kempton
et al., 2015b), the minimum duration is not stated. It is unclear
what effect these inconsistent minimum threshold durations have
on the activity profile. Researchers should state the minimum
duration required to record a sprint effort. The inconsistency of
sprint thresholds in the literature is likely due to values being
arbitrarily determined or taken from proprietary software.

ACCELERATION THRESHOLDS

Acceleration is a metabolically demanding activity, requiring
more energy than constant running (Osgnach et al., 2010).
During team-sport matches, a large number of high intensity
efforts are short in duration and commence from a low velocity.
In elite soccer matches, more than 85% of maximal accelerations
did not exceed the high-speed (4.17m·s−1) threshold (Varley and
Aughey, 2013). Maximal accelerations (>2.78m·s−2) occurred
eight times more than sprinting, classified as >6.94m·s−1 but
<10.00m·s−1 (Varley and Aughey, 2013). The starting velocity is
critical when measuring accelerations or decelerations, although
quantification of these variables is dependent upon the validity
and reliability of athlete tracking systems.

There are large inconsistencies between acceleration
thresholds used throughout the literature. In field-based
team-sports, accelerations have been classified as >1.11m·s−2

(Wisbey et al., 2010), 2.78m·s−2 (Varley et al., 2013a), 3.00m·s−2

(Hodgson et al., 2014), and 4.00m·s−2 (Farrow et al., 2008).
Accelerations have also been categorized into moderate (2.00–
4.00m·s−2) or high (>4.00m·s−2) zones, with a minimum
duration of 0.40 s (Higham et al., 2012). The rationale used to
select these zones is unknown. The 2.78m·s−2 threshold used
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in soccer (Varley and Aughey, 2013) and Australian Football
(Aughey, 2010) originated from a standing start maximal
acceleration of between 2.50 and 2.70m·s−2, performed by
non-athletes (Varley et al., 2012). Since elite Australian Football
athletes often maximally accelerate from a moving start during
matches (Aughey and Falloon, 2008), a 4.00m·s−2 threshold
was considered too high and 1.11m·s−2 too low (Aughey,
2010). It appears the threshold of 2.78m·s−2 was determined
arbitrarily (Aughey, 2010). Acceleration thresholds of 1.50, 3.00,
and 4.00m·s−2 have been used in a single study (Buchheit et al.,
2014). Specifying thresholds in this manner has implications
for quantifying activity profile and monitoring change over
time, particularly when large variations in the measurement of
acceleration are common between GPS models from the same
manufacturer (Buchheit et al., 2014).

The velocity distribution of elite field-based team-sport
athletes was used to create sport-specific threshold values (Dwyer
and Gabbett, 2012). Match data from five elite female and
male soccer, hockey and professional male Australian Football
athletes were collected from GPS sampling at 1 Hz (Dwyer and
Gabbett, 2012). A frequency distribution of speed (0–7m·s−1) in
0.1m·s−1 increments was computed from the 25 data sets and
an average distribution calculated (Dwyer and Gabbett, 2012).
Four normally distributed Gaussian curves were then fitted to the
averaged velocity distribution curves and the intersecting points
used to determine thresholds for each sport (Dwyer and Gabbett,
2012). A frequency distribution of acceleration from each data
set was calculated and a threshold was based on the highest
5% of accelerations performed (Dwyer and Gabbett, 2012). This
threshold was then calculated for each pre-determined velocity
range and used to identify sprints (Dwyer and Gabbett, 2012).
The average velocity distribution for all field-based team-sports
was similar. Differences between sexes from the same sport
were larger than differences across sports (Dwyer and Gabbett,
2012). Six additional sprints, of a short duration, would not
have been recorded using the traditional threshold (Dwyer and
Gabbett, 2012). While the decision to include five movement
categories comprising standing, walking, jogging, running, and
sprinting, appear to have been arbitrarily determined, this is a
novel idea compared to the traditional analysis of athlete velocity.
This approach was utilized to profile the activity of national
level lacrosse (Polley et al., 2015) and youth female field hockey
(Vescovi, 2014) athletes. However, the 1 Hz GPS units used have
a very large (77.2%) CV when measuring short sprint efforts
(Jennings et al., 2010). Consequently, data obtained from 1Hz
GPS during these movements, and the results presented, should
be interpreted with extreme caution. The small sample size is
also limited in detecting meaningful change across and between
sports. Decelerations or negative changes in velocity were also
removed from the analysis, likely due to the poor capacity of GPS
to accurately quantify these movements (Buchheit et al., 2014).

The ability to reduce velocity is termed deceleration. An
athlete’s capacity to efficiently decelerate is important for
changing direction (Kovacs et al., 2008). The major components
of deceleration include dynamic balance, power, reactive, and
eccentric strength (Kovacs et al., 2008). In elite team-sport
athletes, the substantial eccentric loading during repeated

decelerations is likely to have a detrimental effect on subsequent
40m sprint test performance (Lakomy and Haydon, 2004). In
collegiate team-sport athletes, muscle damage was induced post
15× 30m repeated sprints with a rapid deceleration, interspersed
with 60 s of passive recovery (Howatson and Milak, 2009).
Increased muscle soreness, swelling, creatine kinase efflux and
decreased maximum isometric contract was also observed 48–72
h post exercise (Howatson and Milak, 2009). Collectively, these
results demonstrate the magnitude of muscle and performance
damage when team-sport athletes perform repeated deceleration
efforts.

Investigation into the decelerations of team-sport athletes
during matches is limited. In elite male rugby seven matches,
decelerations were classified as moderate (−4.00 to−2.00m·s−2)
or high (> 4.00m·s−2) and occurred for a minimum of 0.40 s
(Higham et al., 2012). It is unclear why these zones were chosen.
A 35 and 25% difference in moderate and high decelerations,
respectively, existed between standards of play (Higham et al.,
2012). The large error of 5Hz GPS to accurately quantify these
movements may account for the difference between playing
levels. The deceleration of professional rugby league athletes
were investigated during two competitive seasons (Delaney et al.,
2015). Differences in the maximum value recorded over a rolling
average, from 1 to 10min in duration, was compared across
playing positions (Delaney et al., 2015). Compared with a 10min
rolling average, a large effect was observed for acceleration
and decelerations of 1–2min. A moderate to small effect for
3–7min duration was also recorded (Delaney et al., 2015). While
this approach presents the maximum load of an athlete over
varying durations, all acceleration and deceleration measures
were modified to estimate the total number of accelerations
performed (Delaney et al., 2015). This approach could be
misleading as energetically, the ability to accelerate and decelerate
is different. Using this approach, the specific training prescription
of deceleration is consequently limited.

The deceleration output of court-based team-sport athletes
remains largely unknown. Decelerations account for up to 18%
of total distance covered during professional football match play
(Akenhead et al., 2013). Decelerations, and their distribution
over varying epochs, should therefore be included in the activity
profiles of court-based team-sport athletes, to ensure appropriate
training design for competition. The inconsistency previously
described in defining velocity thresholds is also evident in
research on decelerations. There is currently no consensus on
how to define acceleration or deceleration thresholds. While
presenting the acceleration frequency of team-sport athletes
provides a global representation of high-intensity movements,
limited research exists on the individualization of acceleration
thresholds. The classification of accelerations is also dependent
upon the sampling epoch utilized, whichmay alter themagnitude
of frequencies reported.

FILTERING OF DATA

Athlete tracking data may be filtered during the post-processing
phase. Filtering involves the smoothing of position and reduction
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of noise using various mathematical algorithms (Carling et al.,
2008). Noise can be removed by numerous techniques, each with
different results. Curve fitting involves a low-order polynomial
curve fitted to raw trajectory data. Although, this technique is
best for repetitive movements including jumping, error may be
introduced through poor selection of specific points that the
curve is fitted to (Winter, 2009). These points are determined
from the raw data and consequently, are influenced by the very
noise the filter is trying to eliminate (Winter, 2009). Bandpass
filtering converts raw data from the spatial to the time domain,
typically using a Fast Fourier Transform (FFT). High-frequency
signal, uncharacterize of normal humanmovement, is eliminated
before data is converted back into the spatial domain through an
inverse FFT (Wundersitz, D. et al., 2015). However, the threshold
used as the optimal cut-off frequency is arbitary and typically
chosen via visual inspection (Wundersitz, D. et al., 2015). Digital
filtering analyzes the frequency spectrum of both signal and
noise. The signal typically occupies the lower end of a frequency
spectrum and overlaps with the noise, which is typically observed
at a higher frequency (Winter, 2009). A low-pass filter permits the
lower frequency signals while consequently reducing the higher
frequency noise. Low-pass filtering can be used when analyzing
trajectory data (Winter, 2009).

The filtering of athlete external load data is dependent
upon the tracking system utilized. Filtering may occur on
raw positional data at the instruction of the tracking system
manufacturer (Stevens et al., 2014). Derived measures, including
metabolic power from GPS (Di Prampero et al., 2005; Osgnach
et al., 2010) are also filtered at unspecified frequencies during
the post-processing stage. Butterworth (Stevens et al., 2014) and
Kalman (Sathyan et al., 2012) filters are typically used for LPS
data. There is limited information on how filters are used in
optical player tracking systems and GPS. Filtering may account
for the 24% difference in sprint distance between real-time and
post-match Australian football GPS data (Aughey and Falloon,
2010) although no detail was presented on how the manufacturer
explains these discrepancies. It is important to know how the
manufacturer of an athlete tracking system filters raw data,
particularly when inferences from external load are used to make
decisions on programming training (Borresen and Lambert,
2009; Rogalski et al., 2013). The filtering of accelerometer data
has recently been examined (Boyd et al., 2011). Only one of the 13
filters was strongly related (mean bias;−0.01± 0.27 g; CV 5.5%)
to the criterion measure, Vicon (Wundersitz, D. et al., 2015).
Information on filtering is rarely presented from GPS or LPS
data when time spent or distance covered in velocity bands are
reported. The filtering of raw data from an athlete tracking system
has a substantial impact on the frequencies and distances covered
in velocity or acceleration zones (Wundersitz, D. et al., 2015).
Prior to reporting team-sport athlete activity profiles, researchers
should detail the type of filtering applied to raw data.

INDIVIDUALIZED THRESHOLDS

Activity profile data reported as an average across a team
(Aughey, 2011b) or position (Mooney et al., 2011; Varley and

Aughey, 2013) does not account for differences in individual
physical capacity. The use of a single sprinting or high-velocity
threshold, for all athletes within a team, also does not consider
the differences between individual athletes. Although, team-sport
matches are contested at an absolute level, the same external
load calculated by a high-velocity or sprinting threshold, for
two athletes could represent a different internal load based
on individual characteristics (Impellizzeri et al., 2004). Athlete
movement may be expressed relative to a physiologically defined
variable. High-intensity activity can be classified as greater
than the second ventilatory threshold (VT2), obtained during a
maximal aerobic capacity (VO2max) test. The VT2 is the point
where CO2 production exceeds O2 consumption during exercise
(Davis, 1985). It is assumed that activity beyond this point cannot
be sustained for prolonged periods due to the athlete no longer
being in a steady state (Davis, 1985). During team-sport matches,
activity below the VT2 can likely be continued for a prolonged
duration. In male soccer athletes, distance covered at or greater
than vVT2 was 167% higher or a very large effect when compared
to a threshold of 5.50m·s−1 (Abt and Lovell, 2009). A 44%
variation in athlete rank, calculated by distance covered at high-
speed, was observed between the two thresholds (Abt and Lovell,
2009). Individual VT2 has also been measured in professional
soccer athletes (Lovell and Abt, 2012). The resulting vVT2 was
compared to an arbitrary velocity (4.00m·s−1) threshold (Lovell
and Abt, 2012). High-speed running distance was overestimated
by 9% when arbitrary thresholds were used (Lovell and Abt,
2012). For individual athletes, this range could be between
22% lower and 33% higher (Lovell and Abt, 2012). In elite
female rugby sevens athletes, a physiologically-defined threshold
corresponding to treadmill speed at VT2 was compared to a
cohort average (3.50m·s−1) value (Clarke et al., 2014). When
individualized thresholds were used, high-intensity running was
up to 14% over or under-estimated compared to the cohort mean
VT2 derived threshold (Clarke et al., 2014). Distance covered
at high-speed may therefore be underestimated by traditional
thresholds.

While the individualization of velocity thresholds is a well-
reasoned approach to assess external load, conjecture exists
on the implementation of an incremental treadmill protocol,
conducted within a laboratory, and its application to team-
sports. The individualization of velocity thresholds, derived from
a continuous running protocol, does not consider the change
of direction and acceleration movements, frequent in team-
sports (Lovell and Abt, 2012). Whilst speed thresholds have been
individualized in field-based team-sports (Abt and Lovell, 2009;
Lovell and Abt, 2012; Clarke et al., 2014), limited research exists
on court-based team-sports.

Athlete thresholds for external load can be expressed relative
to maximum speed attained during sprint testing. The external
load of junior-elite male soccer athletes was compared using
absolute (>5.27m·s−1) or individual thresholds by obtaining the
peak running velocity during the fastest 10m split of a 40m sprint
(Buchheit et al., 2010b). Athletes in the highest playing standard
(U18 years of age) performed more repeated-sprint efforts
when activity was assessed using absolute thresholds (Buchheit
et al., 2010b). Younger players (U13 and U14 years of age)
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recorded more sprinting activity with individualized thresholds
(Buchheit et al., 2010b). In junior male rugby league athletes,
when an individualized threshold of peak velocity obtained
during the final 20m of a 40m sprint test was compared with
absolute speed (>5.00 m·s−1) thresholds, younger athletes (U13)
performed likely (effect size = 0.43–0.58) greater high-speed
running compared to their older (U14 and U15 years of age)
counterparts (Gabbett, 2015). The total high-intensity running
performed by junior athletes may be altered when expressed
relative to a movement threshold obtained during maximal
sprinting (Buchheit et al., 2010b; Gabbett, 2015). Inconsistencies
therefore exist in the recorded sprinting distance according to the
velocity threshold used.

Expressing a team-sport athlete’s data relative to a
physiologically defined threshold is an individualized approach
that may benefit the training prescription for players. Although,
an advancement on the use of arbitrarily derived velocity
thresholds, limited research exists on how to individualize
accelerations. Accelerations require more energy than constant
velocity (Osgnach et al., 2010). Without information on how
to classify accelerations, individualized thresholds are therefore
limited in their use for team-sport athletes, including those who
participate in court-based sports.

RELATIONSHIP OF HIGH-INTENSITY
ACTIVITY TO MATCH PERFORMANCE

The capacity to accelerate and sprint is important for team-
sport match performance. In junior-elite Australian Football,
athletes faster over a 5 and 20m split acquired the most kicks
and disposals during matches, compared with their slower
counterparts (Young and Pryor, 2007). During elite matches,
a relationship exists between athlete physical capacity and the
number of disposals. This relationship is mediated by the
amount of high intensity-running (HIR) m·min−1 or distance
traveled at >4.17m·s−1 (Mooney et al., 2011). Sophisticated
modeling techniques may therefore be able examine the effect
of contextual and match-related factors on team-sport athlete
running intensity.

The relationship between physical capacity and match
performance in professional soccer was examined across three
top English leagues (Bradley et al., 2013). Total distance covered
and HIR >5.50m·s−1 was captured via semi-automatic tracking
(Bradley et al., 2013). Less total and HIR distance occurred
at a higher than a lower playing standard. Physical capacity,
defined as score on the Yo-Yo intermittent recovery two
(IR2) test, was correlated with HIR distance (Bradley et al.,
2013). In junior-elite male soccer athletes, the relationship
between external load, defined as movement >4.47m·s−1 and
physical capacity, quantified as score on the Yo-Yo IR1, was
position dependent. Poor correlations were observed between
match running performance and athlete physical capacity in
all positions except strikers. However, the 1Hz GPS units
used have poor validity (CV% of 11–30%) for assessing HIR
(Coutts and Duffield, 2010). To truly quantify the relationship
between athlete match external load and physical capacity,

tracking technologies that are accurate at detecting movement
within a range of intensities should also be used. Although,
the relationship between match outcomes, athlete performance,
and external load have been examined, research has applied a
mean velocity threshold to all athletes within a team (Mooney
et al., 2011; Bradley et al., 2013). The justification for these
thresholds is typically based on other literature or arbitarily
determined. Individualizing velocity thresholds may allow for a
detailed analysis of the relationship between athlete external load
and match outcome, although physiologically defined thresholds
are limited in their application for defining accelerations (Varley
and Aughey, 2013). The majority of research on the relationship
between athlete performance and external load has focused on
males competing in team-sports, with limited information on
female athletes (Costello et al., 2014).

THRESHOLDS FOR MALE AND FEMALE
TEAM-SPORT ATHLETES

Men and women compete in team-sports at an elite level.
Tracking technologies, including GPS, are used to collect the
activity profiles of male and female team-sport athletes (Gabbett
and Mulvey, 2008; Dwyer and Gabbett, 2012; Vescovi, 2014).
There are differences in physiological capacities between sexes,
including aerobic fitness and absolute sprinting ability (Mujika
et al., 2009). Consequently, the physiological cost of high-speed
running may be substantially different for male and female team-
sport athletes. Although, lower speed thresholds are suggested for
female team-sport athletes (Dwyer and Gabbett, 2012), limited
research exists on the application of these thresholds. An under-
or over-estimation of external load may occur if female athletes
use thresholds initially developed for male athletes.

Thresholds developed for male team-sport athletes have
been applied to female external load data. During international
female hockey matches, the average number (17) of sprints
completed was lower than the mean number (30) performed by
male athletes (Macutkiewicz and Sunderland, 2011). However a
sprinting threshold of 5.2m·s−1, adapted from research on male
soccer athletes (Bangsbo, 1992), was applied to female match
data. Since there are sex differences in sprinting speed (Mujika
et al., 2009), the reduction in mean sprints observed during
international female hockey could be due to the inappropriate
use of a velocity threshold designed for males. In soccer, male
velocity thresholds have also been applied to female external
load data (Krustrup et al., 2005; Mohr et al., 2008). However,
the sprinting speed of female soccer athletes varies across age
(Vescovi et al., 2011) and differs compared to males (Mujika
et al., 2009). To develop female specific values, varying velocity
thresholds have been used in soccer (Vescovi, 2012). During
competitive matches, sprinting by professional female soccer
athletes accounts for 5.3% of total distance covered when
categorized as activity >5.0m·s−1 (Vescovi, 2012). However, if
the threshold is increased to >6.9m·s−1, similar to thresholds
used for male team-sport athletes (Varley et al., 2013b), little to
no sprinting is recorded (Vescovi, 2012). A ceiling effect may
therefore be present when using thresholds originally developed
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for male team-sport athletes. Although, the use of varying
velocity thresholds is a guide in the development of sprinting
values for female soccer, this approach does not consider the
individual physiological differences between athletes.

The individualization of velocity thresholds for female athletes
has recently been examined. In elite female rugby sevens athletes,
a male velocity threshold (5.0m·s−1), individual and cohort
mean vVT2 speed, was used to determine distance covered
at high-intensity (Clarke et al., 2014). The absolute amount
of match high-intensity running was underestimated by up
to 30% when using a velocity threshold designed for male
athletes (Clarke et al., 2014). The individualized threshold under-
or over-estimated high-intensity running by up to 14% when
compared to the cohort mean vVT2 speed threshold of 3.5 m·s−1

(Clarke et al., 2014). Individualizing the high-intensity running
threshold, assessed via a linear physiological test, of female team-
sport athletes may allow for customized training prescription.
However, individualization requires a time-consuming and
expensive laboratory-based VO2max test, which can be difficult
to implement with a large number of athletes in a team-sport
setting. Alternatively, the maximal aerobic speed (MAS) of an
athlete is highly-correlated with maximal oxygen uptake (Léger
and Boucher, 1980) and reflects running economy (Di Prampero
et al., 1986). Assessment of MAS can occur on a large number of
athletes during an incremental field running test (Buchheit et al.,
2013). The relationship betweenMAS and high-intensity running
has been assessed in youth male soccer athletes (Buchheit et al.,
2013) although, to date, no research exists on individualizing
the velocity thresholds of female team-sport athletes using
MAS testing results. For female team-sport athletes who cannot
complete individualized physiological or field testing, a threshold
of 3.5m·s−1 could be used as guide for high-intensity running,
although differences between playing position and standard are
not accounted for with this fixed threshold.

The development and implementation of female-specific
thresholds, according to playing standard and position, should
be investigated. Although, thresholds have been developed for
female athletes competing in field-based sports (Dwyer and
Gabbett, 2012; Clarke et al., 2014), there are no thresholds
specifically for court-based sports. Netball, for example, is a
court-based team-sport played indoors by elite female athletes.
Due to the lack of research on female court-based sports, there is
limited information on how to quantify velocity and acceleration
thresholds for netball athletes.

ALTERNATE APPROACHES TO CLASSIFY
ATHLETE ACTIVITY

Data mining is a research area that aims to discover regularity
from within large datasets and yield insights that are not possible
using conventional statistics (Chen et al., 1996). Large databases,
such as the external load obtained from tracking technologies,
can therefore be investigated. Knowledge may be extracted
through data mining techniques including classification, where
data are sorted into predefined classes based on some common
features (Chen et al., 1996). These methods are alternative

approaches to the individualization of team-sport athlete external
load. For example, the latent properties of external load from
a single athlete can be found using data mining approaches.
Velocity or acceleration thresholds are therefore derived directly
from the sampled data and can be examined across age, sex,
playing standard, or position.

Relationships between latent properties in data that may
impact athletic performance can be uncovered using data mining
(Ofoghi et al., 2013). Machine learning, a data mining technique,
has been used to discover the physiological capacities required
to medal in sprint cycling (Ofoghi et al., 2010). A recent review
(Ofoghi et al., 2013) highlighted the lack of a contemporary
framework for analyzing the match performance data of elite
athletes. For example, a traditional statistical analysis on the
performance of a team-sport athlete during passing chains
may consider a direct relationship with a dependent variable.
However, this type of analysis ignores the context of data
collection (Ofoghi et al., 2013). Using data mining techniques,
the hidden features that may impact upon passing quality could
be examined, going beyond a superficial analysis (Ofoghi et al.,
2013).

An alternative approach is mediation analysis, a statistical
technique that examines the relationship between the dependent
variable and independent variables to identify plus explain
process. Mediation analysis has been applied in elite Australian
Football to examine inter-relationships between athlete capacity,
match intensity and performance (Mooney et al., 2011). Playing
position and experience influence the relationship between an
athlete’s capacity, match activity profile and possession output
(Mooney et al., 2011). Linear techniques including discriminant
analysis (Castellano et al., 2012) and generalized linear modeling
have also been used to examine team-sport performance.
However, linear techniques may not be an optimum method to
analyze the match performance of dynamic and chaotic team-
sports.

In contrast, non-linear data mining techniques are not
constrained to a single linear variable. Decision trees, a non-
linear technique, have been used to explain match outcome
in Australian football (Robertson et al., 2016), classify team-
sport activities from a wearable sensor (Wundersitz, D.W. et al.,
2015) and explore the attacker and defender interaction during
invasion sports (Morgan et al., 2013). Decision trees involve
the repeated partitioning of data, based on input fields that
create branches which can be further split to differentiate the
dependent variable. Decision trees can handle missing data and
provide an intuitive analysis of a dataset (Morgan et al., 2013).
Unlike clustering, decision tree induction is not dependent on the
selection of a prior distribution.

Clustering is a data mining technique that could be used
to find unknown patterns in large datasets by classification,
whereby data is grouped based on similarity (Chen et al.,
1996). A large dataset can be meaningfully divided into smaller
components or categories using clustering (Punj and Stewart,
1983). These categories may be mutually exclusive (Fayyad
et al., 1996). Categories can also be sorted in a hierarchical or
overlapping manner. Gaussian mixture models, a cluster method
that contains a prior belief about group assignment, have been
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used to classify shot making in tennis (Wei et al., 2013). These
clustering methods represent sub-populations within a dataset
and express the uncertainty about cluster assignment. The k-
means clustering algorithm divides a dataset into a user-specified
number of k clusters (Wu et al., 2008). The k-means algorithm
starts with k centroids, selected at random. Each data point within
the wider dataset is assigned to its nearest centroid, based on
similarity. The centroids are updated each time a data point is
assigned (Wu et al., 2008). The centroid mean is then calculated
from the data points allocated to that cluster (Wu et al., 2008).
The size of the dataset determines the number of repetitions
required for the k-means algorithm to reach completion (Wu
et al., 2008). Clustering, via the k-means algorithm, could be used
in a variety of sport settings, including grouping the external load
of an athlete.

Complex statistical or data mining techniques, including
clustering, may uncover unknown patterns or counter prior
beliefs. These approaches could be used to guide the development
of athlete velocity and acceleration thresholds. Self-organizing
maps (SOM) and clustering have been utilized in elite rugby
union to uncover playing styles related to team success (Croft
et al., 2015). The coordination patterns during three different
basketball shots from varying distances have also been classified
using SOM (Lamb et al., 2010). The lowest variability was
recorded in the three-point and hook shots. The SOM displayed
a movement output that differed unexpectedly from traditional
analysis, including visual inspection and time series data (Lamb
et al., 2010). A movement analyst with experience and prior
knowledge or bias may have been distracted by other information
compared to a SOM, that has a more objective methodology
(Lamb et al., 2010). These approaches could also be used to
group athlete velocity data, without the requirement of a human
input threshold based on a physiologically defined or arbitary
value. These groups could be formed irrespective of an athlete’s
age, sex, position, or playing standard. Patterns within athlete
movement, including velocities and accelerations performed,
could be derived by applying clustering techniques to external
load data.

The accelerometer derived PlayerLoadTM data of elite female
netball athletes was grouped by k-means clustering (Young et al.,
2016). Optimal clustering was the greatest Euclidean distance
obtained from two to five clusters (Young et al., 2016). The
seven netball playing positions were divided into two groups
according to playing intensity and relative time spent in a low-
intensity zone (Young et al., 2016). The PlayerLoadTM for the goal
based positions was lower than the attacking and wing positions,
likely due to the time spent performing low intensity activity
(Young et al., 2016). This study was the first to use data mining
techniques, including k-means clustering, to examine athlete load
data. However, only accelerometer data was investigated and
not the position of an athlete, from GPS or LPS. Capturing the
position of an athlete allows for the calculation of displacement,
velocity and acceleration. With the large volume of data obtained
from athlete tracking systems, datamining represents a technique
to gain further insight into athlete activity profiles. Consequently,
athlete external load could be analyzed without the requirement
of an arbitrary or software-implemented threshold.

RECOMMENDATIONS

A range of velocity thresholds are utilized to classify the
sprint effort of a team-sport athlete. Although, thresholds may
be individualized (Abt and Lovell, 2009; Clarke et al., 2014),
applying a global velocity or acceleration threshold may allow
for examination of positional and individual differences over
time. A practical issue for those monitoring activity profiles is
determining velocity and acceleration thresholds for a cohort
of athletes. Selection of these global thresholds is often arbitary
and dependent upon the cohort profiled. We recommend
that practitioners choose thresholds of an equal bandwidth,
for example, 0–5, 15–10, 15–20, 20–25, and ≥25 km·h. The
minimum duration required for a sprint effort to be recorded
should also be stated.

For elite female team-sport athletes competing in field-
based sports, a fixed threshold of 3.5m·s−1 may be used to
detect high-speed activity across a cohort of players (Clarke
et al., 2014). Since a consensus is yet to be reached on
the physiological tests to determine velocity or acceleration
thresholds, we recommend that practitioners chose a test
deemed most appropriate for their sport. Alternatively, data
mining approaches could be used to examine the velocity
and acceleration output of team-sport athletes. Recently, the
velocity, acceleration and angular velocity output of court-based
team-sport athletes was examined without arbitary thresholds
(Sweeting et al., 2017). Rather than comparing the velocity,
acceleration and angular velocities performed by individuals as
a function of time, the similarities between playing positions
according to the movement sequences performed. This approach
may have application for coaching and conditioning. Knowledge
of the movements performed, angle of attack and accelerations
may assist with planning sport-specific training. Practitioners
and scientists can subsequently focus on training the specific
movement sequences frequently performed by athletes in each
playing position. These sequences can also be examined across
different playing standards, such as elite and junior-elite levels.
Profiling the activity profile across the athlete pathway may assist
in preparing team-sport athletes during transition from lower to
higher levels.

CONCLUSION

Athlete position, velocity, and acceleration can be measured
duringmatches or training via optical tracking, GPS and LPS. The
analysis of distance, velocity, and acceleration over a specified
time epoch is termed athlete activity profile. It is difficult to
compare literature on field-based sports due to inconsistencies
in velocity and acceleration thresholds, even within a single
sport. Velocity and acceleration thresholds have been determined
from physiological and physical capacity tests. Limited research
also exists on female team-sport athletes and how to classify
their velocity plus acceleration. Alternatively, data mining can
derive patterns from large datasets. With the large volume of
data obtained from athlete tracking systems and advancements
in classifying movement patterns during skill or endurance
performance, data mining is a technique to gain further insight
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into athlete activity profiles. Consequently, athlete external load
could be analyzed without velocity or acceleration thresholds.
Future work should focus on using data mining techniques
to analyze the movement performed by team-sport athletes,
particularly elite females and those participating in court-based
sports.
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