
When Machine Learning Meets Privacy: A Survey and

Outlook

BO LIU∗, University of Technology Sydney, Australia

MING DING, Data61, CSIRO, Australia

SINA SHAHAM, The University of Sydney, Australia

WENNY RAHAYU, La Trobe University, Australia

FARHAD FAROKHI, The University of Melbourne, Australia

ZIHUAI LIN, The University of Sydney, Australia

The newly emerged machine learning (e.g. deep learning) methods have become a strong driving force to
revolutionize a wide range of industries, such as smart healthcare, �nancial technology, and surveillance
systems. Meanwhile, privacy has emerged as a big concern in this machine learning-based arti�cial intelligence
era. It is important to note that the problem of privacy preservation in the context of machine learning is
quite di�erent from that in traditional data privacy protection, as machine learning can act as both friend and
foe. Currently, the work on the preservation of privacy and machine learning (ML) is still in an infancy stage,
as most existing solutions only focus on privacy problems during the machine learning process. Therefore,
a comprehensive study on the privacy preservation problems and machine learning is required. This paper
surveys the state of the art in privacy issues and solutions for machine learning. The survey covers three
categories of interactions between privacy and machine learning: (i) private machine learning, (ii) machine
learning aided privacy protection, and (iii) machine learning-based privacy attack and corresponding protection
schemes. The current research progress in each category is reviewed and the key challenges are identi�ed.
Finally, based on our in-depth analysis of the area of privacy and machine learning, we point out future
research directions in this �eld.
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1 INTRODUCTION

Since Facebook data privacy scandal in 2018 [154], privacy has once again become a dominant
feature in people’s minds. This motivates revisiting privacy challenges, particularly with the
emergence of intelligent technologies thanks to the big data revolution. For example, newly emerged
machine learning (ML) techniques, especially the unprecedented powerful deep learning, will have
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2 Bo Liu, et al.

paradigm-shifting impacts on privacy preservation. A critical question that needs to be well
investigated is: What are the privacy challenges and solutions associated with ML?
Some initial work has appeared in the literature with an emphasis on mitigating privacy risks

during the machine learning process by paying special attention to the privacy challenges and risks
associated with the ML models. In this regard, possible attack models [8, 38, 98, 141, 144, 155] have
been discussed and protection schemes [2, 12, 118, 126, 140] have been proposed. These works
demonstrated both ML models and training datasets can be the target of privacy attacks, leading
to sensitive information leakage. Meanwhile, researchers have also tried to use ML for privacy
protection. As an example, the authors of [174] have developed a method for automatic recognition
of privacy-sensitive object classes and adjust users’ privacy preference settings. In addition, there
are also several works that develop new privacy protection schemes in the scenarios where ML is
used for attacks [80, 81]. Overall, the current research has only scratched the surface, and there are
major issues that require further investigation:

• ML could play di�erent roles in a privacy protection problem, e.g., protection target, attack
tool, and/or protection tool. It may even play multiple roles in the same problem.

• ML systems and models have di�erent types, each facing di�erent privacy risks and requires
di�erent protection schemes.

• There does not exist a uni�ed privacy metric or notion. Although di�erential privacy (DP) [32]
is widely accepted in traditional privacy studies, it still has limitations in the context of ML,
especially when considering unstructured data, such as text, image, and video.

In this context, a systematic study of privacy and ML is essential for future research e�orts.
Although there are several surveys on this topic [1, 64, 85, 177], The focus has been on a certain
type of ML model or speci�c methods.

This study attempts to provide the �rst comprehensive survey on privacy in ML by investigating
di�erent scenarios/applications of privacy and ML. The main contributions of the paper are as
follows:

• We divide the works in this area by the di�erent roles of ML, i.e., ML as protection target
(private ML), protection tool (ML enhanced privacy protection), attack tool (ML-based attack),
and analyze the problems and solutions in each category.

• For private ML, we categorize the attacks and protection schemes and then compare their
di�erence.

• For ML aided privacy protection and ML-based privacy attack, we not only discuss the
existing works, but also provide insights on new techniques to achieve privacy preservation.

• The study concludes with a discussion on the directions of future research in ML and privacy.

Through this comprehensive overview, we wish to prepare a solid ground for future research in
this �eld.
The rest of the paper is organized as follows. Section 2 reviews basic concepts of machine

learning system and models, and discusses the relationship between privacy and ML. In Section 3,
we compare and classify existing privacy attacks and protection schemes in ML systems. Section 4
focuses on ML aided privacy protections, followed by the discussion of ML-based attack and
corresponding privacy preservation schemes in Section 5. We present our outlook and propose
some future directions for this promising research topic in Section 6. Finally, we conclude our work
with a summary in Section 7.

Moreover, the abbreviations used in this paper are listed in Table 1.
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Table 1. Summary of acronyms used in the paper.

CNN convolutional neural network
DNN deep neural network
DP∗ di�erential privacy
ERM empirical risk minimization
FGSM fast gradient sign method
FHE fully homomorphic encryption
GAN generative adversarial network
GNN generative neural network
IoT Internet of things
ML machine learning
SGD stochastic gradient descent
SMC secure multi-party computation
SVM support vector machine
VAE variational autoencoder

∗ DP in this survey is used as the abbreviation for Di�erential Privacy, not deep learning.

2 PRIVACY THREATS AND MACHINE LEARNING

In this section, we discuss the privacy threats in the context of machine learning, and further point
out various roles of machine learning in the studies of user privacy.

2.1 The Machine Learning System and Models

ML refers to algorithms and statistical models used by computer systems to e�ciently perform
speci�c tasks without the use of explicit instructions. It relies on an automated learning process.
The ML algorithm constructs a mathematical model of sample data called a "training set" to make
predictions or decisions [10].
Depending on if the output is labelled in the training set, ML models can be divided into three

di�erent groups: supervised, unsupervised, and semi-supervised. As supervised learning is used by
most practical machine learning algorithms, it will be explained here as an example.

A supervised ML model is a parameterized function 5\ that maps input data ®G ∈ X3 (generally a
vector of features) to output data ~ ∈ Y (label). For a classi�cation problem, X3 is a 3-dimensional
vector space and Y is the set of classes. This function is trained to accurately predict the label of
new data that have not seen before.
Moreover, we can divide the ML process into two stages:

(1) Model training: The training process of a machine learning model is to �nd the optimal
parameters that can accurately capture the relationship between X and Y. To achieve this, a
training dataset � = {®G8 , ~8 }

#

8=1 with # samples is needed. Then a loss function ! is adopted
to quantify the di�erence between two outputs, i.e. the ground-truth one ~8 and the predicted
one 5\ ( ®G8 ). The goal of training a model is to minimize this loss function, i.e.,

\★ = argmin
\

(
∑

8

!(~8 , 5\ ( ®G8 )) + Ω(\ )), (1)

where Ω is a regularization term to penalize model complexity and avoid over�tting.
(2) Model inference/prediction: After the model training is completed and the optimal parameters

\★ are obtained, given an input ®G , the corresponding output can be calculated as ~ = 5 ★
\
( ®G8 ).

This prediction process is called inference. We can calculate the prediction accuracy of the
model over a testing dataset �C to measure the model’s performance.
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Global Model

Upload  

Local Data

User 1 User 3User 2 User 4 User 5

Global Data

(a) centralized learning (can be outsourced learning).

Global Model

Exchange Model 
Parameters

Local Models 

Local Data 

User 1 User 3User 2 User 4 User 5

(b) distributed learning

Fig. 1. Centralized and distributed ML systems: (a) centralized learning; (b) distributed learning.

Furthermore, according to the architecture of the ML systems, there are two di�erent models, as
shown in Fig. 1:

• Centralized learning: The training data is centralized in a machine or in a data center, and
the centralized entity trains and hosts the models. For example, a researcher could use a
cloud platform, to host datasets and train an AI model based on them. It goes without saying
that the availability of all data in such a centralized method leads to high e�ciency and
accuracy [55]. However, because the centralized operator has direct access to sensitive data,
user privacy might be violated.
As the learning tasks become more and more complicated, many companies start to outsource
the training process, i.e., outsourced learning, or ML-as-a-service. In this case, each user owns
his/her training data while the service providers own the models and algorithms. The data
holder outsources model creation to a cloud service such as Microsoft Azure ML and Amazon
AWS ML, which automate the process of ML. “Users upload datasets, perform training, and
make the resulting models available for use” [144]. During this process, the users do not
have any understanding of the details of model creation. The “ML provider is the entity that
provides ML training codes to data holders” [144].

• Distributed learning: Centralized learning is sometimes not a good option for several reasons:
(i) data is inherently distributed in some scenarios; (ii) data is too large to be stored in a single
machine; (iii) users are not willing to share raw data; and (iv) users want to train the neural
network with di�erent instances to achieve better predication accuracy. In this case, ML
can be conducted in a distributed manner, i.e., distributed learning. In general, distributed
learning is used in a scenario of distributed training data sources and a centralized server.
There are several variations of distributed learning:
– Collaborative learning: Distributed learning involving such collaborations is known as
collaborated learning. But the settings could be quite di�erent in the literature. For example,
the authors of [145] proposed a collaborative learning framework that trains several
classi�ers “simultaneously on the same training data” to achieve better performance. On
the other hand, in the collaborative learning model de�ned in [55], each participant uses
its device to train a local AI model. It then shares a fraction of the parameters/coe�cients
of the model with the other users. Service operators can create a composite model by
collecting these parameters and achieve almost the same accuracy as a model built using a
centralized approach. The collaborative approach is “more privacy-friendly” because the
dataset is not directly exposed. Also, if only a small part of the model parameters is shared
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When Machine Learning Meets Privacy: A Survey and Outlook 5

and the parameters are truncated and/or obfuscated by DP mechanisms, the model exhibits
convergence through experiments [140].

– Federated learning: A popular framework for collaborative learning is Federated learn-

ing [69] introduced by Google. There are currently two di�erent federated learning settings:
cross-device and cross-silo [68]. The cross-device setting normally involves a very large
number of mobile or IoT devices, while in the cross-silo settings it “might involve only a
small number of relatively reliable clients” [68], e.g., multiple organizations. In a broader
de�nition of federated learning that covers both settings, each device downloads the cur-
rent model from a centralized server, improves it by learning from data on a local device,
and then sums up the changes in a focused update. Here, “focused updates are updates”
containing “the minimum information necessary for the speci�c learning task” [68]. And
then the shared model is updated by averaging all users’ updates. Since all the training
data will not leave local devices, and no updates from individual users are stored in the
cloud, the privacy risk has been greatly reduced.

– Split learning: Another collaborative learning framework is Split learning, in which each
user trains the network up to a certain layer known as the cut layer and sends the weights
to server. Mathematically speaking, these weights represent and compress the input data to
some intermediate feature vectors. The server then trains the network for rest of the layers,
and generates the gradients for the �nal layer, followed by error back-propagation until the
cut layer. The gradient is then passed over to the users. The rest of the back-propagation
is completed by the users [159]. In split learning, “client-side communication costs are
signi�cantly reduced as the data to be transmitted is restricted to �rst few layers of the
split neural network prior to the split”.

Although some collaborative learning models consider shared training data [145], which
presents a signi�cant privacy risk. In this survey, however, we consider the case that the local
raw training data are not shared with the server or amongst users. In this learning process,
the users can collaboratively learn a shared ML model, thus decoupling ML tasks from the
storage of the data in a single device.

Overall, centralized learning is characterized by “globally stored data” and “globally trained model”,
as shown in Fig. 1(a), while the distributed learning is characterized by “locally stored data” and
“locally trained model”, as shown in Fig. 1(b). Although there will be a global model in distributed
learning, it is not trained globally, at least part of the model is trained by individual clients.

2.2 Relationship of privacy and machine learning

In contrast to traditional privacy-related research frameworks, ML techniques open new challenges
and opportunities to privacy protection. There has been some initial research embarking on this
journey. The existing works can be divided into three categories according to the roles of ML in
privacy.
First, making ML system private, i.e., ML system is the target of privacy protection. As shown

in Fig. 2(a), this category 1 includes making both the ML system (model parameter) and data
(training/test dataset and output data) private, since the privacy threat may happen in any stage of
a data cycle, e.g. the training, publishing, or prediction of data. Most of the research in this group
relies on the use of di�erential privacy in ML and deep learning models [44]. For example, Shokri
et al. [140] developed a di�erentially private SGD algorithm and a distributed deep learning model
training system. In such way, multiple entities can cooperatively learn a neural network.
Second, using ML to enhance privacy protection. As shown in Fig. 2(b), the privacy protection

target is the data in this category 2 and ML is a tool to help privacy protection. For example, Liu et
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6 Bo Liu, et al.

Fig. 2. Three di�erent categories of research problems in privacy and ML: (a) Privacy of ML model and data;

(b) ML enhanced privacy protection; (c) ML-based privacy a�ack.

al. [82] utilized ML to enhance private decision-making experience through ML. Orekondy et al.
[114] proposed an approach to categorize personal information in images and predict information
leakage directly from images. Yuan et al. [175] presented an ML approach to decide whether to
share a picture with a speci�c requester for a particular context.
Third, ML-based privacy attack, i.e., ML is used as an attack tool of the adversary, as shown in

Fig. 2(c). For example, recent researches have shown that deep learning methods can be used to
detect object types, people’s identities, and landmarks, from images posted on Internet. When the
adversaries use this kind of powerful tools, conventional privacy protection methods would be
over-powered, especially being challenged by the mighty deep learning tools. There have been very
few works in this category. Liu et al. [80] proposed schemes of applying adversarial perturbations
images, so that ML systems cannot get private information from them.
Table 2 summaries three categories of privacy protection problems involving ML systems. It

is worth mentioning that one technique might belong to more than one category. For instance,
ML might be used as attack and protection tools at the same time, which makes the problem more
complicated. We will discuss this in more detail in the reminder of the paper.

Table 2. Three categories of privacy protection problems in the context of ML.

Category Role of ML in Privacy Protection

Private ML Protection target
ML enhanced Privacy Protection Protection tool

ML-based Privacy Attack Attack tool

Fig. 3 summarizes the general taxonomy of the research papers presented in this work. We divide
them according to the above mentioned three categories. In each category, we discuss the attack
and threat models �rst and then analyze the works on privacy protection schemes.

3 PRIVATE MACHINE LEARNING

In this section, we will discuss the challenges and existing solutions in privacy preservation in ML,
or simply stated, private ML.

We will �rst discuss attack and threat models, followed by detailed analysis of privacy preserva-
tion schemes, along with some comparisons at the end.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: November 2020.
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Fig. 3. The proposed taxonomy of privacy and ML.

3.1 A�ack and Threat Models

In this subsection, we analyze the attack models from three perspectives: the attack targets, the
knowledge of the adversary, and the attack methods.
First, as we can see in Section 2, model and data are two important components in ML that

correspond to two di�erent categories of privacy attack targets, as shown in Fig. 4:

(1) Training data privacy: In many cases, a user wants to keep the training data private while
using a ML service. For example, for a medical study or a hospital having a model built out of
the private medical pro�les of some patients. A patient may want to use the model to make a
prediction about whether she is likely to contract a certain disease, or the hospital may want
to use the model to predict the probability of readmittance. In these cases, the training data is
sensitive medical pro�les and should not be revealed. Similar cases exist in other areas such
as �nancial records. More speci�cally, training data privacy includes exact data value, certain
features, statistical properties, or membership (whether a certain data is in the training set).

(2) Model privacy: There are also privacy concerns about the ML model including the model
parameters, and training algorithms. For example, a �nancial institution may hold a sensitive

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: November 2020.



8 Bo Liu, et al.

(a) Privacy of the ML model. (b) Privacy of the underlying data.

Fig. 4. Two di�erent types of privacy a�ack targets in ML: (a) Model privacy; (b) Training data privacy.

model which can accurately predict stock prices or insurance rates. The model is an important
commercial and intellectual property. Another example is the commercial ML API services
currently provided by Google, Amazon, Microsoft, and other companies. They charge the
customers per API access. Revealing their models or algorithms will cause loss of revenue. In
summary, the attack target can either be the model structure or parameters.

Second, the adversaries have di�erent levels of knowledge according to their access to the
information.

• White-box access: The adversary has access to the trained model, especially the model
parameters.

• Black-box access: The adversary is an end-user and is only allowed to query the prediction
model on his/her inputs through an appropriate interface.

Finally, the adversary can adopt di�erent attack methods. Existing attack methods include model
inversion (reverse engineering), shadow training models, and encoding information into models.

Next, we will group existing popular attack models by attack targets and analyze them from the
above mentioned three aspects. An illustrative diagram of the attack models is presented in Fig. 5.

3.1.1 Model Extraction A�ack. The model extraction attack targets at the duplication of (i.e., “steal”)
the AI model [155]. The outcome of the attack will be a function 5 ′ that is approximately the same
as the initial function 5 . An illustration of such an attack can be found in Fig. 5(a).

In this attack, the adversary only has black-box access with no prior knowledge of the ML model
parameters or training data. Tramèr et al. [155] used a shadow training scheme that can “extract
target ML models with near-perfect �delity for popular ML models” including logistic regression,
decision trees, and neural networks, by equation-solving, path �nding, or extending the Lowd-Meek
approach [90].
There are several other works following this path. Oh et al. [111] built meta-models to extract

more model details such as the neural network architecture. Wang et al. [161] designed an attack
to steal the hyperparameters of the machine learning model. A hyperparameter is “used to balance
the loss function and regularization term in the objective function”. The adversary can obtain this
value from the training set and model. Hua et al. [56] “investigated reverse-engineering attacks on
CNN models exploiting information leaks through memory and timing side-channels”.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: November 2020.
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(a) Model Extraction Attack

(b) Feature Estimation Attack

(c) Membership Inference Attack

(d) Model Memorization Attack

Fig. 5. Di�erent a�ack models targeting ML.

3.1.2 Feature Estimation A�ack. A feature estimation attack aims to estimate certain features
G★
8
∈ ®G★ or statistical properties such as 0E6( ®G★) of the training dataset [38, 39]. In practice, it can

be implemented by model inversion attack, shadow model attack or power side-channel attack. An
illustration of such an attack can be found in Fig. 5(b).

First, Model Inversion Attack mostly works in a white-box model, although it also can use black-
box attack [38] with lower e�ectiveness. Fredrikson et al. [39] showed a white-box attack that can
“learn sensitive genomic information about individuals”. The basic idea of [39] is to complete the
target feature vector “with each of the possible values, and then computes a weighted probability
estimate that this is the correct value”, given the knowledge of a linear regression model 5 . Then
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10 Bo Liu, et al.

in [38] they extended the attack to facial recognition models to achieve two di�erent targets: the
reconstruction attack that produces “an image of the person associated with a given label” and
the deblurring attack that generates the deblurred image of a certain individual given “an image
containing a blurred-out face”. The idea behind these attacks is “to use gradient descent (GD) to
minimize a cost function involving 5 ”.
Overall, the model inversion attack works with a simple philosophy: we can reverse-engineer

(�nd 5 −1) by following the gradient in a trained network to adjust the weights and obtain the
features for all classes in the network. Even for classes that we do not have prior information, we
can still reproduce the prototype example. This type of attack suggests that any accurate deep
learning machine, regardless of training methods, may leak information on the distinguishable
classes. Extensive research has shown that generative adversarial network (GAN) generated sample
data are similar to the training data. And thus, the results given by the model inversion attack may
even “reveal more private information about the training data compared to the average samples” [8].
Second, Shadow Model Attack means the attacker trains other ML models to achieve the target.

It can happen in either black-box or white-box way. For example, Ateniese et al. [8] designed a
“meta-classi�er that can be trained to hack into other ML classi�ers to infer patterns or private
information from the training set”, e.g. they were able to extract accent information from trained
speech recognition systems.
Hitaj et al. [55] designed an attack in the context of collaborative learning. They consider

the adversary is an insider of the collaborative learning process who wants to infer sensitive
information from the peers. The adversary can see and use internal parameters of the model, so it
is a white-box attack. The adversary uses GANs [45] to extract and reconstruct information of the
victim. “This process is similar to facial composite imaging used by the police to identify suspects,
where the composite artist generates sketches based on eyewitness identi�cation of the suspect’s
face. Although the composite artist (GAN) has never seen a real face, the �nal image is based on
eyewitness feedback” [55].
Finally, Wei et al. [164] proposed to use power side-channel attack on an FPGA-based convolu-

tional neural network accelerator, which can successfully recover the input image using the power
traces at the inference stage.

3.1.3 Membership Inference A�ack. Membership inference attack refers to acquiring the knowledge
about whether a certain data record ( ®G★, ~★) belongs to the model’s training dataset � or not [98,
141]. An illustration of such an attack can be found in Fig. 5(c).

Shokri et al. [141] introduced a “black-box membership inference” that used a shadow training
technique to imitate the behavior of the target model. The trained inference model is used “to
recognize di�erences in the target model’s predictions” on training and non-training inputs. They
also found that over�tting, the structure and type of the model are the main factors that cause
a model to be vulnerable to membership inference attack. Long et al. [89] and Yeom et al. [173]
investigated “the relationship between over�tting and privacy leakage”. Salem et al. [134] proposed
a membership inference attack method using an unsupervised binary classi�cation, “which does
not need to train any shadow model and does not assume knowledge of model or data distribution”.
Membership inference attacks are also studied in Generative Adversarial Networks (GANs).

For example, Liu et al. [84] trained an attacker network to launch membership attacks against
Variational Autoencoders (VAEs) and GANs. Hayes et al. [52] focused on “generative models in
ML-as-a-service applications and train GANs to recognize training inputs”.

Melis et al. [98] studied membership inference in collaborative learning. The attack is achieved
by “analyzing periodic updates to the shared model during training”. The reason that this attack
is e�ective is that the gradients in neural networks are based on features, “thus observations of
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When Machine Learning Meets Privacy: A Survey and Outlook 11

the participants’ gradient updates can be used to infer the feature values, which are in turn based
on these participants’ private training data”. Wang et al. [163] considered membership inference
attack “against the user-level privacy on the federated learning framework by the attack from a
malicious server. The proposed attack framework exploits GAN with a multi-task discriminator,
which simultaneously discriminates category, reality and client identity of input samples, and doing
so recovers user-speci�c private data”.

3.1.4 Model Memorization A�ack. Song et al. [144] �rst proposed the model memorization attack
that targets recovering the exact feature values on individual samples. They consider a “malicious
ML provider” specialized in model-training for the customers. In such a business model, the provider
does not observe the training, but has access to the resulting model. He can steal the sensitive
samples and encode the values into the model parameters or outputs. Another malicious party can
retrieve sensitive information from the model during model serving. An illustration of such an
attack can be found in Fig. 5(d).

Model memorization attack can happen both in white-box and black-box cases. In the white-box
case, Song et al. [144] proposed several techniques for the adversary to encode sensitive data into
the models. (1) LSB encoding: the adversary can encode the “training dataset in the least signi�cant
(lower) bits of the model parameters”. (2) Correlated value encoding: the adversary can “gradually
encode information while training model parameters”. For instance, “the adversary can add a
malicious term to the loss function which maximizes the correlation between the parameters and
the data he wants to encode”. (3) Sign encoding: similar to correlated value encoding, the adversary
can use “the sign of model parameters to interpret as bit strings”, e.g., positive parameters represent
1 and negative parameters represent 0.

In the black-box case, the adversary is assumed to have no access to the model parameters. They
designed a scheme in which the adversary can “augment the training dataset with synthetic inputs
whose labels encode the critical information”. Then the information is leaked via the outputs of
these added inputs.

Model memorization attack studies how malicious training algorithms deliberately create models
that leak information about their training data sets. “This threat model is more generous to the
adversary, so it can extract more information about the training data than any other attack” [144].

3.2 Private Machine Learning Schemes

In this subsection, we present several private ML schemes, including encryption, obfuscation, and
aggregation.

3.2.1 Encryption. Encryption or cryptography-based methods can be divided into two groups:

• Encrypting training data. The mainstream technique is homomorphic encryption. As adding
homomorphic encryption to the process will make the process at least an order of magnitude
slower, initially it is applied on training data for relatively simple classi�ers [13, 15, 47]. For
example, Graepel et al. [47] found that training over encrypted data is possible when the
training algorithm can be expressed as a low degree polynomial. Bost et al. [13] applied this
technique in three classi�ers: hyperplane decision, Naive Bayes and decision trees. Then
researchers try to extend the work to deep neural networks (DNN). Dowlin et al. [29] proposed
CryptoNets which demonstrates how to e�ciently convert learned neural networks to make
it applicable to encrypted input data. While Hesamifard et al. [54] proposed a framework to
train the neural network over encrypted data. Li et al. [77] investigate the case of collaborative
learning where datasets are encrypted with di�erent keys, and propose a solution based on
multi-key fully homomorphic encryption (FHE).
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12 Bo Liu, et al.

• Encrypting ML model. The encryption technique is also used to protect the model privacy.
Phong et al. [126] proposed to use “additively homomorphic encryption on the gradients”.
The scheme can prevent information leakage to the “honest-but-curious cloud server” in the
condition of collaborative deep learning.

Overall, training neural networks especially DNNs over encrypted data is still challenging.
Computational complexity is a major challenge. The network is slow even when trained on plaintext.
Adding homomorphic encryption to a process will make it at least an order of magnitude slower.
Since the level of the computed polynomial is proportional to the number of backpropagation steps
done, the deceleration is more likely to get worse. Another challenging aspect of encryption is
the lack of data scientists’ ability to examine data and train models, correct mislabelled items, add
functionality, and further tune the network [29].
Secure multi-party computation (SMC) is the extension of encryption under the multiparty

setting. In SMC, multiple non-colluding parties use a combination of encryption and oblivious
transfer to privately �nish the computation without seeing the individual components. For ML, it
means to compute model updates without having access to both the data and the model.
SMC has been used for a variety of traditional ML models, including decision trees [7], linear

regression [30, 66, 107, 135, 136], logistic regression [143, 170], Naive Bayes classi�ers [157], and
:-means clustering [16, 62].

In general, SMC techniques impose non-trivial computational overheads and their application
to privacy-preserving neural networks especially deep learning remains a challenging task. Se-
cureML [101] is a recent example of SMC. It uses “two-party computations to privately train logistic
regression models and neural networks”.
In summary, SMC based method can cover both data/model privacy concerns, at the cost of

communication overhead.

3.2.2 Obfuscation/Perturbation (Di�erential Private Learning). Obfuscation mechanisms in the
context of privacy protection in ML aim at reducing the precision of the data or model. It is can
be achieved by adding noises to the model parameters or the original dataset. It is very popular
because the DP scheme is usually implemented by obfuscation in practical applications.
The obfuscation can be applied to the model or data. When obfuscation mechanism is for the

model, it has another name in the community, i.e., di�erentially private machine learning. There are
some early works on traditional machine learning with di�erential privacy. For example, Rubinstein
et al. [132] proposed di�erentially-private support vector machine (SVM) learning mechanisms by
adding noise to the output classi�er and they yield close approximations to the non-private SVM.
Chaudhuri et al. [18] provided the model objective perturbation to produce deferentially private
empirical risk minimization (ERM) classi�er. Song et al. [146] derived di�erentially private SGD for
general convex objectives and validated the e�ectiveness of the approach using logistic regression
for classi�cation. One of the well-known early methods of implementing di�erential privacy in
deep learning is [140]. They trained the ML model “in a distributed manner by updating the selected
local gradients and adding noise to them within the privacy budget of each parameter”. Based on
this work, Abadi et al. [2] introduced “a simpler di�erential private SGD (DPSGD) algorithm that
ensures DP by cutting the gradients to a maximum ;2 norm for each layer”. And then add the noise
bounded by the “;2 norm-clipping-bound”. It was shown that “high-quality models can be trained
through privacy under a moderate privacy budget” with the DPSGD algorithm. In DPSGD, the
DP noise is added to the gradients and the whole training process involves multiple iterations.
Therefore, it is important to compute the overall privacy loss of the training, i.e, privacy accounting.
Although the composition theorem [33] can be used to generate the overall privacy loss, it can be
quite loose. Abadi et al. [2] introduced a moments accountant method that can track privacy loss
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across multiple training iterations and generate a tighter bound. Another closely related notion is
Rényi di�erential privacy, which “o�ers quantitatively accurate way of tracking cumulative privacy
loss” throughout a multi-round DP mechanisms [100].
Prior to [95], all considered methods used “record-level di�erential privacy as a framework to

protect private information”. In many real-world work environments, users have multiple data
sources. They may be relevant and should be protected as a whole. Therefore, in some cases, the
DPSGD method results in a loss of privacy at a higher level (e.g., user level). McMahan et al. [95]
introduced a “user level di�erential private algorithm called the DP-FedAvg algorithm to protect
all the data of a user”. Instead of limiting the “contribution of a single record”, the DP-FedAvg
algorithm limits the contribution of the user data set to the learning model. The DPSGD algorithm
was “combined with the FederatedAveraging algorithm” from [14] which uses a server that performs
model averaging.

Obfuscation on training data has not been investigated extensively in the context of ML, because
it has been deemed as similar to traditional big data privacy. One notable research from Zhang et
al. [179] proposed an obfuscate function and applied it to the training data before feeding them
to the model training task. This function adds random noise to existing samples, or augments the
dataset with new samples. By doing so, sensitive information about the properties of individual
samples, or statistical properties of a group of samples, is hidden. Meanwhile, the model trained
from the obfuscated dataset can still achieve high accuracy.
Apart from the above-mentioned works, there are other research works in the closely relevant

area, such as tensor/matrix factorizations and functional optimization schemes. In more detail,
the authors of [59, 60] discussed di�erentially private algorithms for tensor decomposition, in
both centralized and distributed settings [60]. The authors of [40] applied a DP framework in the
matrix factorization process with four di�erent possible perturbation: input perturbation, private
stochastic gradient perturbation, alternating least squares (ALS) with output perturbation, and
output perturbation. The authors of [178] proposed a functional mechanism framework to achieve
an n-DP in analyses, which involves solving an optimization problem with a perturbed objective
function.

3.2.3 Aggregation. Aggregation is a technique that generally comes alongwith distributed/collaborated
learning, in which multiple parties join a machine learning task while wishing to keep their respec-
tive dataset private.

Aggregation can be applied both in and after the training process. It often works together with the
encryption scheme (especially SMC) when used during the training process. For example, Pathak
et al. [121] proposed an aggregation scheme for independently trained classi�ers. They average the
parameters using DP and SMC. But they do not consider the accuracy of their approach formally.
The �rst part of later research [140] also focuses on aggregation. They reduce the communication
costs and improve the model accuracy by selectively “sharing a subset of parameters in each round
of communication”.

Another popular framework using aggregation for collaborative learning is federated learning [69,
94] introduced by Google, which has been described before.

Compared with [140], federated learning considers di�erent constraints on the training dataset,
i.e., Non-IID, unbalanced, and massively distributed, which is claimed to be more practical in some
scenarios such as using mobile devices for the local training.

Federated learning algorithm introduces techniques for quickly and safely aggregating gradients.
This scheme focuses on optimizing the communication e�ciency of the aggregation process and
making the protocol robust against adversaries. However, it lacks guarantees on the amount of
user information leakage during training.
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Bonawitz et al. [12] enhance the privacy of federated learning by leveraging SMC to compute
sums of model parameter updates, i.e., federated Learning with secure aggregation.
On the other hand, using aggregation schemes for privacy protection in ML after the training

process, i.e., using ensembles of models is also reasonable. If an ensemble contains enough of
models, and each model is trained with disjoint subsets of the training data in a distributed manner,
then “any predictions made by most of the models should not be based on any particular part of the
training data” [1]. The private aggregation of teacher ensembles (PATE) is based on this idea [116].
In more detail, the ensemble is seen as a set of “teachers” for a new “student” model. The student is
linked to the teachers only by their prediction capabilities. And the student is trained by “querying
the teachers about unlabelled examples”. The prediction result is disjoined from the training data
through this process. Therefore the data privacy can be protected. The privacy budget for PATE is
much lower than traditional DP ML approaches. But it may not work in many practical scenarios
as it relies on an unlabelled public dataset.
Until now, the above works consider aggregation from the perspective of the model. Dwork

et al. [34] proposed a scheme that aggregates the prediction output rather than the model. In
more details, they partition the dataset � into several subsamples �1, . . . , �A and run a non-
private learning algorithm on each of those subsamples to obtain predictors 51, . . . , 5A , then use a
di�erentially private aggregation technique on values 51 (G), . . . , 5A (G) and output the result. This
subsample-and-aggregate technique is easy to implement as it does not require a new learning
algorithm. It focuses on training data privacy via private prediction.

3.3 Summary on Private ML

In this subsection, we sum up the key points on private ML.

3.3.1 Discussions of a�ack models. We summarize the attack models and related papers in Table 3
and Table 4.

Table 3. Summary of A�ack Models.

Adversary features Model Extraction Feature Estimation Membership Inference Model Memorization

Knowledge
Black-box ✓ ✓ ✓

White-box ✓ ✓

Target

Model ✓

Data features ✓

Exact data values ✓

Membership ✓

Scheme

Model inversion ✓

Shadow training ✓ ✓ ✓

Encoding ✓

The attack models listed in Section 3.1 are not interdependent. For example, many attacks might
be launched on top of the model extraction attack, because it converts the condition from black-box
to white-box. Once the black-box attack is �nished, the adversary can continue to launch the
white-box attack, e.g., a model inversion attack followed by a model extraction attack.

3.3.2 A�ack models and protection schemes. Table 5 summarizes the private ML schemes and their
e�ectiveness against di�erent attacks in di�erent situations. Generally speaking, encryption can
maintain the adversary’s knowledge to a black-box case, thus it is e�ective to white-box attacks
like model inversion attack. Obfuscation [179] in�uences most attacks as it blurs the information
to reduce the privacy risk at the cost of utility. Aggregation is mostly used in distributed systems
and often comes along with the other schemes.
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Table 4. Comparisons of A�ack Methods.

Attack and Threat ME FE MI MM
Adversary’s Attack System
Knowledge Method Settings

[155] ✓ Black-box Shadow training ML-as-a-service
[111] ✓ Black-box Metamodel Centralised
[161] ✓ Black-box Hyperparameter-stealing Centralised
[56] ✓ Black-box Reverse-engineering Centralised
[39] ✓ White-box Model inversion Centralised
[38] ✓ Black-box Model inversion Centralised
[8] ✓ White-box Shadow training Centralised
[55] ✓ White-box GAN Distributed
[164] ✓ Black-box Power side-channel attack Centralised
[141] ✓ Black-box Shadow training Centralised
[84] ✓ White-box Shadow training Centralised
[134] ✓ Black-box Unsupervised binary classi�cation ML-as-a-service
[52] ✓ White/Black-box GAN Centralised
[98] ✓ White-box Gradient-based Distributed
[144] ✓ White/Black-box Encoding Centralised

ME: Model Extraction; FE: Feature Estimation; MI: Membership Inference; MM: Model Memorization.

Another important question is the relationship of attack models, protection schemes and DP.
Among all the mentioned attack schemes, the membership inference attack works along with DP,
because the DP de�nition makes individuals indistinguishable. The other attack models cannot be
well countered and evaluated by DP. For example, model inversion uses the output of a model to
infer certain features of the hidden input. From a DP perspective, it does not necessarily lead to
privacy breaches. For example, in a face recognition scenario, a single person is associated with
an output class of the model. As all training images for this class include various photos of the
same person, an adversary can orchestra a model inversion attack by creating an arti�cial image
capturing the average information from the person’s photos. In most of the cases, this average
can be identi�ed as that person. In summary, the average of the features produced by the model
inversion can represent the entire output class at most. It does not construct a particular member
of the training data set. Moreover, given an input and a model, it determines whether to use that
particular input to train the model.

Therefore, model inversion attack is even e�ective with DP applied collaborative learning [140]
and Federated learning [69, 94]. Because DP is being applied to the parameters of the model, and
the granularity is set at the record/instance level. However, once the model becomes accurate, it
must eventually contain noise added to the learning parameters. Model inversion attack works as
long as the model can accurately classify the class and will generate representations of that class. It
should be noted that the DP scheme proposed in [140] can only prevent the recovery of speci�c
elements, that is, membership inference attack.

Overall, the DP criterion cannot provide comprehensive privacy evaluation in private machine
learning, due to the complexity of the data (unstructured and multimedia data) and privacy protec-
tion target (not only membership, but also features of the dataset). Therefore, de�ning new privacy
metrics and criteria is still an open question.

3.3.3 Privacy in Distributed Learning Systems. Training ML in a distributed manner can naturally
provide a certain level of privacy protection, as the local training data points are usually not
shared among users. Moreover, di�erent privacy protection schemes in centralised learning, such
as encryption, perturbation, can be easily extended to the distributed learning settings [169]. In
this sense, private ML in distributed systems have a lot in common with that of centralised ML. But
there are several special features.

• Distributed ML requires some forms of data sharing among the training nodes because
distributed ML is fundamentally di�erent from stand-alone ML. Such shared data, albeit not
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Table 5. Comparisons of Private ML Schemes.

Private ML Schemes ME FE MI MM Categories Methods System Settings

[13, 15, 29, 47, 54, 77] ✓ ✓ Encryption Homomorphic encryption (training data) Centralised
[126] ✓ ✓ Encryption Homomorphic encryption (model) Distributed

[7, 16, 30, 66, 101, 157, 170] ✓ ✓ Encryption SMC Distributed
[132] ✓ ✓ Obfuscation DP SVM Centralised
[18] ✓ ✓ Obfuscation DP ERM Centralised
[146] ✓ ✓ Obfuscation DP-SGD for convex objectives Centralised
[140] ✓ ✓ Obfuscation DPSGD Distributed
[2] ✓ ✓ Obfuscation DPSGD Centralised

[100] ✓ ✓ Obfuscation multi-round DP Centralised
[95] ✓ ✓ Obfuscation DP-FedAvg Distributed
[179] ✓ Obfuscation Training data obfuscation Centralised
[121] ✓ ✓ ✓ Aggregation/Obfuscation DP+Aggregation Distributed

[69, 94] ✓ Aggregation Federated learning Distributed
[12] ✓ ✓ Aggregation/Encryption Federated learning + SMC Distributed
[118] ✓ ✓ Aggregation PATE Centralised
[34] ✓ Aggregation/Obfuscation Output aggregation + DP Centralised

ME: Model Extraction; FE: Feature Estimation; MI: Membership Inference; MM: Model Memorization.

raw data, could take the forms of model parameters, feature vectors, classi�cation results,
etc., and such data would still reveal users’ privacy from an information theory point of view.
Hence, we need to carefully design the data sharing mechanism in distributed ML.

• SMC and aggregation are quite often adopted in the distributed ML systems. However, the
above mechanisms are not adequate to protect users’ privacy, especially when there exist
inside attackers [55, 105].

3.3.4 Backdoor a�acks and privacy. Some recent work raised the awareness of backdoor attacks
against machine learning and deep learning systems, where misclassi�cation behaviours are hidden
in models and can be triggered by speci�c inputs. Gu et al. [49] introduced BadNets that builds a
backdoor in DNN models by injecting a square-like trigger with a �xed location to some training
data with a target label. Ahmed et al. [133] extended this work by using dynamic trigger patterns
and locations. Liu et al. [87] proposed a backdoor attack called the Trojan attack, which reverse-
engineers the target model to synthesize training data so that it does not require access to the
original training set. Yao et al. [172] proposed a latent backdoor attack method in which they
embed the backdoors in teacher models to survive the transfer learning process. In general, current
backdoor attacks are mostly considered to be security risks, e.g., it may cause various severe
consequences in critical ML applications like autonomous driving. But we can also expect potential
privacy risks in the future, for example, backdoor attacks against authentication systems that might
enable an adversary to access sensitive information.

4 MACHINE LEARNING AIDED PRIVACY PROTECTION

In this section, we will focus on the case that ML is used to help privacy protection. We will �rst
discuss traditional data privacy risks and threats. These threats have existed for a while, but the
newly emerging ML gives us new tools to combat them.

4.1 A�ack and Threat Models

Along with the proliferation of the mobile network, people spend more and more time on the
Internet, using web-based applications, mobile applications and social networks. These all pose
privacy risks. For example, online photo sharing has become more popular than any time before.
Users are increasingly sharing their images on various social media, such as Facebook, Google+ and
Flickr. Shared images can reveal sensitive information about people and their surroundings [148,
176]. Consider a person sharing a photo of a family gathering. Not only this photo can expose the
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(a) Re-identi�cation Attack (b) Inference Attack (c) Linkage Attack

Fig. 6. Di�erent privacy a�ack and threat models.

people who may or may not wanted to be in the picture, but it can also reveal sensitive information
about the family such as religious beliefs, traditions, and food habits. Therefore, sharing photos
online can severely violate privacy and disclose sensitive information [37].
Major traditional privacy attacks include identi�cation attacks, inference attacks, and linkage

attacks, as shown in Fig. 6.

(1) Identi�cation attack: Identi�cation attack identi�es a user’s name or identity-based on some
public dataset [76]. It is also called re-identi�cation [53, 58] when anonymisation is reversed.
Such kind of attack is illustrated in Fig. 6(a).

(2) Inference attack: This type of attack aims at “analyzing data in order to illegitimately gain
knowledge about a subject” [70]. Such an attack is illustrated in Fig. 6(b).

(3) Linkage attack: The adversary aims to achieve a target’s information by correlating multiple
data sources. For example, Narayanan et al. [104] showed that an adversary “can identify
a subscriber’s record in the Net�ix Prize dataset”, linking it to an Internet Movie Database.
Such an attack is illustrated in Fig. 6(c).

4.2 Machine Learning Aided Privacy Protection Schemes

Many privacy protection schemes have been introduced. Obfuscation/perturbation [31, 140],
anonymization [5, 6], reducing information sharing [82, 142], and cryptographic mechanisms [43,
127] are the major technologies.

However, the traditional privacy protection schemes focus on structured data, such as an entry
in the databases [162]. With the introduction of new applications such as Internet of Things (IoT)
and vehicular networks, both the volume and the complexity of the data is increasing. Traditional
protection schemes cannot handle all cases and it also becomes more di�cult for both common
users and even data curators to understand the risk, select correct schemes and manage their
privacy.
Under these circumstances, ML has been introduced to enhance privacy protection during the

past few years. The e�orts including research in several aspects.

• Privacy risk assessment and prediction: Assess and predict the privacy risk for the user during
the processes of “access” and “sharing”. As shown in Fig. 7(a), ML is used to evaluate both
the input and output data streams to �nd the risk and then privacy protection schemes can
be deployed accordingly.

• Personal privacy management assistant: This includes privacy policy evaluation, user prefer-
ence prediction and management, as shown in Fig. 7(b).

• Private data release: Publish datasets with privacy guarantee. The schemes are generally
adopted by data curators rather than an individual user, as shown in Fig. 7(c).

4.2.1 Privacy Risk Assessment and Prediction. The privacy risk exists either when the user is just
accessing the application (passively collected information by malicious attackers) or sharing on
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(a) Privacy risk assessment and prediction (b) Personal privacy management as-
sistant

(c) Private data release

Fig. 7. ML-aided privacy protection schemes.

social networks (actively sharing information). In both cases, ML can help to prevent the loss of
sensitive information. An illustration of such a defence mechanism is shown in Fig. 7(a).
Website and application privacy risk prediction: ML can make browsing the websites safer.

The proposed browser extension in [137] collects information about websites that users visit and
provides feedback to users based on ML to let them know the privacy quality of the site. Manek
et al. [92] proposed a method based on a Bayesian classi�er to detect and identify websites that
can be malicious or threatening to the privacy of users. The proposed approach analyzes online
reviews written for websites to decide whether they are reliable or not.
The work in [42] uses an SVM classi�er to rate the privacy risks of applications. The results

indicate that privacy risks can be identi�ed with over 90% accuracy. Understanding the privacy
risks of mobile phone applications with the aid of ML have been considered in [9, 46].
Identifying sensitive information when sharing: Identifying sensitive information in multi-

media data has been di�cult in the past. With the help of the state-of-the-art ML techniques, users
can prevent loss of their personal information while sharing their photos on social media.

Squicciarini et al. [147] considered visual-content features and images’ metadata to develop and
contrast several learning models. The ML models can classify the photos and evaluate the degree of
sensitivity so as to make the decision based on past decisions of the users. Yu et al. [174] proposed
a tool called “iPrivacy (image privacy)” to reduce the burden of specifying privacy setting by users
when they are sharing photos online. iPrivcy utilizes ML to automate the process. It �nds privacy-
sensitive objects from images and classi�es them according to their privacy sensitivity. Based on the
classi�cation, iPrivacy noti�es the users if there are objects, which should be suppressed/masked due
to privacy concerns before sharing. Moreover, iPrivacy provides privacy settings recommendation
based on user preferences and shared images. Orekondy et al. [113] proposed the �rst large-scale
private images dataset, with pixel and instance level annotations. And they proposed the �rst model
to automatically redaction various private information. Hasan et al. [51] proposed a method to
automatically identify bystanders “solely based on the visual information present in an image”.

4.2.2 Personal Privacy Management Assistant. As the user connectivity increases and web applica-
tions become ubiquitous, the responsibility of privacy management transfers more and more to
individuals. Unfortunately, given the complexity of the environments and the lack of awareness
about privacy attacks by adversaries, it is improbable that the users can manage and �ne-tune their
privacy preferences correctly [93]. Therefore, there is an immediate need to develop automated
privacy management systems to help users in protecting their privacy. An illustration of such a
defence mechanism is shown in Fig. 7(b).

The authors of [3] indicate that users continuously modify their privacy requirements to reach
their expected level of privacy, and also, appropriately change their privacy preferences. Moreover,
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mobile and web applications are attempting to customize their services according to individual
preferences to grant personalized experience to customers. Such a customized service results in
potential risk for the users [122]. This evidence points to the fact that it is crucial to develop assistants
to help users with the management of their privacy con�gurations. ML can be an invaluable asset
in this regard. For example, it can help users to manage their privacy con�gurations and reduce
the burden of time and human resources required to ensure the preservation of privacy.
We have divided the applications of ML for privacy management in two broad categories: (i)

privacy policy evaluation, and (ii) user preference prediction and management.
Privacy policy evaluation: Users are usually prompted to agree with the provider’s privacy

policies when almost using any software and web applications. Privacy policies provide complete
information on the collection, storage, and sharing of personal data. Therefore, they are critical to
the privacy of users. Unfortunately, most of this information is written using technical jargon and
challenging to read terms. Hence, most of the readers prefer to accept the policy unconditionally
without thoroughly realizing the consequences [24]. To help users with the decision making,
Costante et al. [25] developed a system to evaluate the completeness of privacy policies based on
preferences of the users. The system uses natural language processing to analyze and verify the
existence of the privacy measures that users specify, and also, assess the level of completeness.
Nugent et al. [108] graded the privacy policies that the users encounter based on factors such as
security, cookies, and purpose which helps users to check the results and identify if their desired
privacy requirements are satis�ed. Tesfay et al. [153] proposed an ML approach to “summarize
the long privacy policies” into a short paragraph so that it is readable and understandable for
users. Shayegh et al. [139] considered methods to improve the privacy notices given to users in IoT
networks. With the aid of ML, the authors extract notice and choice statements from the privacy
policies for IoT devices, so as to help users to better understand the implications of privacy notices.
Lebano� et al. [73] investigated automatic detection of vague contents on privacy policies and used
GANs to characterize the vagueness of sentences.
User Privacy Preference Prediction and Management: Another di�culty in user privacy

protection is caused by the fact that each user has a di�erent privacy sensitivity and preference.
Nowadays, applications often provide many functionalities with di�erent levels of privacy guar-
antees. While installing the applications, users are usually prompted for permissions to access
resources that have an impact on their privacy. It is important that the users can well coordinate
their own privacy preference with the actual privacy risk.

ML techniques are implemented to predict user privacy preferences and help decision making. It
was initially proved feasible as some early studies found that user privacy preferences are related
to some statistical and environmental parameters. For example, the quantitative research in [166]
uncovered that a signi�cant number of users would rather prevent at least one permission request
involved in the study. Also, several works have shown that the context of the applications is
highly related to user privacy preferences [112, 165]. Lee et al. [75] surveyed 172 participants and
uncovered contextual factors that violate the privacy of users in IoT.
Based on the contextual factors and features, ML models can be developed to predict user

privacy preferences and take privacy management decision. Mehrpouyan et al. [97] used openness,
conscientiousness, neuroticism, extroversion, and agreeableness as inputs to ML models to predict
desired users’ preferences. Das et al. [26] generated ML models of people’s privacy preferences and
expectations.

Wijesekera et al. [165] proposed a run-time permission system to infer privacy requirements of
users automatically. The proposed system grants the resource allocation permission based on the
type of the application requesting the permissions, the request time, and in what circumstances
it is requested. Liu et al. [82] investigated ML to enhance privacy decision-making experience.
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The results show that providing users with “recommendations based on clusters of like-minded
users and using predictive models of people’s privacy preferences work to the users’ satisfaction”.
Wijesekera et al. [166, 167] built a classi�er to work as a middle-man and make privacy decisions on
behalf of users. The classi�er adjusts and preserves privacy by changes that happen in the context
predicated on the past behaviors of the users.
Orekondy et al. [114] proposed a method named “Visual Privacy Advisor” that “extends this

concept to image” contents. They classify “personal information in images into 68 attributes and
train models that directly predict such information from images”. A user study has been done to
understand the privacy preferences with respect to these attributes. They also proposed models
that “predict user speci�c privacy score from images”. Yuan et al. [175] presented an ML approach
to decide whether to share a picture with a speci�c requester at a particular context, and if yes, at
which granularity.

4.2.3 Private Data Release. Database release is currently an important process in data analytic
applications. Di�erent entities generate di�erent types of data, e.g., health data frommedical centers.
Then, such data will be transmitted to data custodians such as government agencies. Then, the data
custodian maintains a platform that organizes, stores and provides data access to data consumers,
such as other government departments, individuals, analysts, etc. Privacy preservation processing
is highly required when the data custodians release the data. An illustration of such a defence
mechanism is shown in Fig. 7(c).
A frequently used traditional private data release mechanism is obfuscation by adding noise

to the original dataset. Whereas the ML techniques provide a new solution to this problem, i.e.,
using a generative neural network (GNN) or generative adversarial network (GAN) [45] to generate
synthetic dataset [4].

Although the technique of GNN itself has existed for a while, using it for private data release has
just been linked to privacy preservation very recently. Denton et al. [27] used the GAN framework in
the context of image processing to generate natural synthetic images. Gregor et al. [48] introduced
a model called “Deep Recurrent Attentive Writer (DRAW)” to create synthetic images. The principal
idea of the approach is to use two recurrent neural networks as encoder and decoder trained end-
to-end with SGD. Vinyals et al. [160] proposed a generative model predicated on recurrent neural
network architecture. The approach combines the natural processing ML tools with computer
vision for the generation of natural scenes. Using generative models has also been considered for
the generation of audios. Oord et al. [158] introduced a DNN model to produce raw audios and
applied the approach to “text-to-speech and validated by human listeners for natural sounding”. A
modi�ed version of the proposed model is used for singing synthesis in [11]. Kulkarni et al. [71]
created spatiotemporal trajectories in large scale by training the models based on realistic data, and
then, creating synthetic data using the trained models. The authors investigate the utility-privacy
trade-o� of the approach by experiments. Ouyang et al. [115] proposed a non-sequential non-
parametric generative model for spatiotemporal trajectories. The authors generate “synthetic data
by training a generative adversarial neural network, which can learn geographic patterns”. Liu et
al. [86] aim at the addition of geo-privacy protection layer for publication of spatiotemporal datasets
based on synthetic trajectory generation. Choi et al. [23] proposed an approach for the generation
of synthetic patient records based on GANs and autoencoders. In this work, the performance of
the proposed generative model is examined by comparing the generated synthetic patient records
with the real data. Cheung et al. [21] used GNNs for the transformation of sensitive images so that
they can preserve privacy of individuals. The authors focus on the generation of synthetic facial
images and how they can be used for classi�cation of actual images. Zhang et al. [180] proposed
a novel approach based on GNNs to increase privacy of users while releasing semantic rich data
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such as text, image, and video. Triastcyn et al. [156] used GAN to generating arti�cial data that
retain statistical properties of the real data while reducing the risk of information disclosure. Sun
et al. [149] proposed GAN-based head inpainting obfuscation technique to preserve the identity of
users when sharing their photos online. Huai et al. [57] considered the di�erentially private release
of crowdsourcing data. They proposed the PrisCrowd approach “in which the data collector learns
about underlying patterns of the data and then samples a set of candidate synthetic data from the
learned density. The synthetic data are subjected to a privacy test and the ones that pass will be
released”.
Overall, the latest deep learning techniques show the ability to synthesize fake dataset that is

statistically similar to the original one. This technique can be used for private data release. Fig. 8
presents the generative model framework used for privacy preservation of rich semantic data. The
process can best be explained by an example. Consider a clinical data sharing scenario, in which the
data curator instead of directly releasing the data, trains a deep generative model using the original
data in a di�erentially private manner, and then publishes synthetic dataset generated by the model.
In a more general case, the data curator may publish the deep generative model from which “an
unlimited amount of synthetic data for arbitrary analysis tasks” can be produced [171]. The use
of generative models can signi�cantly increase the privacy of users as the training process of the
models can be conducted based on synthetic data instead of the real data belonging to individuals.
Meanwhile, the utility of the dataset can be guaranteed as the statistical similarity of models trained
based on synthetic data and realist data has been shown repeatedly in the literature. For example,
Park et al. [120] proved the statistical similarity of the generated synthetic tabular data and original
data. Xu et al. [171] developed training deep neural networks for the generation of synthetic data
that closely resemble the actual medical records of patients.

Fig. 8. Privacy preserving framework based on generative model approach.

Although research in GNNs for privacy preservation is in its initial stages, the outlook of the
approach is promising. Generation of synthetic data is particularly crucial as traditional methods
such as anonymity and obfuscation are ine�ective for privacy preservation of semantic-rich data.
Moreover, this approach is not associated with the drawbacks of other traditional anonymization
approaches such as having background knowledge or linking the data to other sources.
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4.3 Summary on ML-aided Privacy Protection

The three di�erent groups of ML aided privacy protection schemes introduced in Subsection 4.2
work in various stages of privacy protection. Privacy risk assessment and prediction is a pre-process
before privacy protection, that identi�es what do we need to protect. Personal privacy management
assistants help to improve access control over sensitive information. Private data release can be
applied directly to the data. These protection schemes do not have a one-on-one relationship with
the attack models listed in Subsection 4.1. They can be e�ective against multiple attack models and
will work best if combined correctly in speci�c scenarios.

The two main types of ML models used for privacy protection are classi�cation and object
detection. Classi�cation is used for privacy risk prediction and assessment. Object detection is
used for identifying sensitive information. Additionally, schemes discussed in 4.2.1 do not directly
provide privacy protection. They are currently playing a supporting role, and other subsequent
privacy protection schemes are still needed.
GNN opens a new direction for privacy protection research, especially for unstructured data

such as image and video. But it is still challenging, as there are no uni�ed metrics for privacy
measurements in those complicated cases.

5 MACHINE LEARNING-BASED PRIVACY ATTACKS AND CORRESPONDING

PROTECTION SCHEMES

Besides serving as a privacy protection tool, ML can also be used as an attack tool. It urges us to
revisit the de�nition and scope of privacy. In particular, the emerging deep learning technique
can “automatically collect and process millions of photos or videos to extract private/sensitive
information from social networks” [80]. Traditional privacy-preserving methods are over-powered
when combating deep learning tools. It is time to seriously discuss new threats and corresponding
solutions.

5.1 A�ack and Threat Models

The riskiest personal information leakage source is the social network. While there are a variety
of social network platforms enriching people’s interactivity and relationship, the shared posts
including check-ins, activities, thoughts (tweets, status updates, etc.), pictures, videos often come
along with sensitive information. The information poses high privacy risks and they are likely to
hand over their privacy unintentionally. A growing number of companies and start-ups specialize
in analyzing shared pictures on social media to exploit them for commercial purposes or selling
them to other companies. Therefore, the most advanced DNNs have been used to launch privacy
attacks.
For example, the adversary can use geo-location information to initiate a localized attack that

focuses on �nding the position and time information of the person. Gu et al. and Mahmud et
al. [50, 91] showed a dangerous attack that is designed to “�nd important locations such as homes
and workplaces”. There have been some researches discussing the home location identi�cation
problem, either based on the “content of the posts” [20], or the “geo-tags in the check-ins” [22].
And “the research shows that the identi�cation accuracy might be over 90% in many cases” [81].

Besides the simple location information, multimedia data poses more risk under the attack of ML
tools. Companies apply advanced DNNs to cluster photos or infer preference of users to facilitate
marketers to send targeted ads [99, 130]. DNNs are considered one of the most practical tools in ML
as they take advantage of e�cient training algorithms and large datasets which enables them to
outperform other existing ML techniques. The power of such ML tools has become a problem itself
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(a) Identi�cation attack (b) Inference attack

Fig. 9. Di�erent privacy a�ack and threat models when ML is used as the a�ack tool.

that may compromise the privacy of photos once they are shared on social media and a challenging
problem that needs to be addressed.

The privacy of sensitive data, photos and videos become more crucial in IoT networks, as users
might not even be aware of their information such as pictures and videos being recorded. For
instance, areas controlled under surveillance cameras can severely compromise user privacy as
people lose control of how their photos and videos are being captured and managed. It is likely
that the surveillance system applies techniques such as face recognition and detection to identify
the users without their permission. Pew Internet survey in 2014 reported that over 91 percent of
participants “strongly agree” or “agree” that “they have lost their control over how their personal
information is being collected and used by companies” [17].
Major ML attack models include re-identi�cation attacks and inference attacks, as shown in

Fig. 9. These attack models are di�erent from those described in Section 4 in the sense that ML is
used as an attack tool here.

• The re-identi�cation attack can be launched by face recognition techniques. The recent
advance inDNNmakes it more harmful from two aspects. First, the process becomes automatic
with high accuracy [67, 151, 168]. Second, traditional protection schemes such as obfuscation
no longer work e�ectively [96, 109]. An illustration of the re-identi�cation attack can be
found in Fig. 9(a).

• Inference attack has also become more powerful when equipped with ML. ML classi�ers can
be used to infer a target user’s private information (e.g., location, occupation, hobby, political
view) from its public data (e.g., twitters, movie rating scores) [20, 22]. Moreover, a series of
research work have demonstrated how the advanced arti�cial neural networks can be used
as an adversarial tool to detect sensitive information in images, including people’s age [63],
relationship [150] and vehicle license plates [181] from ordinary or even obfuscated images.
An illustration of the inference attack can be found in Fig. 9(b). Therefore, it is quite urgent
to accelerate the research on privacy protection schemes against ML aided attacks.

5.2 Protection Schemes Against ML-based A�acks

There has been some preliminary research in this area. For privacy protection against traditional
ML attack, Liu et al. [81] designed community-based information sharing scheme that changes the
overall spatial and temporal features so that the clustering-based privacy attack [83] no longer
works.

The problem becomes more challenging when deep learning is involved. The solutions may come
from a better understanding of deep learning itself. Some researchers recently found that there are
limitations to deep learning. Speci�cally, “it is proved to be vulnerable to some well-designed inputs
termed adversarial examples” [36, 138]. Szegedy et al. [152] �rst discovered that the superposition
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of “imperceptible noise onto the original image” would mislead DNNs to the wrong classi�cation.
Then, Goodfellow et al. [45] proposed the “fast gradient sign method (FGSM) that can be used to
generate this type of adversarial examples”. Other algorithms to generate such noise can be found
in [72, 103, 131].
According to [119], the primary reason for why neural networks are vulnerable to adversarial

examples is the linear nature of the neural networks. The authors formalize the space of adversaries
against DNNs, which are mostly originated from ML techniques itself. In simple words, ML is used
as a tool to breach the ML classi�ers. Kurakin et al. [72] focused on adversarial training and how
they can be scaled to large datasets. Sharif et al. [138] proposed an algorithm for manufacturing
adversarial examples based on ML to disable DNN detection systems from �nding objects in
shared photos. Additionally, a signi�cant point about adversarial examples is its transferability
property [45]. It means that if they are able to fool one model, they are often likely to mislead
another model with a di�erent set of parameters and architecture [152]. This is even true if the
other model is trained on a di�erent training set or model [117]. This leads to the idea of universal
perturbation [102, 128]. It is even possible to “generate adversarial examples that fool both human
and computer alike”. Elsayed et al. [35] exploited ML to construct adversarial examples that transfer
from models created based on computer vision to the human visual system. The authors generated
adversarial examples without utilizing the parameters of the model’s architecture, and then mimic
the visual processing of humans using ML.

Enlighted by the idea of adversarial examples, researchers started to focus on the generation of
adversarial examples based on ML to improve the privacy of users against attacks mostly based on
DNNs. Liu et al. [88] proposed an algorithm that is against automatic detection using adversarial
examples based on the “Faster RCNN framework”. Jia et al. [65] proposed a two-phase framework
called AttriGuard to defend against attribute inference attacks launched by a classi�er. Liu et al. [80]
investigated schemes for using adversarial examples in ML systems so that they cannot identify
the sensitive information from images. Oh et al. [110] set up a game-theoretical framework and
studied the e�ectiveness of adversarial image perturbations for privacy protection. Li et al. [78]
proposed to use adversarial perturbation for face de-identi�cation. Friedrich et al. [41] proposed a
privacy-preserving shareable representation of medical texts for a de-identi�cation classi�er.

5.3 Summary on Privacy Protection against ML

Previously, the common understanding of privacy protection is to prevent human adversaries
from knowing some sensitive information about people. For example, obfuscating faces in images
is a well-researched topic. However, the situation has dramatically changed recently. First, the
growth of data volume has reached a point where it is physically impossible for anyone to browse
everything with their eyes. Second, as a result, people increasingly rely on machines with advanced
algorithms to extract relevant information of interest. Third, the booming of ML open source
community makes ML tools easy to be obtained by anyone. This brings up a new problem, that is,
it is now possible to automatically process data to infer sensitive user information, such as personal
identity, social relationships, location, and context. Indeed, ML has recently been used by malicious
parties as an e�cient tool to launch new types of privacy attacks, especially for social media data.
Therefore, we would expect that privacy protection against machines is as important as privacy
protection against humans.
ML-based privacy attacks are more challenging to defend against, due to three main reasons.

First, the average user is not aware of the capability of state-of-the-art ML methods in extracting
personal information. Second, privacy in some contexts such as multimedia data is not obvious.
Third, privacy threats also arise from organizations and government sectors that collect and analyze
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data on a large scale. Therefore, we need to prevent ML algorithms from automatically mining
private information, either intentionally or unintentionally.

In summary, privacy protection against the fast-evolving ML techniques is the most challenging
task among all three categories we discussed in the paper. The methodology is to exploit the
weakness and limitations of ML methods. Although there have been some initial solutions to this
problem using adversarial machine learning, there are still many research problems that require
further investigations.

6 OUTLOOK AND FUTURE DIRECTIONS

Signi�cant previous work focuses on making ML algorithms di�erentially private to preserve the
privacy of training sets. However, we should be aware that machine learning, as a whole, also
provide potent tools for privacy research (not just for the training datasets), both from attack and
defense perspectives.

6.1 Perturbation in Deep Learning

The goal of perturbation in deep learning is to train a model while ensuring DP concerning
information about individual training examples. Theoretically, the noise can be added to either the
input data, the model parameters (through gradient updates), or the model output. In practical, the
majority of work proposed to inject noise into gradients. The main disadvantage of this group of
methods is that amount of injected noise is dependent on the number of training epochs, and it
potentially can accumulate too much noise due to the signi�cant number of parameters.

Directly adding noise to input data is an option, but it is similar to a typical big data privacy prob-
lem and does not closely related to deep learning. Output perturbation and objective perturbation
seem to be reasonable directions in the future.

Output perturbation adds noise to the output of the ML system, e.g., the logits at the prediction
stage. This method is fast and easy to implement. However, it can su�er from degradation from an
attack of repeated querying by an adversarial. Therefore, it is important to restrict the number of
queries [129]. One potential solution is to use output perturbation in certain intermediate outputs,
such as the teacher voting output in PATE frame work [116].
Objective perturbation is one of the most e�ective methods for di�erential privacy ML. This

technique adds a random linear term to the objective function. Objective perturbation has been
extensively studied in convex optimization. Recently, Iyengar et al. [61] has provided a practical
algorithm for di�erentially private convex optimization, which is a big step towards practical
deployment of this technique. Moreover, Neel et al. [106] has extended this approach to non-convex
optimization problems. Despite the success in traditional ML, applying objective perturbation to
deep neural network is still challenges due to several obstacles: 1) the sensitivity calculation is
di�cult because the objective functions of deep learning models are mostly non-convex and do
not have closed-form expressions; 2) the privacy guarantee is implicitly based on the rank-one
assumption on the Hessian of the loss, which is di�cult to verify; 3) the privacy guarantee holds
only at the exact minima (at least the approximate minima as proposed in [61]) of the optimization
problem, which is hard to be guaranteed in practical deep learning systems. One possible solution is
to use a convex approximation of the loss function [124]. However, the approximation error might
outweigh the reduced perturbation due to smaller sensitivity. It is expected to see more e�ective
methods following this path.
Moreover, instead of perturbing the �nal output, it is also possible to add noise to the middle

layers of the neural networks. Lecuyer et al. [74] proposed the PixelDP framework that includes a
DP noise layer in the DNN. Although the purpose of PixelDP is “to increase robustness to adversarial
examples”, the idea can be further investigated to serve for privacy preservation. For example,
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PixelDP scheme enforces that the output prediction function is DP provided the input changes on
a small number of pixels (when the input is an image). Potential extensions to PixelDP include:
1) enforcing DP for given di�erent input samples so that it can provide privacy preservation for
the training set against membership inference attacks; 2) adding DP noise to the hidden layer of
an autoencoder. With the post-processing property of DP, the output of the autoencoder remains
to be DP as well. This idea is brie�y mentioned in [74]. But we can further explore it in di�erent
applications. For instance, we can protect a social network image by generating a perturbed version
using this autoencoder with a DP guarantee.

6.2 Defending ML-based Privacy A�ack: Adversarial Examples

Aswe have discussed in Section 5, whenML is used as a privacy attack method, adversarial examples
become a powerful way of privacy protection. Despite the preliminaries work on this topic, there
are several issues that need to be solved:

• Adversarial example generation methods fall into two categories of attack scenarios: white-
box and black-box. The research of using an adversarial example for privacy protection
usually assumes that the deep learning model is known, using the white-box setting. In
practice, the black-box scenario seems to be a more realistic assumption, e.g., the latest
black-box adversarial generation methods such as ZOO [19],N attack [79] and AdvFlow [28],
could be potentially used for privacy protection.

• It is still hard to evaluate the e�ectiveness of this mechanism with respect to privacy and
utility. The existing works use the change of ML outputs (labels) to evaluate the privacy
protection methods. We need to prompt more concise and better evaluation metrics.

• There have been some recent research works that connect the DP framework and adversarial
example [74]. The PixelDP algorithm [74] proposed to add a DP-noise to the input or any
middle layer to the network’s architecture to provide guaranteed robustness against adver-
sarial examples., In more details, if we consider “a DNN’s input (e.g., images) as databases
in DP parlance, and individual features (e.g., pixels) as rows in DP”, randomizing the out-
put prediction function to enforce DP can guarantee the robustness of predictions against
adversarial examples. PixelDP cannot e�ectively preserve privacy in the training set as the
input changes are restricted to “a small number of pixels” [74]. Phan et al. [125] proposed
a heterogeneous Gaussian Mechanism (HGM) that can preserve DP in training data and
provide provable robustness against adversarial examples at the same time. They further
proposed the stochastic batch mechanism in [123] that can retain higher model utility and
is more scalable to large DNNs and datasets, compared with HGM. Overall, the interplay
among DP, adversarial example and certi�ed robustness would be a very interesting future
topic.

6.3 ML-aided Privacy Protection: GAN and VAE

Excessive amounts of unstructured data including images, videos, audios and texts are being gener-
ated constantly and are being used by the government and a wide range of industries. According to
the projections of the international data corporation, unstructured data will constitute approxi-
mately 80 percent of worldwide data by 2025. Unstructured data, especially image and videos, often
containing rich personal information, play a key role in the future privacy preservation ecosystem.
And the problem of private data release for unstructured data will be a hot topic in the future.

We expect GAN to play an important role in this area, as it has demonstrated the capability
to preserve high utility for ML algorithms while protecting sensitive information in the dataset.
Moreover, GAN, as part of VAE, might also be used for privacy protection for a signal data entry
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(i.e., an image). In this case, we can encode an original data entry and then decode it with some
additional privacy protection.

7 CONCLUSION

This study surveys the literature on privacy in the context of machine learning. By classifying the
existing research into three groups: (i) private machine learning, (ii)machine learning aided privacy
protection, and (iii) privacy protection against machine learning attack, we comprehensively review
the state-of-art techniques on this topic and draw several conclusions as follows.

• The private machine learning problem has drawn the most attention recently. In this category
of research works, many try to use the di�erential privacy criterion during the analysis. How-
ever, DP notation cannot provide comprehensive privacy evaluation due to the complexity of
the data and privacy protection target. Therefore, how to de�ne new privacy metrics and
notations is still an open question.

• The research on machine learning aided privacy protection is gaining momentum these days.
For example, using GNN to generate synthetic datasets opens the new direction for privacy
protection research, especially for unstructured data such as image and video.

• Research on protection schemes against ML-based privacy attack is in its infancy. But it is
expected to �y in the future due to the proliferation of AI techniques in every corner of
the future networks. Currently, mainstream technology in this category is the adversarial
example/perturbation technique.

We believe our timely study will shed valuable light on the research problems associated with
privacy and machine learning. With the increasing attention paid to this topic, we would expect to
see increasing research activities in this area.
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