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WHEN MODIFIED GRAM-SCHMIDT
GENERATES A WELL-CONDITIONED

SET OF VECTORS

L. Giraud∗ and J. Langou†
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Abstract

In this paper, we show why the modified Gram-Schmidt algorithm
generates a well-conditioned set of vectors. This result holds under the
assumption that the initial matrix is not “too ill-conditioned” in a way
that is quantified. As a consequence we show that if two iterations of
the algorithm are performed, the resulting algorithm produces a matrix
whose columns are orthogonal up to machine precision. Finally, we
illustrate through a numerical experiment the sharpness of our result.
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1. Introduction

In this paper we study the condition number of the set of vectors generated by
the Modified Gram-Schmidt (MGS) algorithm in floating-point arithmetic. After
a quick review, in Section 2, of the fundamental results that we use, we devote
Section 3 to our main theorem. Through this central theorem we give an upper
bound close to one for the condition number of the set of vectors produced by
MGS. This theorem applies to matrices that are not “too ill-conditioned”. In
Section 4 we give another way to prove a similar result. This other point of view
throws light on the key points of the proof. In Section 4.2 we combine our theorem
with a well known result from Björck to obtain that two iterations of MGS are
indeed enough to get a matrix whose columns are orthogonal up to machine
precision. We conclude Section 4 by exhibiting a counter example matrix. This
matrix shows that if we relax the constraint on the condition number of the
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studied matrices, no pertinent information on the upper bound of the condition
number of the set of vectors generated by MGS can be gained. For the sake of
completeness, we give explicitly the constants that appear in our assumptions
and formula: Appendix A details the calculus of those constants.

2. Previous results and notations

We consider the MGS algorithm applied to a matrix A ∈ R
m×n with full rank

n ≤ m and singular values: σ1 ≥ . . . ≥ σn > 0; we define the condition number
of A as κ(A) = σ1/σn.
Using results from Björck (1967) and Björck & Paige (1992), we know that,
in floating-point arithmetic, MGS computes Q̄ ∈ R

m×n and R̄ ∈ R
n×n so that

there exists Ē ∈ R
m×n, Ê ∈ R

m×n and Q̂ ∈ R
m×n, where

A + Ē = Q̄R̄ and ‖Ē‖2 ≤ c̄1u‖A‖2, (1)

‖I − Q̄T Q̄‖2 ≤ c̄2κ(A)u, (2)

A + Ê = Q̂R̄ , Q̂T Q̂ = I and ‖Ê‖2 ≤ cu‖A‖2. (3)

c̄i and c are constants depending on m, n and the details of the arithmetic, and
u = 2−t is the unit round-off.
Result (1) shows that Q̄R̄ is a backward-stable factorization of A, that is the
product Q̄R̄ represents accurately A up to machine precision.
Equation (3) says that R̄ solves the QR-factorization problem in a backward-
stable sense; that is, there exists an exact orthonormal matrix Q̂ so that Q̂R̄ is
a QR factorization of a slight perturbation of A.
We notice that results (1) from Björck (1967) and (3) from Björck &
Paige (1992) are proved under assumptions

2.12 · (m + 1)u < 0.01, (4)

cuκ(A) < 1. (5)

For clarity, it is important to explicitly define the constants that are involved in
the upper bounds of the inequalities. Complying with assumptions (4) and (5)
we can set the constants c and c̄1 to

c = 18.53 · n 3

2 and c̄1 = 1.853 · n 3

2 = 0.1 · c. (6)

The value of c̄1 is given explicitly by Björck (1967). The details on the calculus
of the constant c is given in Appendix A. It is worth noticing that the value of c
depends only on n, the number of vectors to be orthogonalized, and not on m,
the size of the vectors, since (4) holds.
Assumption (5) prevents R̄ being singular. Under this assumption and defining

η =
1

1 − cuκ(A)
, (7)



Giraud · Langou: When MGS generates a well-conditioned set of vectors 3

Björck & Paige (1992) obtain an upper bound for ‖R̄−1‖2 as

‖A‖2‖R̄−1‖2 ≤ ηκ(A). (8)

Assuming (5), we note that (1) and (3) are independent of κ(A). This is not
the case for inequality (2): the level of orthogonality in Q̄ is dependent on κ(A).
If A is well-conditioned then Q̄ is orthogonal to machine precision. But for
an ill-conditioned matrix A, the set of vectors Q̄ may lose orthogonality. An
important question that arises then is whether MGS manages to preserve the
full rank of Q̄ or not. In order to investigate this, we study in the next section
the condition number of Q̄. For this purpose, we define the singular values of
Q̄, σ1(Q̄) ≥ . . . ≥ σn(Q̄). When Q̄ is nonsingular, σn(Q̄) > 0, we also define the
condition number κ(Q̄) = σ1(Q̄)/σn(Q̄).

3. Conditioning of the set of vectors Q̄

This section is fully devoted to the key theorem of this paper and to its proof. For
the sake of completeness, we establish a similar result using different arguments
in the next section. The central theorem is the following.

Theorem 3.1:

Let A ∈ R
m×n be a matrix with full rank n ≤ m and condition number

κ(A) such that

2.12 · (m + 1)u < 0.01 and cuκ(A) ≤ 0.1, (9)

where c = 18.53 · n 3

2 and u is the unit round-off.

Then MGS in floating-point arithmetic computes Q̄ ∈ R
m×n as

κ(Q̄) ≤ 1.3. (10)

Note that assumption (9) is just slightly stronger than assumption (5) made
by Björck & Paige (1992).
Proof : On the one hand, MGS computes Q̄, on the other hand, the matrix Q̂ has
exactly orthonormal columns. It seems natural to study the distance between Q̄
and Q̂. For that we define F as

F = Q̄ − Q̂, (11)

and look at its 2-norm. For this purpose, we subtract (3) from (1) to get

(Q̄ − Q̂)R̄ = A + Ē −A − Ê,

FR̄ = Ē − Ê.
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Assuming cuκ(A) < 1, R̄ is nonsingular and we can write

F = (Ē − Ê)R̄−1.

We bound, in terms of norms, this equality

‖F‖2 ≤ (‖Ē‖2 + ‖Ê‖2)‖R̄−1‖2.

Using inequality (1) on ‖Ē‖2 and inequality (3) on ‖Ê‖2, we obtain

‖F‖2 ≤ (c + c̄1)u‖A‖2‖R̄−1‖2.

Using inequality (8) on ‖A‖2‖R̄−1‖2 and (6), we have

‖F‖2 ≤ 1.1 · cuηκ(A). (12)

This is the desired bound on ‖F‖2.
Since we are interested in an upper bound on κ(Q̄), the condition number of Q̄,
we then look for an upper bound for the largest singular value of Q̄ and a lower
bound for its smallest singular value.
From Golub & Van Loan (1983, p. 449), we know that (11) implies

σ1(Q̄) ≤ σ1(Q̂) + ‖F‖2 and σn(Q̄) ≥ σn(Q̂) − ‖F‖2.

Since Q̂ has exactly orthonormal columns, we have σ1(Q̂) = σn(Q̂) = 1. Using
the bound (12) on ‖F‖2, we get

σ1(Q̄) ≤ 1 + 1.1 · cuηκ(A) and σn(Q̄) ≥ 1 − 1.1 · cuηκ(A).

With (7), these inequalities can be written as

σ1(Q̄) ≤ η(1 − cuκ(A) + 1.1 · cuκ(A)) = η(1 + 0.1 · cuκ(A))

and
σn(Q̄) ≥ η(1 − cuκ(A) − 1.1 · cuκ(A)) = η(1 − 2.1 · cuκ(A)).

If we assume

2.1 · cuκ(A) < 1, (13)

σn(Q̄) > 0 so Q̄ is nonsingular.
Under this assumption, we have

κ(Q̄) ≤ 1+0.1·cuκ(A)
1−2.1·cuκ(A)

. (14)

To illustrate the behaviour of the upper bound of κ(Q̄), we plot in Figure 1
the upper bound as a function of cκ(A). We fix u = 1.12 · 10−16.
It can be seen that this upper bound explodes when 2.1 · cuκ(A) . 1 but in the
main part of the domain where 2.1 · cuκ(A) < 1 it is small and very close to
one. For instance, if we slightly increase the constraint (5) used by Björck &
Paige (1992) and assume that cuκ(A) < 0.1 then κ(Q̄) < 1.3. �
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Figure 1: Behaviour of the upper bound on κ(Q̄) as a function of cκ(A).

4. Some remarks

4.1. Another way to establish a similar result as Theorem 3.1

It is also possible to get a bound on κ(Q̄) by using inequality (2). In this aim,
we need explicitly the constant c̄2 given by Björck & Paige (1992). Using
assumptions (4) and (9), c̄2 can be set to

c̄2 = 31.6863 · n 3

2 = 1.71 · c. (15)

The details on the calculus of the constant c̄2 are given in Appendix A.
Let Q̄ have the polar decomposition Q̄ = UH. The matrix U is the closest
orthonormal matrix to Q̄ in any unitarily invariant norm. We define

G = Q̄ −U.

From Higham (1994), we know that in 2-norm the distance from Q̄ to U is
bounded by ‖I − Q̄T Q̄‖2. This means

‖G‖2 = ‖Q̄ −U‖2 ≤ ‖I − Q̄T Q̄‖2

and using (2) we get

‖G‖2 ≤ c̄2uκ(A) = 1.71 · cuκ(A). (16)

Using the same arguments as in Section 3 for the proof of Theorem 3.1, but
replacing (12) with (16), we get a similar result: that is

assuming (4) and (9), κ(Q̄) < 1.42.

This result should be compared with that of Theorem 3.1. With the same
assumptions, we obtain a slightly weaker result.
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4.2. Iterative modified Gram-Schmidt

If the assumption (9) on the condition number of A holds, then we obtain, after
a first sweep of MGS, Q̄1 satisfying (14). If we run MGS a second time on Q̄1

to obtain Q̄2, we deduce using (2) that Q̄2 is such that

‖I − Q̄T

2 Q̄2‖2 ≤ 1.71 · cκ(Q̄1)u,

so we get

‖I − Q̄T

2 Q̄2‖2 < 40.52 · un
3

2 , (17)

meaning that Q̄2 has columns orthonormal to machine precision. Two MGS
sweeps are indeed enough to have an orthonormal set of vectors Q.
We recover, in a slightly different framework, the famous sentence of Kahan

“Twice is enough.”

Based on unpublished notes of Kahan, Parlett (1980) shows that an iterative
Gram-Schmidt process on two vectors with a selective criterion (optional)
produces two vectors orthonormal up to machine precision. In this paper,
inequality (17) show that twice is enough for n vectors under assumptions (4)
and (9) with MGS and a complete a posteriori re-orthogonalization (i.e. no
selective criterion).

4.3. What can be said on κ(Q̄) when cuκ(A) > 0.1

For 2.1 · cuκ(A) < 1, the bound (14) on κ(Q̄) is well defined but when
cuκ(A) > 0.1, this bound explodes and very quickly nothing interesting can
be said about the condition number of Q̄. For 2.1 · cuκ(A) > 1, we even do not
have any bound.
Here, we ask whether or not there can exist an interesting upper bound on Q̄
when cuκ(A) > 0.1. In order to answer this problem, we consider the matrix
CERFACS ∈ R

3×3 (see Appendix B).
When we run MGS with Matlab on CERFACS, we obtain with u = 1.12 · 10−16

κ(A) = 3 · 1015, cuκ(A) = 37 and κ(Q̄) = 2 · 1014 .

Matrix CERFACS generates a very ill-conditioned set of vectors Q̄ with cuκ(A)
not too far from 0.1.
If we are looking for an upper bound of κ(Q̄), we can take the value 1.3 up to
cuκ(A) = 0.1 and then this upper bound has to be greater than 2 · 1014 for
cuκ(A) = 37.
Matrix CERFACS proves that it is not possible to increase by much the domain
of validity (i.e. cuκ(A) < 0.1) of Theorem (3.1) in order to get a more interesting
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result.
One can also remark that with CERFACS two MGS sweeps are no longer enough
since

‖I − Q̄T

2 Q̄2‖2 = 2 · 10−3.
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Björck Å. & Paige C. C. (1992) Loss and recapture of orthogonality
in the modified Gram-Schmidt Algorithm. SIAM J. Matrix Analysis and

Applications, 13, 176-190.

Higham N. J. (1994) The matrix sign decomposition and its relation to the
polar decomposition. Linear Algebra and its Applications, 212/213, 3-20.

Appendix A: Details on the calculus of the constants

In this Appendix, we justify the values of the constants c̄1, c̄2 and c such as fixed
in the paper. We state that
c̄1 = 1.853 · n 3

2 verifies (1) under assumption (4),

c̄2 = 31.6863 · n 3

2 verifies (2) under assumptions (4) and (9),

c = 18.53 · n 3

2 verifies (3) under assumptions (4) and (5).
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A value for c̄1

Under the assumption (4) Björck (1967) has shown that

A + Ē = Q̄R̄ with ‖Ē‖E ≤ 1.5 · (n − 1)u‖A‖E.

where ‖.‖E denotes the Frobenius norm.

c̄1 = 1.853 · n 3

2 verifies ‖Ē‖E ≤ c̄1u‖A‖2.

A value for c

Björck & Paige (1992) explained that the sequence of operations to obtain
the R-factor with the MGS algorithm applied on A is exactly the same as
the sequence of operations to obtain the R-factor with the Householder process

applied on the augmented matrix

(

0n

A

)

∈ R
(m+n)×n. They deduce that the R-

factor from the Householder process applied on the augmented matrix is equal to
R̄. We first present the results from Wilkinson (1965) related to the Householder

process on the matrix

(

0n

A

)

∈ R
(m+n)×n. Wilkinson (1965) works with a square

matrix but in the case of a rectangular matrix, proofs and results remain the
same. All the results of Wilkinson hold under the assumption (m + n) · u < 0.1
which is true because of (4).
Defining x = 12.36 · u, Wilkinson proves that there exists P ∈ R

(m+n)×n with
orthonormal columns such that

‖PR̄− A‖E ≤ (n − 1)(1 + x)n−2x‖A‖E . (18)

With assumption (4), we get (1 + x)n−2 ≤ 1.060053.
Let us define E1 ∈ R

n×n and E2 ∈ R
m×n by

(

E1

E2

)

= PR̄−
(

0n

A

)

.

We deduce with (18) that

‖
(

E1

E2

)

‖E ≤ 13.1023 · n 3

2 u‖A‖2. (19)

If we set

c1 = c2 = 13.1023 · n 3

2 , (20)

then we get ‖E1‖2 ≤ c1u‖A‖2 and ‖E2‖2 ≤ c2u‖A‖2.
Note that we also have

‖E1‖2 + ‖E2‖2 ≤
√

2‖
(

E1

E2

)

‖E ≤
√

2c1u‖A‖2. (21)
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With respect to MGS, Björck & Paige (1992) have proved that there exists
Ê ∈ R

m×n and Q̂ ∈ R
m×n such that

A + Ê = Q̂R̄ , Q̂T Q̂ = I and ‖Ê‖2 ≤ ‖E1‖2 + ‖E2‖2.

With (21) we get

‖Ê‖2 ≤ ‖E1‖2 + ‖E2‖2 ≤
√

2c1u‖A‖2 ≤ 18.53 · n 3

2 ,

and c = 18.53 · n 3

2 verifies ‖Ê‖2 ≤ cu‖A‖2.

A value for c̄2

Björck (1967) defines a value for c̄2. In this paper, we do not consider this value
because the assumptions on n and κ(A) that we obtain are too restricted. The
value of c̄2 from Björck & Paige (1992) requires weaker assumptions that fit the
context of this paper. From (9), we have (c + c1)uκ < 1. Under this assumption,
Björck & Paige (1992) have proved that

‖I− Q̄T Q̄‖2 ≤
2c1

1 − (c + c1)uκ
κu. (22)

With c̄2 = 31.6863 · n 3

2 and using assumption (9), we have ‖I− Q̄T Q̄‖2 ≤ c̄2κu.

Appendix B: matrix CERFACS

We have developed a Matlab code that generates as many as desired matrices
with relatively small cuκ(A) and large κ(Q̄). CERFACS is one of these:

CERFACS =





0.12100300219993308 2.09408775152625060 1.26139640819301024
−0.10439395064078592 −1.80665016070527140 −1.08825526624380808

0.21661355806776747 0.49451660567698374 −0.84174336538575500
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