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WHEN IS THE UNIT TANGENT SPHERE BUNDLE
SEMI-SYMMETRIC?
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(Received November 20, 2002)

Abstract. We prove that the unit tangent sphere bundle of a Riemannian manifold is
semi-symmetric if and only if it is locally symmetric, i.e., the base manifold is either flat or it
is two-dimensional with constant sectional curvature 1.

1. Introduction. The basic idea of studying geometric properties of a Riemannian
manifold(M, g) via those of its unit tangent sphere bundleT1M is well-known. In particular,
many interesting interactions are known between the curvature properties ofT1M, equipped
with its “natural” metricgS (the one induced by the Sasaki metric of the tangent bundle), and
the curvature properties of(M, g) itself. For explicit examples, see the survey [9] and the
references therein. Moreover,T1M also admits a contact metric structure(ξ, η, ϕ, ḡ), where
ḡ is a metric homothetic togS . A lot of interesting results on the unit tangent sphere bundle
have been obtained from the study of this structure ([1], [3], [7], [19]).

A case in point is the study of local symmetry in the context of the unit tangent sphere
bundle. On the one hand, the local symmetry of the base manifold(M, g) is reflected in the
properties of the metric and the contact metric structure onT1M (see [7]), while on the other,
local symmetry forT1M itself puts strong restrictions on the base manifold. Indeed, using
contact geometry techniques, Blair [1] proved:

THEOREM 1.1. The unit tangent sphere bundle (T1M, ḡ) of a Riemannian manifold
(M, g) is locally symmetric if and only if either (M, g) is flat or it is locally isometric to the
standard sphere S2(1).

Note that, sincēg is homothetic togS , (T1M, gS) is locally symmetric if and only if
(T1M, ḡ) is. An alternative proof which uses only curvature information is given in [10].

In this paper, we consider a natural generalization of the notion of local symmetry. A
semi-symmetric space is a Riemannian manifold(M, g) such that its curvature tensorR sat-
isfies the condition

R(X, Y ) · R = 0(1.1)

for all vector fieldsX andY onM, whereR(X, Y ) acts as a derivation onR [21]. The name
“semi-symmetric” derives from the fact that at each pointp ∈ M, the curvature tensorRp
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of (M, g) is the same as that of a symmetric space (which may change with the pointp).
So, locally symmetric spaces are obviously semi-symmetric, but the converse is not true,
as was proved by Takagi [22]. In all dimensions greater than one, there exist examples of
semi-symmetric spaces which are not locally symmetric (see [6] for a survey). Nevertheless,
semi-symmetry implies local symmetry in several cases. It is an interesting problem, given
a class of Riemannian manifolds, to decide whether inside that class semi-symmetry implies
local symmetry or not (see for example [4], [13]).

In the framework of contact Riemannian geometry, conditions of semi-symmetry have
been investigated by several authors ([11], [17], [18], [23]). The second author and Per-
rone proved in [11] that the unit tangent sphere bundle of a Riemannian surfaceM is semi-
symmetric if and only ifM is locally symmetric, i.e., it is either flat or it has constant curva-
ture 1. However, their approach uses special features of the curvature of a three-dimensional
contact metric manifold (see [12]) and as such cannot be simply generalized to higher di-
mensions. If the base manifold has dimension greater than two, a pure curvature-condition-
approach to the study of semi-symmetric unit tangent sphere bundles, starting from (1.1),
seems to be extremely hard.

In this paper, we take a different road. We start from the local structure of a semi-
symmetric space as described by Szabó [21] and we make use of results by the first author on
the local reducibility of unit tangent sphere bundles [5] to prove the following:

MAIN THEOREM. If the unit tangent sphere bundle (T1M, gS) of a Riemannian man-
ifold (M, g) is semi-symmetric, then it is locally symmetric. Therefore, (T1M, gS) is semi-
symmetric if and only if either (M, g) is flat or it is locally isometric to S2(1).

The paper is organized in the following way. In Section 2, we recall some basic facts
and results about unit tangent sphere bundlesand semi-symmetric spaces. Then, we proceed
to the proof of the Main Theorem. In Section 3, we consider the case of a locally irreducible
unit tangent sphere bundle, while the locally reducible case is dealt with in Section 4. Finally,
we generalize our result to tangent sphere bundles with arbitrary radius.

This work was initiated while the first author was visiting the University of Lecce. He
wants to thank the people from the Geometry Section there for their kind hospitality during
his stay.

2. Preliminaries. We restrict the information on the tangent and unit tangent sphere
bundle of a Riemannian manifold to the minimum we need for this article. For a more elabo-
rate exposition and further details, we refer to [8] and [14].

Let (M, g) be a Riemannian manifold andπ : T M → M its tangent bundle. The
tangent space toT M at a point(x, u), x ∈ M, u ∈ TxM, splits into the direct sum of
the vertical subspaceV T M(x,u) = kerπ∗|(x,u) and the horizontal subspaceHT M(x,u) with
respect to the Levi Civita connection∇ of M. If X is a vector field onM, we denote by
Xh andXv respectively the horizontal and the vertical lift ofX on T M. The mapX �→ Xh

(respectively,X �→ Xv) is an isomorphism betweenTxM andHT M(x,u) (respectively,TxM
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andV T M(x,u)). The Sasaki metricgS onT M is defined by

gS(A,B) = g(π∗A,π∗B) + g(KA,KB) ,

whereA,B are vector fields onT M andK is the connection map corresponding to the Levi
Civita connection ofM. Sinceπ∗(Xh) = X = K(Xv) andπ∗(Xv) = 0 = K(Xh), this is
equivalent to

gS(Xh, Y h) = gS(Xv, Y v) = g(X, Y ) , gS(Xh, Y v) = 0 .

The tangent sphere bundleπ : T1M → M is the hypersurface ofT M defined by
T1M = {(x, u) ∈ T M : gx(u, u) = 1}. A unit normal vector fieldN to T1M ⊂ T M is given
by N(x,u) = uv. We denote again bygS the metric induced onT1M by the Sasaki metric of
T M. We refer to [2, Chapter 9] for the description of the contact metric structure ofT1M.
Here, we only recall that the contact metric ofT1M is given byḡ = (1/4) gS. So, sincēg is
homothetic togS , (T1M, ḡ) is locally symmetric, respectively semi-symmetric, if and only if
(T1M, gS) has the same property.

From now on, we will always work with the Sasaki metricgS on T1M. In general, the
vertical lift of a vector (field) is not tangent toT1M. For this reason, we define thetangential
lift Xt of X ∈ TxM by

Xt
(x,u) = (X − g(X, u)u)v = X̄v ,

where we putX̄ = X − g(X, u)u for simplicity. Clearly, tangential lifts are tangent toT1M

and the tangent space toT1M is spanned by horizontal and tangential lifts of vector fields on
the base manifold. The metricgS is then described explicitly by

gS(Xt , Y t ) = g(X̄, Ȳ ) = g(X, Y ) − g(X, u)g(Y, u) ,

gS(Xt , Y h) = 0 ,

gS(Xh, Y h) = g(X, Y )

at the point(x, u) ∈ T1M. The Levi Civita connection̄∇ associated togS is given at the point
(x, u) by

∇̄Xt Y t = −g(Y, u)Xt ,

∇̄Xt Y h = 1

2
(R(u,X)Y )h ,

∇̄XhY t = (∇XY )t + 1

2
(R(u, Y )X)h ,

∇̄XhY h = (∇XY )h − 1

2
(R(X, Y )u)t ,

(2.1)
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whereR(X, Y ) = [∇X,∇Y ] − ∇[X,Y ] is the curvature tensor ofM. The curvature tensor̄R of
(T1M, gS) is given by

R̄(Xt , Y t )Zt = −g(X̄, Z̄)Y t + g(Ȳ , Z̄)Xt ,

R̄(Xt , Y t )Zh = (R(X̄, Ȳ )Z)h + 1

4
([R(u,X),R(u, Y )]Z)h ,

R̄(Xh, Y t )Zt = −1

2
(R(Ȳ , Z̄)X)h − 1

4
(R(u, Y )R(u,Z)X)h ,

R̄(Xh, Y t )Zh = 1

2
(R(X,Z)Ȳ )t − 1

4
(R(X,R(u, Y )Z)u)t

+ 1

2
((∇XR)(u, Y )Z)h,

R̄(Xh, Y h)Zt = (R(X, Y )Z̄)t

+ 1

4
(R(Y,R(u,Z)X)u − R(X,R(u,Z)Y )u)t

+ 1

2
((∇XR)(u,Z)Y − (∇Y R)(u,Z)X)h ,

R̄(Xh, Y h)Zh = (R(X, Y )Z)h + 1

2
(R(u,R(X, Y )u)Z)h

− 1

4
(R(u,R(Y,Z)u)X − R(u,R(X,Z)u)Y )h

+ 1

2
((∇ZR)(X, Y )u)t .

(2.2)

Further on, we will need to know when the unit tangent sphere bundle is reducible. This
question was answered recently by the first author in [5]:

THEOREM 2.1. The unit tangent sphere bundle (T1M, gS) of a Riemannian mani-
fold (Mn, g), n ≥ 2, is locally reducible if and only if the base manifold has a flat factor,
i.e., (M, g) is either flat or it has a local decomposition (M, g) � (M ′, g ′) × (Rk, g0), where
1 ≤ k ≤ n − 2, g0 is the standard Euclidean metric on Rk and (M ′, g ′) has no flat factor.

Next, we recall some basic facts about semi-symmetric spaces. Let(M, g) be a smooth,
connected Riemannian manifold. As already mentioned in the Introduction,(M, g) is semi-
symmetric if its curvature tensorR satisfies the condition (1.1). The local structure of a semi-
symmetric space was described by Szabó in [21]. He proves:

THEOREM 2.2. For every semi-symmetric space, there exists a dense open subset U

such that around every point of U the manifold is locally isometric to the direct product
of symmetric spaces, two-dimensional manifolds, real cones, Kählerian cones and spaces
foliated by Euclidean leaves of codimension two.

Szabó arrives at this result via the study of the nullity distribution for the curvature.
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DEFINITION 2.3. Thenullity vector space of the curvature tensor at a pointp of a
Riemannian manifold(M, g) is given by

E0p = {X ∈ TpM | R(X, Y )Z = 0 for all Y,Z ∈ TpM} .

The index of nullity at p is the numberν(p) = dimE0p. Theindex of non-nullity at p is the
numberu(p) = dimM − ν(p).

The different irreducible factors in the local decomposition theorem above correspond to
different possible values forν(p) andu(p):

• we obtain symmetric spaces forν(p) = 0 andu(p) > 2;
• we obtain real cones forν(p) = 1 andu(p) > 2;
• we obtain Kählerian cones forν(p) = 2 andu(p) > 2;
• we obtain spaces foliated by Euclidean leaves of codimension two forν(p) = n− 2

andu(p) = 2.
More details about these factors will be given when needed further on or they can be found in
[21] and [6].

3. Semi-symmetric unit tangent sphere bundles: the irreducible case. From
Theorem 1.1, we know that a Riemannian manifold(M, g) which is either flat or locally
isometric to the standard sphereS2(1) has a locally symmetric unit tangent sphere bun-
dle (T1M, gS). In particular,T1M is semi-symmetric. In the rest of this paper, we prove
the converse.

The case of a two-dimensional base space(M, g) was settled by the second author and
Perrone in [11]. They proved:

THEOREM 3.1. Let (M, g) be a two-dimensional Riemannian manifold. Its unit tan-
gent sphere bundle (T1M, ḡ) is semi-symmetric if and only if the surface (M, g) is flat or has
Gaussian curvature 1.

As we already remarked, the same conclusion holds if we equipT1M with the Sasaki
metricgS . In the sequel, we therefore assume that the dimension ofM is at least three.

In this section, we suppose that(T1M, gS) is locally irreducible. By Szabó’s classifi-
cation theorem above,T1M must be locally isometric to a symmetric space, to a real or a
Kählerian cone or to a space foliated by Euclidean leaves of codimension two. We exclude
these possibilities one by one.

Symmetric spaces If (T1M, gS) is locally symmetric, the base manifold must be flat ac-
cording to Theorem 1.1. But then,(T1M, gS) is locally reducible, contrary to the assumption.

Kählerian cones Since Kählerian cones are even-dimensional (see [6]) andT1M is
odd-dimensional, this possibility cannot occur.

Real cones We start with a more detailed description of the semi-symmetric real cones
(see again [6]). These are locally isometric to the maximal Riemannian coneMC over a real
space form(Md(c), gc) of constant curvaturec, for somec �= 1. In particular, letµ(t) be
the unique solution of the differential equationdµ/ dt = −µ2 with initial conditionµ(0) =



362 E. BOECKX AND G. CALVARUSO

µ0 > 0, that is,µ(t) = (t + (1/µ0))
−1. PutR+ = {x ∈ R | x > −1/µ0}. On the product

manifoldR+ × Md(c), we define the Riemannian metric

gC = dt ⊗ dt + µ(t)−2π∗
2gc ,

wheret is the natural coordinate onR+ andπ2 : R+ × Md(c) → Md(c) is the projection on
the second factor. The resulting Riemannian space is the maximal Riemannian cone denoted
by MC(Md(c), µ0).

If we defineT := ∂/∂t to be the unit vector field tangent toR+ on MC(Md(c), µ0),
thenT spans the nullity distributionE0 of the curvature tensorRC . For tangent vectorsX, Y

andZ orthogonal toT , we have

RC(X, Y )Z = µ2(c − 1)
(
gC(Y,Z)X − gC(X,Z)Y ) .(3.1)

Now, suppose that(T1M, gS) is locally isometric toMC(M2n−2(c), µ0) for someµ0 > 0
and somec �= 1. At a point(x, u) ∈ T1M, denote byT the unique unit vector (up to sign)
in the nullity distributionE0. We can writeT asT = T t

1 + T h
2 . Since dimM ≥ 3, we can

find a non-zero tangent vectorX ∈ TxM orthogonal to bothT1 andu. Using the curvature
formulas (2.2), we have

0 = R̄(Xt , T )Xt = R̄(Xt , T t
1)Xt + R̄(Xt , T h

2 )Xt

= −|X|2T t
1 + R̄(Xt , T h

2 )Xt .
(3.2)

SinceR̄(Xt , T h
2 )Xt is horizontal, it follows from (3.2) thatT t

1 = 0 andT must be horizontal.
In particular,T is orthogonal toXt andY t for arbitrary vectors inTxM. From (3.1) and (2.2),
we find

µ2(c − 1)(|X̄|2Y t − g(X̄, Ȳ )Xt ) = R̄(Y t ,Xt )Xt = |X̄|2Y t − g(X̄, Ȳ )Xt

and henceµ2(c − 1) = 1. As this holds at any point(x, u) ∈ T1M, µ must be a constant
function, which clearly cannot happen. Therefore,(T1M, gS) cannot be locally isometric to a
semi-symmetric real cone.

Foliated spaces Next, suppose that(T1M, gS) is locally isometric to a space foliated
by Euclidean leaves of codimension two. In particular, its index of nullity equals 2n − 3 and
its index of non-nullity equals two.

Fix a point(x, u) ∈ T1M and letA = Xt
1 + Xh

2 be a tangent vector belonging to the
nullity distribution. Take a non-zero vectorY ∈ TxM orthogonal to bothu andX1. Then

0 = R̄(A, Y t )Y t = |Y |2Xt
1 + R̄(Xh

2, Y t )Y t .

Since the second term on the right-hand side is horizontal, we conclude thatXt
1 = 0. Hence,

the nullity distribution is contained in the horizontal distribution. In particular, the index of
non-nullity is at leastn − 1, the dimension of the vertical distribution onT1M. If n > 3, this
gives a contradiction.

Suppose now thatn = 3. Fix a pointx ∈ M and consider an orthonormal basis
{u = e1,X = e2, Y = e3} of TxM. Then,{uh,Xh, Y h,Xt , Y t } is an orthonormal basis
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of T(x,u)T1M. From the above, we know that the nullity distribution coincides with the hor-
izontal distribution, i.e.,uh,Xh, Y h ∈ E0 (x,u). We can now show thatR = 0. Taking into
account the symmetries ofR, it is enough to show thatR1212 = R1213 = R1223 = R1313 =
R1323 = R2323 = 0, whereRijkl = g(R(ei , ej )ek, el). Sinceuh ∈ E0, it follows from the
curvature formulas (2.2) that

0 = 4R̄(uh,Xt )Xt = −
3∑

j,k=1

R121jR12jkek
h .

Hence,R121jR12jk = 0 for all k. In particular, fork = 1 we getR2
121j = 0 and so,

R121j = 0 for all j , that is,R1212 = R1213 = 0. In the same way, we obtainR1313 = 0
from R̄(uh, Y t )Y t = 0. Next, sinceXh, Y h ∈ E0, we also have

R̄(Xh, Y t )Y t = R̄(Y h,Xt )Xt = 0 ,

from which we getR1323 = 0 andR1223 = 0, respectively. Finally, from̄R(Xh, Y t )Xt = 0,
it follows that alsoR2323 = 0. Therefore,(M, g) is flat andT1M is locally reducible, contrary
to the assumption.

4. Semi-symmetric unit tangent sphere bundles: the reducible case. In this sec-
tion, we assume that the unit tangent sphere bundle(T1M, gS) of a Riemannian manifold
(Mn, g), n ≥ 3, is semi-symmetric and locally reducible. According to Theorem 2.1, there
exist k ≥ 1 and, unless(M, g) is flat, a Riemannian manifold(M ′, g ′) without flat factor,
such that(M, g) is locally isometric to the product manifold(M ′, g ′) × (Rk, g0). In order
to prove the Main Theorem, we must show that(M, g) is flat. So, we suppose it is not, i.e.,
(M, g) � (M ′, g ′) × (Rk, g0) with dimM ′ ≥ 2 and we derive a contradiction.

In [5], the decomposition of(T1M, gS) is given quite explicitly. SinceM is a local prod-
uct, a pointx in M corresponds to a pair(x ′, v0) ∈ M ′ ×Rk and the tangent spaceTxM splits
into the direct sum ofTx ′M ′ andTv0Rk. Consider onT1M the following two distributions:

L̃1 = ker π∗(x,u) ⊕ H(x,u)(Tx ′M ′) , L̃2 = H(x,u)(Tv0Rk) .

Then,T(x,u)T1M = L̃1 ⊕ L̃2. In particular, if we denote byX, respectivelyU , vector fields
tangent toM ′, respectively toRk, and byA a generic vector field tangent toM, then the dis-
tribution L̃1 is spanned by vector fields of the formAt andXh, while L̃2 is spanned by vector
fields of the formUh. From the expression (2.1) for the Levi Civita connection of(T1M, gS),
it follows easily thatL̃1 andL̃2 are two complementary, mutually orthogonal, totally geodesic
and totally parallel distributions. Therefore, the foliationsL̃1 andL̃2 determined byL̃1 and
L̃2, respectively, consist of the leaves of a local Riemannian productM1 × M2 � T1M. Ex-
plicitly, the leaves ofL̃1 are the inverse images under the natural projectionπ of the leaves
{M ′ × {v}, v ∈ Rk} of the product foliation onM, while the leaves of̃L2 are horizontal lifts
of the leaves{{x ′} × Rk, x ′ ∈ M ′} of this product foliation. (Note also that the leaves ofL̃2

are flat.) We refer to [5] for more details.
From these comments, it follows that we can identifyM1 with π−1(M ′ × {0}), and we

can considerT1M
′ as a submanifold ofM1. Clearly, the orthogonal space toT1M

′ in M1 is
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spanned by vertical vectorsUt , whereU is a vector field onRk. For such vector fields, we
have by (2.1):

∇̄Xt Ut = −g(U, u′)Xt = 0 ,

∇̄XhUt = (∇XU)t + 1

2
(R(u′, U)X)h = 0

for all X tangent toM ′ because of the product structure onM. Hence,T1M
′ is actually a

totally geodesic submanifold ofM1. Moreover, the metric induced onT1M
′ coincides with

the Sasaki metricg ′
S .

Now, if T1M � M1 × M2 is semi-symmetric, the same property holds for the factorM1

and hence also forT1M
′ as totally geodesic submanifold of asemi-symmetric space. Note that

T1M
′ cannot be reducible since by assumption(M ′, g ′) has no flat factor. So,(T1M

′, g ′
S) is

locally irreducible and semi-symmetricand according to the results of Section 3,(M ′, g ′) is
locally isometric to the unit two-sphereS2(1). We complete the proof of the Main Theorem
by proving the following:

PROPOSITION 4.1. The unit tangent sphere bundle of the Riemannian manifold M =
S2(1) × Rk, with k ≥ 1, is not semi-symmetric.

PROOF. Take an arbitrary pointx = (x ′, v0) ∈ M = S2(1) × Rk and a unit vector
u = cosθ u1 + sinθ u2 ∈ TxM, whereu1 andu2 are unit vectors tangent toS2(1) at x ′
and toRk at v0, respectively. Letv1 ∈ Tx ′S2(1) be a unit vector orthogonal tou1. Using
the special form of the curvature tensor onM � S2(1) × Rk and the formulas (2.2) for the
curvature tensor̄R of T1M, a routine calculation gives

(R̄(uh
1, ut

1) · R̄)(uh
1, vt

1)v
t
1 = R̄(uh

1, ut
1)R̄(uh

1, vt
1)v

t
1 − R̄(R̄(uh

1, ut
1)u

h
1, vt

1)v
t
1

− R̄(uh
1, R̄(uh

1, ut
1)v

t
1)v

t
1 − R̄(uh

1, vt
1)R̄(uh

1, ut
1)v

t
1

= cos2 θ

4
R̄(uh

1, ut
1)u

h
1

− sin2 θ

2
R̄(uh

1, vh
1)vt

1 − sin2 θ

2
R̄(uh

1, vt
1)v

h
1

= −sin2 θ

2
ut

1 − sin2 θ

4
ut

1 = −3 sin2 θ

4
ut

1

= −3 sin2 θ

4
(u1 − g(u, u1)u)v

= −3 sin2 θ

4
(sin2 θ u1 − sinθ cosθ u2)

v .

Clearly, if sinθ �= 0 �= cosθ , this is non-zero. Hence,T1(S
2(1) × Rk) is not semi-symmetric

whenk ≥ 1. �

5. Tangent sphere bundles with arbitrary radius. The main theorem can be easily
generalized to tangent sphere bundlesTrM with radiusr different from 1. These are the
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submanifolds ofT M given byTrM = {(x, u) ∈ T M : gx(u, u) = r2}. If we equipTrM

with the metric induced by the Sasaki metric onT M (and also denoted bygS), then we obtain
a Riemannian manifold which was studied, e.g., in [15] and [16]. The geometric properties
of (TrM, gS) may change with the radius. Its Levi Civita connection and Riemann curvature
tensor have been calculated in [15]. One obtains expressions as (2.1) and (2.2) above, up to
an occasional factor 1/r2.

As proved in [5], Theorem 2.1 is actually valid for tangent sphere bundles(TrM, gS) of
any radiusr. Further, it is easy to show that Theorem 1.1 by Blair has the following analogue:

THEOREM 5.1. The tangent sphere bundle (TrM, gS), r > 0, of a Riemannian mani-
fold (M, g) is locally symmetric if and only if either (M, g) is flat or it is locally isometric to
the two-dimensional sphere S2(r) of radius r .

With these ingredients, we can now proceed as in the case of the unit tangent sphere
bundleT1M to show:

MAIN THEOREM (general version). If the tangent sphere bundle (TrM, gS), r > 0, of
a Riemannian manifold (M, g) is semi-symmetric, then it is locally symmetric. Therefore,
(TrM, gS) is semi-symmetric if and only if either (M, g) is flat or it is locally isometric
to S2(r).

REMARK. Of course, one can equipT M with a Riemannian metric different from the
Sasaki metric. One such metric appearing in the literature is the Cheeger-Gromoll metricgCG,
given explicitly at the point(x, u) ∈ T M by

gCG(Xh, Y h) = g(X, Y ) , gCG(Xh, Y v) = 0 ,

gCG(Xv, Y v) = 1

1 + r2 (g(X, Y ) + g(X, u)g(Y, u)) ,

wherer2 = gx(u, u) (see, e.g., [20]). The metric induced on the tangent sphere bundles by
this metric onT M does not lead to new geometric phenomena, however, since(TrM, gCG) is
isometric to(Tr/

√
1+r2 M, gS). The isometry is given explicitly byφ : TrM → Tr/

√
1+r2 M :

(x, u) �→ (x, u/
√

1 + r2). In particular, it follows

THEOREM 5.2. The tangent sphere bundle (TrM, gCG) is semi-symmetric only if it is
locally symmetric, i.e., if and only if the base manifold (M, g) is flat or locally isometric
to S2(r/

√
1 + r2).
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