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The search for a systems-level picture ofmetabolism as a
web of molecular interactions provides a paradigmatic
example of how the methods used to characterize a
system can bias the interpretation of its functional mean-
ing. Metabolic maps have been analyzed using novel
techniques from network theory, revealing some non-
trivial, functionally relevant properties. These include a
small-world structure and hierarchical modularity. How-
ever, as discussed here, some of these properties might
actually result from an inappropriate way of defining
network interactions. Starting from the so-called bipar-
tite organization of metabolism, where the two mean-
ingful subsets (reactions and metabolites) are
considered, most current works use only one of the
subsets by means of so-called graph projections. Unfor-
tunately, projected graphs often ignore relevant biologi-
cal and chemical constraints, thus leading to statistical
artifacts. Some of these drawbacks and alternative
approaches need to be properly addressed.

Keywords: bipartite networks; hierarchical modularity;

metabolic networks; scale-free; small-world
Introduction
More than a thousand chemical reactions occur within our

cells, providing the building blocks and the fuel for life. They

are linked together forming an intricate, complex network in

which metabolites are transformed according to the laws of

chemistry and thermodynamics. Metabolism has been

traditionally organized in terms of pathways that are

interlinked forming a connected roadmap. This roadmap

was elucidated through the joint efforts of generations of

biochemists during the 20th century. The dispersed informa-

tion was initially compiled into the famous Boehringer’s

metabolic map by Gerhard Michal in 1993.(1,2) However, it is

only in the last decade that, thanks to new advances in
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computational methods, metabolic pathways have been

conveniently organized and standardized within databases

such as KEGG(3) and MetaCyc.(4) Nowadays, metabolic data

for a variety of organisms are available.

Metabolism is the best-known cellular network. However,

its topological organization – the global pattern of connections

of the graph – has not raised the interest of biologists until

recently.(5–7) This shift was motivated by the finding that real

networks display a number of previously unknown traits such

as small-world(8) and scale-free organization.(9,10) Such a

picture has permeated a large part of the literature in the

field,(11–13) even at the level of standard cell biology

textbooks.(14)

The small-world property tells us, roughly speaking, that

any two nodes in a network are on average separated by just a

few intermediate links, despite the fact that networks are

large and sparse. Such short paths could have an

immediate impact on network functionality, since they

enhance the propagation of changes through the system.

Additionally, small-world graphs have a high cliquishness,

much longer than expected from random (see Box 1 and

Box 2 for a formal definition). Therefore, a small world

combines a far-from-random local association with a short-

path structure.

The second property is related to the high heterogeneity in

the number of links that a given node can display. Specifically,

it was observed that the number of nodes having k

connections N(k) is such that most of the elements of the

net have just one or two links, whereas a handful of them (the

hubs) have many connections. This pattern can be described

using a well-defined fat-tailed distribution. The presence of

hubs has several consequences, from favoring the small-

world behavior to inducing internal fragilities associated with

their failure. Moreover, the presence of these patterns can be

measured, modeled, and used to explore the potential paths

followed by these webs through their evolution.(15–19) Network

thinking has influenced the study of very diverse systems,

from proteomes to the Internet, revealing that very disparate

systems share common patterns of organization that can be

characterized by their topology.
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Box 2: Graphs and models

Bipartite graph and projections: For a bipartite graph with two

disjoint sets of nodes A and B, the projection of A on B is the

unipartite graph constructed with A nodes. In this projection, two A

nodes establish a link if they are connected to, at least one,

common B node in the bipartite graph (see Fig. 1). Analogously,

the projection of B on A can be constructed. For metabolic
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In a nutshell, a graph can be described as a mathematical

abstraction of reality in which nodes are individual units

(metabolites of a reaction, species, proteins, actors of a film,

or websites) that appear linked by an edge if some type of

relation exists among them. In this process, the real system is

represented by a connection pattern, thus ignoring most
Box 1

A graph is the mathematical representation of the relation

between the elements of a system. Elements are nodes or

vertices in the graph. Two nodes are connected in the graph by an

link (or edge) if they establish some type of relationship.(61) The

number of nodes (N) and edges (E) define the size of the graph.

A bipartite graph is a graph consisting of two disjoint sets of

nodes related through a set of edges. In this graph, connections

between nodes of the same set are forbidden. This contrasts to

unipartite graphs, where elements of a set of nodes establish the

connections among them.

The degree (k1) or first neighborhood of a node is its number of

edges or connections. In the bipartite metabolic network, the degree

(k1 of a metabolite indicates the number of reactions in which it

participates, whereas the degree of a reaction node represents the

number of substrates and products of this reaction.Averagedegree

hki is calculated as a global estimator of the network from degree

node information. The abundance of the number of nodes of a

certain degree is the degree distribution. Notice that two hki and
two degree distributions can be defined for a bipartite graph. A

suitable generalization of the concept of degree for bipartite graphs

is just the total number of paths connecting some given node with all

nearest-neighboring nodes of the same type, namely strength.

The second neighborhood (k2) is the number of the

neighbors’ neighbors of a node. In bipartite metabolic networks,

the k2 of a metabolite A indicates the number of metabolites that

can be combined in some reaction with A.

Projection of a bipartite graph is the mathematical operation that

allows constructing a unipartite graph where nodes of only one

type are present. These nodes are connected in the new graph if

they share a common neighbor (of the other type) in the bipartite

graph. According to this definition, two alternative projections can

be done from a bipartite graph (see also Box 2).

A set of nodes forms a clique if all possible connections among

them are present. Projections of bipartite graphs are enriched of

cliques.

Clustering coefficient is a measure of the local association or

‘‘cliquishness’’ (from clique) of a node. The clustering coefficient of

a node is the number of connected neighbors normalized by the

number of all possible combinations. Average clustering

coefficient hCi is zero in bipartite graphs. However, it is very high

in projections. Calculating the average of clustering coefficient for

every k, the clustering coefficient distribution is obtained.

A path is defined as a sequence of connected nodes. Minimal

path average is a global estimator of the network. Average is

calculated from the minimum of every possible pair of nodes. This

measure is closely related to the diameter of a network.

Module is a set of nodes that presents a closer relation, usually

defined by a more dense connection, than with the remaining

network.

networks, the two alternative projections of the bipartite graph are

known as metabolite and reaction network.

Erdös-Rényi (ER) model(62)

(A) is a random unipartite graph

of N nodes and E edges. The

probability P defines the likelihood that a pair of nodes is

connected in the graph. ER model follows a Poisson degree

distribution where hki is themean of distribution. Given N and P, for

large enough ER graphs E�P[N(N–1)]/2, hki�PN and hCi�P.

Prior to Barabási’s work on scale-free networks, it was commonly

accepted that the ER model fitted the structure of very large

networks. Analogously, the Erdös-Rényi Bipartite model (B) can

be defined introducing one additional constraint by separating

nodes of the network in two groups (labeled in B aswhite and black

nodes). In this network a link between two nodes is established

with a probability (P) provided that no pair is established between

nodes the same groups. In this network a Poisson degree

distribution is given for both sets of nodes and hCi¼ 0.

Scale-free graph: This is a network that

follows a power-law degree distribution

P(k)�k-g where gamma ranges between 2

and 3. A handful of nodes (the hubs) have

many connections, whereas the vast

majority has very few ones. From a

theoretical perspective, a consequence of a power-law distribution

is that a characteristic scale cannot be defined.

Small-world model: Watts and

Strogatz showed in 1999(8) that

the small-world phenomenon

described by Milgram(63) can

be represented by a simple

experiment of disordering a regular lattice at random. Rewiring

only a handful of links is sufficient to produce a path length similar

(L) to that observed in an ER model, but keeping the original local

organization of the real network. This local organization is

estimated through hCi. This model allows the small-world criterion

for any (unipartite) network to be defined. Real hCi and L are

compared with the expected values of an ER model with the same

number of nodes and links. Formally a graph is small-world when

hCi(real)>>hCi(ER) and L(real)�L(ER).

Hierarchical modular model: This is a

deterministic model where nodes are

clustered in modules in a hierarchical

organization. This model, proposed by

Ravasz et al.(31) presents a C(k)�k-1. This

property has been usually associated

in real networks as an indicator of a

hierarchical modular organization. Inter-

estingly, this model also exhibits scale-free and small-world

behavior.
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details in favor of a systemic perspective. Nevertheless, these

simplified pictures of reality have proven helpful in providing

useful insights into ecology,(20) genomics,(11) neuro-

science,(21) or language.(22) However, as shown here, the

process of graph construction is an important issue that can

bias the conclusions derived from the topological approach.

In this paper we critically examine this view within the

context of metabolism. Metabolic maps, along with collabora-

tion,(23–26) mutualistic,(27,28) gene-disease,(29) or drug-

target(30) networks belong to the class of so-called bipartite

graphs (see Fig. 1 and Box 1 for definitions). Metabolism

involves both metabolites and reactions, but metabolic

networks have usually been treated as unipartite graphs

(networkswith only one type of element acting as nodes).(7,31–34)

In the seminal works concerning the topological organization

of metabolism, such a limitation was overcome by a graph

transformation – called projection – of the bipartite network in

its unipartite version.(7,31) As summarized in Fig. 1, two

alternative graph projections [Pa(G) and Pb(G)] can be

obtained from a bipartite graph G. We can construct the

so-called metabolite projection in which nodes are metabo-

lites that are linked to each other if they participate in the

same reaction (see Box 2). Alternatively, the reaction

network is constructed considering nodes as reactions: two

reactions are connected if they share a common metabolite.

Further work revealed that network projections introduce a
Figure 1. Representation of a bipartite graph. Links establish the

connection between the members two disjoint sets: top nodes (A) and

bottom nodes (B). Connections between nodes of the same set are

forbidden. Two alternative projections (see Box 1 for definition) are

possible by considering nodes of one set as connectors of the other

one. Notice that triangle connection, a feature measured by the so-

called clustering coefficient (see Box 1 for definition) is forbidden in

the bipartite graph but not in its projections. Bipartite graph and

projections are defined in Boxes 1 and 2.
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strong bias in the results of the topological analysis.(35–38)

However, such biases were only addressed within the field of

social networks. As shown here, a biologically consistent

definition of metabolic network according to its bipartite nature

provides a more accurate biological interpretation of its

topology.
Metabolism as a complex network: What
do we know about metabolic webs?

Metabolism was one of the first real networks identified as

both scale-free(6) and small-world(7) with some contro-

versy.(39) Metabolic networks are also considered a paradig-

matic example of hierarchical modular organization.(31)

Where does this scale-free, modular pattern come from?

Models help us to understand reality and the study of

metabolism’s organization has not been an exception. Some

simple, toy models of reality have provided useful insights

into their origin and evolution. An illustrative example of this

type of model is the so-called preferential attachment (or

rich-gets-richer) mechanism. It has been shown that a graph

growing under preferential attachment (see Box 2 for model

description) can produce a scale-free network.(40) This

simple rule captures the effect of popularity occurring in

some real networks such as the Internet(9) or social networks

exhibiting scale-free distributions.(10) Another paradigmatic

example is given in the paper of Watts and Strogatz, which

explains the small-word effect using a very simple network

model.(8) This example illustrates the success of a network

approximation by giving a very simple explanation about how

this pattern can emerge. Finally, hierarchical modularity(31) is

another example of a key property displayed by real

networks. Roughly speaking, it involves the presence of a

nested set of hierarchically assembled modular parts. Such

a pattern is reminiscent of fractal structures in nature, and

some key properties of real webs can actually be recovered

from a fractal-like iterative model (Box 2).

Topological properties are usually evaluated by compar-

ison with null models. The most studied random model is the

so-called Erdös-Rényi (ER) graph in which nodes of a set

are simply linked by a single probability (see Box 2). The

outcome of this model drastically differs from most of the real

networks, and it constitutes a reference of what we expect by

chance. This model is used to establish the presence of the

small-world condition. Analogously, a bipartite version of an

ERmodel is constructed by considering two separated sets of

nodes, provided that no connection between nodes of the

same group is present (see Box 2). As no other process but

randomness is implied in its generation, this model constitutes

an excellent null reference for our purposes since it allows us

to illustrate the impact of the graph projection’ on topological

measures.
BioEssays 32:246–256, � 2010 Wiley Periodicals, Inc.
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Interestingly, scale-free, small-world, and hierarchical

modularity topological properties match well with the standard

view of metabolism from a biological perspective. ATP and

NADHþ metabolites are examples of hubs (the most

connected nodes) in the metabolic network(6) and their

topological importance matches their relevant roles as the

coins for energetic and reduction power in metabolism,

respectively. They participate in most metabolic pathways,

whereas many metabolites only take part in single steps of

particular pathways, in agreement with the scale-free

behavior. The organization ofmetabolism in coupled reactions

and its traditional classification in pathways agrees with the

idea of local association and modularity. In this context, cross-

links between pathways and the existence of ubiquitous

metabolites – the hubs – would contribute to the small-world

effect and a hierarchical modular organization.

However, as mentioned above, a network is an abstraction

of reality and its construction can determine the conclusions

derived from it. At this point, the choice of either a bipartite or

unipartite (projected) representation of metabolism acquires

special importance. In fact, small world, hierarchy and scale-

free features of metabolic networks have been reported using

some type of projection. Although these properties seem to

be reasonable for metabolism, in light of evidence from

other bipartite network studies, the final conclusion is

that the topological analysis of metabolic webs should be

revisited.
Bipartite nature of metabolic networks
and the problem of graph definition

Within metabolic maps, each reaction is not just a causal link

between molecules. The flow of matter, kinetic parameters,
Figure 2. Graph representations of three-stepmetabolic pathway reprod

formation. (A) The standard view of a metabolic pathway in Biochemistry’s

graph.(6) (C) Projections of the bipartite graph according to;(7) metabolite p

graph in C); and reaction projection: two reactions are connected if they

metabolite-projection used in ref.(31) Given a reaction, substrates are con

among them. (E) Representation eliminating the ATP and ADP metaboli
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and time scales can be properly measured or estimated. The

global picture is thus rather complete and meaningful. As

mentioned above, a graph is an abstraction of reality where

only the pattern of connection matters. Figure 2A depicts the

standard representation of a metabolic pathway found in any

Biochemistry handbook. Although molecular details, enzyme

kinetics and most of the complexity of the real system are

absent, this representation is enough to sketch the wiring of

this particular metabolic process. Thus, a graph based on the

metabolic map information is arguably the best choice when

looking at how metabolism is connected. However, different

graph constructions are possible. In this context, Albert

Einstein’s famous quote ‘‘Make everything as simple as

possible, but not simpler’’ captures the key point of our work.

According to this, a metabolic network should contain the

essential information but not less, regarding topological

questions, since it provides the clues for a suitable biological

interpretation.

Since metabolic networks consist of metabolites that

participate in reactions, a special feature of these networks

is that metabolites do not interact in pairs, as seen for example

with the protein interactionmap. In the later, we can use a graph

construction based on nodes of the same type interacting in

pairs. Metabolic networks require the definition of both reactions

and metabolites as separated sets of nodes to reach a

meaningful description. In a reaction, a number of substrates

(usually more than one) give a number of products. In this case,

the connection of metabolites by pairs offers a poorer

representation of reality since it cannot properly capture the

metabolite association (conversion) in reactions, as bipartite

graphs do (see Fig. 2). This bipartite view of metabolism has

been commonly addressed in different works.(6,7,41–43)

A number of analyses describing the topological organiza-

tion of metabolism have introduced substantial simplifications
ucing the gamma-phosphate transference from ATP to UMPand CTP

handbooks. (B) The metabolite-reaction representation in a bipartite

rojection: all metabolites of a reaction are fully connected (white-node

share a common metabolite (black-node graph in C). (D) Alternative

nected to products, but substrates (and products) are not connected

c network hubs applied in ref.(7) and ref.(31) with slight modifications.
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to metabolic network definition. In most of them, such

simplifications involve the generation of unipartite networks

with only metabolites as the nodes of the graph. Figure 2

shows some of these unipartite versions. The standard

projection (see Box 1 and Box 2 for definition, and Fig. 2C) is

probably one of the most influential network simplifications

since it was the first used to define the small-world character

of metabolism.(7) In addition, it has been used to describe the

power-law distribution of metabolite and reaction unipartite

networks.(32)

However, more refined projections have been proposed. A

widely used alternative is depicted in Fig. 2D. In this projection

the connections occur only between the substrates and

products of a reaction.(31,33,44,45) This modification can be

justified as a way to capture molecular transformations.

Nevertheless, the opposite projection criterion, i.e., the

connection between substrates on one side and products

on the other (of a reaction), may be similarly justified by the

fact that molecular collisions actually occurs between

substrates of a reaction. However, as far as we know such

a simplification has never been applied.

Additional simplifications in the projection process, such as

the elimination of the most connected metabolites due to its

ubiquitous nature,(7) or even the elimination of metabolites

displaying only one connection and the merging of linear

paths in single nodes,(31) have been used for different

purposes. In conclusion, a repertoire of unipartite versions of

metabolic networks has been used to highlight one particular

trait of metabolic organization. However, what determines the

correct level of simplification when using projections is an

open question. A problem arises when all the pieces of

information obtained from different network definitions are put

together, ignoring the possibility that such simplifications may

introduce a bias.

However, unipartite versions of metabolism are also

possible without the use of a projection. An alternative

construction of a metabolic network proposed in ref. (39) is

probably a fair view of a natural unipartite network. In this

representation metabolites are nodes and two metabolites

are linked if a carbon transfer occurs between them. In this

case, links are not a consequence of a mathematical

transformation and they have a physical meaning, even if

reactions are not explicit in such a representation. The main

limitation of this network is that only a small part of the

whole chemical process is considered since not only carbon

but other atoms, electrons and energy are actually

transferred between molecules. However, extending this

idea to any type of transfer would produce a chemically

realistic unipartite network. As a side effect, we would lose

the information associated with molecular relations due to

reactions. However, the combined information of bipartite

and this unipartite network would provide a very good

insight into the global organization of metabolic topology.
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Unfortunately, as far as we know, no such network has yet

been constructed.

In the next section, we show that simplifications of bipartite

metabolic networks produce a loss of information and even

generate contradictory results in the case of small-world

patterns,(7,39) introducing a bias in the biological interpretation

of systemic functional traits.
Too much simple metabolic networks?
The problem of graph projection

Wagner and Fell(7) suggested that bipartite graphs are much

less intuitive constructs, and less obviously treatable than

their projections. It is worth noting that at that time, the

analysis of bipartite networks was less developed than for

unipartite graphs. Therefore, the topological analysis of the

metabolite projection was considered as a reasonable

starting point for the study of metabolism as a network.

As we mentioned above, a bipartite network can be

transformed in two alternative unipartite versions by means of

projection of a graph (see Fig. 1 for a general definition of a

graph projection). In metabolite networks, a metabolite

projection graph is formed only by metabolites. In this graph,

two metabolites are connected by a link if they participate in

the same reaction. In contrast, a reaction projection involves

reactions as nodes. In this case, two reactions are connected

by a link if they share a common metabolite.

As shown in Fig. 3, the same graph projection can be

associated with very different bipartite networks. This

indicates that only attending to projections, the relation

among metabolites through reactions cannot be recovered,

and therefore part of the information present in the bipartite

graph is lost in the transformation process. Additionally,

projections usually exhibit a markedly higher value of

average degree in relation to the bipartite graph. As a

consequence of projection, average degree has a different

interpretation than the bipartite one. As Box 1 indicates, the

degree in bipartite graphs has a natural meaning, i.e., the

number of partners in a reaction or the number of reactions

in which one metabolite participates. In projections as

depicted in Fig. 3C, the degree of a node (for example the

UTP node) indicates the number of different metabolites that

can be related to it. However, compared with the bipartite

representation, in such projections we know neither the

number of reactions in which UTP is involved nor the number

of times that metabolite partners of UTP are repeated in

such reactions. Interestingly, the degree of a given node in

this (metabolite) projection is recovered by its so-called

second neighborhood (see Box 1 for definition) in the

bipartite network. Accordingly, it should be stressed that

bipartite graphs contain information that cannot be inferred

from projections.
BioEssays 32:246–256, � 2010 Wiley Periodicals, Inc.



Figure 3. More than one bipartite network can produce the same metabolite projection. (A) Metabolite projection of a three-step pathway

representing the gamma-phosphate transference from ATP to CDP. (B) The original bipartite graph with its standard biochemical representation

(below). (C, D) Different bipartite graphs originating from non-real reactions that produce metabolic projection like the real one. Notice that a loss

of information occurs in the projection.
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Another important limitation appears when we look at the

degree distribution. Although the degree distribution (see

Box 1) for metabolites falls off as a power law,(6) the fact that

reactions follow instead a binomial distribution has been

largely ignored. To illustrate this, we show in Fig. 4 the degree

of distributions for the E. coli metabolic network used in ref. (6)

in its bipartite version. Figure 4D shows the reaction degree

distribution, with an average of 3.73 metabolites and a

maximum of 8. This is reasonable since one reaction is a

single event, where the number of participants is restricted to

a few reactants. We can argue that the minimum number of

participants in a reaction is two, corresponding to a tautomeric

conversion. However, as Fig. 4D reveals, only a very small

fraction of reactions with just onemetabolite are present in the

network. This is not consistent with the biological interpreta-

tion and it may be due to a problem of data curation or

incompleteness.

In spite of these small discrepancies, the key problem is

that degree distributions have a simple interpretation in the

bipartite graph but not in its projections. Similarly, metabolite

and reaction distributions are strongly canalized by biological

and chemical constraints. In the case of metabolites, the

appearance of a new reaction in evolution can be fairly

justified by the appearance of new enzymatic activities by a

process of gene duplication and diversification. Such a new

reaction should occur using existent metabolites and with

some probability they may form new compounds that would

be incorporated to metabolism. According to this view, a

scale-free metabolite distribution is likely to happen and can

be indirectly deduced from current unipartite network models

of metabolic evolution.(46) However, as reactions mean

transformation by molecular collision satisfying both thermo-
BioEssays 32:246–256, � 2010 Wiley Periodicals, Inc.
dynamic and chemical constraints, the addition or elimination

of one molecule to reactions is unlikely to happen. This

constraint is more compatible with an exponential/normal

distribution than with a scale-free one. This situation has been

reported from the study of association networks, where the

networks exhibit a scale-free distribution for one node type

and normal distributions for the other one. This occurs just

because one type of nodes allows a very large range of

connections compared to the other.(47,48)

As illustrated in Figs. 1 and 3, a complete picture of the two

types of nodes is only captured using bipartite representation,

whereas none of the graph projections recover it. In this

context, it has been observed that, if one node type follows a

power law in the bipartite representation, both projections

exhibit power-law degree distributions.(47) This has caused

wrong interpretations of the results for reactions, as they have

been described to also follow a power-law fashion.(32,49)

Finally, the clustering coefficient (C) is probably the most

problematic parameter. Clustering is zero in bipartite networks

by definition but not in their projections. An immediate feature

derived from the theory is that projections of bipartite graphs

are enriched of cliques (see Box 1 for definition) and cliques

markedly increase the value of the average clustering (hCi).
For an ER bipartite graph (see Box 2 for description), its

projection presents a high hCi (see Table 1). However, graph

projections do not correspond with a unipartite ER. In fact, hCi
is much greater in the ER bipartite projection than in an ER

unipartite version constructed with the same number of nodes

and links of the graph projection (see Table 1 for numerical

comparison). This indicates that simple aggregation in a

graph induces the clustering after projection. It could be

argued that, indeed, clustering is capturing this aggregation,
251



Figure 4. E. coli metabolic network, degree, and clustering distributions recalculated from(6) (A–D) and its ER random version (E–H). Both

networks present 1509 reactions (labeled in black), 766 metabolites (red), and 5627 links. Node size is proportional to its degree. Power-law

decay of hCi versus k distribution is shown for metabolite projection E. coli metabolic network and for its respective ER model as calculated in

ref.(31) Logarithmic binning inset (B and F, respectively), reveals the power-law dependence. As a guide for the eye, the k�1 slope is indicated in

solid line. (C, G) The degree metabolite distribution and respective degree distribution for the metabolite projection inset. (D, H) Degree reaction

distribution and degree distribution of the reaction projection inset. ER distributions show the mean and standard deviation of a set of 100 ER

graphs.

Problems and paradigms R. Montañez et al.
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Table 1. Small-world criterion is satisfied in both E. coli metabolic network and in its random null model counterpart. Metabolite and reaction

projections of the E. coli bipartite network (1), and the respective projections of an ER bipartite model with an identical number of metabolites,

reactions, and links of the original network (2), are compared with an ER random graph obtained from the (metabolite or reaction) projection (3).

Data from the E. coli network construction were obtained from ref.(6) and the resulting network is depicted in Fig. 3. According to the definition,

small-world criterion (hCi(1 or 2)>> hCiER and L(1 or 2)�LER) is evaluated by comparisonwith an ER randomgraph obtained from the (metabolite or

reaction) projection (3). In other words, an ER unipartite graph is constructed preserving the same number of nodes and links of the projected

network. One hundred of random graphs were generated in each case. Mean and SD for each set were calculated for hCi and L values. The

results reveal that a real network (1), but also its random bipartite null model (2), are small-worlds when projected. Remarkably, the bipartite

nature of a graph is in this case just enough to satisfy the small-world criterion.

Real network

projection (1)

ER bipartite graph

projection (2)

ER from projected

graph (3)

L hCi L hCi L hCi
Metabolite projection

(762 nodes, 5627 links)

2.57 0.67 2.38�0.007 0.19�0.003 3.17�0.003 0.01�0.001

Reaction projection

(1506 nodes, 170973 links)

1.82 0.72 2.62�0.006 0.36�0.006 1.84�0.0 0.15�0.001

R. Montañez et al. Problems and paradigms
but actually this gives no additional information to the one

already captured by the bipartite graph. An interesting

question not yet answered is the likelihood that two

metabolites participating in a reaction can also participate

in another one. In this case, it seems obvious that clustering

measures specifically thought for bipartite networks could

contribute to answer this question. In this context, a number of

approximations using bipartite graphs has been applied to

other real systems(50–53) but not yet translated to metabolism.

As previously mentioned, the standard clustering may lead us

to wrong interpretations. This becomes more relevant when

properties based on clustering such as small-world and

hierarchical modularity are evaluated, as seen in the following

sections.
Is the metabolic small-world behavior an
artifact?

Small-world behavior is a common characteristic of real

networks. Its definition requires using both the average of

clustering coefficient (C) and minimal path length (L) (see

Box 1). For simple (non-bipartite) graphs, the small-world

property is often determined by comparing the original graph

with a random ER model having the same number of nodes

and links.(8,54) However, a problem arises when we deal with

bipartite graphs. Since bipartite networks do not exhibit

clustering, the presence of a small-world behavior is here

meaningless and only unipartite networks can be properly

evaluated. Therefore, a projection is required. Once the

projected network is obtained, it can be compared with its

associated graph obtained from the ER model. Notice that

such an ERmodel has the same number than nodes and links

of the projected network. But, what happens if we do the same

with the ER bipartite graph?
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As mentioned above, clustering appears as a result of the

projection process and this also occurs when ER bipartite

graphs are projected. According to this, to establish a small-

world criterion we must compare this network with its

respective ER model derived from the projected bipartite

ER graph. A remarkable fact is that the projection of an ER

bipartite network, roughly satisfies a small-world pattern (see

Table 1 for a numerical example). Some questions now arise:

can we ensure that metabolic or even any bipartite graph is

small world when its random bipartite version also satisfies

this condition? Is the simple aggregation by reactions an

appropriate requisite to conclude that metabolism is small

world, or is it a side effect of the graph construction algorithm?

As Table 1 indicates, the E. coli metabolite projection

reveals a small-world behavior but also its ER bipartite

correlates when they were projected as described in Fig. 2C

(see also ref.(7)). According to the arguments provided here,

we cannot guarantee that the small world of metabolic

networks has a biologically meaningful interpretation (such as

an optimization of the metabolic flux) since a null bipartite

model also fulfills such a condition. On the other hand, we

cannot reject the idea that metabolisms are organized within

the small-world constraints. Clustering of real networks is

greater than that of their bipartite random null model

counterparts (Table 1), thus providing indirect evidence of

some local association of metabolism beyond a simple

aggregation effect. However, as small world is a qualitative

behavior, such a comparison cannot be properly done.

Alternative projections have been described, such as that

displayed in Fig. 2D, that also share small-world beha-

vior.(33,44,45) However, the impact of such a projection on

clustering has not yet been explored in depth. The main

limitation is that it requires additional considerations beyond

the standard ER bipartite model, such the estimation of what

number of substrates and products are expected by chance
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for every reaction. Further research in this direction would

contribute to addressing our open questions.

Summarizing, the main problem is that the standard

definition of small world is not suitable for bipartite networks

and, therefore, the search for a more convenient small-world

criterion for these graphs may provide an answer as to

whether metabolic networks are really small worlds. Accord-

ing to this idea, some clustering coefficient definitions have

been proposed for bipartite graphs, but little of its relevance

for the small-world property has been explored.(52,53) It is

worth stressing that other arguments, such as modularity, go

in favor of the local association required for small-worldness

but as seen below, the effect of hierarchical modularity also

may be affected by a wrong interpretation of clustering in the

graph projections.
Do metabolic networks exhibit
hierarchical modularity?

It has been suggested (and widely used) that an indicator of a

hierarchical organization is the power-law dependence of hCi
versus k.(31,37,49,55) Clustering captures the cliquishness of a

node (measuring the probability that two nodes sharing a

common neighbor are also connected among them). It was

found that degree and clustering are negatively correlated:

nodes with low k are more likely to form clusters than those

with high degree. This idea is captured by a toymodel of graph

generation. This is illustrated in Box 2 where a complex,

fractal-like network is generated by iteratively reconnecting an

initial subgraph. As this model is far from realistic, it has been

used as a metaphor for complex networks displaying modular

and hierarchical scale-free organization. The topological

analysis of this web reveals a C(k) decay, namely:

CðkÞ � k�a

with a¼ 1. Such a scaling law has been observed in a number

of real systems, although with different scaling exponents,(56)

and this power-law dependence has been widely adopted as

an indicative for hierarchy. In addition, it has been suggested

that scale-free behavior is necessary, but not sufficient,

condition to produce such scaling behavior.(55) Actually,

metabolic networks (or rather metabolite projections) exhibit

such a scale-freeness and a clustering decay close to that

predicted by the model. Although graph construction can

enhance clustering, we show in Fig. 4B that a standard

metabolite projection (as shown in Fig. 2B) is quite close to a

power-law decay with a¼ 1.

Considering the effect of graph projection on clustering,

the following question has to be formulated. Does projection

introduce some bias in the C(k) distribution? Aswith the small-

world pattern, Fig. 4F indicates that projection is just enough

to produce a power-law dependence on C(k). It is worth noting
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that such a decay in the projected ER bipartite model is not so

pronounced as in the real (projected) network (see Figs. 4B

and F). Actually, such a dependence occurs in the ER bipartite

null model even without satisfying the scale-free condition and

being dramatically distant from the prototypical hierarchical

one (see Box 2). Is the hierarchical criterion correct? Beyond

this general question, since we cannot establish the

contribution of projection on clustering decay, we cannot

properly talk about hierarchy in metabolic networks. Conse-

quently, a criterion for hierarchy avoiding the use of projections

is required and further research in this direction would

contribute to clarifying whether metabolic networks are truly

hierarchical.

Similarly, modular measures, particularly those based on

clustering coefficient measure,(31,57,58) may be affected by the

projection effect. In this context, modularity detection in

bipartite graphs would contribute to clarifying the modular

character of metabolism. Methods to detect modularity in

bipartite networks have been recently published,(59,60)

representing a promising alternative to previous approaches.
The bipartite network approach

As discussed above, some well-established measures for

bipartite graphs offer an ideal framework for the study of

metabolism, keeping the relation between metabolites and

reactions.

An alternative to commonly applied measures in unipartite

graphs is the ‘strength’(48) (see Box 1 for definition). In the

case of metabolism, it is possible to figure out how important a

metabolite can be through its degree. However, one can

imagine that, for instance, not only the ATP hub but also the

ATP-ADP pair is biologically relevant, since it represents a

pair transformation shared by large number of reactions. This

information is captured by the strength, and its biological

interpretation is straightforward. As metabolism occurs by

transformations, strength would indicate the importance of a

substrate-product pair due to its participation in a large

number of reactions. However, in spite of the potential of

strength, it has not been applied to metabolism so far.

Strength and the use of a suitable version of bipartite

clustering could provide new insights on metabolic organiza-

tion. In addition, a number of properties such as modularity or

small-world behavior should be revisited according to a

bipartite view, avoiding the undesirable effects associated

with projections.

In addition, the bipartite representation offers a better

picture of metabolism since direction and stoichiometry can

be included to produce a more reliable view of metabolism.

The study of directed bipartite paths, cycle detection, and

degree correlations represent still unexplored ways in the

study of metabolic maps.
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Conclusions and perspectives

Topological studies of metabolism have been developed over

the last few years by using graph representations of

pathways. In this work we have shown that a network

description imposes strong constraints to our abstraction of

reality. In the case of metabolism, the use of unipartite

versions can lead to wrong interpretations of some of themost

relevant graph attributes. Average degree and degree

distributions are paradigmatic examples of this problem.

Instead, the bipartite view offers a cleaner interpretation of

topological features. A note of caution is thus needed in

relation to the effect of projection on clustering and how this

produces some properties ‘‘for free’’, such as small-world

structure and hierarchy. Finding universalities in complex

networks is an intriguing and fascinating issue. However, this

is meaningful only when real systems are conveniently

mapped into a network abstraction. In this context, the more

natural representation of metabolism as a bipartite graph and

the development of appropriate measures based on such a

representation are much needed.
Acknowledgments: This work was supported by the EU 6th

framework project ComplexDis (NEST-043241, CRC), James

S. McDonnell Foundation and Santa Fe Institute (RVS),

grants SAF 2008-02522 (Spanish Ministry of Science and

Innovation), Fundación Ramón Areces, P07-CVI-02999 and

group BIO-267 (Andalusian Government). The ‘‘CIBER de

Enfermedades Raras’’ is an initiative of the ISCIII (Spain). The

authors would like to thank Bernat Corominas-Murtra,
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