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Abstract

Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to
play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is
whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on
significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address
this question for the special case when multiple genomic data sets are available. This is of great practical importance since
for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a
standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects
intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two
criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion
evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or
prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation
network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung
cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The
results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-
analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis
methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2).
The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R
functions for carrying out consensus network analysis, network based screening, and meta analysis.
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Introduction

Genomic data (in particular gene expression data) have been

analyzed with network methods for over a decade [1–10]. Since

highly connected hub nodes are central to the network’s

architecture [9,11–14] and protein knockout experiments have

shown that hub proteins tend to be essential for survival in lower

organisms (yeast, fly, worm) [7,11,12,15,16], many articles have

explored the role of hub genes in higher organisms (including

humans and mice). While there is an ongoing debate in the

literature regarding the importance of hub genes, it is fair to say

hubs are often not important. We have argued that it is critical to

focus on intramodular hubs instead of whole network hubs when it

comes to coexpression network applications [3,6]. One can

theoretically characterize network modules (clusters of intercon-

nected nodes) whose intramodular hub genes will be significantly

related to a trait (e.g. disease status, survival time, or age) [17,18].

As expected, intramodular hubs in disease related modules are

often of clinical importance, e.g. intramodular hubs in a cell

proliferation module turn out to be correlated with cancer survival

time in glioblastoma multiforme [6,19]. To find biologically

relevant modules and corresponding intramodular hubs, weighted

correlation network analysis (WGCNA, [3,6]) typically proceeds

along the following steps. First, the input variables (e.g., thousands

of gene expression profiles) are clustered to identify sets of highly

interconnected nodes, referred to as modules. The rationale for

this step is that clusters (modules) of co-expressed genes are often

strongly enriched in specific functional categories or cell markers

[2,20–22]. Second, biologically relevant modules are identified

using external information, e.g., by correlating the module genes

with a clinical trait of interest (such as disease status, survival time,

cholesterol levels). This module centric analysis alleviates the

multiple testing problem inherent in high dimensional data since it

focuses on the relationship between a few modules and the sample

trait. Third, a measure of intramodular connectivity with respect

to relevant modules is used to select intramodular hubs. The

geometric interpretation of correlation network analysis can be

used to argue that intramodular connectivity can be interpreted as
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a fuzzy measure of module membership [17,18]. Thus, a gene

screening approach that considers intramodular connectivity

amounts to a pathway-based gene screening method. Empirical

evidence shows that the resulting systems biological gene screening

methods can lead to important biological insights [6–8,10,23–28].

Gene connectivity has not only been used for identifying hubs but

also for identifying differentially connected genes [25,29,30].

Despite multiple successful case studies the use of network

connectivity for gene selection (more generally for variable

screening) is still debated, in part because it lacks the theoretical

basis that underlies established marginal statistical and model-

based gene selection procedures. Therefore, it is of great practical

importance to decide whether a marginal differential expression

analysis (for example, based on a Student t-test or a fold change

criterion) or a co-expression network analysis should be used to

find disease related genes based on gene expression data (or other

high dimensional -omics data). Our previous attempts to answer

this question in generality have failed since our preliminary results

from theoretical and simulation studies could not be corroborated

in comprehensive real data applications. Reasons why this is a

hard question may include the high rates of false positives when

selecting trait related genes, the non-robustness of module

detection procedures, as well as non-reproducibility due to

technical variation, batch effects, tissue heterogeneity etc. Here

we narrow our attention to the special situation when multiple

independent gene expression data are available (e.g., collected

from public repositories such as Gene Expression Omnibus [31] or

ArrayExpress [32]). Multiple data sets not only allow one to

robustly define lists of trait-related genes but also to define

consensus network modules (i.e., modules that are present in all

data sets). Using 3 diverse empirical case studies plus simulations,

we address the following questions when dealing with multiple

genomic data sets.

1. Are whole-network hub genes relevant or should one

exclusively focus on intramodular hubs? Answer: Our corre-

lation network applications show that one should focus on

intramodular hubs in trait-related modules.

2. Which standard marginal meta-analysis method (i.e., methods

that ignore gene-gene relationships) results in best validation of

gene/trait associations? Answer: Overall, the 9 considered

methods have similar performance in our applications.

3. How to select hub genes in consensus modules? Answer: Meta-

analysis techniques applied to a measure of intramodular

connectivity (also known as module membership) work quite

well. Just forming the average across data sets works well.

4. Do network-based gene selection strategies lead to gene lists

that are biologically more informative than those based on a

standard marginal approaches? Answer: Yes, gene selection

based on intramodular connectivity leads to biologically more

informative gene lists than marginal approaches in all 3

applications. In contrast, whole-network connectivity leads to the

least informative gene lists.

5. Do network-based gene selection strategies lead to gene lists

that have more reproducible trait associations than those based

on a standard marginal approaches? Answer: Overall, the

answer is no. Our simulations explore this further.

Thus, our findings indicate that meta-analysis of module

membership (i.e., selecting intramodular hubs in consensus

modules) leads to gene lists with better biological interpretability

but possibly lower validation success. In other words, while

network methods may be preferable when learning about biology,

standard marginal meta-analysis methods may be better suited for

selecting candidate biomarkers.

Results

Overview of Standard Meta-analysis Methods Used in this
Work

In this work we focus on comparing meta-analysis of

associations quantified without regard to gene-gene relationships

(meta-analysis of marginal association or marginal meta-analysis) to

meta-analysis of module membership. Here we study three

variants of the inverse normal meta analysis technique first

proposed by Stouffer et al [33] and two methods that make

standard meta-analysis methods applicable to a broader range of

statistics. Table 1 presents a brief overview of the methods used in

this article. The ‘‘inverse normal’’ name derives from the fact that

the method uses the inverse normal distribution function to turn

individual input p-values into Z statistics which are then combined

into a meta-analysis Z statistic whose distribution under the null

hypothesis is known (Equation 2, Methods). The three variants

differ by how they weigh each study. The simplest variant

proposed in [33] assigns equal weight to each study, irrespective of

the number of observation used in each study (Equation 3), and we

call it Stouffer’s method with equal weights. Under certain

assumptions one can show that the theoretically optimal weights

are wl~
ffiffiffiffiffiffi
ml
p

[34–36], where ml is the number of samples (more

precisely, number of degrees of freedom) in each study. It should

be noted that the assumptions that underlie this results are often

not satisfied in real applications and hence it is meaningful to study

empirically which weighting method performs best in practice.

Here, in addition to the equal weight case and the theoretically

optimal case wl~
ffiffiffiffiffiffi
ml
p

(referred to as Stouffer’s method with

square root weights), we also study weights wl~ml (referred to as

Stouffer’s method with degree of freedom weights). Irrespective of

what weights one chooses, Stouffer’s method crucially depends on

the normal distribution and known variance of the input Z

statistics.

Meta-analysis Based on Ranking a Variable Importance
Measure: RankPvalue

We consider a novel meta-analysis method, called rankPvalue,

that can take as input any ordinal measure of variable importance.

The rankPvalue method (and R function of the same name) relies

on rankings of the variable importance measures in each input

data set. A crucial assumption for the method is that the number of

variables is large. This is certainly satisfied in genomic data where

the number of probes is typically tens of thousands or more. Using

a general variable importance measure is advantageous when it is

difficult to quantify statistical significance (a p-value or Z statistic)

for the input measure. Examples of such measures include network

connectivity and centrality measures for which it is often difficult

to define statistical significance.

There are two variants of the rankPvalue method: the Scale

method and the Rank method. As indicated by its name, the Scale

method first scales the individual importance measures in each

study to mean 0 and variance 1. It then averages the statistics and

relies on the central limit theorem to approximate the null

distribution of the resulting meta-analysis statistic. If the assump-

tions of the central limit theorem are not met, then we recommend

the use of the Rank method. As indicated by its name, the Rank

method replaces the values of the importance measures by their

rankings. Next the rankings are divided by the number of variables

so that the resulting value lies in the unit interval. Under the null

hypothesis the observed ranking of a given variable can be

Hub Gene Selection vs. Standard Meta-Analysis
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considered to be drawn from a uniform distribution on the unit

interval. For a given variable the sum of these rankings is the meta

analysis test statistic. Its distribution under the null hypothesis can

be estimated from convoluting the distributions of k independent

uniformly distributed variables. Fortunately, the convolution of

uniformly distributed variables converges rapidly to the normal

distribution: as few as k~4 suffice [37]. A more detailed

description of all meta-analysis methods is provided in Methods.

Selecting Hub Genes in Consensus Modules: Meta-
analysis of Module Membership

Since intra-modular hub genes have been shown to be

biologically important in multiple previous applications, we now

extend the concept of an intra-modular hub gene to multiple data

sets. Our approach starts with weighted correlation network

analysis (WGCNA) to identify consensus modules across the given

data sets [38] (Methods). WGCNA is particularly attractive for

finding consensus modules and intramodular hubs since a) one can

calibrate weighted networks before combining them, b) it is

straightforward to combine weighed networks across independent

data sets, c) it provides module eigengenes that can be used to

relate modules to sample traits (e.g. disease status), and d) it affords

measures of module membership (kME), which can be used for

finding hub genes in consensus modules. Consensus modules can

be found using our R function blockwiseConsensusModules in the

WGCNA R package. Hub genes in consensus modules can be

found using our R function consensusKME. By definition, consensus

modules are clusters present in all of the input data sets. We

emphasize that the modules are identified in an unsupervised

fashion, i.e., without regard to the clinical trait. Next, a trait-

related consensus module is selected, for example, as the module

with the highest eigennode significance (Equation 20, Methods) across

the individual data sets. Finally, variables with highest overall

module membership in the trait-related consensus module are

identified, using a meta-analysis of module memberships (Equa-

tion 19) in the individual data sets.

Hub Gene Selection in Consensus Modules Results in
Gene Lists with Cleaner Functional Annotation

We present 3 applications that illustrate the use of meta-analysis

of module membership (i.e., intra-modular hub gene selection) to

study functional categories associated with a trait of interest: In

Application 1, we study adenocarcinoma expression data and

relate them to survival time; in Application 2 we study genome-

wide blood methylation data and relate them to age; and in

Application 3 we study mouse liver expression data and relate

them to plasma cholesterol levels. In all 3 applications we perform

a consensus module analysis (Methods) across all input data sets

and identify a module associated with the trait of interest. The data

used in the applications are summarized in Table 2.

To compare meta-analysis of module membership to marginal

meta-analysis and meta-analysis of whole-network connectivity, we

use each method to select a given number N of top-ranked genes

and study their enrichment in a known set of genes (the ‘‘gold

standard’’). As the gold standard we use Gene Ontology [39]

categories or gene lists that have been strongly associated with the

outcome in existing literature.

Genes associated with adenocarcinoma survival time in

human expression data. Here we analyze 8 adenocarcinoma

data sets [40–44] described in more detail in Methods. As gold

standard for judging the biological signal in a list of survival related

genes, we used enrichment with respect to the GO term ‘‘cell

cycle’’ since cell-cycle associated genes have been observed to be

among the strongest predictors of survival [45,46] and proliferat-

ing cancer is known to be associated with a poor prognosis of

survival (e.g., [47,48]). Our results would be qualitatively the same

if we choose a related term such as ‘‘cell cycle process’’ or ‘‘mitotic

cell cycle’’.

The consensus module analysis (Methods and Figure S1 in Text

S1 ) identified 5 modules labeled by numbers 1–5. Module 2 (93

genes) is by far most significantly associated with survival time

(Figure S2 in Text S1 ). Hence, this module is a natural choice for

selecting intramodular hubs related to lung cancer survival time.

We emphasize that this module was selected only based on its

association with survival time. The module turned out to be

significantly enriched with cell cycle genes (Bonferroni-corrected

hypergeometric enrichment p-value 3:8|10{54, see Table S1).

Figure 1A and Figure S3 (Text S1 ) report enrichment p-values

(with respect to cell cycle genes) for gene lists selected by standard

marginal meta-analysis, meta-analysis of module membership, and

meta-analysis of whole-network connectivity, as a function of the

list size. The figures show that meta-analysis of module member-

ship (i.e., selecting intramodular hub genes in this survival time

related module) results in gene lists with much stronger cell cycle

gene enrichment compared to gene lists based on standard meta-

analysis techniques. While intramodular hubs are clearly impor-

tant, the figure also shows that meta-analysis of whole-network

connectivity leads to inferior results which supports the claim that

whole-network hubs are often irrelevant for important biological

processes.

CpGs hypermethylated with age in human blood and

brain methylation data. DNA methylation at the 5 position of

cytosine has been observed across all vertebrate examined to date.

In adult somatic tissues, DNA methylation typically occurs in a

CpG dinucleotide context. It has been known for decades that age

has a profound effect (both increasing and decreasing) on DNA

methylation levels. Here we analyze 7 DNA methylation array

data sets [49–52] (all measured on the Illumina Infinium

HumanMethylation27 array platform) to find CpG dinucleotides

that become hypermethylated with age. Most of the measured

Table 1. Overview of meta-analysis methods used in this
article.

No. Method Variant Input Trafo. Weights

1 Stouffer equal weights Z-statistics None wi~1

2 Stouffer sq. root weights Z-statistics None wi~
ffiffiffiffiffiffi
mi
p

3 Stouffer d.o.f. weights Z-statistics None wi~mi

4 rankPvalue Scale, equal
weights

Var. imp. Scale wi~1

5 rankPvalue Scale, sq. root
weights

Var. imp. Scale wi~
ffiffiffiffiffiffi
mi
p

6 rankPvalue Scale, d.o.f.
weights

Var. imp. Scale wi~mi

7 rankPvalue Rank, equal
weights

Var. imp. Rank wi~1

8 rankPvalue Rank, sq. root
weights

Var. imp. Rank wi~
ffiffiffiffiffiffi
mi
p

9 rankPvalue Rank, d.o.f.
weights

Var. imp. Rank wi~mi

The Method and Variant columns list the names for each method that are used
throughout the text and in our Figures. Var. imp. stands for a general variable
importance measure; the Trafo. column indicates how the input is transformed
before calculating a meta-analysis statistic; the Weights columns indicates the
weights used in the calculation of the meta-analysis statistic via Equations 4 or 5.
doi:10.1371/journal.pone.0061505.t001
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CpGs on the Illumina array are located in the promoters of genes

and promoter methylation usually reduces gene expression levels.

It is well known that CpGs located in the promoters of

Polycomb Group (PCG) target genes have an increased chance of

becoming hypermethylated with age (pv10{10) [50]. Therefore,

we used enrichment with respect to PCG targets as the gold

standard for judging the biological signal inherent in a list of CpGs

that are positively correlated with age. The consensus module

analysis identified 41 modules (Figure S4 in Text S1 ). We focused

on intramodular hubs in module 6 (comprised of 517 CpGs) since

its eigennode had the highest correlation with age (Figure S5 in

Text S1 ). We emphasize again that the module was selected based

on the correlation of the module eigengene with age, without

regard to its enrichment in PCG targets. Figures 1B and S6 (Text

S1 ) show enrichment p-values with respect to PCG targets for the

CpG lists selected using marginal meta-analysis, meta-analysis of

module membership (for selecting intramodular hub CpGs), and

meta-analysis of whole-network connectivity (for selecting whole-

network hubs). Selecting intramodular hub genes in the age related

module (i.e., meta-analysis of module membership) leads to lists

with an increased biological signal compared to marginal meta-

analysis. In contrast, CpGs selected by whole-network connectivity

show weak enrichment in PCG targets, illustrating the crucial

distinction between whole-network hubs and intramodular hubs.

While marginal meta-analysis is inferior to the meta-analysis of

module membership, it nevertheless leads to highly significant

enrichment p-values because in this application the biological

signal is very strong.

Genes positively correlated with total cholesterol in

mouse liver expression data. The goal of this analysis is to

find genes whose expression profiles correlate positively with total

cholesterol (TC) in mouse liver tissue. Since there exist no ‘‘gold

standard’’ lists of genes related to TC, we focus on immune system

genes because the immune system has been reported to have a

strong connection to TC levels in mice [53,54] Therefore, we used

GO enrichment with respect to the GO term ‘‘immune system

process’’ as the gold standard to determine which gene selection

method led to the highest biological signal. We analyze 9 mouse

liver gene expression data sets: 8 data sets from 4 different F2

mouse crosses [24,27,55] on high fat diets and a genetically more

diverse Mouse Diversity Panel (MDP) [56]. Consensus module

analysis identified 11 consensus modules (Figure S7 in Text S1 ).

Several of the modules relate strongly to TC (Figure S8 in Text S1

). We focus on module 2 because its eigengene is most strongly

correlated with TC. Figure 1C and Figure S9 (Text S1 ) show how

the enrichment (with respect to immune system process) depends

on the gene selection method and the list size.

Selecting intramodular hubs (i.e., meta-analysis of module

membership with respect to module 2) leads to lists of genes with

more significant enrichment than marginal meta-analysis which

supports the claim that studying these hub genes leads to increased

biological signal. Note that the enrichment results for intramod-

ular hubs are much more significant than those involving whole-

network hubs which illustrates again that it is crucial to focus on

intramodular hubs with respect to a relevant module.

Standard Meta-analysis Methods often Lead to Better
Validation Success

We now turn our attention to the task of selecting biomarkers

for a clinical trait of interest (e.g., cancer survival time, age, or total

cholesterol). In this situation the primary criterion is the utility of

the marker to predict the clinical trait; the biological insights

gained (e.g., based on gene ontology enrichment analysis) play

only a secondary role. Thus, we judge the performance of different

gene selection methods by their ability to lead to lists of genes

whose association with the clinical trait is preserved (reproducible)

in independent data sets. Since each of our applications involves

multiple independent data sets, we are able to select one of these

data sets as validation set while the remaining data sets are

‘‘training’’ (or discovery) data for selecting lists of potential

biomarkers. Thus, given a total of k independent data sets, k{1
data sets are used to select the biomarkers (e.g., based on standard

meta-analysis or consensus module based analysis) and the last

data set is used as a validation data set to measure validation

success of the different gene lists. To avoid biasing the results, we

applied the consensus module analysis only to the k{1 training

data sets and selected intramodular hubs with respect to these

training data. The validation success of a gene list (and

corresponding variable selection method) is defined by the average

correlation of the selected genes with the trait of interest (survival

time deviance, age, and total cholesterol) in the validation data set.

Our results are largely unchanged if other measures of validation

success are chosen. By cycling through the k different possible

choices of validation data sets, we arrived at k corresponding

estimates of validation success that can be summarized using the

mean value (see Figure 2).

As expected, prioritizing variables (genes) according to whole-

network connectivity leads to gene lists with poor validation

Table 2. Overview of data sets used in this article.

Application No. Description # samples Ref.

Lung cancer 1 MSAS (Michigan) 162 [40]

2 MSAS (HLM) 69 [40]

3 MSAS (DFCI) 73 [40]

4 MSAS (MSKCC) 89 [40]

5 Bild et al 51 [41]

6 Tomida et al 91 [42]

7 Takeuchi et al 81 [43]

8 Roepman et al 49 [44]

Aging 1 WB Type 1 Diabetes 190 [49]

2 WB ovarian cancer controls 261 [50]

3 WB healthy PMP females 87 [51]

4 Brain frontal cortex 132 [52]

5 Brain temporal cortex 126 [52]

6 Brain pons areas 123 [52]

7 Brain cerebellum 111 [52]

Mouse liver 1 CAST6B6 females 141 [27]

2 CAST6B6 males 100 [27]

3 B66C3H ApoE females 134 [24]

4 B66C3H ApoE males 124 [24]

5 B66C3H wild type females 66 [55]

6 B66C3H wild type males 69 [55]

7 C3H6B6 wild type females 63 [55]

8 C3H6B6 wild type males 66 [55]

9 Mouse Diversity Panel 196 [56]

Column # samples lists the number of samples (after our removal of potential
outliers) in each data set. MSAS, Multi-Site Adenocarcinoma Study; HLM, Moffit
Cancer Center; DFCI, Dana-Farber Cancer Institute; MSKCC, Memorial Sloan-
Kettering Cancer Center; WB, whole blood; PMP, postmenopausal.
doi:10.1371/journal.pone.0061505.t002
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success in all 3 applications. This confirms what statisticians

already know: whole-network connectivity is of little value for

variable selection. We hypothesized that standard meta-analysis

would also outperform intramodular hub gene selection since a

strong marginal association is a critical characteristic of a trait-

related biomarker. This hypothesis is confirmed in 2 of the 3

applications: When finding biomarkers for age in human DNA

methylation data sets, and (somewhat less so) biomarkers of total

cholesterol in mouse liver expression data, marginal meta-analysis

leads to increased validation success compared to selecting

intramodular hub genes in consensus modules. This is illustrated

in Figures 2B and 2C. Surprisingly, the hypothesis was proven

wrong for adenocarcinoma survival time. Here selecting intra-

modular hubs in the consensus module related to survival time

Figure 1. Meta-analysis of module membership leads to gene lists with stronger functional enrichment. The 3 barplots show
enrichment values, defined as negative log10 of the enrichment p-value, { log10 (p), in our 3 applications. Each bar summarizes the best enrichment
values obtained by the corresponding meta-analysis method. Specifically, for each method we computed the enrichment in the corresponding ‘‘gold
standard’’ list of genes. The enrichment was calculated in the top 20, 40, 60, …, 1000 genes in the adenocarcinoma and mouse TC applications; and in
100, 200, …, 5000 genes in the aging application. The best 20% of enrichment values were retained. Each bar represents the mean of these best
enrichment values, and error bars give the corresponding standard deviations. The standard deviations are not corrected for auto-correlation of
enrichment values. The Kruskal-Wallis test p-value is indicated in the title. The figure shows that meta-analysis of membership in consensus modules
leads to gene lists with higher enrichment and hence better biological interpretability.
doi:10.1371/journal.pone.0061505.g001
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leads to better validation success than marginal meta-analysis

(Figure 2A). A detailed analysis of screening success as a function

of the number of selected genes (Figure S10 in Text S1 ) confirms

that, in this application, selecting intramodular hub genes is

superior. To understand under what circumstances intramodular

hub selection can be superior to marginal meta-analysis, we noted

that the signal in the adenocarcinoma data is very weak: While the

average validation success in the aging and mouse TC applications

is around 0.4 and 0.3 (Figures 2B and 2C), the average validation

success in the adenocarcinoma application is only around 0.12

(Figure 2A). Several factors likely contribute to the low signal, for

example the high heterogeneity across adenocarcinoma biopsy

samples as well as the fact that the data were measured on various

different Affymetrix and Agilent platforms. Since hub gene

selection bested marginal meta-analysis only in the application

with weak signal, we hypothesized that selecting biomarkers on the

basis of consensus module membership could have some merit

when dealing with a weak signal. To explore this further, we

carried out simulation studies described in the following.

Simulation Studies
To better understand why meta-analysis of module membership

can sometimes (e.g., in our adenocarcinoma application) lead to

superior candidate biomarker lists, we performed a simulation

study. Using the gene expression simulation functions in the

WGCNA R package, we simulated 8 data sets with the same

module structure that consists of 10 modules. One of the large

modules (labeled 1) contains 3 small submodules in addition to the

genes in the ‘‘main’’ module. The submodules are not distinct

enough from the main module to be identified as separate modules

by the module identification procedure.

We simulate two quantitative traits. The first trait is simulated to

be weakly associated with a module that in real data may

represents a pathway or process. Specifically, we simulate a weak

association (correlation r~0:25) with the module eigengene.

Therefore, associations of the trait with the individual module

genes are noisy, but the most associated gene should also be highly

correlated with the eigengene, i.e., have high module membership.

In this simulation (and probably in real data involving preserved

modules), the module membership is better preserved than the

gene-trait associations. Hence, selecting intramodular hubs (meta-

analysis of module membership) outperforms the standard

marginal meta-analysis in this simulation study (Figure 3A).

The second quantitative trait is simulated in a similar fashion,

but with two important differences. First, the trait is simulated to

be related to one of the submodules of the large module 1. Second,

the (sub-)module–trait association is simulated to be stronger. In

this case the large module 1 will be selected as the module most

highly associated with the clinical trait. However, because (1) the

genes with the highest module membership in the large module

are not the ones most strongly correlated with the trait and (2) the

signal (i.e., gene–trait correlation) is strong, selection by module

membership is not the optimal strategy, and marginal meta-

analysis outperforms meta-analysis of module membership

(Figure 3B).

Discussion

This article describes the following results relevant to the

question of when hub gene selection is preferable to selection by

marginal association with a trait. First, we show that hub genes

defined with respect to whole-network connectivity (Equation 14)

are often uninteresting in correlation networks constructed from

data from higher organisms. This finding underscores the

importance of focusing on intramodular hubs. Revisiting network

analyses in lower organisms (for example, yeast) reveals that even

for lower organisms intramodular hubs are more essential than

whole-network hubs [7].

Second, we show that selecting intramodular hubs in a relevant

module often leads to gene lists with cleaner biological annotation

(typically evaluated using functional enrichment analysis). This is

relevant for studying candidate biological processes associated with

the trait of interest.

Third, we show that marginal meta-analysis leads to superior

validation success (reproducibility) of gene–trait associations in 2

out of 3 applications. This supports the claim that standard

marginal approaches are in general more suitable for biomarker

discovery. An exception to this rule is the adenocarcinoma

application where selecting biomarkers based on module mem-

bership (hub gene status) with respect to a cell proliferation module

leads to superior validation success in independent data sets. To a

cancer biologist it is hardly surprising that proliferation genes

correlate with cancer outcomes, which is why cancer studies such

as [6,19] emphasized their focus on intramodular hub genes as

opposed to whole-network hubs.

While biologically intuitive, it is difficult to understand

statistically why selecting intramodular hubs as biomarkers can

outperform selection by marginal association. To address this

issue, we report simulation studies that describe a scenario where

marginal associations are weak and noisy, while module mem-

bership (and hub gene status) are strongly preserved between

training and validation data sets. In this simulation scenario,

marginal meta-analysis statistics are prone to finding false positives

while module membership with respect to preserved modules

carries more reproducible information.

Methods that evaluate the biological enrichment of gene lists

need to be careful to avoid a bias stemming from first looking at

the enrichment results before choosing an enrichment category as

gold standard. For example, a severe bias in favor of a consensus

module screening method would result if one first identified the

most significant GO category for the consensus module and then

used this GO category as gold standard for assessing the biological

signal in a gene list produced via a standard marginal meta-

analysis technique. Our study avoided this kind of bias by focusing

on confirmed GO categories that were known a priori from the

literature and selecting modules by the correlation between their

module eigengene and the trait. Specifically, in our lung cancer

application (Application 1) we chose the GO term ‘‘cell cycle’’

since it is well known that genes whose over-expression is

associated with shorter survival time are often enriched with cell

cycle genes [45,46]. This reflects that a growing, proliferating

tumor is often associated with shorter patient survival [47,48]. The

relevant module (module 2) was chosen because its eigengene had

the highest correlation with survival time across the lung cancer

data sets (Figure S2 in Text S1). Finally, one can also compare the

highest enriched terms for the relevant consensus module (detailed

in Table S1) to the highest enriched terms for the genes identified

by marginal meta-analysis (Table S2). In this case, the top

enriched terms are very similar (all relate to cell cycle) but the

enrichment of the genes selected by meta-analysis of module

membership is much higher. Hence, even if one were to select the

gold standard by looking at the enrichment of genes selected by

marginal analysis, meta-analysis of module membership would still

lead to much higher enrichment.

Application 3 (total cholesterol in mice) highlights additional

challenges that arise when there is no clear gold standard and

multiple modules are strongly associated with a trait. Our chosen

gold standard (immune system processes) was captured by the
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most significantly associated module. But there are likely other

functional categories important for TC that may be captured by

other strongly associated modules. In this sense, applications

without a clear gold standard and/or with multiple trait associated

modules require judgment calls when comparing network methods

with standard marginal methods.

Discussion of Marginal Meta-analysis Methods
The marginal meta-analysis methods discussed in this article

include standard meta-analysis statistics such as Stouffer’s method

which is based on combining Z statistics (or equivalently using the

inverse normal method), as well as rank-based meta-analysis

techniques that aggregate ordinal measures of variable impor-

tance. Rank-based methods can be attractive when (1) a large

Figure 2. Marginal meta-analysis tends to lead to gene lists with better validation in independent data. The 3 barplots show validation
success in our 3 applications. Each bar summarizes the gene screening success of the corresponding meta-analysis method. Specifically, we rank the
genes using each meta-analysis method and retain the top 100 genes. We define gene screening success as the average correlation of these top 100
genes with the trait of interest in an independent validation data set, averaged over the validation sets in each application. Each bar represents the
gene screening success; error bars give the corresponding standard deviation of the observed gene–trait correlations in the top 100 genes. This
figure shows that, overall, marginal meta-analysis leads to gene lists with better validation success (i.e., higher correlation with the trait of interest in
validation data). Adenocarcinoma expression data (panel A) present an exception in that meta-analysis of module membership results in gene lists
with somewhat better validation.
doi:10.1371/journal.pone.0061505.g002
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number of variables is available and (2) when significance tests in

each of the underlying data sets are difficult (e.g. due to the

presence of hidden structure in the data that can lead to over- or

under-dispersion). In particular, rank-based methods are ideally

suited to meta-analysis of network centrality (or other network

indices) since it is often difficult to define and calculate statistical

significance for such quantities. For example, while module

membership in a correlation network can be measured by

correlation for which a p-value is easily calculated, in a general

network this is typically not the case.

Many rank-based meta-analysis methods have been described in

the literature, for example [2,57–59]. Most of these methods rely

on computationally expensive permutation tests. In contrast, our

rankPvalue approach (and R function) makes use of computa-

tionally fast asymptotic testing procedures that are either based on

the convolution of uniform distributions (giving rise to the Rank

method) or rely on the central limit theorem (giving rise to the

Scale method, Equation 5). Disadvantages of all ranking based

meta-analysis approaches include that they require multiple data

sets (at the very least 4 data sets [37]) and a large number of

variables (hundreds if not thousands).

Our applications as well as simulations indicate that the

rankPvalue approach (both Scale and Rank method) leads to

results that are broadly comparable to those of Stouffer’s method

when these methods use the same choice of weights for the data

sets. Our results provide no conclusive guidance as to which of the

three weight choices for data sets (constant, degree of freedom, or

square root weights) lead to highest validation success. Although

the theoretically optimal choice, under certain assumptions, are

the square root weights [26], the assumptions underlying this result

may not be fulfilled in practice.

While the choice of meta-analysis weights clearly has a

significant effect on the resulting gene lists, it does not affect the

main conclusions of our applications and simulations: the choice of

standard marginal meta-analysis versus the selection of intramod-

ular hubs in consensus modules has a much more pronounced

effect than the choice of the weighting scheme.

Figure 3. Simulation studies of gene screening success of meta-analysis methods. The barplots show validation success of the various
meta-analysis methods in simulated data with 2 different traits. Continuous clinical trait 1 is weakly related to a module eigengene that may, in real
data, represent the state of a pathway. In this case meta-analysis of module membership outperforms marginal meta-analysis in identifying validated
genes. In contrast, clinical trait 2 is simulated to be strongly correlated with the eigengene of a small submodule of one of the identified modules.
Here marginal meta-analysis outperforms meta-analysis of module membership. Analogously to Figure 2, each bar summarizes the gene screening
success of the corresponding meta-analysis methods for each of the simulated traits. For each meta-analysis method we rank the genes based on the
method and retain the top 50 genes. We define gene screening success as the average correlation of these top 50 genes with the trait of interest in
an independent validation data set, averaged over the validation sets in each application. Each bar represents the gene screening success; error bars
give the corresponding standard deviation of the observed gene–trait correlations in the top 50 genes.
doi:10.1371/journal.pone.0061505.g003
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Discussion of Hub Gene Selection Methods
The selection of intramodular hub genes requires some

judgment. Even in case of a single data set (and a single network)

the data analyst has to decide between intramodular connectivity

kIM (Equation 15) and module membership kME (Equation 19).

Fortunately, one can show theoretically and empirically [17,18,60]

that these two measures are often strongly related. This justifies

our focus on a single measure, kME. Compared to intra-modular

connectivity kIM, module membership kME has the advantage

of being defined via a correlation, which makes the calculation of

the associated p-values straightforward. In turn, this makes kME
suitable for standard meta-analysis methods for correlation tests.

In case of a consensus network analysis based on multiple

independent data sets, the situation becomes more complicated.

Since each data set corresponds to a network, one arrives at one

measure of kME per data set. To combine these correlation

measures across networks, i.e., to arrive at a consensus measures of

kME, one can again apply meta-analysis techniques to the

correlation tests used for defining kME. As part of this article, we

evaluated the performance meta-analysis methods applied to kME
across all input data sets. With the exception of the adenocarci-

noma application where Stouffer’s method outperforms rank-

based meta-analysis, all methods considered here perform

similarly.

Marginal meta-analysis simply selects genes with the most

significant meta-p-values; these genes are not necessarily highly

correlated to one another. In contrast, network screening methods

that select intramodular hub genes often result in gene lists whose

members have relatively high pairwise correlations.

Limitations
Our study has several limitations. First, our applications involve

correlation networks in higher organisms. In other types of

networks, e.g. information networks, protein-protein interaction

networks in lower organisms, and others, whole-network hubs are

clearly very important [14,15,61,62].

Second, our analysis only considered a limited number of

standard marginal meta-analysis approaches and network based

approaches. While is is likely that our results generalize to other

marginal methods as well, space limitations do not permit a

comprehensive evaluation of the many approaches described in

the literature. In particular, we did not evaluate hybrid approaches

that study network connections among known biomarkers [63].

Third, both rank based meta-analysis methods have the

limitation of, in general, requiring multiple (at the very least 4)

data sets. In particular, the asymptotic approximation at the heart

of the Rank method breaks down when dealing with fewer than 4

independent data sets. The number of data sets required for the

Scale ranking method depends on the distribution of the

underlying ordinal variables: while it (and the central limit

theorem) do not assume normally distributed ordinal variables,

fewer data sets are needed if approximate normal applies.

Fourth, we have formulated our comparisons for the case when

there is a single trait-related module, i.e., when hub genes are only

selected on the basis of a single module. In some applications there

may be several trait-related modules (for example, one positively

and one negatively related to the trait) and the data analyst needs

to decide which module to choose. In practice, data analysts would

of course consider functional enrichment with respect to gene

ontology categories or cell marker in order to find a biologically

credible module.

Fifth, selection of intramodular hubs crucially depends on

identifying a relevant trait-related consensus module across

possibly very different data sets. Meta-analysis of module

membership can only be successful if the module is present in all

analyzed data sets (i.e., the module is robust) and if its relationship

to the clinical trait is reproducible. While many published article

describe trait-related modules, it is by no means guaranteed that

trait related consensus modules can be found. In particular, if the

input data are measured on different platforms or are incompat-

ible for some other reason, then consensus modules may not exist.

It is often useful to assess the compatibility of the input data sets by

studying the concordance of mean expression, whole-network

connectivity [8,64], and to carry out module preservation analysis

[65]. In our situation, module preservation analysis was not

needed since relevant consensus modules are present in each

application.

Sixth, our focus on intramodular hubs should not mislead the

data analyst to ignoring prior knowledge about module genes or to

ignore complementary data. If regulatory relationships are of

interest, transcription regulators (e.g., a transcription factor) of

modules may be much more worthwhile targets for follow up

studies than intramodular hubs.

Our results have no direct relationships to the dissection of

regulatory networks. Important articles describe and evaluate

regulatory network inference procedures, e.g., [66,67]. In partic-

ular, we do not consider how to integrate co-expression, protein-

protein interaction, and other types of data. We emphasize again

that prior biological knowledge and complementary data are

invaluable for prioritizing genes for follow-up studies.

Seventh, our results apply to correlation networks which are

undirected graphs. There is a vast literature on network inference

procedures for constructing directed and causal network models.

While our results show that network based meta-analysis

(referred to as consensus module analysis) can be superior to

standard marginal methods for identifying relevant biological

processes, it is worth emphasizing that each application and data

set will require a careful evaluation of all available analysis options.

Methods

Standard Meta-analysis Methods
Meta-analysis is a well-established technique for aggregating

data from separate studies [33–36,68,69]. It is increasingly being

used to more fully utilize the rapidly accumulating high-

throughput biological data sets (e.g., gene expression, methylation

and genotyping), since pooling of raw data from high-throughput

experiments is often not feasible. A typical use of meta-analysis in

genomics is to combine several studies in which one evaluates the

association of a clinical trait (for example, disease status or survival

time) with, say, gene expressions measured by a high-throughput

method. Multiple methods were developed specifically for

marginal meta-analysis of gene expression data [58,59,70–73]

and a comparison was performed, e.g., in [74]. Discussions of

issues that arise in meta-analysis of gene expression data, as well as

references to multiple applications, can be found, for example, in

[75–78]. Here we give a brief overview of the meta-analysis

methods used in this article; a full review of the many methods

proposed in the literature is beyond the scope of this article.

One of the earliest meta-analysis techniques was proposed by

Fisher [68]. Given k independent statistical tests and their

associated p-values pl , one forms the test statistic

X 2~{2
Xk

l~1

ln pl : ð1Þ
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Under the null hypothesis X 2 follows the x2 distribution with 2n
degrees of freedom. This method can be generalized [36] by

defining a test statistic T as

t~
Xk

l~1

wlH(pl) ð2Þ

where H is a suitable function and wl are (non-negative) weights

for each study. For several different choices of H and wl the null

distribution of t is known. Careful choice of H and wl can lead to

a meta-analysis test with better power. We now discuss three

choices of H and wl that are used in this article.

The first choice, also known as the inverse normal method, was

proposed by Stouffer et al. [33]. It is based on individual test Z

statistics Zl that are obtained from the corresponding p-values

using the inverse normal distribution. One then forms the test

statistic

Z(S)~
1ffiffiffi
k
p
Xk

l~1

Zl ð3Þ

that under the null follows the normal distribution N(0,1). This

test is referred to as Stouffer’s test (with equal weights).

Stouffer’s method was generalized to allow different weights for

the individual tests by Mosteller and Bush [69] and Liptak [34].

Given positive weights wl , one forms the weighted Z statistic

Z(w)~

Pk
l~1 wlZlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

l~1 w2
l

q : ð4Þ

The statistic Z(w) again follows the standard normal distribution

N(0,1). The optimal choice of weights depends on effect size and

standard error of its estimate in each study [36]. Assuming that

samples in all studies have been drawn randomly from the same

pool the theoretically optimal weight choice is for wl to be

proportional to the square root of the number of samples in each

study, wl~
ffiffiffiffiffiffi
ml
p

[34–36]. We call this method Stouffer’s methods

with square root weights. In this work we also investigate setting

wl~ml and refer to this method as Stouffer’s method with degree

of freedom (dof) weights. (We approximate the degrees of freedom

in each study by the number of samples.).

R Software Implementation
Marginal meta-analysis methods described in this article are

implemented in the function metaAnalysis that is part of the

updated, freely available package WGCNA for the R language

and environment. Although our examples involve only continuous

traits, the function can also analyze binary traits using t-test or

Kruskal–Wallis rank sum test. Users can specify custom weights

for the individual data sets as well as the 3 standard choices of

weights described here. Robust correlation (specifically, the

biweight mid-correlation [79,80]) can be used to efficiently

suppress potential outlier measurements. Optionally, Scale and

Rank meta-analysis can also be performed automatically making

the function metaAnalysis a convenient ‘‘one-stop’’ option for

calculating a multitude of marginal meta-analysis statistics.

The rankPvalue Meta-analysis Method and R Function
Stouffer’s method requires as input Z statistics that, under the

null, are normally distributed with mean 0 and variance 1. While

Z statistics are easily computed for many standard association

tests, they are not available for many common network indices

such as whole-network or intra-modular connectivity. Even when

Z statistics can be computed, their actual null distribution may

differ from the theoretical N(0,1) distribution because of technical

effects or hidden relationships among samples such as population

stratification. Therefore, we now describe a method, called

rankPvalue, that uses as input a general ordinal measure of

variable importance. There are 2 variants the rankPvalue method

presented in turn below.

The Rank variant first ranks each variable (labeled by the index

i) separately in each set (labeled by the index l) based on the input

statistics. The ranks ril that range from 1 to the number of non-

missing observations n are then converted to percentile ranks

ril~(ril{0:5)=n. Under the null, the observed percentile ranks

follow a uniform distribution over the allowed values which can be

approximated by a continuous uniform distribution. The test

statistic is then formed as the weighted sum

fi~

Pk
l~1 wlrilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

l~1 w2
l

q : ð5Þ

The formula (5) is analogous to Equation 4, and in this article

we use the same weights as for Stouffer’s method. Under the null

hypothesis that there is no relationship between the rankings of the

input statistics between the individual data sets, the test statistic fi

follows a distribution that is given by the convolution of uniform

distributions. Using the Central Limit Theorem, one can then

argue argue that the row sum test statistic follows asymptotically a

normal distribution. It is well-known that the speed of convergence

to the normal distribution is extremely fast in case of identically

distributed uniform distributions [37]. Even when there are only

k~4 input studies, the difference between the normal approxi-

mation and the exact distribution is negligible in practice.

The Scale variant follows a logic similar to the Rank variant, but

instead of converting each variable importance to a rank, it scales

the variable importance measures in each input data set to mean 0

and variance 1. The meta-analysis test statistic is calculated

according to Equation 4 with the same weights that are used for

Stouffer’s method. The Central Limit Theorem again guarantees

convergence of the null distribution of the meta-analysis statistic

Z(w) to N(0,1), but in general the speed of convergence may not

be as fast as that of the rank-based meta-analysis statistic f
(Equation 5).

Both Rank and Scale variants are implemented in the function

rankPvalue which is also included in the WGCNA package for R.

The input of the function is a variable importance measure from

several independent data sets and optional weights for each data

set. The user can choose whether to calculate meta-analysis p-

values using the Rank, Scale, or both variants. As an added

convenience, the function can also calculate local False Discovery

Rate estimates (q-values) [81,82].

Weighted Correlation Network Analysis
Here we provide a brief overview of Weighted Correlation

Network Analysis [3,63]. A general network consists of nodes and

pair-wise connections among the nodes. In unweighted networks,

the connections are either present or absent (equivalently,

connection strengths are 1 or 0). In weighted networks, each pair

of nodes is connected and the connection strength can take any

value in the interval [0,1]. In our applications, the nodes represent
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measured variables such as gene expression or methylation

profiles.

Correlation networks are constructed from numeric data that

represents multiple measurements (‘‘samples’’) of a set of variables

(for example, gene expression, protein levels, etc). The measure-

ments are assumed to be organized in a matrix X~fxuig where

the column index i (i~1, . . . ,n) corresponds to variables, and the

row index (u~1, . . . ,m) corresponds to sample measurements. We

refer to the i-th column xi as the i-th node profile across m sample

measurements. For example, if X contains data from expression

microarrays, the columns correspond to genes (or microarray

probes), the rows correspond to microarrays, and the entries report

transcript abundance measurements. Correlation networks based

on gene expression data are often referred to as gene co-expression

networks.

We consider undirected networks that are fully specified by their

adjacency matrix, a square symmetric matrix A~faijg, whose

element aij encodes the connection strength between variables i

and j. Formally, an adjacency matrix is required to be square and

satisfy the following properties:

aij~aji , ð6Þ

0ƒaijƒ1, ð7Þ

aii~1 : ð8Þ

In correlation networks the adjacency is constructed from the

pairwise correlations rij of node profiles, rij~cor(xi,xj).

An important choice in the construction of a correlation

network concerns the treatment of strong negative correlations. In

signed networks negatively correlated variables are considered

unconnected. In contrast, in unsigned networks variables with high

negative correlations are considered connected (with the same

strength as variables with high positive correlations) [3,84]. A

signed weighted adjacency matrix can be defined as follows

aij~
1zrij

2

� �b

ð9Þ

and an unsigned adjacency by

aij~Drij Db : ð10Þ

The parameter b is chosen such that low correlations that typically

arise due to noise are sufficiently suppressed. A general heuristic

procedure for choosing b is described in [3]. Values of b~12 for

signed networks and b~6 for unsigned networks often work well.

The choice of signed vs. unsigned networks depends on the

application; both signed [27,84] and unsigned [6,22,24] weighted

gene networks have been successfully used in gene expression

analysis.

We find it convenient to define two functions (transformations)

of adjacency matrices. First, the Topological Overlap Matrix

(TOM) [85,86] is defined as

TOMij(A)~

P
k=i,j aikakjzaij

min (
P

k=i aik,
P

k=j ajk)z1{aij

: ð11Þ

It can be shown that the matrix TOM(a) is also an adjacency

matrix, i.e., TOM(a) also satisfies properties (6) – (8).

Second, the dissimilarity matrix corresponding to an adjacency

a is defined as

Dissimij(A)~1{aij : ð12Þ

A major step in many network analyses is to identify modules.

We define modules as groups of highly correlated (or, in network

language, strongly inter-connected) variables. To this end, one can

define a pairwise node dissimilarity measure that can be used as

input in a clustering procedure. In our examples we use the

dissimilarity given by

dij~Dissimij(TOM(A))

~1{

P
u=i,j aiuaujzaij

min (
P

u=i aiu,
P

u=j aju)z1{aij

, ð13Þ

as input to average-linkage hierarchical clustering [87]. Modules

correspond to branches of the resulting hierarchical clustering tree

(dendrogram) and are identified using the Dynamic Tree Cut

procedure [88].

Network Hubs: Nodes with High Connectivity
In many networks, from networks of airline connections to the

Internet to some biological networks, the most important nodes

tend to be those that have a large number of connections

[14,15,62]. More formally, given a network specified by an

adjacency matrix aij , the whole-network connectivity Ki of node i

is defined as

Ki~
X
j=i

aij , ð14Þ

that is, as the sum of the connection strengths to all other nodes in

the network. Nodes with high whole-network connectivity (relative

to other nodes in the network) are called whole-network hub nodes

(hub genes in gene networks). Whole-network connectivity and

whole-network hub nodes are often referred to simply as

connectivity and hub nodes.

While whole-network connectivity is important in many

contexts, our results and results of others (e.g, [89]) indicate that

nodes (for example, genes) important for particular functions in

large, complex networks are often not among the whole-network

hubs. However, often a sub-network of the whole network is

associated with the particular function, and nodes most relevant

for the function are often highly connected within the relevant sub-

network. In this work, we identify the relevant sub-networks as

modules that are associated with the studied clinical trait.

Correspondingly, we define the intra-modular connectivity

kIM
(I)
i of node i within a module labeled I as
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kIM
(I)
i ~

X
j[I

j=i

aij , ð15Þ

that is, as the sum of the connection strengths within the module I .

Nodes with high intra-modular connectivity are called intra-

modular hub nodes.

Eigennode Summarizes a Correlation Module
Many module construction methods lead to correlation network

modules comprised of highly correlated variables. For such

modules one can summarize the corresponding module vectors

using a representative variable, in network terminology also known

as a representative node profile. To define the representative

profile of a module, we use the Singular Value Decomposition

(SVD) of the standardized module matrix [90]. The matrix of

the module I is denoted by X (I)~(x
(I)
ui ), where the index

u~1,2,:::,m corresponds to samples and the index i~1,2,:::,n(I)

corresponds to the module variables (nodes of the network). For

ease of notation, we will drop the module index (I); the reader

should keep in mind that the discussion below is specific to a

particular module. In the first step of defining the module

eigennode, we standardize each variable (column) in X to mean 0
and variance 1. This important step ensures that the definition of

the eigennode is independent of the overall scale of each column

that can be affected by various technical factors, for example the

overall scale of microarray expression profiles is affected by

microarray probe sensitivity to individual transcripts. The singular

value decomposition of the standardized module matrix X is

denoted by

X~UDV T , ð16Þ

where the columns of the orthogonal matrices U and V are the

left- and right-singular vectors, respectively. Specifically, U is an

m|m matrix with orthonormal columns, V is an n|m
orthogonal matrix, and D is an m|m diagonal matrix of the

singular values fdlg, dl§0. The matrices U and D are given by

U~ u1 u2 � � � um

0
B@

1
CA, ð17Þ

D~diagfd1,d2, . . . ,dmg:

We assume that the singular values dl are arranged in non-

increasing order. Adapting terminology from [8,24,25,90], we

refer to the first column of U as the module eigennode (also known as

module eigengene in gene co-expression or co-methylation

networks):

E~u1: ð18Þ

Since the orientation (i.e., sign) of each singular vector is

undefined, we fix the orientation of each eigennode by constrain-

ing it to have a positive correlation with the average gene

expression across module genes. Our definition of the eigennode

assumes that the highest singular value d1 is non-degenerate

module matrix X is non-degenerate, that is, we assume that the

singular values d1,d2,:::,dm are In practice, we find that the module

eigennode typically explains more than 50% of the variance of the

module expressions.

We note that one can also define the eigennode using principal

component analysis (PCA). In PCA, one performs an eigenvalue

and eigenvector analysis of the sample covariance matrix C whose

element Cij is the covariance of the node profiles xi and xj , that is

Cij~cov(xi,xj). The resulting eigenvalues ll and eigenvectors el

satisfy Cel~llel . Because the covariance matrix is symmetric non-

negative definite, all eigenvalues ll are real and non-negative,

ll§0, and can be ordered in a non-increasing order (i.e., l1 is the

largest eigenvalue). The first principal component P1 is then

defined as P1~Xe1. Because the module matrix X is scaled to

mean 0 and variance 1, one can show that P1 and the first left-

singular vector u1 (Equation 17) differ only by a constant,

P1~d1u1. Since the overall scale of the module summary profile

in correlation networks is irrelevant, the first principal component

P1 provides an equivalent summary as the eigennode u1.

We now briefly comment on the right-singular vectors vi. Recall

that the first left-singular vector u1 can be interpreted as the

summary of the profiles of all variables (e.g., expression profiles), in

the module. In contrast, the first right-singular vector v1 can be

interpreted as a summary of the expression profiles of the samples.

The right-singular vectors can be utilized to perform signal-

balancing; the details are beyond the scope of this article and we

refer the interested reader to Section 6.1.1 in the book [18] and

references therein.

Eigennode-based Fuzzy Module Membership Measure
The module eigennode E(I) can be used to define a quantitative

measure, denoted kME, of module membership of variable i in

module I [17]:

kME
(I)
i ~cor(xi,E

(I)) , ð19Þ

where xi is the profile of node i. The module membership kME
(I)
i

lies in ½{1,1� and specifies how close node i is to module I . The

quantity kME
(I)
i is sometimes referred to as signed module

eigengene-based connectivity [24,25]. In gene co-expression

networks, module membership and intra-modular connectivity

tend to be very highly correlated due to approximate factoriz-

ability of the module sub-networks [17,60].

Eigennode-based Measure of Module–trait Association
The module eigennode also gives rise to a convenient measure

of module–trait association. Given a quantitative trait T and a

module labeled I with eigennode E(I), we define the module

eigennode significance MES (sometimes also called module

significance) as the correlation of the trait and the eigengene,

MES(I)~cor(E(I),T) : ð20Þ

Module eigennode significance lies in ½{1,1�. Values close to 1

(21) indicate a module very strongly positively (negatively)

associated with the trait, while values close to 0 mean the linear

association is weak. Because the module significance is defined as a

correlation, it is straightforward to quantify its statistical signifi-

cance by the corresponding correlation test p-value. Hence,
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module eigennode significance is well-suited for meta-analysis

using Stouffer’s method as well as our Scale and Rank

modifications.

Consensus Modules
Advantages of meta-analysis and related techniques have long

been recognized in network analysis. Several sophisticated

algorithms for finding commonly-occurring subnetworks (some-

times referred to as modules) have been developed, for example

[2,91–95]. Consensus modules are defined as sets of highly connected

nodes that can be found in multiple networks. A comparison and

evaluation of different approaches for finding consensus modules is

beyond our scope and we refer the reader to the literature [38,93–

95].

Since our focus is the utility of using consensus modules for

selecting genes, we restrict our attention to a single consensus

module detection approach [38] within the WGCNA framework.

Consensus modules are identified using a suitable consensus

dissimilarity that is used as input to a clustering procedure,

analogously to the procedure for identifying modules in individual

sets. To simplify our discussion we introduce the following

component-wise quantile function for a set of k matrices

A(1),A(2), . . . ,A(k):

Quantileq,ij A(1),A(2), . . . ,A(k)
� �

~Quantileq a
(1)
ij ,a

(2)
ij , . . . ,a

(k)
ij

� �
:

ð21Þ

Thus, each component of the quantile matrix is the given

quantile (0ƒqƒ1) of the corresponding components in the

individual input matrices. Using this notation, we define the

consensus network corresponding to input networks

A(1),A(2), . . . ,A(k) and a quantile q as

Quantileq A(1),A(2), . . . ,A(k)
� �

~Quantileq TOM(A(1)),TOM(A(2)), . . . ,TOM(A(k))
� �

:
ð22Þ

When q~0, i.e., the quantile is the minimum, the consensus

network has a very simple interpretation: two variables are

connected with the strength that is common to all input networks

(hence the name ‘‘consensus’’).

To identify consensus modules, we use the standard module

identification procedure with the dissimilarity

ConsDissij~1{Quantileq,ij A(1),A(2), . . . ,A(k)
� �

: ð23Þ

We emphasize again that this procedure is meaningful only

when the variables of the input networks are the same.

Meta-analysis of Module Membership in Consensus
Modules

Once consensus modules are identified, their eigengenes

(Equation 18) can be calculated in each input data set l.

Specifically, denote the eigengene of module I in set l by E(l,I).

For each node i we then have k measures of module membership,

namely

kME
½l�(I)
i ~cor(x

½l�
i ,E(l,I)) , l~1,2, . . . ,k : ð24Þ

Several alternative ways of summarizing the kME measures are

possible. First, since kME
(l,I)
i is defined as a correlation, one can

turn it into a Z statistic and use the standard meta-analysis

techniques described above (Equations 3 and 4), as well as our

Scale and Rank modifications. We use these methods in the

reported results.

For completeness, we also describe two alternatives to meta-

analysis of Z statistics derived from individual kME values that are

simpler but in general do not perform as well. First, one can apply

the consensus approach and define consensus module membership

ConsKME
(I)
i

~Quantileq kME
(1,I)
i ,kME

(2,I)
i , . . . ,kME

(k,I)
i

� �
:
ð25Þ

Second, one can also define the (weighted) mean kME. Given

weights wl for each data set, l~1,:::,k

meanKME
(I)
i ~

P
k~1 lwlkME(l,I)P

k~1 lwl

: ð26Þ

The weights can be the same as those were used to define

various versions of the meta-analysis Z statistics, although this is

not a requirement.

Meta-analysis of consensus module membership is implemented

in the function consensusKME that is also included in the

WGCNA package. This function provides an interface similar to

that of the function metaAnalysis, including various choices of

individual set weights, optional automatic calculation of Scale and

Rank meta-analysis, and optional use of a robust correlation

measure.

Adenocarcinoma Data Sets and Network Analysis
We have downloaded 8 independent cancer data sets: 4 data

sets [40] measured on Affymetrix U133A microarrays that

comprise 162, 69, 73, and 89 samples, respectively; 51 samples

[41] measured on Affymetrix U133plus2 microarrays; 91 samples

[42] measured on Agilent Whole Human Genome oligo DNA

microarray G4112F; 81 samples [43] measured on Agilent Homo

Sapiens 21.6K custom array; and 49 samples [44] measured on

Agilent-012391 Whole Human Genome Oligo Microarray

G4112A. The numbers of samples in each data set reflect

restriction to Adenocarcinoma (AD) where applicable and our

removal of possible outlier samples.

Because the microarray probes differ between the 5 platforms

present in this study, we used the aggregating approach described

in [96] (implemented in the collapseRows function) to ‘‘collapse’’

the probe-level expression data to gene-level expression data. We

then retained only expression profiles of the 8655 genes that are

represented on each of the 5 platforms.

The consensus TOM was defined as the consensus (Equation

22) of the individual TO matrices with percentile q~0:25 (i.e., the

quartile). Consensus modules were constructed using the approach

detailed in [38] and reviewed above. This procedure resulted in 5

modules.
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To measure the biological significance of each gene or module

eigengene, we first calculated the survival time deviance. Then,

significance of a gene or module eigengene is simply given as the

correlation of the corresponding expression profile with survival

deviance.

Genome-wide Methylation Data used in Study of Aging
We analyze 3 whole blood (WB) methylation data sets and 4

region-specific brain methylation data sets. The methylation data

include 190 samples from a study of Type I diabetes [49], 261

samples from healthy controls of a large cancer study [50], and 87

samples from a previous study of aging [51]. The 4 brain data sets

were first reported in a study of genetics of expression and

methylation in normal human brain [52]. Here we use the

methylation data sets that survey genome-wide methylation across

frontal cortex, temporal cortex, pons regions, and cerebellum of

150 individuals. After outlier removal, we retained 132 (frontal

cortex), 126 (temporal cortex), 123 (pons regions), and 111

(cerebellum) samples. All 7 methylation data sets were assayed on

Illumina Infinium HumanMethylation27 BeadChips.

We again used the q~0:25 percentile to define the consensus

TOM (Equation 22). The consensus module identification resulted

in 41 modules. Compared to the adenocarcinoma application, the

relatively large number of modules identified here is likely due to

higher similarity of the individual co-methylation networks. Gene

significance for each methylation probe was defined as the

correlation of the corresponding methylation profile with age.

Mouse Liver Expression Data Sets
We work with 9 independent liver expression data sets. Eight of

the data sets come from 3 separate F2 mouse crosses: 2 data sets of

141 (female) and 100 (male) samples from a CAST6C57BL/6J

cross denoted C6B [27]; 2 data sets of 134 (female) and 124 (male)

samples from a C3H/HeJ6C57BL/6J cross on an ApoE null

background denoted BxH ApoE [24], and 4 data sets of 66 (B6H

female), 69 (B6H male), 63 (H6B female), and 66 (H6B male)

samples from a C3H/HeJ6C57BL/6J cross on wild-type back-

ground denoted BxH wt [55]. The 9th data set of 196 male

samples, called the Mouse Diversity Panel (MDP), is a genetically

more diverse collection containing mice from various laboratory

strains and crosses [56]. Because the 9 data sets were measured on

various microarray platforms including custom Agilent two-color

arrays (all F2 crosses) as well as Affymetrix HT Mouse Genome

430A Array (MDP), we again used the function collapseRows to

create gene-level expression data that can be compared between

the platforms.

As in our other applications, we used the q~0:25 percentile to

define the consensus TOM (Equation 22). The consensus module

identification resulted in 11 modules. Gene significance for each

gene was defined as the correlation of the gene expression profile

with total cholesterol measurement in plasma.

Simulation of Gene Expression Data
We use the data simulation functions in the WGCNA R

package [83] to simulate expression data in which genes are

organized into modules that group together correlated genes. We

first describe the simulation of gene expression data in a single data

set. To simulate an expression data set, one first chooses the

number of modules and numbers of genes in each module, and a

matrix that describes how the seed eigengenes of different modules

should be related. Next, seed module eigengenes are generated

using random, normally distributed ‘‘samples’’ such that their

correlations approximate the given association matrix (this step is

implemented in the function simulateEigengeneNetwork ). The

seed eigengenes are simulated to exhibit weak to moderate

correlations with one another since in empirical data we often

observe that eigengenes of different clusters are correlated. For

each module I , the module genes, labeled by index i, i~1,2,:::,nI ,

are then simulated as

X a
i(I)~riE

a
I z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r2

i )

q
ea

i , ð27Þ

where the ‘‘noise’’ components a
i are chosen randomly and

independently from N(0,1), and the coefficients ri are uniformly

spaced between rmin and rmax. To simulate modules with strongly

correlated genes, we use rmin between 0.5 and 0.6, and rmax

between 0.8 and 0.95. Lower values can be used to simulate

modules with weaker co-expression. Most genes outside of clusters

are simulated with independent expression values drawn from

N(0,1), whereas a small number are simulated as ‘‘near-cluster

genes’’ according to Equation 27, but with ri ranging from 0 to

rmin. This simulation procedure is implemented in function

simulateDatExpr and leads to a module structure that is generally

similar to module structure observed in real data.

Since our module membership meta-analysis methods focus on

consensus modules, we simulate the same module structure in all

data sets, that is, all simulated modules are also consensus

modules. This is conveniently achieved using the function

simulateMultiExpr.

Statistical Analysis and Code
All statistical analysis was performed using the R language and

statistical environment [97], version 2.15.0. We used the network

and consensus module analysis functions implemented in the

WGCNA R package [80,83], version 1.20. GO enrichment

analysis within the WGCNA package is implemented in the

function GOenrichmentAnalysis and relies on annotation pack-

ages provided by the Bioconductor project [98], version 2.10.

(Version numbers of individual packages may differ; for example,

GO annotation package GO.db as well as organism-specific

annotation packages org.Xx.eg.db are version 2.7.1.) Although the

qualitative conclusions reached in our analyses are robust, minor

details such as exact enrichment p-values or numbers of genes in a

module may differ when using different versions of Bioconductor

annotation packages (due to evolving annotation databases) and

the WGCNA package (due to improvements in network

construction and module identification). Our pre-processing

includes batch removal using the ComBat function and approach

detailed in [99]. All data and analysis code are available at our

web site http://genetics.ucla.edu/labs/horvath/

CoexpressionNetwork/MetaAnalysis/http://genetics.ucla.edu/

labs/horvath/CoexpressionNetwork/MetaAnalysis/.

Supporting Information

Table S1 GO enrichment of modules identified in the
consensus module analysis of 8 adenocarcinoma data
sets. The table shows the 20 highest enriched terms for each

module (including the improper module labeled 0). Individual

columns contain module label (‘‘Module’’), module size (‘‘Size’’),

rank of the term (‘‘Rank’’), Bonferroni-corrected enrichment p-

value (‘‘pEnrichment.Bonferroni’’), fraction of the module genes

present in the term (‘‘Fraction’’), GO ontology (‘‘Ontology’’), and

GO term name (‘‘TermName’’).

(TXT)

Table S2 GO enrichment of genes selected by marginal
meta-analysis of association with survival time in 8
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adenocarcinoma data sets. The table shows the 20 highest

enriched terms for the 50, 100, 200, 300, 500, and 1000 top genes

selected by marginal meta-analysis. Individual columns contain

number of top selected genes (‘‘No.Genes’’), rank of the term

(‘‘Rank’’), Bonferroni-corrected enrichment p-value (‘‘pEnrich-

ment.Bonferroni’’), fraction of the module genes present in the

term (‘‘Fraction’’), GO ontology (‘‘Ontology’’), and GO term

name (‘‘TermName’’).

(TXT)

Text S1 This documents collects all Supporting Figures
and their captions.
(PDF)
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