
Published in Science, Technology and Human Values

When is a Work-around? Conflict & Negotiation in Computer Systems

Development

Neil Pollock

School of Management,

University of Edinburgh

William Robertson Building

50 George Square

Edinburgh, EH8 9JY

Phone(w): +44(0)131 6511489

Phone(h): +44(0)131 2281034

Fax: +44(0)131 6683053

Email: Neil.Pollock@ed.ac.uk

 1

Abstract

The notion of a ‘work-around’ is a much used resource within the sociology of

technology, reflecting an interest in showing how users are not simply shaped

by technologies but how through adopting artefacts in ways other than for

which they were designed or intended are also shapers of technology. Using

the language and concerns of actor network theory, and focusing on recent

developments within computer systems implementation, this article seeks to

explore and add to our understanding of work-arounds through unpacking the

work of one group of ‘users’ as they attempt to tailor and roll-out a system

within the administration departments of their university. The argument is

made that paying attention to the various networks which lead to and from

work-arounds can improve our understanding of the way users both shape

and are shaped by technologies. Focusing on work-arounds as ‘networks-in-

place’ also allows us to highlight some of their contingencies; i.e., the other

actors and entities on which these depend and are constituted.

Keywords

Work-arounds, software, actor network theory, users, programmers

 2

When is a Work-around? Conflict & Negotiation in Computer Systems

Development

Introduction

What is a ‘work-around’? Typically, the concept is used to explain how one

actor is able to adjust a technology to meet their particular needs or goals.

Indeed, one of the most significant analyses of the practice of work-arounds

appeared in the work of the Les Gasser some years ago who describes them

in relation to the ad-hoc methods deployed by users of administrative

computer systems attempting to fix problems or glitches in their work. Gasser

wrote that working-around means ‘…intentionally using computing in ways for

which it was not designed’ or avoiding a computer’s use and ‘…relying on an

alternative means of accomplishing work’ (1986, 216)1. Sociologists in

general, and sociologists of technology in particular, continue to be fascinated

by the practice and process of work-arounds. This, it might be suggested,

reflects a wider interest in showing how users are not simply shaped by

technologies but how they are also shapers of technology. Put another way,

the term is often a useful trope to emphasise the differences between the

‘logics of a technology’ and the ‘logics of human work’ (Berg, 1998), with the

actual practice of work-arounds highlighting the effort necessary to bring these

 AUTHOR’S NOTE: I would like to thank all those at my research site, particularly the programmers in
Administrative Computing Services (ACS). I would also like to acknowledge the support of the UK
Economic & Social Research Council (ESRC) under which this research was funded. The actual research
was initially carried out with an ESRC studentship, and later developed whilst I was working under the
ESRC’s Virtual Society? Programme. Finally, I would like to thank Mike Michael, Chris Stokes, Chris

 3

two factors into line. Gasser, in this sense, can be read as an account of how

actors through deploying some form of effort or skill are able to overcome a

difficulty or a constraint imposed by a technology. A stronger version of this

argument is perhaps Bryan Pfaffenberger’s (1992) description of the

‘technological adjustments’ carried out by users when a new production

process or artefact is introduced into their work setting. As Pfaffenberger sees

it, the users rather than accept the discipline of the new system ‘…engage in

strategies that try to compensate for the loss of self-esteem, social prestige,

and social power that the technology has caused’ (1992, 286). Typically, then,

the common understanding of work-arounds is clear and unambiguous; they

represent resistance on behalf of users and the means by which they attempt

to wrestle control back from a technology or an institution.

What motivates this article is the way in which work-arounds have become a

much-used resource within the sociology of technology but, with a few notable

exceptions2, as a topic they remain for the most part surprisingly under

investigated and theorised. What is often missing in many discussions is any

reference to their genesis or outcomes other than these general notions that

users also shape technology or that work-arounds correct a mis-alignment

between a technology and the desired goals of its users3. In contrast, I argue

that a reappraisal of the term is both important and timely for two main

reasons. Firstly, as computer systems, the technology discussed in this

article, spread ever more widely and into increasingly diverse and new

Ivory, David Edge, Luciana D’Adderio and James Cornford for their comments on earlier versions of this
article.

 4

domains, powerful incentives for increased standardisation are brought with

them (cf. Agre, 2000). This leads to inevitable tensions about which elements

in these settings should be standardised and which elements should not (cf.

Star & Ruhleder, 1996). An analysis of user work-arounds remain an essential

part of understanding how such ‘mis-alignments’ are reconciled.

Secondly, in fields such as management and administration computer

systems development, there is a blurring of the once clear distinction between

users and producers of technologies. Increasingly many systems are

designed and built so that they are customisable by their users (Brady et al,

1992), meaning that users also engage in the construction of these

technologies. The upshot is that it is now increasingly difficult to say exactly

who has responsibility for the final shaping of systems and their

implementation (cf. Suchman, 1994). In this context of changing and less

determinate technical divisions of labour and responsibilities, there is a need

for analysis that puts the user, their modifications, as well as the ambiguity

surrounding the process, at the centre of its concerns.

The aim of this article, then, is to re-awaken our interest in the topic of work-

arounds in light of these new and more complicated technological practices.

To try to do this I present the example of a group tasked with the job of

customising and implementing a ‘pre-built’ management information computer

system (known as MAC) within the centralised administration departments of a

university. Modifying technology is a routine and necessary aspect of this

group’s work although they often find that some of their work-arounds promote

 5

tensions between them and the original designers of the system. Below I

attempt to develop a basic understanding of some of the factors that lead to

these work-arounds – what I am calling ‘networks in place’ – as well as some

of the tensions that lead from them. A backdrop to this study is work

stemming from the actor network approach, particularly Madelaine Akrich’s

(1992) important article on how technologies embody ‘scripts’. In this first part,

I review this article as well as make some suggestions to how we might adapt

and deploy this form of thinking.

The Designer-Script-User Approach

In one of the most cited articles in the sociology of technology, Madeleine

Akrich’s (1992) describes how designers when building technologies also build

‘scripts’ into those technologies. Users, she argues, once they take-up and

use a technology can then seen to be enacting a script4. Though, she is

careful to point out that scripts are never enacted straightforwardly, as users

will often perform work-arounds, or what she calls mechanisms of adjustment,

to modify an artifact (and script) to more closely fit their particular

circumstances. To work through this concept she discusses the design and

use of a photoelectric kit which was providing electricity to a village in French

Polynesia. She outlines how the photoelectric kit suffered from one major

problem: when the electricity was most in demand the kit was apt to break

down. The power out occurred because it was possible to damage the kit if it

was allowed to run down, and engineers, assuming the users would be unable

 6

or unwilling to properly maintain the kit (i.e., the script), installed a ‘control

device’ that would make the kit inoperable. However, as the control device

was continually braking the circuit, residents would call upon the local

electrician, who, tired of receiving calls late into the evenings, eventually

installed a ‘fused circuit’ in parallel with the control device. This meant that

when the power was cut off the users could bypass the problem themselves

by using the new fuse.

The key issue for consideration here is that if we are to accept that users

play out scripts when using technologies, how are we to understand modes of

use that deviate from the script? Are they simply a result of ‘other’ scripts, the

agency or skill of people, or of something else? One reading of the Akrich

paper is to say that the problem is posed at the level of a choice or a dilemma.

The electrician can either let the users live with the technology as designed

and succumb to its prescription (i.e., have the inconvenience of constant

power interruptions). Alternatively, s/he can install a fuse, but this might be to

risk straining relations with the designers of the technology (the Electric

Company). In other words, the suggestion is that the electrician through

deploying his/her skill is able to exercise some form of ‘discretion’.

As already suggested, the danger is that without unpacking a work-around

and looking at what leads to and from them, it is possible to read the situation

as the electrician as having control over the situation and able to decide on

possible outcomes and bring these about. Moreover, it can also be read that

all of this will happen at the expense of certain other entities and actors (i.e.,

 7

the electrician is wresting some form of control back from the technology or the

Electric Company)5. In contrast, Mike Michael (1996) makes the appealing

argument that just as we can describe a technology as prescribing one form of

use then perhaps the same technology might also incorporate a script that

enables its abuse. A technology does not simply embody one script, or order,

but, according to Michael, these can be ‘multiple’6. Moreover, these multiple

scripts can often be contradictory, meaning, that just as a car, for instance,

can demand a certain form of use (i.e., safe and careful driving) it can also

enable the reverse (i.e., in the case of ‘road rage’ it can be used to intimidate

other drivers). While an interesting argument, it raises some further questions:

if a technology does embody multiple or contradictory scripts then why are

certain uses more likely than others? Why in the main do car drivers follow the

‘safe and careful’ form of use? Is the user disciplined toward one role over the

other? Seemingly, yes, or at least this is what Bruno Latour (1992) argues

that engineers ‘bet on’ when they attempt to anticipate the desires or goals of

their users. Latour writes that this way of counting on earlier ‘distribution of

skills’ to help narrow the gap between ‘built-in users’ or ‘users-in-the flesh’ is

like a ‘pre-inscription’ (257). In short, what he is suggesting here is that the

tendency towards one form of use is already present in the wider network.

Another method of describing such networks might be to talk about a ‘network-

in-place’.

In the following discussion of work-arounds there are aspects from the

above that I want to take-up and develop: these are Michael’s concern for

 8

‘multiplicity’ and what I am calling, after Latour, a network-in-place. The

argument is that the tendency for work-arounds is already present in the

networks that those implementing the computer system (MAC) inhabit – these

networks-in-place. Having established this, I then analyse these networks

through considering some of their ‘contingencies’ – i.e., the other actors and

entities on which these networks-in-place depend and by which they are

constituted. In particular, I examine their connections to the ‘original’

designers of MAC and the computer systems itself. Both are pivotal actors

who simultaneously demand and promise the possibility of work-arounds, and

major obstacles, questioning, and hindering the progress of the

implementation.

One final clarification is needed before we turn to the empirical material. It

will have become apparent that I have been discussing the language and

concepts associated with the ‘use of a technology’ and that I am attempting to

apply this to an example that is normally thought to be one of implementation.

I think there are good reasons for doing so. Namely, as has already been

suggested, designers and users are not well bounded. Mackay et al (2000), for

instance, argue that the conventional distinctions between production and use

cannot always be applied to information technologies as users are becoming

more like producers7. We might, perhaps, advance this argument in the other

direction, and suggest that just as the notion of the user has found to be more

complex than was traditionally assumed the case, it might be suggested that

producers also increasingly play contrasting roles. For instance, a technology

 9

like MAC is not reliant on one set of clearly defined producers delivering a

system to a user but on an extended network of computer professionals

working in and for different organisations. The group implementing MAC at

the local site, for instance, were made up of people with various level of skill

and expertise, ranging from those who had experience of similar

implementations elsewhere, to those who had been recently seconded in from

non-technical roles in other parts of the University. This group found that they

were one element in this long chain and that they were tasked to work with the

system in a certain way; this was linked to the efforts of the original designers

of the computer system to ensure that MAC’s code was modified only in the

ways they deemed appropriate. In other words, the designers were attempting

to configure the local programmers as their ‘users’8. Indeed, as Friedman

describes, hardware and software suppliers often think of the computer

system developers to which they sell products as their ‘users’. It is clear then

that the meaning of ‘user’ is shifting as the nature of computing itself changes

(Friedman, 1989, Mackay, 2000). Indeed, for Suchman, the key is to

deconstruct such simple terms as ‘designer and ‘user’ and, at the same time,

bring to the fore the relevant social relations that cross the boundaries

between these two groups. In this sense, it might be suggested that work-

arounds represent one aspect of the relations between these groups, as well

the means by which the producer/user boundary is constituted. This leads us

into an examination of the MAC system.

 10

MAC and the Delphic oracle

The oracle of Apollo at Delphi that gave answers held by the ancient Greeks to

be of great authority but also noted for their ambiguity9

The material produced here is from an ethnographic study carried out at one

of the university sites where MAC was being implemented. Indeed, the MAC

exercise involved most universities in the UK as the system resulted from a

decision taken by the centralised Universities Funding Council (UFC) in 1988

to ‘…take action to meet the increasing need for more and better management

information systems in universities’ (Goddard & Gayward 1994, 45). The idea

was that the ‘…cost would be reduced substantially by universities working

together to develop new systems common to all’ (ibid. 45):

The UFC therefore established the Management and Administrative

Computing (MAC) Initiative, a unique attempt to transform

administrative computing across the whole university system. The

initiative was placed under the control of a MAC Initiative Managing

Team and all institutions were to be brought into cooperative groups

(called Families) with the aim of all members of each Family eventually

using the same administrative computing software and jointly

developing and maintaining it (ibid. 45).

The original designers and builders of the computer system (hereafter – the

 11

Designers), which was implemented at the site where I did my study, work for

one of the world’s largest software organisations, Oracle (hereafter – the

Technology Vendor). In order to manage the implementation, the universities

created a company called ‘Delphic’ that was directly responsible for liasing

between the Technology Vendor and each of the sites. While several of the

people that I worked with, especially those who had spent time at the

Technology Vendor on behalf of Delphic, pointed out that ‘frictions’ existed

between the programmers employed by the universities and those working for

the Technology Vendor, it might also be suggested that the word ‘delphic’ is

an accurate description of this relationship. Most of this ambiguity existed

around the so-called ‘80/20’ rule. By this, it was meant that the system was

something of a ‘grey box’ (cf. Fujiumura, 1992): the design and building of the

bulk of the system was the responsibility of the Technology Vendor, which

would be then delivered to each of the sites. Importantly, however, a small

part of the systems was left to the discretion of computer programmers

working at each of the universities, who - working in close relation with the

Designers – would attempt to ‘tailor the system’ to the specifics of each of the

sites. The boundary between the 80 and 20 and this tailoring-work was the

focus of my study.

The Delphic Support Desk

I spent several months working with one group of programmers hoping to

understand just how they managed to get their MAC system to work. One of

 12

the most intriguing things about studying this group of programmers, and

something that I had barely anticipated before I started the research, was that

they would sit for hour after hour in front of their terminals barely uttering a

word. To ask them a question would be seemingly to break their

concentration with the machine, to disturb the peace of the office. Even when

sitting inches away from them, I was to learn nothing about the

implementation. Nonetheless, the longer I was there, it seemed, the more

they got used to me. And after a while, I found that they would every now and

then stop working to tell me something about what they were doing, something

about the code10.

Much later, however, I would realise that even while we had sat there in

silence, they were in fact speaking, sometimes shouting. Their method of

communication was via electronic mail. It was this realisation that they were in

fact talking in the main with email (sometimes even preferring to email the

person sitting across from them!) that led me to begin to sift through old

archived messages. One particularly interesting source was something called

the 'Software Problem Bulletin', which was a sort of online help desk or

Problem Log run by the Delphic Support Desk!11. The programmers used the

Problem Log as a type of ‘last resort’: if they are unable to resolve difficulties

within their own local communities concerning MAC then they report the

problem to the Support Desk who either suggest a possible solution or pass

the message as a possible bug to the Technology Vendor. The Technology

Vendor will respond to each message by appending their comments (i.e., their

 13

answer to the problem). The Log is available to all the programmers at the

various sites, and they too would often post suggestions in reply to a

message.

Comprising some several thousand emails, the Log reads like a working

history of all the steps taken so far on the project. I had heard the term 'work-

around' continuously from the moment I first became involved with the

programmers, and the word appears in the Log. I ran the FIND facility on my

word processor as a method of giving me access to other discussions about

work-arounds. The first message thrown up is a description of a problem.

Over the Easter period, Carole, one of the programmers working at a site, had

attempted to install the latest release of the MAC system, version 1.4, just

released by the Technology Vendor. At the same time, she attempted to

upgrade the software platform that MAC would run on, Oracle 7.1.3. However,

there is a problem: MAC 1.4 cannot be loaded onto Oracle 7.1.3. According to

the email, a small program called BuildMAC written by the Technology Vendor

to assist in such upgrades will not perform as it should. The message goes on

to mention how a similar problem was reported at one of the other sites some

months earlier. A programmer called Liz had been attempting the same

process and, like Carole, the BuildMAC program had not carried out the

upgrade.

Intrigued by the discussion being carried out on the Problem Log, I continue

to search the postings hoping to understand more about the genesis of this

problem. Seemingly, it had begun when Liz had written to the Delphic Support

 14

Desk describing her difficulties and was told by one of the programmers that:

Liz, unfortunately Oracle 7.1.3 is unsupported against all MAC software

currently released, so these problems cannot be reported as bugs to

[the Technology Vendor] but they may like to have the problems passed

on for ‘information purposes only’ to help them prepare MAC for Oracle

7.1.3.

In responding to this message, Liz points out that when they had first ordered

Oracle 7.1.3 they did ‘ask’ the Technology Vendor which version would be

most suitable and they were told that their choice would be fine. The matter is

not mentioned again in the Problem Log and despite the fact that MAC is not

supported against her particular software platform, Liz attempts to modify

BuildMAC by reworking its code. Moreover, once the work-around is complete

and she has loaded the new version of MAC she posts the rewrite to the Log

as information for others. I will develop this discussion in a moment, but first I

want to consider a different issue: what can be said about the mode of use of

the programmers, their attempts to modify the code?

 The programmers at the site where I carried out my study defined work-

arounds as a necessary and important aspect of their routine work. ‘Things’

would never quite fit or be the way they should be. Often, a feature of the

system would be too complicated for the end-users, or one aspect of the new

system would not work with the existing software infrastructure. Such

 15

problems require innovative fixes, or the rewriting of code. Consider the

following diary extract of a conversation I had with someone called David:

‘There are a few problems with loading the data into the system and

David says: It's OK, I'll work-around it’. David continuously talks about

work-arounds. I laugh and say to him ‘another work-around. It seems

to be all work-arounds here’. ‘That's life’ he replies (a little dryly)’.

To program is to perform work-arounds, to bypass constraints, and to rewrite

code. In other words, we might think of these programmers – and, indeed, in

keeping with how they think of themselves - as bricoleurs par excellence12

The image I want to develop here is of people drawing on past, or existing

knowledge, experience, or skill, to confront their current situation and

problems. Thus, we might understand these constant attempts to work-around

the code as the ‘networks-in-place’ of these programmers. This is partially in

keeping with what was suggested earlier: that the tendency towards one form

of use is already present in the wider networks of the user, and this is what

engineers ‘bet on’ when they attempt to anticipate the desires or goals of their

users (Latour, 1992). Of course, the crucial aspects in understanding these

networks-in-place are to focus on their contingencies – (i.e., the other

networks on which they depend and are constituted).

 16

When is a work-around?13

Returning to the discussion of Liz and Carole, what is Important to note, in

terms of the argument being developed in this paper, is that whilst Liz is

attempting to rewrite BuildMAC she receives help from her colleagues across

the other sites and the Designers at the Technology Vendor. In an earlier

message, for example, Liz describes some of this collaboration:

Thus investigated with [the Technology Vendor] how to get BuildMAC to

use ProC1.6 and pick up the include files from sqllib/public. [They]

initially suggested renaming executables and using links, but wanted a

proper way, so - amended [their] standard .mk files (sqlmenu5.mk

srw.mk sqlforms30.mk) changing the default ProC make file variables

from 2.0 to 1.6 as follows...

What is interesting about this is that Liz’s work-around is seemingly

‘legitimate’. In fact, it is a necessity if her system is to ever work. Here, the

work-around – changing the default ProC file variables from 2.0 to 1.6 - is use,

and we view the programmers and Designers as colleagues discussing

possible solutions. Work-arounds are very much part of the work of

implementing a system, or ‘that’s life’ as David from the office puts it.

 Several weeks later, however, one of the Designers at the Technology

Vendor appends the following statement to Liz’s message, essentially

rejecting the re-coding work that she has done:

 17

…thank you for supplying this information. Unfortunately I am forced to

close the bug as rejected as this is the only state applicable as this code

was not released for that version of the PRO*C compiler.

Despite the fact that the Technology Vendor has not supported Liz’s rewrite,

Carole goes on to use this solution when she encounters the same problem

some time later. Yet, Carole’s work-around is not so straightforward: she is

unable to get the ‘PRO*C compiler’ to work, and she is forced to ask the

Technology Vendor for help. Some days later, one of the Designers posts a

message to the Log describing Carole’s problem:

I mailed Carole to ensure that it was the v1.6 PRO*C compiler that was

being used. It was. On further investigation by our DBA [Database

Administrator], and after some consultation with Carole, it would appear

that a patch applied to the 1.6 PRO*C application is the cause of the

problem’.

Here, the Designer identifies the problem as being with Carole’s use of Liz’s

work-around (a ‘patch’ applied to the 1.6 PRO*C application). In a further

message to the Log a few days later he summarises the situation in the form

of a final report to the Delphic Support Desk:

 18

As you may know, [Oldcastle University] migrated from [MAC] 1.3 to 1.4

last week and encountered some problems which we helped with. We

also advised them to migrate to 1.5, as 1.4 was no longer supported.

This they did over the weekend and again had some problems, which I

have mentioned in the log. They contacted me on Monday morning

and I have been looking at the problem(s) over the last day and a half.

We have carried out a few checks and offered some advice on

overcoming some of the problems, but it would appear that the problem

lies in the data that they are working with and not a problem in any of

our code…Quite simply, I cannot justify any more time on this problem

as it does not appear to be a problem with our software, rather a

problem on site which may well require a great deal of time to

identify…Their current work-around is to use the basket 4 forms against

the basket 5 database. I have expressed my concern over this and

warned them that this is unsupported, but they appear to be confident

that they have an adequate work-around.

Sometimes work-arounds are not considered normal working practices. If

we were to think of an image of a network-in-place we would see how the

Designers, with sleight-of-hand, begin to disrupt this network. The Designer is

not performing the 'collegiality' that we saw before but is attempting to

establish difference (i.e., to reconfigure the programmers relationship with

MAC). To glance at the network now, we can catch sight of other networks

 19

coming into play, flexing and pulling to create real distance between the

modes of use: now, it is easy to see ‘when’ the mode of use is a work-around

and when it is something else.

To summarise this section, these practices are proscribed because as the

programmers carry out their modifications they call into question the Designers

responsibility towards MAC, and, thus, the distinction between just who should

be doing what. In other words, either they infringe on an important part of the

code or they combine or bricolage in ways the Designers do not like. At the

same time, however, work-arounds are demanded by the Designers in order

to tailor the technology to the specifics of each of the sites (to work with

existing software platforms). Importantly, it would seem the Designers of the

system ‘bet on’ the skills of the programmers to carry out such modifications.

So, one aspect of the contingency of these networks-in-place is that they are

reliant on, and constituted by this ambivalent situation where work-arounds are

both problematised and supported by the Designers - what might be called the

tension of work-arounds14.

Reconfiguring MAC: the Skills of the Programmers

A further aspect of these networks is that they are reliant on the efforts of the

Programmers and their skill in working with the code. Such a relationship is

not, as you will see, a straightforward one. Sima, for example, one of the other

programmers who worked in the office with David, sat frustrated for weeks

attempting a (small?) work-around on a ‘printer script’. Sitting opposite her, I

 20

listened to her frustration as she talked to her computer, urging the

programme to compile. She was telling me how in her sleep at night she

would even dream of the problem, constantly working through the code in her

head, taking her thoughts down the different paths, following, what was to her,

the essence of the code as it made its own way through the structure of her

programme. I also listened to her doubts (expressed privately to me and to

the others who sat in the office) that she would ever be able to make the work-

around work, and of her fears of letting the others down (who were relying on

her finished code). I am particularly struck by Sima's continuous struggle with

herself and her negotiation of the routes the code would take during her sleep,

her effort to understand the way the code - if you like - flowed. Consider the

following diary extract:

Sima has sat silent for several days now. Only occasionally disturbed

by Allison who comes in periodically to check her progress. Sima asks

her if she is worried that she will not get it done, and Alison says 'a bit'.

Sima tells David and me how [the Department Manager] is scared to

come and talk to her at the moment. I take it that this is because he

has given her such a horrible job to do. The programmers are in many

ways heroic figures. They are the ‘ones’ who make things work and

whom others rely on to do things.

Thus, one aspect of Sima's skill then is her ability to immerse herself in, and

 21

relate to, the code. However, to do so is about grasping the work of others

(many others). This can often be a difficult thing to do. Finally, after a couple

of weeks struggling with the same piece of code Sima relents and suggests to

her manager that they should call in one of the Designers to help with the

work-around.

Sima talked with the Designer (who was here for the day) about her

problem of ‘making things work’ and of how she is trying to change the

code to print a 'bank-check' instead of a 'report'. They talk about details

of the code. He sits beside her and suggests things to do. She has

spent a lot of time on this. He tells her to try something, and he goes

away to talk to Allison. Later he comes back to Sima, and finally they

get the code to work. Their talk had been calm and 'rational'. She was

telling him what she had done, and he was suggesting to her what to try

next.

Skill of this sort is not a given, nor an object, but has to be continually worked

at and tested. To be at one with a technology, to use the code effectively

takes effort. How are we to understand the work of these ‘wizards’ – in

particular, their choice to carry out work-arounds? To speak of wizards is not

to make a disparaging comment, for the programmers that I observed were

well qualified, highly skilled, and very motivated. Rather, it is to emphasise the

contingency and indeterminacy of work-arounds, and to suggest that the skill

 22

to perform them – to be in a position to make this choice – emerges from, and

depends upon networks elsewhere15. Indeed, if you read some of the recent

literature on computer system implementation you will see that these

difficulties are increasingly common. Georgina Born, in her study of the work

of coding in a French Research Institute, writes about some of the problems of

working on systems originally developed by others. The people she studied

often complained that when they looked back on collaboratively written

programs ‘…the complexity of the codes made it extremely difficult to

reconstruct afterwards what was done, and how, in the bits of program

authored by colleagues, without asking them’ (1996, 109):

To manipulate the system effectively requires knowledge of the specific

coded universe of different layers of code. Naive and inexperienced

users are powerless to enter lower levels of the code hierarchy in order

to alter or improve a program's functioning. More surprising is the fact

that the problem of the opacity of the hierarchy of codes - its resistance

to meaningful decoding - also seriously affects senior...programmers

(ibid. 109).

What is being suggested here is that rather than reduce everything to one

simple determinant – i.e., it all comes down to skill – we might think of skill as

both a connection to certain networks, and being able to perform the order

embodied in those networks. This is, of course, the actor network theory

 23

principle of treating actors as effects, and the view that technologies, amongst

other things, have implications for us as agents (Law, 1994). Thus, a further

aspect for understanding work-arounds is to consider how MAC, itself,

provides for such modifications. Conventionally, we might think of MAC as a

‘passive’ technology that is used by ‘active’ agents who choose to use this tool

in a number of different ways. Another way of imagining this would be to

attempt to confuse this relationship between the Programmers and MAC.

Actor network theorists commonly speak of hybrids - that is something

different than just active humans and their passive technologies. It is to also

emphasise that technologies are active, and that along with their users they

‘perform together’ to produce ‘…the set of relations which give them their

shape’ (Law, 2000, 5). Thus, MAC, according to this way of thinking, is an

actor in its own right. Moreover, if the skills of the Programmers are those of

connecting and performing the order embodied in MAC, how do they perform

together?

 To explore this further I want to focus on a conversation I had with Maurice,

another of the Programmers who worked in the office with David and Sima.

Maurice characterised his experience of working with MAC in the following

way: there is this constant need to make changes, as someone wants one part

of the System to do something different, and he describes how MAC is ‘not‘

built in concrete’ and that ‘you can make changes to it’. Maurice then goes on

to acknowledge how the System also seems to work against his efforts to

make changes:

 24

I don't know if it was designed to be changed, however. Some of the

code is tricky. I mean it is doing some clever stuff. They must have

some really clever people there, doing code better than I could do.

Some of the code really takes a while for you to get your head

around…The whole system is so constrained by the Finance part of it.

It is like a wheel with Finance being the hub and the other parts being

the spokes. You have to be careful when you make changes because

you don't know what effect this will have on the other parts.

To clarify, Maurice seems to find himself in a position where the System is

asking contrasting things of him: make changes/avoid-making changes. It

offers him the possibility of discretion in the sense that he is able to choose

between different courses of action (Law 2000). MAC is not built in concrete

and it can be changed. But, the way he decides to rewrite the code will affect

others. For instance, changes he makes to the Finance part of the System

will, among other things, affect the work of his colleagues who, elsewhere, are

relying on his rewrites to allow them to get their own work done. MAC is

central here because it can be easily modified, and it allows Maurice to decide

on and attempt work-arounds. Indeed, numerous authors have commented

on the abstract and malleable nature of software: Shapiro & Woolgar, for

instance, make the argument that software naturally lends itself to ‘...all

manner of personalized idiosyncratic development approaches’ (1995, 16).

 25

They also make the point that for some programmers, they ‘...will primarily see

opportunity while some will mainly feel burdened’ by such malleability. The

example of Sima unable to get her rewrite to work after a couple of weeks and

being forced to call in a Developer, or Maurice’s comment about having to be

careful because of the Finance hub, are both illustrations of where the

possibility of discretion is closed down16. Here, MAC plays a part again

because as it introduces its complex constraints – what Born (1996) earlier

described as the ‘problem of the opacity of the hierarchy of codes’ – and there

are very few possible courses of action17.

Conclusion

How do we account for a work-around? Often, the suggestion is that the user

when faced with a technology that is constraining in some form is able to carry

out a work-around and, thus, exercise some form of discretion or resistance.

This is always possible, especially if we understand the user and the

technology to be each well bounded – i.e., the role of the user is tightly defined

as in a script, and the user attempts to work against this (aka Akrich).

However, if we consider new forms of computer systems and the prominent

role the user is beginning to play in the shaping and customisation of such

systems, things are increasingly less clear-cut. MAC, like many of the

computer systems increasingly used by organisations, is a flexible technology,

or something of a ‘grey-box’, in which users have the capacity to shape and

customise the final design. What this suggests is that we will continue to

 26

witness more ambiguous set of user-producer relations where it is often not

clear who has responsibility for what. Because of these complex divisions of

labour, various groups come to rely on each other as an integral part of their

day-to-day working practices, often as resources for the resolution of technical

difficulties and problems.

 The actors discussed are not simply users but neither are they simply

producers, who have been attempting to routinely negotiate relationships and

identities with others within these increasingly confused networks. Work-

arounds represent one part of that negotiation process. And as we have seen

with the MAC example, these connections are not simple or straightforward,

but they are full of tensions. What I have hoped to achieve in this article is to

convince the reader that there is arguably a need to develop an improved

understanding of the practice and process of work-arounds in relation to these

less determinate technical divisions of labour and responsibilities. Where this

article adds to our understanding is through the description of some of the

processes that might lead to work-arounds. In particular, as I have described,

MAC and its associated networks provide not simply for one mode of use but

to paraphrase Michael (1996) they allow for multiple modes of use. Moreover,

sometimes these contrasting modes will operate in unison and sometimes

they will be in conflict. Firstly, one aspect of this is that the Designers attempt

to link the successful implementation of MAC to the Programmers and their

ability to tailor the System to fit in with the existing software infrastructure.

Following Latour (1992), I have described the competencies that the

 27

Designers appear to ‘bet on’ as the ‘networks-in-place’ of the Programmers.

Thus, at one level, it would seem that the Programmers actively reconfigure

MAC and the Designers enlist them in doing so. Secondly, there are some

obvious problems with this. MAC, itself, asks for contrasting things from the

Programmers. Whilst MAC can be easily modified, and it allows Maurice to

attempt work-arounds, it also introduces complex constraints (i.e., it acts

against the possibility of work-arounds). A further element of the tension is

that while work-arounds are demanded by the Designers, these practices are

also sometimes proscribed, because as the Programmers carry out their

modifications they call into question the Designers responsibility towards MAC

(i.e., the work-arounds infringe on the ‘80’) and their role in the

implementation. Hence, just when is a work-around a supported form of use,

and when is it not, becomes a crucial question that has obvious resource

implications, and this in itself makes it an important topic for the sociology of

technology.18

 28

Biographical Note

Neil Pollock is a lecturer at the University of Edinburgh, UK. His research

interests include the sociology of software systems, virtual universities and

electronic-commerce. His publications include Putting the University Online:

Information, Technology & Organisational Change (with James Cornford,

Open University Press, 2003). He is currently writing a book on the ‘biography’

of software packages.

 29

References

Akrich, M. 1992. The de-scription of technical objects' in Shaping

Technology/Building Society: Studies in Sociotechnical Change, edited

by Bijker, W, & Law, J, Cambridge, MA: MIT Press.

Agre, P. 2000. Infrastructure and Institutional Change in the Networked

University, Information, Communication & Society, 3, 4:494-507.

Berg, M. 1997. Of Forms, Containers, and the Electronic Medical Record:

Some Tools for a Sociology of the Formal', Science, Technology, &

Human Values, 22, 4: 403-433.

Berg, M. 1998. The politics of Technology: On bringing social theory in to

technological design, Science, Technology, & Human Values, 23: 456-

490,468

Bijker, W. 1995 Of Bicycles, Bakelites, and Bulbs: Towards a Theory of

Sociotechnical Change Cambridge, MA: MIT Press.

Born, G. 1996. (Im)materiality and Sociality: the dynamics of intellectual

property in a computer software research culture, Social Anthropology,

4, 2:109.

Born, G. 1997. Computer Software as a Medium: Textuality, Orality and

Sociality in an Artificial Intelligence Research Culture in Rethinking

Visual Anthropology edited by Banks, M. & Morphy, H. Yale University

Press.

Brady, T., Tierney, M. & Williams, R. (1992). The Commodification of Industry

Applications Software. Industrial and Corporate Change. Vol. 1, No. 3.

 30

pp 489- 514.

Button, G. & Sharrock, W. 1994. Occasioned practices in the work of software

engineers in Requirements Engineering edited by Jirotka, M. &

Goguen, J. Academic Press Ltd

Button, G. & Sharrock, W. 1998. The Organization accountability of

Technological Work, Social Studies of Science 28,1: 73-102.

Ciborra, C. 2002. The Labyrinths of Information: Challenging the Wisdom of

Systems, Oxford: Oxford University Press.

Friedman, A. 1989. Computer Systems Development: History, Organisation

and Implementation, Chicester: John Wiley.

Fujimura, J. 1992. Crafting Science: Standardised Packages, Boundary

Objects, and "Translation" in Science as Practice and Culture edited by

Pickering, A, Chicago: University of Chicago Press.

Gasser, L. 1986. The integration of computing and routine work: ACM

Transactions on Office Information Systems 4:257-70.

Goddard, A, & Gayward, P. 1994. MAC and the Oracle Family: Achievements

and Lessons Learnt, Axix, 1, 1, 45-50.

Hales, M. 1995. Where Are Designers? Styles of Design Practice, Objects of

Design and Views of Users in CSCW in Design Issues in CSCW edited

by Rosenberg, D, & Hutchinson, C, Springer-Verlag.

Henderson, K. 1999. On Line and On Paper: Visual Representation, Visual

Culture, and Computer Graphics in Design Engineering, Cambridge,

MA: MIT Press.

 31

Latour, B. 1992. Where are the missing masses? Sociology of a few mundane

artefacts in Shaping Technology/Building Society: Studies in

Sociotechnical Change edited by Bijker, W, & Law, J, Cambridge, MA:

MIT Press.

Law, J. 1994. Organizing Modernity, Oxford: Blackwell.

Law, J. 2000. Economics as Interference (draft), published by the Centre for

Science Studies and Department of Sociology, Lancaster University at

http://www/comp.Lancaster.ac.uk/sociology/soc034jl.html

Luff & Heath. 1993. System Use and Social Organisation: Observations on

human-computer interaction in an architectural practice in Technology

in Working Order: Studies of Work, Interaction, and Technology, edited

by Button, G, London: Routledge.

Michael, M. 1996. Technologies and Tantrums: Hybrids out of Control in the

Case of 'Road Rage, paper presented at the 'Signatures of Knowledge

Societies, Joint 4S/EASST conference at the University of Bielefeld,

Germany, 10th-13th October.

Mol, A. & Messman, J. 1996. Neonatal Food and the Politics of Theory: Some

Questions of Method, Social Studies of Science, 26, 2: 419–444 (429).

Newton, T. 1996. Agency and Discourse: Recruiting Consultants in a Life

Insurance Company, Sociology, 30, 4: 717-739.

Pickering, A. 1995. The Mangle of Practice: Time, Agency & Science,

Chicago: University of Chicago Press.

Pfaffenberger, B. 1992. Technological Dramas, Science, Technology, &

 32

Human Values, 17, 3, 292-312.

Pollock, N. & Cornford, J. (in press, 2004), ERP Systems and the University as

a ‘Unique Organisation, Information Technology & People, 17, 1.

Rachel, J. 1994. Acting and Passing, Actants and Passants, Action and

Passion', American Behavioral Scientist, 37, 6: 809-823.

Quintas, P. ed. 1993. Social Dimensions of Systems Engineering: People,

Processes, Policies and Software Development, Ellis Horwood, 1993.

Shapiro, D, & Woolgar, S. 1995. Balancing Acts: Reconciling Competing

Visions of the Way Software Technologies Work, Working Paper,

CRICT, Brunel University, UK, 16.

Singleton, V & Michael, M. 1996. Actor Networks and Ambivalence: General

Practitioners in the Cervical Screening Programme, Social Studies of

Science, 23: 227-264.

Star, S, L. ed. 1995. Ecologies of knowledge: Work and politics in science and

technology. New York: State University of New York Press.

Star, S, L. & Ruhleder, K. 1996. Steps toward an ecology of infrastructure:

design and access for large information spaces’, Information Systems

Research, 7,1:111-134.

Suchman, L. 1994. Working Relations of Technology Production and Use,

Computer Supported Cooperative Work (CSCW), 2: 21-39 (30).

 33

Notes

1 Such forms of use ranged from users entering inaccurate data to bypass weaknesses in existing systems, to
users simply carrying out manually the procedures the computer system is meant to do, and inputting the
job after the work has been completed.
2 See the work of Claudio Ciborra (2002).
3 Kathryn Henderson (1999), for example, uses but does not develop the term in her recent book on
engineers and their use of CAD. See also the article by Marc Berg (1997) where he describes how nurses
work-around the limitations of a medical record system. For an example of how the notion of a work-
around is used in the loose body of thought that comes under the heading of Computer Supported Co-
operative Work (CSCW) see the article by Luff & Heath (1993). More recently, Button & Sharrock (1998)
use the term to describe how programmers circumvent an ‘incompetent manager’.
4 Scripts, argues Akrich, are often simply the outcome of decisions made by designers about a future user -
their skills, abilities and what the technology should do in relation to this user: Through the script: ‘…the
designer expresses the scenario of the device in question – the script out of which the future history of the
object will develop’ (216).
5 See Berg (1997) who makes a similar point about writing within the social studies of technology.
6 This differs from Akrich who describes a script as embedded within an artefact, whereas Michael is
suggesting is that scripts are both in the technology and in the wider networks attached to the technology.
In other words, Michael’s is a more dynamic notion of script where notions of use are the upshot of an
interaction between the artefact and this larger network. A technology can hardly be thought as separate
from, say, its instructions for use, as the artefact’s working depends on these. In paraphrasing
Pfaffenberger, he writes: ‘…technologies don’t have instructions for their use inscribed in their design.
Discourses are needed which guide users in their appropriate use’ (1996, 3).
7 Friedman (1989), for instance, writing in the field of information systems lists at least six user roles,
which include not only those who simply input and retrieve data but also users who initiate systems, are
involved in development, implementation, as well as maintenance.
8 See the article by Button & Sharrock (1994) where they also describe programmer as users.
9 Collins Concise Dictionary, Fourth Edition, HarperCollins, 1999. For an explanation of this quote see the
discussion below.
10 See Janet Rachel (1994) who makes a similar point when referring to her own ethnography and the
apparent inactivity of the programmers she witnessed. Though she notes that the activity of these
programmers was ‘...produced through the appearance of inactivity’ (819, her emphasis). Behind these
seemingly still bodies however, they were furiously typing away on keyboards ‘...networked together in an
effort of accomplish change on a grand scale in other parts of the organization’ (819).
11 The apposite image of a true ‘Delphic’ Support Desk is the want that I want you to keep in mind here.
12 See Ciborra (2002) for a detailed discussion of bricolage.
13 In their paper, Star & Ruhleder (1996) ask ‘when’ and not ‘what’ is an infrastructure. Here, in their
intriguing article they are rehearsing the sociology of technology commonplace that technologies are not
just things with particular properties ‘frozen in time’ but emerge for people in the practice of technology
use. Likewise, infrastructure, they argue is also a fundamentally relational concept: ‘It becomes
infrastructure in relation to organized practice. Within a given cultural context, the cook considers the
water system a piece of working infrastructure integral to making dinner; for the city planner, it becomes a
variable in a complex equation’.
14 The key paper for this form of ambivalence within the approach advocated by Akrich is Singleton &
Michael (1996). They argue that while actor network theory has tended to story ‘successful’ networks as
though where the actors strictly play-out their allotted roles, in practice, actors often move between
different positions (i.e., sometimes critical, sometimes supportive of the network). Indeed, as they argue,
this crossover of roles often enables the very continuation of the network.
15 For a discussion of emergent skills, see Andrew Pickering’s Mangle of Practice (1995).
16 Leigh Star (1995) has described this as the ‘myth of infinite flexibility’, where in principle software can
be modified, but in practice it is very difficult to do so as changes will affect other parts of the system. This

 34

is especially true for integrated software systems (see Pollock & Cornford (2004) for a discussion of the
difficulties of customising Enterprise Resource Planning Systems).
17 For a discussion of software as a mediator, see also Born (1997).
18 The outcome of this negotiation will decide if the local programmers will receive further help in
modifying that aspect of the system.

