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ABSTRACT 

In the design of a manufacturing system, the design specification is often suggested by a design team. Managers are 

interested in verifying that this specification will satisfy the production requirements. Because the future production 

environment will likely differ from the one assumed, it is important to determine in which situations the suggested 

design becomes unacceptable. This paper suggests an approach that allows determining which uncertain parameters are 

important and which combinations of these parameters can lead to an unacceptable design. This approach combines 

several methods, namely, simulation, bootstrapping, and metamodeling. The methodology is explained and illustrated 

through a stochastic simulated manufacturing system, which includes uncertain parameters related to the arrival and the 

processing times of jobs. This example shows the conditions under which the system does not meet the requirements. 
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1. INTRODUCTION 

 

Designing a manufacturing system is known to be 

complex. The type and quantity of resources have to be 

determined, the transportation system has to be efficient 

enough, the operator must be trained and assigned to the 

machines in a suitable way, parts routing has to be 

chosen, buffers location and sizes must be defined, the 

layout selected, etc. The system designers’ aim is to 

suggest design specifications such that the future system 

will meet the expected performance requirements, while 

being as inexpensive as possible. Hence, an important 

question, which is addressed in this article, is: are these 

specifications acceptable? Verifying that the total cost is 

acceptable is possible on the basis of the investment and 

building costs; meanwhile, decision makers need also to 

be convinced that the performance of the future system 

will be good enough to meet the forecasted customer 

demand. Given the complex dynamic behavior of a 

manufacturing system, its stochastic features, and the 

unavailability of precise and certain data about the 

actual future operating conditions of the manufacturing 

system available at the time of the design study, this 

question is difficult to answer.  

 

Simulation analysis is well known to play an important 

role in evaluating a ‘to be’ manufacturing system. In the 

relevant literature and in practical applications, two 

approaches are based on simulation. The first approach 

assumes that specific system parameters are unknown 

(e.g., buffer sizes, number of pallets, and conveyor 

speed). The aim of such research is either to determine 

these parameters through a search that optimizes one or 

more performance criteria using so-called simulation 

optimization approaches ([7] and [14]) or to evaluate the 

importance of these design parameters on the system 

performance using so-called sensitivity analysis ([4] and 

[11]). Such an approach, however, does not answer our 

initial question since in our case the design team has 

already specified the future system. In the second 

approach (typically performed in practice) a simulation 

model is built from the system specification and the 

current knowledge about its future operating conditions. 

The model is used to predict the future performance. 

Unfortunately, there are two important pitfalls in this 

approach. The first is that the performance is generally 

estimated through the expected value of the simulation 

outputs, which is generally not relevant in practical 

cases [5]. The second pitfall is that at the time when the 

system is designed, the exact system parameters or 

environmental conditions, which are used in the 

simulation model, are not exactly known; obviously 

these parameters and conditions may have a great effect 

on system performance. An interesting method for 

performing simulation studies for design purposes with 

uncertain parameters is given in [6]. That publication 

explains how fuzzy theory can be combined with 

simulation; unfortunately, it places less emphasis on the 

acceptability of a given design and on the significance 

of the important uncertain factors. 

 

On the basis of [9], this article presents  an approach that 

allows designers to determine when a suggested design 

can be considered to be acceptable, regarding its 

performance when parameters are uncertain. This new 

approach is based on simulation, bootstrap estimation, 

and simulation metamodeling. 



 

The remainder of this paper is organized as follows. 

Section 2 explains how to formulate the problem, given 

our initial question. Section 3 presents the approach in 

more detail. Section 4 illustrates this approach through a 

manufacturing example, inspired by [5]. Section 5 

summarizes our conclusions and gives topics for future 

research. 

 

2. PROBLEM STATEMENT 

 

In the literature, several research publications are 

interested in determining decision variables (e.g., 

number of operators, buffer sizes) to optimize a given 

perfomance criterion. In our study, however, the design 

has already been given; emphasize is placed on those 

parameters that are actually uncertain. A typical 

example is the customer demand for a given product. 

We will consider these uncertain parameters as input 

variables, and study the effects of their variations. Let  

x = (x1,…, xi,…,xk)’ be the k-dimensional vector of input 

variables. We assume that each xi may have values 

within an interval Ii = [Li; Hi]. Obviously, these 

uncertain variables xi can have important effects on 

system performance, and hence on the acceptability of 

the future system. 

 

Following [5], we assume that the production 

requirements are expressed as the probability of the 

future system satisfying given production objectives. 

Typically, the system must produce at least a given 

number of products (to meet forecasted demand). If the 

system produces (say) s = 1 types of products (or 

product families), then the acceptability of the system 

can be quantified as its capability of producing more 

than bj products of type  j (j =  1,…,  s), where bj 

represents the threshold for product j given by the 

decision makers. The stochastic number of 

manufactured products of type j (say) qj may be 

expressed as a function of the uncertain variables x, so 

qj = fj(x). Because of the system's uncertainties, the 

requirement for each product will be satisfied with a 

probability lower than 100%. Because expected values 

are not relevant in this context, we use quantiles, as 

suggested in [5];  also see [1] and [2]. Let qj;p denote the 

p
th

 quantile (e.g., the 5% quantile) of the j
th

 output (say) 

qj: 

P(q j < qj;p) = pq (j = 1, …, s);     (1) 

 

i.e., there is only a pq chance that output j is lower than 

qj;p . Hence, the managerial requirement can be 

q1;p = b1,…,qs;p = bs            (2) 

 

where b = (b1,…,bs)’ is given by management. If all s 

constraints hold, then the system gives acceptable 

output. Consequently, determining the acceptability of a 

given design solution consists in determining which 

combinations of uncertain factors, i.e. xi, lead to output 

quantiles qj;p that meet the threshold values in (2). 

Assuming that these combinations form a closed set, we 

wish to find the frontier (say) G(x) that separates 

“acceptable” and “unacceptable” solutions, where  (1) 

implies that acceptabe solutions x satisfy the constraints 

(2). 

 

 

3. ANALYZING THE ACCEPTABILITY 

 

3.1 Building a simulation metamodel 
 

To solve the problem formulated in the previous section, 

we have to estimate the performance of the future 

system in various environments; see [7] and [13].  A 

simulation model with as inputs the uncertain 

environmental factors xi and as outputs the quantiles 

defined in (1) is needed. Unfortunately, this  simu lation 

model alone does not  give a frontier G(x) between 

acceptable and unacceptable environments. We suggest 

to derive a mathematical approximation of the 

relationship between the model inputs and outputs , 

using a simulation metamodel (see [4], [7] and [12]). 

For this approximation we use a first-order polynomial 

regression that expresses the quantile as a function of 

the environmental variables: 

εββββ +++++= kk xxxy ...22110       (3) 

 

where y denotes the metamodel's predictor of the 

simulation output, ß0 denotes the intercept, ßk  denotes 

the first-order effect of input xk, and e denotes the 

‘residual'. If `we standardize the inputs so that they vary 

between -1 and +1, then the effects ßj measure the 

relative importance of the (uncertain) input xj [7]. To 

estimate the effects in (3), at least 1 + k combinations of 

the k  factors must be simulated. To the resulting 

simulation data, we apply Least Squares (LS) to get the 

effect estimator 

qXXX ˆ')'(ˆ 1−=β              (4) 

 

where X denotes the n × (k + 1)  matrix of regression 

variables and q̂ the quantiles estimated though 

simulation. 

 

To determine if these estimated effects are actually 

important, we need their Confidence Intervals (CIs). LS 

assumes white noise. Unfortunately, this assumption 

often does not hold in practice, so CIs should not use the 

classic t statistic; instead we use bootstrapping. 

Bootstrapped observations are obtained by resampling 

with replacement the original (say) m replicated 

simulation observations, see [3]. This resampling is 

executed for each scenario i (i = 1,..,n). This gives the 

bootstrapped quantiles 
*ˆ
bq , where the superscript * 

denotes bootstrapped (resampled) values. These 

bootstrapped quantiles give the bootstrapped estimated 

factor effects: 

),...,1(ˆ*'1)'(ˆ Bbbb
=−= qXXXβ      (5) 

 

where B  denotes the ’bootsrap sample size ’; i.e., we 

repeat the bootstrap procedure B times. To estimate a 



 

(say) 95% CI per factor effect j, we sort the B values of 

*
;

ˆ
bj

β  and find the order statistics (denoted by the (.) 

subscript) *
);025.0(

ˆ
jB

β  and *
);975.0(

ˆ
jB

β , which are 

the lower and upper bound for the CI. 

 

3.2 Validating the metamodel and testing the 

importance of uncertain factors 

 

Before using the CIs to test the importance of the 

individual estimated factor effects, we should validate 

the estimated metamodel as a whole. This model is 

based on (3) and (4): 

.ˆ...ˆˆˆ
110 kk xxy βββ +++=         (6) 

 

Several methods may be used to validate a metamodel, 

for example, Absolute Relative Error (ARE) , 

leave-one-out cross-validation and normalized 

prediction errors; see [8] and [10]. Once the metamodel 

is  validated, the individual factor effects should be 

tested, to determine which factors are most important. 

Statistically speaking, we reject the null-hypothesis H0: 

ßj = 0 (and call the factor nonsignificant), if the CI 

interval based on (5), i. e., 

 [ *
);025.0(

ˆ
jB

β , *
);975.0(

ˆ
jB

β ] does not contain the 

value 0. Next  we get the (say) h  = k  significant 

(uncertain) factors xi (i = 1,…, h). 

 

3.3 What is acceptable? 

 

Once the metamodel is validated (i.e., ŷ  correctly 

approximates q̂ ), substituting the fitted metamodels (6) 

into (2) yields: 

sjwithbxx jjjhjj ,...,1ˆ...ˆˆ
;1;1;0 =≥+++ βββ  (7) 

 

which defines the frontier: 

bxßx −⋅= 'ˆ)(G             (8) 

 

We can see that the values x that make G(x) positive in 

(8) give an acceptable design. 

 

4. EXAMPLE: A MANUFACTURING SYSTEM 

 

4.1 System features 

 

In our example, the factory consists of four workstations. 

Each workstation has identical machines. We assume 

that the number of machines per workstation is given by 

a design team (here, we select one of the solutions 

found in [5]). The factory produces two types of 

products  (so s = 2), called prod1 and prod2. These 

product types have different routings. If we denote 

WorkStation i by WSi with i = 1,…, 4, then prod1 has 

routing WS1, WS3, WS4 and prod 2 has WS2, WS3, WS4; 

also see Figure 2 in [5]. If we denote the exponential 

distribution with mean ? by E(?) and the normal 

distribution with mean µ and standard deviation s by 

N(µ, s), then Table 1 gives the base scenario, see [13], 

the scenario with the input datas which enabled to 

obtain the design, which is assumed during the design, 

(reproduced fro m [5]). 

 

Table 1. Base scenario (parameters in minutes) 

 

The outputs of the simulated factory are the number of 

products of each type produced during a thirty-day 

period, after a warm-up period of 10 days; see [5]. 

 

These random responses q1 and q2 must satisfy given 

`threshold' values. Using the 0.05 quantiles qj;0.05,  the 

production requirements are 

 

q1;0.05 = 15000 and q2;0.05 = 17000       (9) 

 

where 15000 and 17000 are the threshold values given 

by the company (managers, decision makers); see b        

in (2). In practice, the parameters of the distributions are  

uncertain; e.g., the interarrival times of product 1 in 

Table 1 may have a parameter not equal to 2. We 

therefore focus on these uncertain factors: if the 

parameters in Table 1 change, will the design suggested 

in [5] still satisfy the requirements in (1)? 

 

 

4.2 Experiment 

 

We select a 2
14-10

 design [7], which implies 16 scenarios 

that enable estimation of 14 effects ß in (3); i.e., we 

study the 14 uncertain parameters in Table 1, which are 

the parameters of each distribution. In this experiment, 

each factor has 2 values; the factor changes by either 

+10% or +30%. We use m = 100 replications for each of 

the 16 scenarios. Simulation gives 1q̂ , the estimated 

5% quantile for product 1;  see column 2 in Table 2. We 

do not give the results for product 2, because product 2 

gives only acceptable solution for all 16 scenarios; also 

see [9]. We analyze the results of Table 2 as follows. 

 

First we compare 1q̂  (simulation estimate of quantile ) 

with the threshold 15000 in (9). Nine of the sixteen 

scenarios give unacceptably low responses . We observe 

that the CIs are very short! The cause is the low 

variability in the simulation responses: the simulation 

runs of 30 days are very long compared with the 

processing time (maximally 5.5 minutes). 

 

Product
Interarrival 

time a 
Processing time p 

  
WS 1  WS 2  WS 3  WS 4  

prod1 E(2) N(5,0.1) - N(3,0.05) N(2,0.2) 

prod2 E(1.4) - N(5.5,0.1) N(3,0.05) N(2.5,0.1) 



 

Table 2. Simulated quantiles, CIs, bootstrapped variance, 

and predicted quantiles obtained from 16 scenarios 

Product 1 

 

Next we examine whether the variability varies with the 

scenarios: we compute the ratio (say) rj of the maximum 

and minimum CI lengths - which are 4 and 1 (see 

column 3 in Table 2) - for the 5% quantile of product 1: 

)2,1( 
][min

][max

;);1(;);10(

;);1(;);10( =
−
−

= j
qq

qq
r

jijii

jijii

j
    (10) 

where the upper point of the CI is q(10) and the lower 

point is q(1), which are computed from the m = 100 

original (not the bootstrapped) simulation responses; see 

[9]. 

 

The observed value of 4 for rj suggests that the 

variances are not constant. 

 

The 2
14-10

 design gives an orthogonal X, so (5) 

simplifies to 

)2,1()14...,,0(
16

ˆ

ˆ

16

1

;;

; ===
∑

= jh

qx

i

jihi

jhβ     (11) 

 

This gives the LS estimates displayed in Table 3. 

j;0β̂  j;1β̂  j;2β̂  j;3β̂  j;4β̂  

14281.438 109.438 25.688 -1063.313 180.688 

j;5β̂  j;6β̂  j;7β̂  j;8β̂  j;9β̂  

-131.563 -108.563 -74.563 -96.563 9.188 

j;10β̂  j;11β̂  j;12β̂  j;13β̂  j;14β̂  

-109.563 60.438 96.688 145.438 61.438 

Table 3. LS estimates of first-order polynomial for 

product 1 

 
After bootstrapping as described in Subsection 3.1, we 

get  displayed in Table 2. We see that these 

variances are small, which agrees with our comment on 

the lengths of the CI in Table 2. For the validation of the 

metamodels, we apply measures that are also used in [5]. 

First, we compute the classic coefficient of 

determination R² and 2
adjusted

R : these two measures turn 

out to be 0.9995 and 0.993. These values are excellent 

compared with the maximum value, which is equal to 1. 

Moreover, we compute the Absolute Relative Error 

(ARE) : 

ARE i =
y i − q i

qi
(i = 1,…,n).

       (12) 

 

Our experiment gives an average ARE of 0.0018 and a 

maximum of 0.0020, so no ARE exceeds the given 

threshold 0.10, see [6].  Altogether we find the AREs 

to be excellent. We also make a scatterplot with the 16 

simulated quantiles versus the quantiles predicted 

through the fitted first-order polynomial (6); see Figure 

1. These points in this figure lie close to a 45° line, 

which means the simulated quantiles have 

approximately the same value than the quantiles 

Predicted using the metamodel. 

 

 
Figure 1. Quantiles simulated versus quantiles predicted 

through first-order polynomial for product 1 

 

In addition, we perform leave-one-out cross-validation: 

We delete I/O combination i from the complete set of 16 

combinations, which gives the I/O data set (X-i,q-i), see 

[7]. We recompute the original LS estimator defined in 

(4): 

),...,1(ˆ'1)'(ˆ niiiiii
=−−

−
−−=− qXXXβ    (13) 

We use this recomputed estimator i−β̂  to compute the 

regression predictor for the deleted combination: 

iiiq −=− β̂'ˆ x . This gives n predictions  iq−ˆ  with i = 

1,…,16. Then we calculate the ARE between the 

predicted and simulated quantiles. 

 

-i 1;ˆ iq−  ARE 

1 16107 0.0255 

2 14322 0.0273 

3 18792 0.0209 

4 18960 0.0216 

5 15304 0.0255 

6 16107 0.0256 

7 19598 0.0209 

8 18793 0.0209 

 
 

Confidence 

interval   

1 13289 (13287,13289) 1.919 13314.31 

2 12721 (12719,12722) 1.529 12695.69 

3 15705 (15702,15706) 3.465 15679.69 

4 15425 (15423,15425) 2.411 15450.31 

5 13289 (13288,13290) 1.779 13263.69 

6 13289 (13287,13290) 1.622 13314.31 

7 15705 (15704,15706) 1.868 15730.31 

8 15704 (15703,15706) 2.296 15678.69 

9 13289 (13288,13290) 3.242 13263.69 

10 13290 (13289,13290) 1.753 13315.31 

11 15705 (15703,15706) 5.108 15730.31 

12 15023 (15032,15034) 2.528 15007.69 

13 13290 (13288,13290) 1.594 13315.31 

14 13288 (13288,13290) 2.224 13262.69 

15 15425 (15424,15426) 1.958 15399.69 

16 14056 (14054,14056) 2.163 14081.31 



 

9 15302 0.0256 

10 16107 0.0255 

11 19595 0.0209 

12 17593 0.0223 

13 16108 0.0255 

14 15303 0.0255 

15 18156 0.0216 

16 17013 0.0242 

Table 4. Predicted quantiles and ARE for 

cross-validation 

 

In Table 4, the AREs are acceptable so we accept our 

first-order polynomial metamodel. 

 

Next we find the bootstrapped factor effects, which 

define the CI, using (5). This gives Table 5, where all 

effects are significant. We conclude that first-order 

polynomials give adequate approximations and that all 

fourteen factors are important. 

 
*

1);5.2(β̂  
*

1);5.97(β̂  

0 14281.43814286.813

1 108.188 110.844

2 24.250 26.938

3 -1064.813 -1062.719

4 179.625 181.438

5 -133.563 -130.250

6 -181.719 -179.719

7 -74.938 -74.094

8 -97.344 -96.094

9 8.563 10.313

10 -110.094 -109.188

11 60.125 61.406

12 96.188 97.031

13 145.000 145.875

14 61.125 62.000

Table 5. CIs for factor effects computed from 100 

boots trapped quantiles of product 1 

 

Now we return to Table 3 and interpret this table as 

follows: 

 

1) Factor 1 (?1) has a plus sign, whereas we expect a 

minus sign because higher mean interarrival time 

implies fewer products arriving into the system so 

the output decreases. However, workstations 1 and 

3 may reach saturation; i.e., the number of products 

arriving exceeds the workstations' capacities. 

2) Factor 3 (µ1;1) is the most important factor 

( 313.1063ˆ
1;8 −=β ). Its minus sign implies that a 

higher mean processing time at work station 1 

decreases the output of product 1. 

3) Factor 9 (s1;1)'s plus sign means that a higher 

standard deviation increases the output, which is 

hard to explain. 

4) Factors 5 (µ1;3), 7 (µ1;4), 11 (s1;3) and 13 (s1;4) have 

the same signs as factors 3 and 9, because their 

influences are similar. 

5) Factors 4 (µ2;2) and 10 (s2;2) do not have direct 

influences on the output of product 1, but a higher 

processing time at workstation 2 for product 2 

obviously gives fewer arrivals of product 2 before 

workstation 3. Because workstation 3 serves FIFO, 

fewer products 2 in its queue implies smaller 

waiting time for product 1. 

6) Factors 6 (µ2;3) and 8 (µ2;4) have the same influence 

on product 1; their minus signs are explained by the 

fact that products 1 and 2 share workstations 3 and 

4. If the processing times for product 2 increase at 

workstations 3 or 4, then the output of product 1 

decreases. 

 

Replacing the quantiles in (9) by their regression 

estimates jŷ  based on (3) using Table 3 enables us to 

estimate whether the thresholds are satisfied for specific 

scenarios. Because we found that the first-order 

polynomial (3) is a valid metamodel,  a hyperplane in 

the k-dimensional input space is the frontier of the 

region of acceptable scenarios: 

 15000ˆ...ˆˆ)( 141;1411;11;0 −+++= xxG βββx .  (14) 

 

We illustrate this 14-dimensional frontier as follows. 

We assume that two factors (say) xh and xh’  deviate 

from their base values, while all other factors (say) x-(h;h’) 

remain at their base values, hence x-(h;h’) = 0 using 

standardized code; we denote this scenario by 

xh,xh’,x-(h;h’) = 0. Then (14) implies: 

'1;'1;1;0)';('1
ˆˆˆ,,ˆ hhhhhhhh xxxxyE βββ ++==− 0x  (15) 

 

To illustrate (15), we plot the effects of the two most 

important factors: x1 corresponding with the original 

factor µ1;1 and x2 or µ2;2 (see (3) and ß̂  in Table 3) - 

and use the threshold 15000: 

)6875.18031.106344.14281(15000ˆ
21 xxy +−−= (16) 

 

This equation gives Figure 2, axis X presents the 

processing time of product 1 at work station 1, axis Y 

presents the interarrival time of product 1, and axis Z 

presents the production volume of product 1.  This figure 

shows that low values for x1 give acceptable production 

volumes. 

 

 
Figure 2. Acceptability frontier for product 1, when 

factors 1 and 2 change 



 

 

We conclude that the simulated system is sensitive to 

the changes in the environmental factors. For example, a 

16% change of the production time at workstation 1 for 

product 1, which means only 48 seconds more, makes 

the system performance unacceptable. The acceptability 

depends only on product 1 because the output volume 

for product 2 remains greater than the threshold, for 

every simulated scenario. The most important factor for 

product 1 is the mean processing time of product 1 at 

workstation 1;  i.e., if we keep the mean processing 

time at its assumed value while all other factors change 

by 20%, then the design remains acceptable. As a 

consequence, these two factors should receive much 

attention from the decision makers. 

 

7. CONCLUSIONS AND FUTURE RESEARCH 

 

The approach presented in this paper allows decision 

makers to determine to what extend a design 

specification can be considered to be acceptable. Given 

the stochastic behavior of factories, the future system 

should be capable of producing the forecasted (monthly 

or annual) number of parts to satisfy a given customer 

demand, with a given probability that has to be high 

enough. This can be verified using the methodology that 

we have presented. The uncertainty about the data used 

in the simulation model can be taken into account using 

simulation metamodeling principles, which may 

highlight the conditions on the acceptability of a given 

possible design. Our example has shown that, 

depending on processing time  of product 1, the system 

may become unacceptable so that this factor requires 

particular attention during the design study. In this 

respect, the approach presented in this paper should be 

able to provide useful assistance to decision makers.  

First-order polynomial regression metamodels have 

been used in our method. However, other types of 

metamodels can also be studied to improve the 

identification of the acceptable frontier. This is 

contemplated in our future work. 
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