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Abstract 

Pattern similarity analysis, which uses correlation to examine similarities between neural 
activation patterns evoked by different trials or conditions, are often leveraged to test 
hypotheses not easily answerable with univariate comparisons, such as how events are 
represented or processed and the relationships between representations or processing 
of events. In principle, univariate analyses of global activation and multivariate analyses 
of pattern similarity can be used to answer substantively different questions about 
psychological and neural processing. For this to hold, it is necessary that pattern 
similarity estimates are not contaminated by differences in global activation across 
experimental events. Here, we report simulated data that demonstrate that global 
activation and pattern similarity (as assessed by correlation), although theoretically 
independent, are often intertwined. We present two plausible scenarios that illustrate 
how condition-specific changes in global activation can elicit condition-specific increases 
in pattern similarity by interacting with underlying across-voxel activation patterns. First, 
we consider a scenario in which a target region contains subpopulations of voxels such 
that only some voxels in a region are sensitive to a psychological variable and the 
remaining voxels are not modulated by this variable. In this scenario, this spatial pattern 
of responsive and unresponsive voxels adds new, shared across-voxel variability for 
events in the ‘active’ condition, thereby increasing pattern similarity between these 
events. Second, we consider a scenario in which trials from all conditions elicit a shared 
across-voxel pattern of activation, but this shared across-voxel pattern is amplified for 
trials within one condition due to greater global activation. In this scenario, the change in 
activation for a given condition increases the ability to detect pre-existing, shared across-
voxel variability across events in that condition, thereby increasing pattern similarity 
between these events. Given the observed influence of global activation on pattern 
similarity, we then assess whether it is possible to statistically separate the contributions 
of global activation and pattern similarity to observed activation patterns (using 
regression approaches, matching activation across conditions, and inclusion of control 
conditions). Additional simulations demonstrate that use of these techniques is not 
always effective in removing the influence of global activation on pattern similarity ––the 
efficacy of these techniques depends on a variety of signal parameters that will likely 
vary across experiments and participants, highlighting the need for tailored control 
analyses that are targeted at addressing the particular hypotheses and potential global 
activation confounds of a given experiment.   

[Note: The reported simulations and this resulting white paper were generated in 2014. We 
share, without update, this paper given the continued relevance of understanding and controlling 
for global activation confounds when conducting multi-variate pattern analyses.] 
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Introduction 

Application of multi-voxel pattern analysis (MVPA) has greatly expanded the types of 
questions that can be addressed with functional magnetic resonance imaging (fMRI). In 
addition to enabling detection of neural signals operating at a higher spatial frequency 
than is detectable by traditional univariate analyses (e.g., Haxby et al., 2001; Haynes 
and Rees, 2006; Jimura and Poldrack, 2012; Kamitani and Tong, 2005; Norman et al., 
2006), MVPA allows for fine-grained tests of the relationships between activation 
patterns elicited by distinct events (e.g., Edelman et al., 1998; Kriegeskorte et al., 2008). 
As such, MVPA provides a level of analysis that compliments traditional univariate tests 
of global signal change (for review see Coutanche, 2013; Davis and Poldrack, 2013; 
Kriegeskorte and Kievit, 2013). Particularly useful here is pattern similarity analysis, 
which examines similarities between activation patterns evoked by different trials or 
conditions within a task (e.g., Edelman et al., 1998; Kriegeskorte et al., 2008). In these 
applications, the goal is often to test hypotheses not easily answerable with univariate 
comparisons of global increases or decreases in activation within a region, such as how 
events are represented or processed and the relationships between representations or 
processing of events (c.f., fMRI-adaptation; Grill-Spector and Malach, 2001).  

By way of example, consider a hypothetical region involved in processing a 
psychological stimulus dimension, such as scariness. Increased attention to scariness 
may increase processing or engagement in this region, resulting in a global increase in 
activation within the region. However, increased attention to scariness may also evoke 
independent changes in the region’s similarity relationships between patterns of 
activation elicited by stimuli that vary along the dimension of scariness. For example, 
attention to scariness may make activation patterns elicited by stimuli of similar 
scariness more similar, whereas the opposite may occur for stimuli that differ in their 
degree of scariness. In this example, there would be two signals underlying activation 
within a region, with global changes in activation indicating overall engagement of 
attention to scariness, and changes in pattern similarity indicating how attention to 
scariness has changed the weighting of information representation. The recent literature 
contains a number of examples where these two types of signals may exist within a 
single task, often in contexts testing cognitive theories of representation using BOLD 
fMRI data (e.g., Davis and Poldrack, 2013; Kriegeskorte and Kievit, 2013). 

In principle, univariate analyses of global activation and multivariate analyses of pattern 
similarity can be used to answer substantively different questions about psychological 
and neural processing. For this to hold, however, it is necessary that pattern similarity 
estimates are not contaminated by differences in global activation across experimental 
events. Indeed, if global activation tracks a theoretically separate component of the 
neural signal from that revealed by pattern similarity analysis, it is important to remove 
this component so that it does not interfere with measurements of pattern similarity. In 
our example, a large change in activation within a region due to shifts in attention to 
scariness could mask smaller changes in the weighting of information within the region. 
The use of correlation as a similarity measure has been argued to alleviate this problem 
as it removes information about mean activation across voxels for a given event, thus 
theoretically enabling independent assessment of similarity relationships across events. 
However, this critical assumption requires formal evaluation, as initial observations 
suggest it may not uniformly hold (e.g., LaRocque et al., 2013). 

Here, we use simulated data to demonstrate that global activation and pattern similarity 
(as assessed by correlation), although theoretically independent, are often intertwined in 
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practice. We start with the foundation that correlations are measures of the degree of 
shared across-voxel variability in the activation patterns elicited across events (items or 
conditions) in a task (Davis et al., 2014). Critically, any factor that either (a) increases 
shared across-voxel variability or (b) increases the ability to detect pre-existing shared 
across-voxel variability between activation patterns across two events will increase 
correlation-based measures of the pattern similarity of those two events.  

We present two plausible scenarios that illustrate how condition-specific changes in 
global activation can elicit condition-specific increases in pattern similarity by interacting 
with underlying across-voxel activation patterns. First, we consider a scenario in which a 
target region contains subpopulations of voxels such that only some voxels in a region 
are sensitive to a psychological variable and the remaining voxels are not modulated by 
this variable. For example, a region may span multiple functional subpopulations of 
voxels (Friston et al., 2006; Grill-Spector & Malach, 2001), or may contain 
subpopulations of voxels that are unresponsive to a task due to susceptibility artifacts or 
partial voluming effects. In this scenario, this spatial pattern of responsive and 
unresponsive voxels adds new, shared across-voxel variability for events in the ‘active’ 
condition, thereby increasing pattern similarity between these events. Second, we 
consider a scenario in which trials from all conditions elicit a shared across-voxel pattern 
of activation, but this shared across-voxel pattern is amplified for trials within one 
condition due to greater global activation. In other words, global signal serves to 
increase the gain on the expression of an activation pattern by multiplying the baseline 
activation in each voxel by a scalar. Such a scaling of responses across conditions has 
been observed in contexts comparing novel and repeated stimuli (e.g., Grill-Spector et 
al., 2006; Li et al., 1993; Weiner et al., 2010) or attended and unattended stimuli. In this 
scenario, the change in activation for a given condition increases the ability to detect 
pre-existing, shared across-voxel variability across events in that condition, thereby 
increasing pattern similarity between these events. 

Given the observed influence of global activation on pattern similarity, we then assess 
whether it is possible to statistically separate the contributions of global activation and 
pattern similarity to observed activation patterns. Here, we use several traditional 
statistical techniques — regression approaches, matching activation across conditions, 
and inclusion of control conditions. Through additional simulations, we demonstrate that 
use of these techniques is not always effective in removing the influence of global 
activation on pattern similarity. Specifically, we demonstrate that the efficacy of these 
techniques depends on a variety of signal parameters that will likely vary across 
experiments and participants, highlighting the need for tailored control analyses that are 
targeted at addressing the particular hypotheses and potential global activation 
confounds of a given experiment.   

Methods 

General simulation approach 

To examine the relationship between global activation and pattern similarity, we 
considered the ‘attention to scariness’ scenario outlined in the Introduction, in which a 
region is hypothesized to process the psychological dimension of ‘scariness’. The region 
may show an increase in global activation (reflecting differential engagement) when 
processing scary relative to non-scary stimuli, but also may independently perform a 
transformation on its inputs such that the degree of scariness of a stimulus is 
represented in the multidimensional space of across-voxel pattern of activation elicited 
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by the stimulus. Critically, in the current simulations, the region’s signal is generated to 
exhibit only an effect of scariness on global levels of activation, such that (a) activation is 
higher for scary relative to non-scary stimuli, and (b) across-voxel pattern similarity does 
not code for scariness beyond these changes in global activation. We then ask whether 
the observed pattern of data reflects this ‘ground truth’, i.e., whether the data 
demonstrate an effect of condition on activation but not on pattern similarity. Note that in 
the full scenario in the Introduction, these results would be compared to a ‘no attention to 
scariness’ condition in which neither an effect of scariness on activation or on pattern 
similarity is observed. 

All simulations were performed using R (R core team, 2014). Data were simulated as the 
sum of a ground-truth pattern of activation across voxels for each stimulus, global 
activation increases due to stimulus condition (scary/non-scary), and normally distributed 
noise (Figure 1). Ground-truth data were simulated as activation values for 50 stimuli 
across 200 voxels. A ground-truth across-voxel pattern of activation for each stimulus 
was drawn from a multivariate normal distribution. Unless otherwise stated, the 
distribution was such that the mean activation for each voxel was 1 (all units arbitrary), 
the across-voxel variance for each stimulus was 1, and the covariance across stimuli 
was .50. Note that because the mean across-voxel variance was 1, the ground-truth 
covariance is equivalent to the ground-truth correlation in all simulations. Half of the 
stimuli were assigned to the ‘non-active’ condition (here, the ‘non-scary’ condition) and 
half were assigned to the ‘active’ condition (the ‘scary condition). Condition-specific 
activation increases were assigned to the active condition in one of three ways: in the 
uniform case, every voxel received an activation increase that was constant across all 
stimuli; in the subset case, 50% of the voxels received an activation increase that was 
constant across all stimuli; in the amplified case, every voxel received a stimulus-specific 
activation increase equal to a multiple of the ground-truth activation value of that voxel 
for that stimulus (because the mean activation was greater than zero this produced an 
overall increase in activation). The amount of activation (or the multiple of the amount of 
activation) was parametrically varied from 0 to 3 in steps of 0.5. Finally, unless otherwise 
stated, a noise value drawn from a normal distribution with a mean of 0 and a variance 
of 1 was added to each voxel separately for each stimulus. 

In all cases, our measure of interest was whether pattern similarity differed across pairs 
of stimuli drawn both from the non-active (non-scary) condition (NN pairs), both from the 
active (scary) condition (SS pairs), or one stimulus drawn from the active condition and 
the other from the non-active condition (SN pairs). To test this, we computed correlations 
of the across-voxel pattern of response between all stimulus pairs and took the mean of 
these correlations for NN pairs, SS pairs, and SN pairs separately. 

This process was repeated 100 times for each simulation; all plots show mean 
correlation values and standard deviations across these 100 simulations. 

Simulations with distributed activation increases across stimuli 

In several simulations (those reported in Figures 4, S2, S3, S4, & S5) we included 
additional variability in the activation increases applied to stimuli within both conditions. 
To accomplish this, we allowed the activation applied to each stimulus in the active 

condition to vary such that it was distributed according to a 2 distribution with a mean 

that parametrically varied from 0 to 3 in steps of 0.5. The use of a 2 distribution ensured 

that activation increased for all stimuli in the active condition and that the variance of the 
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amount of activation added across stimuli increased as the mean amount of activation 
increased.  

Simulations involving a control condition 

A final set of simulations mimicked a design in which single stimuli within the two 
conditions (ten stimuli; five per condition) are presented multiple times (five times each). 
The mean covariance across stimuli was allowed to vary independently of the mean 
covariance between repetitions of the same stimulus. The mean covariance between 
repetitions of the same stimulus (within-stimulus covariance) remained set at .50, while 
the mean covariance between distinct stimuli (across-stimulus covariance) was set at 
either .25 or .50. In these simulations, pattern similarity was computed separately for 
pairs of repeated (within-stimulus) versus distinct (across-stimulus) stimuli separately for 
the non-active and active conditions.   

Procedures correcting for the influence of activation on correlation 

We applied several statistical adjustments to the data generated from the simulation 
procedures described above. Each adjustment process was repeated 100 times; all plots 
show mean adjusted values and standard deviations across these 100 simulations. 

First, we examined whether effects of activation could be removed after correlations had 
already been computed. For each pair of stimuli, we calculated (a) the correlation 
between those two stimuli and (b) the sum of the mean activation for each stimulus 
across all voxels. We regressed correlations on activation irrespective of pair type (e.g., 
whether each correlation was a NN, SS, or SN pair). We then binned the residuals by 
pair type and examined whether the means of these residuals differed by pair type. 

Second, we examined whether effects of activation could be removed from individual 
voxels before correlations are computed. We mean centered each voxel by computing 
its mean activation across the entire set of stimuli and subtracted this mean from its 
response to each individual stimulus. We then used the remaining responses for each 
voxel to compute correlations between each pair of stimuli and examined whether the 
mean correlation differed by pair type. 

Third, we examined whether condition-specific differences in correlations could be 
attenuated if stimuli from the two conditions were matched on activation via 
subsampling. In a first set of simulations we removed voxels that showed a greater 
response to stimuli in one condition relative to the other. Specifically, we performed a t-
test on each voxel comparing activation for stimuli from the non-active condition to 
activation for stimuli from the active condition. If the p-value yielded by this test was less 
than a set statistical threshold (set to .05 or .50), then the voxel was removed. If five or 
more voxels remained following this procedure, pair-wise correlations were then 
performed across the remaining voxels and mean correlations were computed for each 
pair type; if fewer than five voxels remained, the simulation was ended and not included 
in the results. In a second set of simulations we subsampled stimuli that were matched 
on mean level of activation across all voxels. Specifically, we used the R package 
‘MatchIt’ (discarding units from both conditions that fell outside of the common support 
and then using nearest neighbor matching; Ho et al., 2011; 2007) to identify and retain a 
subset of stimuli that were matched on activation. If 10 or more stimuli remained in each 
condition following this procedure, pair-wise correlations were then performed across the 
remaining stimuli and mean correlations were computed for each pair type; if fewer then 
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10 stimuli remained in either condition, the simulation was ended and not included in the 
results.  

Results 

Condition-specific increases in global activation can alter multivariate pattern 
similarity 

First, we examined whether condition-specific increases in global activation can produce 
condition-specific changes in across-voxel pattern similarity. In other words, we 
examined whether what would traditionally be labeled an effect of condition on activation 
could produce what appears to be an effect of condition on pattern similarity. To do so, 
we first simulated ground-truth patterns of stimulus-specific voxel responses to scary 
and non-scary stimuli. These across-voxel patterns were either uncorrelated (correlation 
= 0.00) or correlated (correlation = 0.50). Importantly, these ground-truth correlations 
between stimuli did not differ as a function of stimulus condition. We then simulated, on 
top of these patterns, either a global increase in activation (scary stimuli) or no global 
change in activation (non-scary stimuli). The global increase in activation for the scary 
stimuli took one of three forms: a uniform increase across all voxels (uniform), a uniform 
increase in only a subset of voxels (subset), or a scaled increase across all voxels that 
amplified pre-existing patterns of responses across voxels (amplified). The final 
observed pattern across voxels for each stimulus was the sum of the ground-truth 
pattern of response across voxels, any effects of activation, and normally distributed 
noise (Figure 1). We then assessed whether the mean correlation of the observed 
across-voxel patterns of response for two stimuli, our measure of pattern similarity, 
differed for pairs of stimuli drawn from the same condition (scary—scary (SS) or non-
scary—non-scary (NN)) relative to pairs of stimuli drawn from different conditions 
(scary—non-scary (SN)). Importantly, any increased pattern similarity for within-condition 
pairs of stimuli (SS and / or NN) relative to across-condition pairs of stimuli (SN) would 
be mistaken as evidence that the region is coding for scariness in a manner that extends 
beyond a change in global activation, even though the increased similarity would be 
directly due to the change in global activation. 

Consistent with the notion that correlation is invariant to mean levels of activation, we 
found that the uniform activation increase yielded no differences in correlations across 
pair types, regardless of the underlying correlation between stimuli (Figure 2a). 
However, consistent with our previous work highlighting that observed correlations index 
the proportion of shared (relative to total) across-voxel variability between events (Davis 
et al., 2014), an increase in activation that was not uniform across voxels did produce 
differences in correlation values across pair types. Specifically, relative to SN pairs, the 
subset activation increase yielded a selective increase in SS pair correlations when the 
underlying stimulus patterns were uncorrelated, and an additional smaller increase in NN 
pair correlations when the underlying stimulus patterns were correlated (Figure 2b). This 
is because the additional activation added shared variability to the SS pairs, and, when 
the underlying correlation was greater than zero, also added detrimental unshared 
variability to the SN pairs. The amplified increase in activation yielded no differences in 
correlations across conditions when the underlying stimulus patterns were uncorrelated, 
but yielded an increase in SS pair correlations and a decrease in NN pair correlations 
(relative to SN pairs) when the underlying stimulus patterns were correlated (Figure 2c). 
Here, the additional activation increased the ability to detect pre-existing shared 
variability and brought the observed correlation closer to the true correlation. The SS 
pairs benefitted most from this increase in the ability to detect shared variance (from the 
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two scary stimuli), but the SN pairs also benefitted from the increased ability to detect 
shared variability (from the one scary stimulus). In all cases, these effects became 
stronger as the magnitude of global activation increased. 

Can we statistically correct for the influence of global activation on pattern 
similarity? 

We next asked whether it is possible to statistically correct for the effects observed in the 
previous simulations. In other words, can we use statistical adjustments to obtain 
estimates of pattern similarity that are independent of global increases in activation? To 
do so, we used our simulation framework to examine whether traditional statistical 
adjustment techniques are able to recover a null pattern similarity effect in the face of 
our subset and amplified activation effects. Because the amplified simulation relies on a 
condition-independent correlated pattern of response across voxels, the covariance 
parameter for all simulations was set to .50 (i.e., ground-truth across-voxel patterns had 
a mean correlation of .50). Simulations in which the covariance parameter was set to .00 
(i.e., ground-truth across-voxel patterns had a mean correlation of .00) can be found in 
the Supplementary Materials. 

Approach one: partial out activation after pattern similarity has been computed 

One family of statistical approaches to mitigate the influence of effects of activation on 
pattern similarity is to calculate correlation and activation metrics using the observed 
data and then control for activation at the final level of the analysis, i.e., to partial out the 
effect of activation from one or more of the variables of interest before examining how 
these variables relate to each other. Critically, the success of this family of approaches 
hinges on the degree to which the relationship between activation and correlation is 
successfully captured by the model used to link these measurements.  

To examine the efficacy of this approach in recovering ground-truth correlations, we 
simulated data using the subset and amplified simulations previously described. For 
each pair of stimuli we calculated (a) the observed correlation between the stimuli and 
(b) the sum of the activation (mean activation across voxels for a given stimulus) of the 
two stimuli. We regressed correlations on activation and then examined whether the 
residuals from this regression differed by pair type. Because this procedure will remove 
not only effects related to activation but also the intercept, i.e., the mean correlation 
across stimulus pairs, we focus on whether the pattern of data yielded by this procedure 
reflects the qualitative rather than quantitative pattern of ground-truth correlations. 

The results of this statistical adjustment are shown in Figure 3-top (see Figure S1 for 
results from the uniform simulation and simulations in which the covariance parameter 
was set to .00). In the case of the subset simulation this procedure created a new 
pattern of data that differed both from the ground-truth data and from the observed data: 
NN and SS correlations were now equivalent, and both were greater than SN 
correlations. The reason for this becomes apparent when looking at the relationship 
between correlation and activation from a single representative simulation (Figure 5a): 
the relationship between correlation and activation is not well modeled by the linear 
function used in the regression and the residuals from this model reflect this poor fit. In 
the case of the amplified simulations this procedure largely eliminated the previously 
observed condition-specific differences in observed correlations. Again, data from a 
single representative simulation (Figure 5a) reveal that this is due to the relatively linear 
relationship between correlation and activation. Importantly, even in the amplified case, 
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the use of a linear function will no longer be successful if correlation does not scale 
linearly with activation; we can expect the linearity of this relationship to break down 
when correlations become bounded by floor or ceiling effects, such as under conditions 
of high noise or high signal. Finally, although for simplicity we used an increase in 
activation that was constant across all stimuli within the scary condition, additional 
simulations confirmed that similar results were obtained when the magnitude of the 
signal increase was allowed to vary across scary stimuli (inducing a relationship 
between activation and correlation within a given pair type rather than simply a coarse 
relationship between activation and correlation across pair types; Figure S2).   

These results confirm that attempts to partial out the effect of activation from correlation 
estimates can successfully recover the true underlying relationship between correlation 
and condition only if the model used to link activation and correlation successfully 
captures the relationship between these two measurements. The success of this link 
depends on the function used to compute a single measure of activation across two 
distinct stimuli (e.g., additive, multiplicative, maximum) and on the function used to relate 
correlation and activation (e.g., linear, quadratic), both of which are difficult to specify a 
priori.  

Approach two: partial out activation before pattern similarity has been computed 

A second family of statistical approaches to mitigate the influence of activation on 
pattern similarity is to attempt to control for mean activation on a voxel-wise basis before 
calculating pattern similarity across voxels. Critically, the success of this family of 
approaches hinges on the degree to which unwanted effects of activation can be 
isolated and removed at the level of the individual voxel. 

To examine the efficacy of this approach in recovering ground-truth correlations, we 
again simulated data using the subset and amplified simulations described above. We 
then centered each voxel by subtracting the mean activation of that voxel across all 
stimuli from that voxel’s response to each stimulus, computed correlations across the 
remaining values in each voxel, and examined whether these correlations differed by 
pair type. 

This statistical adjustment was not successful in recovering the qualitative pattern of 
ground-truth correlations in either the subset or amplified case (Figure 3-bottom; see 
Figure S1 for results from the uniform simulation and simulations in which the 
covariance parameter was set to .00). Specifically, mean centering failed to isolate and 
remove the critical activation component driving changes in the patterns of activity 
across voxels. In the subset case, the mean response in each voxel incorporates both 
the magnitude of the response to non-scary stimuli and to scary stimuli, and thus 
removing the mean for a given voxel only removes part of the activation that was added 
to scary stimuli, and removes baseline activation from the non-scary stimuli. In the 
amplified case, the increase in pattern similarity is driven by a unique pattern of 
activation that is specific to each voxel-by-stimulus pair, and thus attempts to isolate and 
remove this activation by subtracting a single constant across all stimuli were 
unsuccessful.  

In failing to recover the qualitative pattern of ground-truth correlations, these statistical 
adjustments produced new, undesirable differences in correlations across pair types. 
The precise pattern of results reflects several co-occurring processes (see Figure 5b for 
a representative single simulation). First, mean centering breaks up pre-existing ground-
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truth covariance across all stimuli, so correlations move toward zero (even in the case in 
which no activation was added to the scary stimuli). Second, mean centering further 
decreases across-condition (SN) correlations because consistent responses across 
voxels that were previously shared across condition (but were of different magnitudes) 
become anti-correlated with respect to condition. Third, only part of the activation, and 
thus only part of the shared across-voxel variability, added to the scary stimuli is 
removed, thus attenuating, but not eliminating, inflated SS correlations. Finally, new 
shared across-voxel variability is added to the non-scary stimuli, inflating NN 
correlations. Additional simulations confirmed that similar results were obtained when 
the magnitude of the activation increase was allowed to vary across stimuli (Figure S2). 

To summarize, attempts to partial out activation from individual voxels before pattern 
similarity was computed were unsuccessful. The effects for each given pair type 
depended upon whether removing the mean from each voxel impacted shared or 
unshared across-voxel variability. Critically, in no instance did this approach serve to 
recover the qualitative pattern of pre-existing ground-truth correlations across conditions, 
and instead produced entirely new patterns of data. 

Approach three: match activation across conditions 

A third family of statistical approaches to mitigate the influence of activation on pattern 
similarity is to remove voxels or stimuli in order to match activation across conditions. 
Critically, the success of this family of approaches hinges on the degree to which 
unwanted effects of activation are confined to a limited number of identifiable individual 
voxels or identifiable individual stimuli. 

To examine the efficacy of this approach in recovering ground-truth correlations, we 
simulated data using the subset and amplified simulations but modified the simulations 
to allow for sufficient variability in activation across scary stimuli to perform matching 
procedures. We then either removed individual voxels that showed differential activation 
for scary versus non-scary stimuli (identified at either p < .05 or p < .50) or subsampled 
stimuli such that each remaining scary stimulus was matched in activation to a specific 
non-scary stimulus. We then computed mean correlations for each pair type using only 
the remaining voxels or the remaining stimuli. 

The results of the voxel removal procedure are displayed in Figure 4 (see Figure S3 for 
results from the uniform simulation and simulations in which the covariance parameter 
was set to .00). Theoretically, this adjustment should be especially useful in attenuating 
increases in pattern similarity that arise from the subset case: selectively eliminating the 
subset of voxels that show an activation increase for the scary stimuli should recover the 
ground-truth correlations. Some success for this approach can indeed be seen in the 
subset case when voxels were removed if they discriminated between conditions at p < 
.05 (see Figure 5c for a representative single simulation). However, there is a small 
trend in which both SS and NN correlations are less than SN correlations, and this 
pattern is accentuated when voxels were removed if they discriminated between 
conditions at p < .50. This new pattern arises when voxels that are not part of the 
problematic subset are removed. Specifically, individual voxels will vary in activation 
levels, with voxels with more extreme activation exerting a greater influence on 
correlation values relative to voxels with more central activation values; the removal of 
voxels that have consistent low or high activation levels for one condition will selectively 
lower the corresponding within-condition correlations. In the subset case, the remaining 
‘non-subset’ voxels do not systematically differ as a population in terms of activation for 
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scary and non-scary stimuli. In this case, voxels that exhibit consistently high or low 
activation for scary or non-scary stimuli are removed, thus removing shared across-voxel 
variability from both SS and NN pairs while removing unshared across-voxel variability 
from SN pairs. A similar principle applies to the amplified case. Here, however, there is 
no ‘subset’ of voxels that can be selectively removed. Instead, voxels that show 
consistently high activation across conditions become the voxels that show the greatest 
difference between conditions (because the difference is a multiple of the baseline 
response); when these voxels are removed, all correlations are attenuated, with the 
strongest attenuation in SS correlations (see Figure 5c for a representative single 
simulation).  

The stimulus matching procedure attenuated, but did not always completely eliminate, 
pattern similarity differences across pair types (Figure 4); the success of the procedure 
diminished as the difference in activation between the two conditions grew, presumably 
because the matching procedure grew less successful (note that in our simulation 
framework the activation increase in the subset condition is half that of the amplified 
condition). Specifically, if the two conditions are roughly matched on activation but still 
differ systematically such that stimuli from one condition have higher activation than 
stimuli from the other condition or such that the distribution of activation values differs 
across condition, the matching procedure will not be successful. In practice, however, 
the success of the matching procedure can be checked using balance metrics before 
computing pattern similarity measures (see Figure 5d for representative single 
simulations). 

To summarize, the success of recovering ground-truth correlations by removing 
individual voxels that showed an effect of condition on activation depended on how well 
such a subset of voxels could be isolated and removed. For example, this procedure 
worked well in the subset case using a threshold of p < .05 but not using a threshold of p 
< .50. Unfortunately, it is challenging to know a priori what the ‘right’ threshold is, as this 
will vary with the signal properties of a given experiment. In practice, however, visual 
and/or automated inspection of the data (e.g., histograms of activation differences 
between conditions across voxels) may ultimately prove useful in determining whether 
this procedure is appropriate and, if so, guiding an appropriate choice of threshold. The 
success of attempts to recover ground-truth correlations by retaining a subset of stimuli 
matched on activation depended on the success of the matching procedure, highlighting 
the importance of balance metrics in evaluating the success of the matching procedure 
and in determining whether matching is feasible for a given data set. 

Approach four: include a control condition matched on activation 

The final approach that we examined was the inclusion of a planned control condition in 
the experimental design. Specifically, we looked at the inclusion of additional control 
cells that are matched with the cells of interest on their levels of a psychological 
dimension (and thus, theoretically, levels of activation), but in which one does not expect 
to see the pattern similarity effect of interest. An interaction, such that a pattern similarity 
effect is selective to, or greater for, the cells of interest could argue against the possibility 
that differences in activation across levels of this psychological dimension generated the 
observed pattern similarity effect. However, as we demonstrate below, the success of 
this approach relies on similar baseline levels of pattern similarity across the control and 
experimental conditions.  
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We simulated data mimicking an extension of the design used in the simulations above. 
Specifically, we simulated a design in which each scary or non-scary stimulus is 
presented multiple times. Based on a hypothesis that a given region performs a 
transformation on its inputs that changes where stimuli are situated relative to one 
another in a multidimensional space, one would predict that the observed increase in 
across-stimulus pattern similarity (pattern similarity between distinct stimuli) for scary 
relative to non-scary stimuli would not be observed when examining within-stimulus 
pattern similarity (pattern similarity between repetitions of the same stimulus). We 
simulated a 2 x 2 design such that across-stimulus and within-stimulus conditions both 
included scary and non-scary levels: if the above hypothesis is correct, both conditions 
should show similar effects of scariness on activation, but only the across-stimulus 
condition should show an effect of scariness on pattern similarity. Thus, the key question 
of interest is whether there is an interaction such that the effect of scariness on pattern 
similarity differs for across-stimulus versus within-stimulus pairs. 

First, we simulated data in which ground-truth across-stimulus and within-stimulus 
correlations were of equivalent magnitude (both covariance parameters = .50). In this 
case, neither the subset nor amplified case yielded a pattern of data suggestive of the 
critical interaction: both the across-stimulus and within-stimulus pairs had equivalently 
higher SS relative to NN correlations (Figure 6; see Figure S4 for results from the 
uniform simulation and simulations in which the magnitude of the activation increase was 
allowed to vary across stimuli). This pattern of results would suggest that differences in 
activation between scary and non-scary stimuli (rather than a change in how stimuli are 
situated relative to one another in a multidimensional space) yielded pattern similarity 
differences between scary and non-scary stimuli.  

However, this approach was not successful (i.e., the data yielded the critical interaction) 
when we simulated data in which ground-truth within-stimulus correlations were greater 
than ground-truth across-stimulus correlations (covariance parameters for within-
stimulus and across-stimulus pairs were .50 and .25, respectively; Figure 6; see Figure 
S4 for results from the uniform simulation and simulations in which the magnitude of the 
activation increase was allowed to vary across stimuli). Specifically, in the subset case, 
the magnitude of the increase in pattern similarity for SS relative to NN pairs was greater 
for across-stimulus pairs relative to within-stimulus pairs. In this case, the increase in 
activation adds new shared across-voxel variability to the existing patterns, and the 
effect of a fixed increase in activation on pattern similarity is nonlinear and depends on 
pre-existing levels of shared variability. Here, the same increase in activation led to a 
greater increase in pattern similarity for across-stimulus SS pairs than within-stimulus SS 
pairs because pre-existing shared variability was lower for across-stimulus relative to 
within-stimulus SS pairs. Conversely, in the amplified case, the magnitude of the 
increase in pattern similarity for SS relative to NN pairs was smaller for across-stimulus 
pairs relative to within-stimulus pairs. Although this interaction was in the opposite 
direction as hypothesized in the current framework, it could be interpreted as evidence 
for a different mechanism of interest, such as selective sharpening of individual stimulus 
representations for scary stimuli. In this case, the increase in activation allows for the 
ability to detect pre-existing shared across-voxel variability, and, again, the effect of a 
fixed increase in activation on pattern similarity is nonlinear and depends on pre-existing 
ability to detect shared variability. Here, the same increase in activation led to a greater 
increase in pattern similarity for within-stimulus SS pairs than across-stimulus SS pairs 
because pre-existing observed pattern similarity was farther from the ground-truth 
pattern similarity for within-stimulus relative to across-stimulus pairs.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.29.542175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542175
http://creativecommons.org/licenses/by-nc/4.0/


To summarize, attempts to include a planned control condition in the experimental 
design to mitigate concerns about influences of activation on pattern similarity relies on 
the assumption that ground-truth correlations are matched between the experimental 
and control conditions. When this is not the case, interactions may emerge that do not 
reflect the hypothesized selectivity of a pattern similarity effect to a given condition.   

Discussion 

The present work demonstrates two ways in which differences in global activation across 
conditions can produce condition-specific differences in pattern similarity measures. 
Moreover, it suggests that the ability to statistically adjust for these differences in global 
activation is heavily dependent upon signal parameters that will likely vary widely across 
experiments and in practice are difficult to isolate outside of the simulation framework 
employed here.  

Consistent with the notion that correlations are invariant to mean differences in activation 
across conditions, we found that pattern similarity was unaffected by activation increases 
that were uniform across all voxels. However, a condition-specific increase in activation 
that was restricted to a subpopulation of voxels did yield pattern similarity differences 
across conditions. Specifically, pattern similarity for stimuli within the condition with 
higher activation (SS pairs) increased due to added shared across-voxel variability, 
whereas pattern similarity between stimuli in different conditions (SN pairs) decreased 
due to added unshared across-voxel variability. Here we focused on a simple scenario in 
which a region has two distinct subpopulations of condition-responsive and condition-
nonresponsive voxels; however, these pattern similarity effects can arise in any situation 
in which the amount of activation for a given condition is heterogeneous across voxels 
(Davis et al., 2014).  

In addition, we found that pattern similarity was affected by a condition-specific increase 
in activation that amplified the response in each voxel according to its baseline response 
to each individual stimulus. While there has been attention to the idea that correlation 
(and MVPA in general) is sensitive to the degree of signal (here, activation) relative to 
noise (Smith et al., 2011; Tong et al., 2012), there has been little focus on this sensitivity 
as it pertains to differences in signal-to-noise ratio across conditions within a single 
anatomical region (but see LaRocque et al., 2013). Here, we demonstrate that this type 
of activation increase boosts the ability to detect pre-existing shared across-voxel 
variability for stimuli in the condition with higher activation (here, scary stimuli), resulting 
in increased pattern similarity for SS pairs and, to a lesser extent, SN pairs. For 
simplicity we simulated an increase in signal with no concurrent increase in noise, 
however, this effect only requires that the increase in signal outweighs any increase in 
noise.   

Although here we used discrete conditions for illustrative purposes, these results extend 
to any circumstance in which activation varies systematically with experimental effects of 
interest. For example, a continuous case in which activation varies parametrically along 
a dimension of interest could produce a similarly graded pattern similarity effect. More 
broadly, the demonstration that activation impacts pattern similarity has implications for 
any comparison of pattern similarity across groups of stimuli that differ in activation, such 
as comparisons of stimuli encountered at different time points within a scan session. 

As most of our simulations suggest that increases in activation for a given condition will 
increase pattern similarity for pairs of stimuli within that condition, one question of 
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interest is whether increases in activation can decrease pattern similarity. Although not 
simulated here, there are several instances in which this could be the case. For 
example, if an increase in activation manifested as a randomly distributed effect across 
voxels and stimuli, this effect would add noise to the data and decrease any pre-existing 
nonzero correlation. Additionally, if the underlying correlation across stimuli were 
negative, an amplified activation increase would move the observed correlations closer 
to the true negative correlation. A related question is how a decrease in activation 
relative to baseline will affect pattern similarity. In the subset case, this would still 
amount to the addition of meaningful variance, thereby increasing pattern similarity. 
Conversely, in the amplified case a reduction in the ability to detect shared variance 
would move correlations closer to zero. 

The observed relationship between activation and pattern similarity could theoretically be 
overcome if it were possible to statistically adjust for the influence of activation on 
pattern similarity and recover an estimate of pattern similarity that is independent of 
activation. To this aim, we examined the efficacy of several statistical approaches for 
removing the influence of activation on pattern similarity. 

The success of attempts to remove the influence of activation after correlations were 
already computed was dependent on the degree to which the relationship between 
activation and correlation was linear. When our linear function was a poor fit to the data, 
the resulting pattern similarity estimates were qualitatively altered both from the originally 
observed pattern of data and from the ground-truth pattern of data. Although it is 
possible that a different function (such as a quadratic function) or a different method of 
combining activation across the two stimuli in a given pair (such as taking the minimum 
activation across the two stimuli) may have been more successful in attenuating the 
relationship between correlation and activation in our simulations, it is virtually 
impossible to infer these functions a priori. One may also ask if our failure to successfully 
remove the influence of activation arose from our specific approach, which was akin to a 
semipartial correlation between correlation and pair type. It is likely that different 
approaches will be most successful in different situations, and our example here is 
meant to illustrate the general circumstances under which this family of approaches can 
succeed or fail. Finally, although not simulated, similar statistical corrections could be 
done at the participant-level, such that condition-specific differences in correlation and 
activation for each participant are entered into a regression. The success of this 
approach will again rely on the extent to which the regression properly models the 
relationship between activation and correlation. The effect of a fixed change in activation 
on correlations will depend on a number of signal parameters (such as baseline 
correlation and noise) that will differ across participants, which may once again prove 
difficult to model with a single function that is specified a priori.     

Attempts to partial out activation at the voxel level by mean centering did not isolate and 
remove the critical activation components from each voxel and recover ground-truth 
correlations, but instead qualitatively changed the pattern of the observed data (see also 
Garrido et al., 2013). First, mean centering broke up pre-existing covariance across 
stimuli, lowering all correlations. On top of this, the precise effect on each pair type 
depended on how subtracting a constant (the mean) impacted the degree of shared 
variability across those pairs of stimuli, but in no case did mean centering recover the 
true underlying pattern of data.  

Attempts to match stimuli from each condition on activation yielded mixed success. 
Selectively removing voxels that differentiated between conditions yielded initial success 
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at a stringent statistical threshold of p < .05. Importantly, the success for the subset case 
came by selectively removing voxels that showed an effect of condition on activation, 
whereas success for the amplified case was merely a byproduct of the fact that this 
procedure removed voxels that lowered SS correlations more than they lowered NN 
correlations. However, when voxels were removed using a more liberal threshold of p < 
.50, this qualitatively changed the pattern of data by removing voxels that were 
differentially important for within-condition correlations (a new mechanism in the subset 
case, and an overextension of the existing mechanism in the amplified case). Critically, 
the more stringent threshold was the ‘correct’ threshold here due to specific signal 
properties of the simulated data set, but in practice the ‘correct’ threshold will vary with 
each experiment. Given the difficulty in selecting the ‘correct’ statistical threshold for 
voxel removal, a potential avenue for future work may be to use unsupervised learning 
approaches to identify and remove subpopulations of voxels that show condition-specific 
changes in activation. Subsampling stimuli to match activation across conditions was 
successful when the distribution of activation could be well matched across conditions, 
but did not fully attenuate the increase in SS correlations when the matching procedure 
became less successful. Importantly, although here we included all simulations that 
matched enough stimuli (regardless of the success of the nearest neighbor matching 
procedure), in practice it is possible to use balance metrics that are independent of 
pattern similarity measures to assess the success of multiple, more sophisticated 
matching, thus providing a priori guidance not available using other adjustment 
approaches (Ho et al., 2011; 2007). 

It is important to note that all of the approaches described above rely on measurable 
differences in activation across conditions. Without such differences, any attempts to 
correct for, or match on, activation will be fruitless. Situations in which (a) distinct 
subpopulations of voxels respond with an activation increase to distinct conditions or (b) 
both positive and negative deflections from baseline activation are scaled will produce 
similar pattern similarity results but fail to produce any differences in activation across 
conditions, making them inherently uncorrectable by any of these approaches. 

Finally, we attempted to control for activation using a two-factor experimental design. 
The logic is that a set of control conditions can be matched on activation to the 
experimental conditions but not yield the same pattern similarity effect, making an 
interaction a critical indicator of a pattern similarity effect that extends beyond any effect 
driven by activation alone. We found that this logic held true when the control and 
experimental conditions were matched on baseline pattern similarity. However, when the 
control and experimental conditions were not matched on baseline pattern similarity, this 
control proved ineffective. Specifically, the impact of both the subset and amplified 
increases in activation depended on pre-existing levels of pattern similarity, thereby 
impacting the control and experimental conditions differently and yielding the critical 
interaction. However, the interactions yielded in these cases were quantitative 
interactions; the presence of a cross-over interaction may provide better assurance the 
results of interest are not driven by activation differences across conditions.  

Overall, the success of any given statistical adjustment was highly dependent upon 
signal parameters that cannot be easily observed by the experimenter, such as how 
effects of activation manifest across voxels and across stimuli. Further complicating this 
problem is that here we considered two simplified scenarios. In the subset case, only 
some voxels responded to a given manipulation and the nature of the response was 
uniform across voxels and across stimuli. In the amplified case, all voxels responded to 
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a given manipulation and the nature of the response was voxel-by-stimulus specific such 
that it increased the gain on a pre-existing response. Although here we explored these 
scenarios separately, they are undoubtedly intermixed in practice. Within a given region, 
one may observe a combination of responsive and unresponsive voxels, with the 
responsive voxels showing a mix of uniform, voxel-specific (Davis et al., 2014), and 
voxel-by-stimulus-specific responses. Thus, there is no easy way to know what ‘case’ 
one is observing and no general rule about how activation and pattern similarity will 
relate to one another, further complicating the possibility of selecting the ‘correct’ 
statistical adjustment for a given set of data. Moreover, although here we simulated data 
in which there is an effect of condition on activation but no direct effect of condition on 
pattern similarity, in practice it is likely that the effects of global activation on pattern 
similarity will be intermixed with direct effects of condition on pattern similarity. Additional 
simulations (Supplemental Text and Figures S5 and S6) revealed that condition-
specific global increases in activation can amplify, attenuate, eliminate, or reverse direct 
effects of condition on pattern similarity. Moreover, the statistical adjustments considered 
here generally do not recover these ground-truth direct effects of condition on pattern 
similarity when these effects are (a) contaminated by effects of global activation on 
pattern similarity, (b) paired with an effect of condition on global activation that does not 
influence pattern similarity (e.g., the uniform case), and in some cases (c) when there is 
no effect of condition on global activation. The exception to this finding was subsampling 
to match stimuli in each condition on activation, likely because this approach does not 
rely on any assumptions about the nature of the relationship between activation and 
correlation. 

Even when considering the above challenges, the simplified scenarios examined here 
do have signatures that may be, in some cases, distinguished from pattern similarity 
effects arising from normally distributed condition-specific differences across voxels. For 
example, subset responses yield multimodal distributions of activation across voxels, 
and amplified responses yield differences in across-voxel variability across conditions. 
Improved methods for visualizing the high dimensional space of across-voxel responses 
within a region may help to identify these signatures when possible. Similarly, comparing 
the properties of the observed response to those of simulated data generated using the 
hypothesized response mechanism may also help to identify important deviations 
between observed and simulated data.  

The present simulations explored how activation can affect pattern similarity and the 
degree to which statistical adjustments can correct for these influences and / or yield 
unintended consequences. We demonstrate that the relationship between activation and 
pattern similarity, along with the efficacy of statistical corrections for activation, will vary 
according to experimental design and participant-specific signal parameters. This 
variability in the relationship between activation and pattern similarity suggests a need 
for explicit justification of why a specific adjustment for activation is (or is not) being used 
during pattern similarity analyses and consideration of how signal parameters will affect 
the possible outcomes of this adjustment. It also highlights the relative power of 
approaches, such as subsampling stimuli matched on activation, that make no a priori 
assumptions about the relationship between activation and pattern similarity. As the use 
of pattern similarity analyses continues to grow across domains of cognition, from 
perception to memory to action, the continued development of such statistical 
techniques for disentangling activation and pattern similarity will be increasingly 
important for drawing accurate inferences.
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Figure 1. Simulation approach. Activation was added to scary stimuli as (a) a uniform 
increase across all voxels (uniform case); this increase in activation has no effect on 
shared across-voxel variability across conditions, (b) a uniform increase for 50% of the 
voxels (subset case); this increase in activation adds new shared across-voxel variability 
to the scary stimuli, or (c) a stimulus-specific increase across all voxels that is equal to a 
multiple of the baseline response to each stimulus (amplified case); this increase in 
activation amplifies and allows for detection of the pre-existing shared across-voxel 
variability for scary stimuli (in the face of noise). Note that randomly distributed noise 
was also added to the final simulated patterns of response (not pictured here). 
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Figure 2. Effects of increases in activation on multivariate pattern similarity. Points 
indicate the mean observed correlation for pairs of stimuli at parametrically varying 
levels of an increase in activation for stimuli in the scary condition; note that 0 on the x-
axis indicates no increase in activation. Error bars are standard deviation across 100 
simulations. Dashed lines indicate ground-truth levels of correlation (which do not vary 
by condition). Left-right: activation was added to stimuli in the scary condition as (a) a 
uniform increase across all voxels (uniform case), (b) a uniform increase for 50% of the 
voxels (subset case), or (c) a stimulus-specific increase across all voxels equal to a 
multiple of the baseline response to each stimulus (amplified case). Top-bottom: 
underlying correlation across voxels was set to .00 or .50. NN = pairs of stimuli both 
drawn from the non-scary condition, SS = pairs of stimuli both drawn from the scary 
condition, SN = pairs of stimuli in which one was drawn from the scary condition and one 
was drawn from the non-scary condition, corr. = correlation. 
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Figure 3. Multivariate pattern similarity following regression adjustments for the effect of 
activation. Points indicate mean adjusted correlation estimate for pairs of stimuli at 
parametrically varying levels of an increase in activation for stimuli in the scary condition; 
note that 0 on the x-axis indicates no increase in activation. Error bars are standard 
deviation across 100 simulations. Light traces indicate mean observed (unadjusted) 
correlation. Left-right: activation was added to stimuli in the scary condition as either (a) 
a uniform increase for 50% of the voxels (subset case), or (b) a stimulus-specific 
increase across all voxels equal to a multiple of the baseline response to each stimulus 
(amplified case). Top-bottom: (top) residuals after regressing correlation on activation 
across all pairs of stimuli; (bottom) correlations between residuals after mean-centering 
each voxel. NN = pairs of stimuli both drawn from the non-scary condition, SS = pairs of 
stimuli both drawn from the scary condition, SN = pairs of stimuli in which one was 
drawn from the scary condition and one was drawn from the non-scary condition. 
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Figure 4. Multivariate pattern similarity following subsampling to match on activation. 
Points indicate mean adjusted correlation estimate for pairs of stimuli at parametrically 
varying levels of an increase in activation for stimuli in the scary condition; note that 0 on 
the x-axis indicates no increase in activation. The magnitude of this increase in 

activation was distributed across stimuli according to a 2 distribution with a 

parametrically varying mean. Error bars are standard deviation across 100 simulations. 
Light traces indicate mean observed (unadjusted) correlation. If fewer than 5 of the 100 
simulations (subsampling attempts) were successful for a given combination of 
parameters, the results for this combination of parameters are not included. Left-right: 
activation was added to stimuli in the scary condition as either (a) a uniform increase for 
50% of the voxels (subset case), or (b) a stimulus-specific increase across all voxels 
equal to a multiple of the baseline response to each stimulus (amplified case). Top-
bottom: (top) observed correlations after removing voxels showing a significant 
difference in activation between scary and non-scary stimuli at p < .05; (middle) 
observed correlations after removing voxels showing a significant difference in activation 
between scary and non-scary stimuli at p < .50; (bottom) observed correlations after 
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retaining only a subset of stimuli that are matched on mean activation across voxels. NN 
= pairs of stimuli both drawn from the non-scary condition, SS = pairs of stimuli both 
drawn from the scary condition, SN = pairs of stimuli in which one was drawn from the 
scary condition and one was drawn from the non-scary condition. 
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Figure 5. Representative single simulations illustrating failed and successful statistical 
adjustments for the influence of global activation on pattern similarity. All simulations had 
an activation increase parameter of 2, with the exception of the stimulus subsampling 
simulation (panel (d)), which had an activation increase parameter of 1 (matching on 
activation was not possible with an activation increase parameter of 2). (a) Observed 
correlations (top) and residual correlations after regressing observed correlation on 
activation across all pairs of stimuli (bottom) in (left) a case in which the regression 
function does not fit the data well (here, a representative subset case) and (right) a case 
in which the regression function fits the data well (here, a representative amplified case). 
Points indicate all possible pairs of stimuli; line indicates the best-fit linear regression line 
relating activation and correlation. When the regression function does not capture the 
relationship between activation and correlation, a new pattern of results emerges in the 
residuals; when the regression function does capture the relationship between activation 
and correlation, the residuals reflect the qualitative pattern of ground-truth correlations 
(no difference in correlation across pair type). (b) Observed (top) and mean-centered 
(bottom) across-voxel response to each stimulus in a representative subset case. Light 
traces indicate the response of each voxel to individual stimuli; gray line indicates the 
mean response of each voxel across all stimuli. Mean centering removes across-voxel 
variability that is shared across all stimuli, only removes some of the shared across-
voxel variability that is selective to the scary stimuli, and adds new shared across-voxel 
variability to the non-scary stimuli. (c) Mean voxel-wise responses to scary and non-
scary stimuli after subsampling voxels to match on mean activation (i.e., after removing 
voxels that respond differentially to the two conditions at p < .05) in (left) a case in which 
voxels contributing to the increase in SS correlations cannot be isolated (here, a 
representative amplified case) and (right) a case in which voxels contributing to the 
increase in SS correlations can be isolated (here, a representative subset case). Points 
indicate individual voxels that were either kept or removed; line indicates identity line 
such that mean activation is equal for scary and non-scary stimuli. Voxels that are far 
from the identity line and have low variance across stimuli within conditions are most 
likely to be removed. When voxels inflating SS correlations cannot be isolated, voxels 
that increase correlations within a given condition (voxels that have relatively high or low 
activation for that condition and have low variability within that condition) and voxels that 
contribute to low across-condition correlations (voxels that consistently differ in activation 
across the two conditions) are removed, decreasing within-condition correlations and 
increasing across-condition correlations; when voxels inflating SS correlations can be 
isolated, few voxels outside of this subset of voxels are removed and the pattern of 
ground-truth correlation can be recovered. (d) Quantile-quantile plots of activation for 
scary and non-scary stimuli before (top) and after (bottom) subsampling stimuli to match 
on mean activation in (left) a case in which the distributions of activation for the 
subsampled scary and non-scary stimuli are not well matched (here, a representative 
amplified case) and (right) a case in which the distributions of activation for the 
subsampled scary and non-scary stimuli are well matched (here, a representative subset 
case). Points indicate pairs of scary and non-scary stimuli, ordered by activation within 
each condition; line indicates identity line such that activation is equal for the nth ordered 
stimulus in the two conditions. Points that fall far from the line indicate differences in the 
distributions of activation across the two conditions, even if the mean of the distributions 
(here, level of activation) are well matched. The degree to which the subsampled stimuli 
in the two conditions share the same distribution will influence how effectively 
subsampling to match stimuli on activation will recover the pattern of ground-truth 
correlations. NN = pairs of stimuli both drawn from the non-scary condition, SS = pairs of 
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stimuli both drawn from the scary condition, SN = pairs of stimuli in which one was 
drawn from the scary condition and one was drawn from the non-scary condition. 
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Figure 6. Multivariate pattern similarity in a design including experimental and control 
conditions. Points indicate mean adjusted correlation estimate for pairs of stimuli at 
parametrically varying levels of an increase in activation for stimuli in the scary condition; 
note that 0 on the x-axis indicates no increase in activation. Error bars are standard 
deviation across 100 simulations. Activation was added to stimuli in the scary condition 
as either (a) a uniform increase for 50% of the voxels (subset case), or (b) a stimulus-
specific increase across all voxels equal to a multiple of the baseline response to each 
stimulus (amplified case). Top-bottom: (top) underlying covariance for distinct stimuli 
across voxels was set to .25 (ground-truth within-stimulus correlation greater than 
across-stimulus correlation) or (bottom) .50 (ground-truth within-stimulus correlation 
same as across-stimulus correlation). NN = pairs of stimuli both drawn from the non-
scary condition, SS = pairs of stimuli both drawn from the scary condition, corr. = 
correlation.
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Supplementary Materials 

Supplementary Text 

In the main text we consider a case in which there is a change in global activation for 
scary relative to non-scary stimuli but no additional, independent change in pattern 
similarity across pair types. An important question is how changes in activation across 
conditions, and statistical adjustments for these changes, interact with simultaneous, 
independent changes in pattern similarity across conditions. To do so, we repeated the 
simulations reported in the main text for two additional sets of parameters: (a) a case in 
which ground-truth pattern similarity is higher for SS pairs than SN and NN pairs (SS 
covariance = .50, SN and NN covariance = .25), and (b) a case in which ground-truth 
pattern similarity is higher for NN pairs than SN and SS pairs (NN covariance = .50, SN 
and SS covariance = .25). In both cases the effect of activation was such that activation 
was greater for scary relative to non-scary pairs. 

First, we examined the observed pattern of data for the uniform, subset, and amplified 
cases (with both constant and distributed amounts of activation across stimuli; Figure 
S5a,d). As in the main text, the increase in activation for the scary stimuli did not alter 
the observed correlations in the uniform case. When pattern similarity was higher for SS 
relative to SN and NN pairs, the increase activation for scary stimuli in the subset and 
amplified case magnified this pattern similarity effect; when pattern similarity was higher 
for NN relative to SN and SS pairs, the increase activation for scary stimuli in the subset 
and amplified case attenuated, eliminated, or reversed this pattern similarity effect, 
depending on the amount of activation in conjunction with the other signal parameters. 
Note that in the amplified case, whether the ground-truth pattern similarity effect of NN > 
SS can be eliminated or reversed will depend on whether ground-truth SS correlations 
are of equal or greater magnitude than observed NN correlations.  

Next, we assessed the effects of the statistical adjustments reported in the main text on 
these observed patterns of data (Figure S5b,c,e,f). Note that in all cases an activation 
parameter of zero illustrates an effect of condition on pattern similarity but no effect of 
condition on activation, and the uniform case with an activation parameter greater than 
zero illustrates independent effects of condition on activation and pattern similarity. In 
both of these cases, a statistical adjustment that removes changes in correlations that 
are the byproduct of changes in activation should not change the observed correlations, 
which are already independent from effects of condition on activation. In all other cases 
we would want to recover the pattern of correlations that was observed when the 
activation parameter is set to zero (i.e., when there is no change in activation across 
condition). The only statistical adjustment that met these criteria was subsampling to 
match stimuli on activation. Regressing correlation on activation across trials did not 
change the pattern of data when there was no effect of activation (as the residuals are 
essentially the observed data with the intercept removed), but did change the qualitative 
pattern of data in the uniform case (as activation and correlation, although independent 
effects, are related to each other via condition and thus this relationship is quantified and 
removed from the observed pattern of data). Mean centering and subsampling voxels 
produced new patterns of data when there was no effect of activation, in the uniform 
case, and in all other cases, suggesting that they are ineffective adjustments for 
separating activation and correlation. 

Finally, we assessed a scenario in which an effect of condition on pattern similarity is 
present in one set of experimental cells (here, across-stimulus correlations), but not in 
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another set of control cells (here, within-stimulus correlations), and an effect of condition 
on activation is present in both the experimental and control cells. To do so, we repeated 
the simulations comparing within-stimulus and across-stimulus pattern similarity reported 
in the main text for two additional sets of parameters: (a) a case in which ground-truth 
pattern similarity is higher for across-stimulus SS pairs than across-stimulus NN pairs 
(across-stimulus SS covariance = .50, across-stimulus NN covariance = .25), and (b) a 
case in which ground-truth pattern similarity is higher for across-stimulus NN pairs than 
across-stimulus SS pairs (across-stimulus NN covariance = .50, across-stimulus SS 
covariance = .25). In both cases the effect of activation was such that activation was 
greater for scary relative to non-scary pairs, the within-stimulus covariance was .75 for 
both SS and NN within-stimulus pairs, and the SN covariance was .25. In both of these 
scenarios one should observe an interaction such that across-stimulus correlations vary 
between SS and NN across-stimulus pairs but not between SS and NN within-stimulus 
pairs. Results are displayed in Figure S6. The increase in activation for the scary stimuli 
did not alter the observed correlations in the uniform case. However, in the subset and 
amplified cases, the increase in activation enhanced, attenuated, eliminated, or reversed 
the ground-truth interaction in pattern similarity across pair type, depending on the 
amount of activation in conjunction with the other signal parameters. Again, note that in 
the amplified case, the effect of the increase in activation for the scary condition will 
depend on the relationship between the ground-truth SS correlations and the observed 
NN correlations.  
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Supplementary Figures 

 

Figure S1. Multivariate pattern similarity following regression adjustments for the effect 
of activation. Points indicate mean adjusted correlation estimate for pairs of stimuli at 
parametrically varying levels of an increase in activation for stimuli in the scary condition; 
note that 0 on the x-axis indicates no increase in activation. Error bars are standard 
deviation across 100 simulations. Light traces indicate mean observed (unadjusted) 
correlation. Activation was added to stimuli in the scary condition as (a) a uniform 
increase across all voxels (uniform case), (b) a uniform increase for 50% of the voxels 
(subset case), or (c) a stimulus-specific increase across all voxels equal to a multiple of 
the baseline response to each stimulus (amplified case). Within each type of activation 
increase, the underlying correlation across stimuli was set to 0.00 or 0.50. Top-bottom: 
(top) residuals after regressing correlation on activation across all pairs of stimuli; 
(bottom) correlations between residuals after mean-centering each voxel. NN = pairs of 
stimuli both drawn from the non-scary condition, SS = pairs of stimuli both drawn from 
the scary condition, SN = pairs of stimuli in which one was drawn from the scary 
condition and one was drawn from the non-scary condition, corr. = correlation. 
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Figure S2. Multivariate pattern similarity following regression adjustments for an effect of 
activation that is distributed across stimuli. Points indicate mean adjusted correlation 
estimate for pairs of stimuli at parametrically varying levels of an increase in activation 
for stimuli in the scary condition; note that 0 on the x-axis indicates no increase in 
activation. Unlike in the main text, the magnitude of this increase in activation was 

distributed across stimuli according to a 2 distribution with a parametrically varying 

mean. Error bars are standard deviation across 100 simulations. Light traces indicate 
mean observed (unadjusted) correlation. Left-right: activation was added to stimuli in the 
scary condition as (a) a uniform increase across all voxels (uniform case), (b) a uniform 
increase for 50% of the voxels (subset case), or (c) a stimulus-specific increase across 
all voxels equal to a multiple of the baseline response to each stimulus (amplified case). 
Within each type of activation increase, the underlying correlation across stimuli was set 
to 0.00 or 0.50. Top-bottom: (top) residuals after regressing correlation on activation 
across all pairs of stimuli; (bottom) correlations between residuals after mean-centering 
each voxel. NN = pairs of stimuli both drawn from the non-scary condition, SS = pairs of 
stimuli both drawn from the scary condition, SN = pairs of stimuli in which one was 
drawn from the scary condition and one was drawn from the non-scary condition, corr. = 
correlation. 
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Figure S3. Multivariate pattern similarity following subsampling to match on activation. 
Points indicate mean adjusted correlation estimate for pairs of stimuli at parametrically 
varying levels of an increase in activation for stimuli in the scary condition; note that 0 on 
the x-axis indicates no increase in activation. Error bars are standard deviation across 
100 simulations. Light traces indicate mean observed (unadjusted) correlation. If fewer 
than 5 of the 100 simulations (subsampling attempts) were successful for a given 
combination of parameters, the results for this combination of parameters are not 
included. Activation was added to stimuli in the scary condition as (a) a uniform increase 
across all voxels (uniform case), (b) a uniform increase for 50% of the voxels (subset 
case), or (c) a stimulus-specific increase across all voxels equal to a multiple of the 
baseline response to each stimulus (amplified case). Within each type of activation 
increase, the underlying correlation across stimuli was set to 0.00 or 0.50. Top-bottom: 
(top) observed correlations after removing voxels showing a significant difference in 
activation between scary and non-scary stimuli at p < .05; (middle) observed correlations 
after removing voxels showing a significant difference in activation between scary and 
non-scary stimuli at p < .50; (bottom) observed correlations after retaining only a subset 
of stimuli that are matched on mean activation across voxels. NN = pairs of stimuli both 
drawn from the non-scary condition, SS = pairs of stimuli both drawn from the scary 
condition, SN = pairs of stimuli in which one was drawn from the scary condition and one 
was drawn from the non-scary condition, corr. = correlation. 
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Figure S4. Multivariate pattern similarity in a design including experimental and control 
conditions. Points indicate mean adjusted correlation estimate for pairs of stimuli at 
parametrically varying levels of an increase in activation for stimuli in the scary condition; 
note that 0 on the x-axis indicates no increase in activation. Error bars are standard 
deviation across 100 simulations. Activation was added to stimuli in the scary condition 
as (a, d) a uniform increase across all voxels (uniform case), (b, e) a uniform increase 
for 50% of the voxels (subset case), or (c, f) a stimulus-specific increase across all 
voxels equal to a multiple of the baseline response to each stimulus (amplified case). 
Within each type of activation increase, the increase was either (a, b, c) constant across 

stimuli or (d, e, f) distributed across stimuli according to a 2 distribution with a 

parametrically varying mean. Top-bottom: (top) underlying covariance for distinct stimuli 
across voxels was set to .25 (ground-truth within-stimulus correlation greater than 
across-stimulus correlation) or (bottom) .50 (ground-truth within-stimulus correlation 
same as across-stimulus correlation). NN = pairs of stimuli both drawn from the non-
scary condition, SS = pairs of stimuli both drawn from the scary condition, SN = pairs of 
stimuli in which one was drawn from the scary condition and one was drawn from the 
non-scary condition, corr. = correlation.  
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Figure S5. Observed and adjusted multivariate pattern similarity when condition 
produces simultaneous effects on activation and correlation. Points indicate the mean 
observed or adjusted correlation for pairs of stimuli at parametrically varying levels of an 
increase in activation for stimuli in the scary condition; note that 0 on the x-axis indicates 
no increase in activation. Error bars are standard deviation across 100 simulations. 
Activation was added to stimuli in the scary condition as (a, d) a uniform increase across 
all voxels (uniform case), (b, e) a uniform increase for 50% of the voxels (subset case), 
or (c, f) a stimulus-specific increase across all voxels equal to a multiple of the baseline 
response to each stimulus (amplified case). The underlying correlation across voxels 
was set to .25 for SN pairs and either (a, b, c) .50 for SS pairs and .25 for NN pairs or 
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(d, e, f) .50 for NN pairs and .25 for SS pairs. Top-bottom: (first row) observed 
correlations when the increase in activation was constant across stimuli; (second row) 
residuals after regressing correlation on activation across all pairs of stimuli; (thirid row) 
correlations between residuals after mean-centering each voxel; (fourth row) observed 
correlations when the increase in activation was distributed across stimuli according to a 

2 distribution with mean shown on the x-axis; (fifth row) observed correlations after 
removing voxels showing a significant difference in activation between scary and non-
scary stimuli at p < .05; (sixth row) observed correlations after retaining only a subset of 
stimuli that are matched on mean activation across voxels. Panels ii and iii reflect 
adjustments relative to the observed data in panel i; panels v and vi reflect adjustments 
relative to the observed data in panel vi. NN = pairs of stimuli both drawn from the non-
scary condition, SS = pairs of stimuli both drawn from the scary condition, SN = pairs of 
stimuli in which one was drawn from the scary condition and one was drawn from the 
non-scary condition, corr. = correlation, act. = activation. 
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Figure S6. Observed and adjusted multivariate pattern similarity in a design including 
experimental and control cells when condition produces effects on activation in all cells 
and simultaneous effects on correlation in experimental cells. Points indicate mean 
adjusted correlation estimate for pairs of stimuli at parametrically varying levels of an 
increase in activation for stimuli in the scary condition; note that 0 on the x-axis indicates 
no increase in activation. Error bars are standard deviation across 100 simulations. 
Activation was added to stimuli in the scary condition as (a) a uniform increase across all 
voxels (uniform case), (b) a uniform increase for 50% of the voxels (subset case), or (c) 
a stimulus-specific increase across all voxels equal to a multiple of the baseline 
response to each stimulus (amplified case). Top-bottom: the underlying correlation 
across voxels was set to .75 for within-stimulus pairs and either (top) .50 for across-
stimulus SS pairs and .25 for across-stimulus NN pairs or (bottom) .50 for across-
stimulus NN pairs and .25 for across-stimulus SS pairs. NN = pairs of stimuli both drawn 
from the non-scary condition, SS = pairs of stimuli both drawn from the scary condition, 
corr. = correlation.
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