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Null hypothesis significance testing (NHST) has several shortcomings that are

likely contributing factors behind the widely debated replication crisis of (cognitive)

neuroscience, psychology, and biomedical science in general. We review these

shortcomings and suggest that, after sustained negative experience, NHST should no

longer be the default, dominant statistical practice of all biomedical and psychological

research. If theoretical predictions are weak we should not rely on all or nothing

hypothesis tests. Different inferential methods may be most suitable for different types

of research questions. Whenever researchers use NHST they should justify its use,

and publish pre-study power calculations and effect sizes, including negative findings.

Hypothesis-testing studies should be pre-registered and optimally raw data published.

The current statistics lite educational approach for students that has sustained the

widespread, spurious use of NHST should be phased out.

Keywords: replication crisis, false positive findings, research methodology, null hypothesis significance testing,

Bayesian methods

“What used to be called judgment is now called prejudice and what used to be called prejudice is
now called a null hypothesis. In the social sciences, particularly, it is dangerous nonsense (dressed
up as the “scientific method”) and will cause much trouble before it is widely appreciated as such.”

(Edwards, 1972; p.180.)
“...the mathematical rules of probability theory are not merely rules for calculating frequencies of
random variables; they are also the unique consistent rules for conducting inference (i.e., plausible
reasoning)”

(Jaynes, 2003; p. xxii).

THE REPLICATION CRISIS AND NULL HYPOTHESIS
SIGNIFICANCE TESTING (NHST)

There is increasing discontent that many areas of psychological science, cognitive neuroscience,
and biomedical research (Ioannidis, 2005; Ioannidis et al., 2014) are in a crisis of producing
too many false positive non-replicable results (Begley and Ellis, 2012; Aarts et al., 2015). This
wastes research funding, erodes credibility and slows down scientific progress. Since more
than half a century many methodologists have claimed repeatedly that this crisis may at least
in part be related to problems with Null Hypothesis Significance Testing (NHST; Rozeboom,
1960; Bakan, 1966; Meehl, 1978; Gigerenzer, 1998; Nickerson, 2000). However, most scientists
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(and in particular psychologists, biomedical scientists, social
scientists, cognitive scientists, and neuroscientists) are still near
exclusively educated in NHST, they tend to misunderstand and
abuse NHST and the method is near fully dominant in scientific
papers (Chavalarias et al., 1990-2015). Here we provide an
accessible critical reassessment of NHST and suggest that while
it may have legitimate uses when there are precise quantitative
predictions and/or as a heuristic, it should be abandoned as the
cornerstone of research.

Our paper does not concern specifically the details of
neuro-imaging methodology, many papers dealt with such
details recently (Pernet and Poline, 2015; Nichols et al., 2016,
2017). Rather, we take a more general view in discussing
fundamental problems that can affect any scientific field,
including neuroscience and neuro-imaging. In relation to this it
is important to see that non-invasive neuroscience data related
to behavioral tasks cannot be interpreted if task manipulations
did not work and/or behavior is unclear. This is because most
measured brain activity changes can be interpreted in many
different ways on their own (Poldrack, 2006; see Section 2.7 in
Nichols et al., 2016). So, as most behavioral data are analyzed by
NHST statistics NHST based inference from behavioral data also
plays a crucial role in interpreting brain data.

THE ORIGINS OF NHST AS A WEAK
HEURISTIC AND A DECISION RULE

NHST as a Weak Heuristic Based on the
p-Value: Fisher
p-values were popularized by Fisher (1925). In the context of the
current NHST approach Fisher only relied on the concepts of
the null hypothesis (H0) and the exact p-value (hereafter p will
refer to the p-value and “pr” to probability; see Appendix 1 in
Supplementary Material for terms). He thought that experiments
should aim to reject (or “nullify”; henceforth the name “null
hypothesis”) H0 which assumes that the data demonstrates
random variability according to some distribution around a
certain value. Discrepancy from H0 is measured by a test statistic
whose values can be paired with one or two-tailed p-values which
tell us how likely it is that we would have found our data or more
extreme data if H0 was really correct. Formally we will refer to the
p-value as: pr(data or more extreme data|H0). It is important to
realize that the p-value represents the “extremeness” of the data
according to an imaginary data distribution assuming there is no
bias in data sampling.

The late Fisher viewed the exact p-value as a heuristic piece of
inductive evidence which gives an indication of the plausibility
of H0 together with other available evidence, like effect sizes
(see Hubbard and Bayarri, 2003; Gigerenzer et al., 2004). Fisher
recommended that H0 can usually be rejected if p ≤ 0.05 but
in his system there is no mathematical justification for selecting
a particular p-value for the rejection of H0. Rather, this is up
to the substantively informed judgment of the experimenter.
Fisher thought that a hypothesis is demonstrable only when
properly designed experiments “rarely fail” to give us statistically
significant results (Gigerenzer et al., 1989, p. 96; Goodman, 2008).

Hence, a single significant result should not represent a “scientific
fact” but should merely draw attention to a phenomenon which
seems worthy of further investigation including replication
(Goodman, 2008). In contrast to the above, until recently
replication studies have been very rare in many scientific fields;
lack of replication efforts has been a particular problem in the
psychological sciences (Makel et al., 2012), but this may hopefully
change now with the wide attention that replication has received
(Aarts et al., 2015).

Neyman and Pearson: A Decision
Mechanism Optimized for the Long-Run
The concepts of the alternative hypothesis (H1), α, power, β,
Type I, and Type II errors were introduced by Neyman and
Pearson (Neyman and Pearson, 1933; Neyman, 1950) who set
up a formal decision procedure motivated by industrial quality
control problems (Gigerenzer et al., 1989). Their approach
aimed to minimize the false negative (Type II) error rate to
an acceptable level (β) and consequently to maximize power
(1-β) subject to a bound (α) on false positive (Type I) errors
(Hubbard and Bayarri, 2003). α can be set by the experimenter
to an arbitrary value and Type-II error can be controlled by
setting the sample size so that the required effect size can be
detected (see Figure 1 for illustration). In contrast to Fisher, this
framework does not use the p-value as a measure of evidence.
We merely determine the critical value of the test statistic
associated with α and reject H0 whenever the test statistic is
larger than the critical value. The exact p-value is irrelevant
because the sole objective of the decision framework is long-
run error minimization and only the critical threshold but not
the exact p-value plays any role in achieving this goal (Hubbard
and Bayarri, 2003). Neyman and Pearson rejected the idea
of inductive reasoning and offered a reasoning-free inductive
behavioral rule to choose between two behaviors, accepting
or rejecting H0, irrespective of the researcher’s belief about
whether H0 and H1 are true or not (Neyman and Pearson,
1933).

Crucially, the Neyman–Pearson approach is designed to
work efficiently (Neyman and Pearson, 1933) in the context
of long-run repeated testing (exact replication). Hence, there
is a major difference between the p-value which is computed
for a single data set and α, β, power, Type I, and Type
II error which are so called “frequentist” concepts and they
make sense in the context of a long-run of many repeated
experiments. If we only run a single experiment all we can claim
is that if we had run a long series of experiments we would
have had 100α% false positives (Type I error) had H0 been
true and 100β% false negatives (Type II error) had H1 been
true provided we got the power calculations right. Note the
conditionals.

In the Neyman–Pearson framework optimally setting α and
β assures long-term decision-making efficiency in light of our
costs and benefits by committing Type I and Type II errors.
However, optimizing α and β is much easier in industrial quality
control than in research where often there is no reason to expect
a specific effect size associated with H1 (Gigerenzer et al., 1989).
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FIGURE 1 | NHST concepts make sense in the context of a long run of studies. 3 × 10,000 studies with normally distributed data were simulated for 3 situations (A:

True H0 situation: Mean = 0; SD = 1; n = 16. B: Mean = 0.5; SD = 1; n = 16; Power = 0.46. C: Mean = 0.5; SD = 1; n = 32; Power = 0.78.). One sample

two-tailed t-tests determined whether the sample means were zero. The red dots in the top panels show t scores for 3 × 1,000 studies (not all studies are shown for

better visibility). The vertical dashed lines mark the critical rejection thresholds for H0, t(α/2) for the two-tailed test. The studies producing a t statistic more extreme

than these thresholds are declared statistically significant. The middle panels show the distribution of t scores for all 3 × 10,000 studies (bins = 0.1). The bottom

panels show the distribution of p-values for all 3 × 10,000 studies (bins = 0.01) and state the proportion of significant studies. The inset in the bottom right panel

shows the mean absolute effect sizes in standard deviation units for situations A-C from all significant (Sig.) and non-significant (n.s.) studies with 95% bias corrected

and accelerated bootstrap confidence intervals (10,000 permutations). The real effect size was 0 in situation (A) and 0.5 in situations (B,C). Note that the less is the

power the more statistically significant studies overstate the effect size. Also note that p-values are randomly distributed and the larger is power the more right skewed

is the distribution of p-values. In the true H0 situation the distribution of p-values is uniform between 0 and 1. See further explanation of this figure in Appendix 2 in

Supplementary Material.

For example, if a factory has to produce screw heads with a
diameter of 1 ± 0.01 cm than we know that we have to be able
to detect a deviation of 0.01 cm to produce acceptable quality
output. In this setting we know exactly the smallest effect size
we are interested in (0.01 cm) and we can also control the
sample size very efficiently because we can easily take a sample
of a large number of screws from a factory producing them by
the million assuring ample power. On the one hand, failing to
detect too large or too small screws (Type II error) will result
in our customers canceling their orders (or, in other industrial
settings companies may deliver faulty cars or exploding laptops

to customers exposing themselves to substantial litigation and
compensation costs). On the other hand, throwing away false
positives (Type I error), i.e., completely good batches of screws
which we think are too small or too large, will also cost us a
certain amount of money. Hence, we have a very clear scale
(monetary value) to weigh the costs and benefits of both types
of errors and we can settle on some rationally justified values
of α and β so as to minimize our expenses and maximize our
profit.

In contrast to such industrial settings, controlling the sample
size and effect size and setting rational α and β levels is not
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that straightforward in most research settings where the true
effect sizes being pursued are largely unknown and deciding
about the requested size of a good enough effect can be very
subjective. For example, what is the smallest difference of interest
between two participant groups in a measure of “fMRI activity”?
Or, what is the smallest difference of interest between two
groups of participants when we measure their IQ or reaction
time? And, even if we have some expectations about the “true
effect size,” can we test enough participants to ensure a small
enough β? Further, what is the cost of falsely claiming that a
vaccine causes autism thereby generating press coverage that
grossly misleads the public (Deer, 2011; Godlee, 2011)? What
is the cost of running too many underpowered studies thereby
wasting perhaps most research funding, boosting the number of
false positive papers and complicating interpretation (Schmidt,
1992; Ioannidis, 2005; Button et al., 2013)? More often than not
researchers do not know the “true” size of an effect they are
interested in, so they cannot assure adequate sample size and
it is also hard to estimate general costs and benefits of having
particular α and β values. While some “rules of thumb” exist
about what are small, modest, and large effects (e.g., Cohen,
1962, 1988; Jaeschke et al., 1989; Sedlmeier and Gigerenzer,
1989), some large effects may not be actionable (e.g., a change
in some biomarker that is a poor surrogate and thus bears little
relationship tomajor, clinical outcomes), while some small effects
may be important and may change our decision (e.g., most
survival benefits with effective drugs are likely to be small, but
still actionable).

Given the above ambiguity, researchers fall back to the default
α = 0.05 level with usually undefined power. So, the unjustified
α and β levels completely discredit the originally intended
“efficiency” rationale of the creators of the Neyman–Pearson
decision mechanism (Neyman and Pearson, 1933).

P-Values Are Random Variables and They
Correspond to Standardized Effect Size
Measures
Contrary to the fact that in Figure 1 all 10,000 true H0 and
10,000 true H1 samples were simulated from identical H0 and
H1 distributions, the t scores and the associated p-values reflect
a dramatic spread. That is, p-values are best viewed as random
variables which can take on a range of values depending on the
actual data (Sterling, 1959; Murdoch et al., 2008). Consequently,
it is impossible to tell from the outcome of a single (published)
experiment delivering a statistically significant result whether a
true effect exist. The only difference between the true H0 and
true H1 situations is that when H0 is true in all experiments,
the distribution of p-values is uniform between 0 and 1 whereas
when H1 is true in all experiments p-values are more likely to
fall on the left of the 0–1 interval, that is, their distribution
becomes right skewed. The larger is the effect size and power
the stronger is this right skew (Figure 2). This fact led to the
suggestion that comparing this skew allows us to determine the
robustness of findings in some fields by studying “p curves”
(Hung et al., 1997; Simonsohn et al., 2014a,b). Hence, from this
perspective, replication, and unbiased publication of all results

FIGURE 2 | The distribution of p-values if the alternative hypothesis (H1) is

true. Each line depicts the distribution of p-values resulting from one-sample

two-tailed t-tests testing whether the sample mean was zero. Effect sizes (ES)

indicate the true sample means for normally distributed data with standard

deviation 1. For each effect size one million simulations were run with 16 cases

in each simulation. The distribution of the p-value is becoming increasingly

right skewed with increasing effect size and power. Note that α, the Type I

error rate, is fix irrespective of what p-value is found in an experiment.

(“positive” and “negative”) is again crucial if we rely on NHST
because only then can they inform us about the distribution of
p-values.

Another point to notice is that both p-values and usual
standardized effect size measures (Cohen’s D, correlation values,
etc.) are direct functions of NHST test statistics. Hence, for given
degrees of freedom NHST test statistics, effect size measures and
p-values will have non-linear correspondence as illustrated in
Figure 3.

NHST in Its Current Form
The current NHST merged the approaches of Fisher and
Neyman and Pearson and is often applied stereotypically as a
“mindless null ritual” (Gigerenzer, 2004). Researchers set H0

nearly always “predicting” zero effect but do not quantitatively
define H1. Hence, pre-experimental power cannot be calculated
for most tests which is a crucial omission in the Neyman–
Pearson framework. Researchers compute the exact p-value as
Fisher did but also mechanistically reject H0 and accept the
undefined H1 if p ≤ (α = 0.05) without flexibility following the
behavioral decision rule of Neyman and Pearson. As soon as p
≤ α, findings have the supposed right to become a scientific
fact defying the exact replication demands of Fisher and the
belief neutral approach of Neyman and Pearson. Researchers
also interpret the exact p-value and use it as a relative measure
of evidence against H0, as Fisher did. A “highly significant”
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FIGURE 3 | The relationship of the p-value, test statistic and effect sizes. (A) The relationship of t values, degrees of freedoms and p-values for Pearson correlation

studies (df = n–2). (B) The relationship of Pearson correlation (r) values, degrees of freedoms, and p-values [r = t/sqrt(df + t2)]. (C) The relationship of r- and t-value

pairs for each degree of freedom at various p-values. The bold black lines mark the usual significance level of α = 0.05. Note that typically only results which exceed

the α = 0.05 threshold are reported in papers. Hence, papers mostly report exaggerated effect sizes.

result with a small p-value is perceived as much stronger
evidence than a weakly significant one. However, while Fisher
was conscious of the weak nature of the evidence provided
by the p-value (Wasserstein and Lazar, 2016), generations
of scientists encouraged by incorrect editorial interpretations
(Bakan, 1966) started to exclusively rely on the p-value in
their decisions even if this meant neglecting their substantive
knowledge: scientific conclusions merged with reading the p-
value (Goodman, 1999).

NEGLECTING THE FULL CONTEXT OF
NHST LEADS TO CONFUSIONS ABOUT
THE P-VALUE

Most textbooks illustrate NHST by partial 2 × 2 tables
(see Table 1) which fail to contextualize long-run conditional
probabilities and fail to clearly distinguish between long-run
probabilities and the p-value which is computed for a single
data set (Pollard and Richardson, 1987). This leads to major
confusions about the meaning of the p-value (see Appendix 2 in
Supplementary Material).

First, both H0 and H1 have some usually unknown pre-study
or “prior” probabilities, pr(H0) and pr(H1). Nevertheless, these
probabilities may be approximated through extensive substantive
knowledge. For example, we may know about a single published
study claiming to demonstrate H1 by showing a difference
between appropriate experimental conditions. However, in
conferences we may have also heard about 9 highly powered
but failed replication attempts very similar to the original
study. In this case we may assume that the odds of H0:H1

are 9:1, that is, pr(H1) is 1/10. Of course, these pre-study
odds are usually hard to judge unless we demand to see
our colleagues’ “null results” hidden in their drawers because
of the practice of not publishing negative findings. Current
scientific practices appreciate the single published “positive”
study more than the 9 unpublished negative ones perhaps
because NHST logic only allows for rejecting H0 but does

not allow for accepting it and because researchers erroneously
often think that the single published positive study has a very
small, acceptable error rate of providing false positive statistically
significant results which equals α, or the p-value. So, they
often spuriously assume that the negative studies somehow
lacked the sensitivity to show an effect while the single positive
study is perceived as a well-executed sensitive experiment
delivering a “conclusive” verdict rather than being a “lucky” false
positive (Bakan, 1966). (See a note on pilot studies in Serious
Underestimation of the Proportion of False Positive Findings in
NHST).

NHST completely neglects the above mentioned pre-study
information and exclusively deals with rows 2–4 of Table 1.
NHST computes the one or two-tailed p-value for a particular
data set assuming that H0 is true. Additionally, NHST logic takes
long-run error probabilities (α and β) into account conditional
on H0 and H1. These long-run probabilities are represented in
typical 2 × 2 NHST contingency tables but note that β is usually
unknown in real studies.

As we have seen, NHST never computes the probability
of H0 and H1 being true or false, all we have is a decision
mechanism hoping for the best individual decision in view of
long-run Type I and Type II error expectations. Nevertheless,
following the repeated testing logic of the NHST framework, for
many experiments we can denote the long-run probability of H0

being true given a statistically significant result as False Report
Probability (FRP), and the long-run probability of H1 being true
given a statistically significant result as True Report Probability
(TRP). FRP and TRP are represented in row 5 of Table 1 and it is
important to see that they refer to completely different conditional
probabilities than the p-value.

Simply put, the p-value is pretty much the only thing that
NHST computes but scientists usually would like to know the
probability of their theory being true or false in light of their data
(Pollard and Richardson, 1987; Goodman, 1993; Jaynes, 2003;
Wagenmakers, 2007). That is, researchers are interested in the
post-experimental probability of H0 and H1. Most probably, for
the reason that researchers do not get what they really want to see
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TABLE 1 | “pr” stands for probability.

True null effect (H0) True positive effect (H1)

Pre-experiment probability of H0 and H1 Long run of experiments pr(H0) pr(H1)

The conditional probability of having this data or more extreme data

given that H0 is true

Single experiment p-value —

The conditional probability of having a significant test result given that

H0 or H1 are true

Long run of experiments Alpha level (α)

Type I error

False Positive

False Alarm

Power = 1 − β

True Positive Hit

The conditional probability of not having a significant test result given

that H0 or H1 are true

Long run of experiments 1 – α = Confidence level

True Negative Correct Rejection

β = 1 – Power

Type II error

False Negative Miss

Post-experiment probability of H0 and H1 given a significant test result Long run of experiments FRP

pr(H0 |significant result)

TRP

pr(H1 |significant result)

NHST textbooks typically only present rows 3 and 4 of this table (Alpha level, Power, Confidence level and Type II error). We follow the NHST view and deal with long run probabilities

only. Note that the p value does not fit this view as it does not have any long run interpretation besides that it is a random variable (Murdoch et al., 2008). The most important variables

are bolded, familiar signal detection categories are also provided. NHST does not deal with the concepts in italics.

and the only parameter NHST computes is the p-value it is well-
documented (Oakes, 1986; Gliner et al., 2002; Castro Sotos et al.,
2007, 2009; Wilkerson and Olson, 2010; Hoekstra et al., 2014)
that many, if not most researchers confuse FRP with the p-value
or α and they also confuse the complement of p-value (1-p) or
α (1-α) with TRP (Pollard and Richardson, 1987; Cohen, 1994).
These confusions are of major portend because the difference
between these completely different parameters is not minor, they
can differ by orders of magnitude, the long-run FRP being much
larger than the p-value under realistic conditions (Sellke et al.,
2001; Ioannidis, 2005). The complete misunderstanding of the
probability of producing false positive findings is most probably
a key factor behind vastly inflated confidence in research findings
and we suggest that this inflated confidence is an important
contributor to the current replication crisis in biomedical science
and psychology.

Serious Underestimation of the Proportion
of False Positive Findings in NHST
Ioannidis (2005) has shown thatmost published research findings
relying on NHST are likely to be false. The modeling supporting
this claim refers to the long-run FRP and TRP which we
can compute by applying Bayes’ theorem (see Figure 4 for
illustration, see computational details and further illustration in
Appendix 3 in Supplementary Material). The calculations must
consider α, the power (1-β) of the statistical test used, the pre-
study probabilities of H0 and H1, and it is also insightful to
consider bias (Berger, 1985; Berger and Delampady, 1987; Berger
and Sellke, 1987; Pollard and Richardson, 1987; Lindley, 1993;
Sellke et al., 2001; Sterne and Smith, 2001; Ioannidis, 2005).

While NHST neglects the pre-study odds of H0 and H1, these
are crucial to take into account when calculating FRP and TRP.
For example, let’s assume that we run 200 experiments and in 100
studies our experimental ideas are wrong (that is, we test true H0

situations) while in 100 studies our ideas are correct (that is, we
test true H1 situations). Let’s also assume that the power (1-β) of
our statistical test is 0.6 and α = 0.05. In this case in 100 studies
(true H0) we will have 5% of results significant by chance alone

and in the other 100 studies (true H1) 60% of studies will come up
significant. FRP is the ratio of false positive studies to all studies
which come up significant:

FRP =
False positives

All statistically significant results

=
5% of 100 studies

5% of 100 studies+ 60% of 100 studies

=
5

5 + 60
=

5

65
= 0.0769

That is, we will have 5 false positives out of a total of
65 statistically significant outcomes which means that the
proportion of false positive studies amongst all statistically
significant results is 7.69%, higher than the usually assumed 5%.
However, this example still assumes that we get every second
hypothesis right. If we are not as lucky and only get every sixth
hypothesis right then if we run 600 studies, 500 of them will
have true H0 true situations and 100 of them will have true H1

situations. Hence, the computation will look like:

FRP =
False positives

All statistically significant results

=
5% of 500 studies

5% of 500 studies+ 60% of 100 studies

=
25

25 + 60
=

25

85
= 0.2941

Hence, nearly 1/3 of all statistically significant findings will be
false positives irrespective of the p-value. Note that this issue
is basically the consequence of running multiple NHST tests
throughout the whole literature and FRP can be considered the
uncontrolled false discovery rate (FDR) across all studies run (see
Section Family-Wise Error Rate (FWER) and FDR Correction in
NHST).

Crucially, estimating pre-study odds is difficult, primarily
due to the lack of publishing negative findings and to the lack
of proper documentation of experimenter intentions before an
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FIGURE 4 | Illustration of long run False Positive Probability (FRP) and True Positive Probability (TRP) of studies. Let’s assume that we run 2 × 100 studies, H0 is true

in 100 studies and H1 is true in 100 studies with α = 0.05 and Power = 1−β = 0.6. (A) Shows the outcome of true H0 studies, 5 of the 100 studies coming up

statistically significant. (B) Shows the outcome of true H1 studies, 60 of the 100 studies coming up statistically significant [note that realistically the 60 studies would

be scattered around just as in panel (A) but for better visibility they are represented in a block]. (C) Illustrates that true H0 and true H1 studies would be

indistinguishable. That is, researchers do not know which study tested a true H0 or true H1 situation (i.e., they could not distinguish studies represented by black and

gray squares). All they know is whether the outcome of a particular study out of the 200 studies run was statistically significant or not. FRP is the ratio of false positive

(H0 is true) statistically significant studies to all statistically significant studies: 5/65 = 0.0769. TRP is the ratio of truly positive (H1 is true) statistically significant studies

to all statistically significant studies: 60/65 = 0.9231 = 1 − FRP = 1 − 0.0769.

experiment is run:We do not knowwhat percent of the published
statistically significant findings are lucky false positives explained
post-hoc (Kerr, 1998) when in fact researchers could not detect
the originally hypothesized effect and/or worked out analyses
depending on the data (Gelman and Loken, 2014). However, it
is reasonable to assume that only the most risk avoidant studies
have lower H0:H1 odds than 1, relatively conservative studies
have low to moderate H0:H1 odds (1–10) while H0:H1 odds can
be much higher in explorative research (50–100 or even higher;
Ioannidis, 2005).

The above H0:H1 assumptions are reasonable, as they are
supported by empirical data in many different fields. For
example, half or more of the drugs tested in large, late phase
III trials show higher effectiveness against older comparators
(H0:H1 = <1; Soares et al., 2005). Conversely, the vast majority
of tested hypotheses in large-scale exploratory research reflect
null effects, e.g., in the search of genetic variants associated with
various diseases in the candidate gene era where investigators
were asking hypotheses one or a few at a time (the same
way that investigators continue to test hypotheses in most
other biomedical and social science fields) yielded thousands of
putative discovered associations, but only 1.2% of them were
subsequently validated to be non-null when large-scale consortia
with accurate measurements and rigorous analyses plans assessed
them (Chanock et al., 2007; Ioannidis et al., 2011). Of the
hundreds of thousands to many millions of variables assessed
in current agnostic–omics testing, much less than 1% are likely
to reflect non-null effects (H0:H1>>100). Lower rates of H0:H1

would be incompatible with logical considerations of how many
variables are needed to explain all the variance of a disease or
outcome risk.

Besides H0:H1 odds bias is another important determinant of
FRP and TRP (Ioannidis, 2005). Whenever, H0 is not rejected

findings have far more difficulty to be published and the
researcher may feel that she wasted her efforts. Further, positive
findings are more likely to get cited than negative findings
(Kjaergard and Gluud, 2002; Jannot et al., 2013; Kivimäki et al.,
2014). Consequently, researchers may often be highly biased to
reject H0 and publish positive findings. Researcher bias affects
FRP even if our NHST decision criteria, α and β, are formally
unchanged. Ioannidis (2005) introduced the u bias parameter.
The impact of u is that after some data tweaking and selective
reporting (see Section NHST May Foster Selective Reporting
and Subjectivity) u fraction of otherwise non-significant true H0

results will be reported as significant and u faction of otherwise
non-significant true H1 results will be reported as significant.
If u increases, FRP increases and TRP decreases. For example,
if α = 0.05, power = 0.6, and H0:H1 odds = 1 then a 10%
bias (u = 0.1) will raise FRP to 18.47%. A 20% bias will raise
FRP to 26.09%. If H0:H1 odds = 6 then FRP will be 67.92%.
Looking at these numbers the replication crisis does not seem
surprising: using NHST very high FRP can be expected even
with modestly high H0:H1 odds and moderate bias (Etz and
Vandekerckhove, 2016). Hence, under realistic conditions FRP
not only extremely rarely equals α or the p-value (and TRP
extremely rarely equals 1-α and/or 1-p-value) but also, FRP is
much larger than the generally assumed 5% and TRP is much
lower than the generally assumed 95%. Overall, α or the p-value
practically says nothing about the likelihood of our research
findings being true or false.

At this point it is worth noting that it could be argued
that unpublished pilot experiments may prompt us to run
studies and hence, often H0:H1 odds would be lower than
1. However, unpublished pilot data often comes from small
scale underpowered studies with high FRP, undocumented
initial hypotheses and analysis paths. Hence, we doubt that
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statistically significant pilot results inevitably mean low
H0:H1 odds.

The Neglect of Power Reinterpreted
In contrast to the importance of power in determining FRP and
TRP, NHST studies tend to ignore power and β and emphasize
α and low p-values. Often, finding a statistically significant
effect erroneously seems to override the importance of power.
However, statistical significance does not protect us from false
positives. FRP can only be minimized by keeping H0:H1 odds
and bias low and power high (Pollard and Richardson, 1987;
Button et al., 2013; Bayarri et al., 2016). Hence, power is not
only important so that we increase our chances to detect true
effects but it is also crucial in keeping FRP low. While power
in principle can be adjusted easily by increasing sample size,
power in many/most fields of biomedical science and psychology
has been notoriously low and the situation has not improved
much during the past 50 years (Cohen, 1962; Sedlmeier and
Gigerenzer, 1989; Rossi, 1990; Hallahan and Rosenthal, 1996;
Button et al., 2013; Szucs and Ioannidis, 2017). Clearly, besides
making sure that research funding is not wasted, minimizing FRP
also provides very strong rationale for increasing the typically
used sample sizes in studies.

NHST LOGIC IS INCOMPLETE

NHST Misleads Because It Neglects
Pre-data Probabilities
Besides often being subject to conceptual confusion and
generating misleading inferences especially in the setting of
weak power, NHST has further serious problems. NHST logic is
based on the so-called modus tollens (denying the consequent)
argumentation (see footnote in Appendix 4 in Supplementary
Material): It sets up a H0 model and assumes that if the data
fits this model than the test statistic associated with the data
should not take more extreme values than a certain threshold
(Meehl, 1967; Pollard and Richardson, 1987). If the test statistic
contradicts this expectation then NHST assumes that H0 can be
rejected and consequently its complement, H1 can be accepted.
While this logic may be able to minimize Type I error in well-
powered high-quality well-controlled tests (Section Neyman and
Pearson: A decision Mechanism Optimized for the Long-Run),
it is inadequate if we use it to decide about the truth of H1 in a
single experiment, because there is always space for Type I and
Type II error (Falk and Greenbaum, 1995). So, our conclusion
is never certain and the only way to see how much error we
have is to calculate the long-run FRP and TRP using appropriate
α and power levels and prior H0:H1 odds. The outcome of
the calculation can easily conflict with NHST decisions (see
Appendix 4 in Supplementary Material).

NHST Neglects Predictions under H1

Facilitating Sloppy Research
NHST does not require us to specify exactly what data H1

would predict.Whereas, the Neyman–Pearson approach requires
researchers to specify an effect size associated with H1 and
compute power (1-β), in practice this is easy to neglect because

TABLE 2 | Potential NHST style argument (based on Pollard and Richardson,

1987).

H0 Harold is American

H1 Harold is not American

Model for H0 If Harold is American (H0), than he is most probably

not a member of congress.

data Harold is a member of congress.

pr(data or more extreme

data|H0)

Very low

Inference Because pr(data or more extreme data|H0) is very

low, we reject H0 and accept H1 and conclude:

Harold is most probably not American.

the NHST machinery only computes the p-value conditioned on
H0 and it is able to provide this result even if H1 is not specified
at all. A widespreadmisconception flowing from the fuzzy attitude
of NHST to H1 is that rejecting H0 allows for accepting a specific
H1 (Nickerson, 2000). This is what most practicing researchers
do in practice when they reject H0 and argue for their specific H1

in turn. However, NHST only computes probabilities conditional
on H0 and it does not allow for the acceptance of either H0, a
specific H1 or a generic H1. Rather, it only allows for the rejection
of H0. Hence, if we reject H0 we will have no idea about how
well our data fits a specific H1. This cavalier attitude to H1 can
easily lead us astray even when contrasting H0 just with a single
alternative hypothesis as illustrated by the invalid inference based
on NHST logic in Table 2 (Pollard and Richardson, 1987).

Our model says that if H0 is true, it is a very rare event
that Harold is a member of congress. This rare event then
happens which is equivalent to finding a small p-value. Hence, we
conclude that H0 can be rejected and H1 is accepted (i.e., Harold
is a member of congress and therefore he is not American.).
However, if we carefully explicate all probabilities it is easy to
see that we are being mislead by NHST logic. First, because we
have absolutely no idea about Harold’s nationality we can set
pre-data probabilities of both H1 and H0 to 1/2, which means
that H0:H1 odds are uninformative, 1:1. Then we can explicate
the important conditional probabilities of the data (Harold is
a member of congress) given the possible hypotheses. We can
assign arbitrary but plausible probabilities:

pr(data|H0) = pr(Harold is member of congress | American)

= 10−7

pr(data|H1) = pr(Harold is member of congress | not American)

= 0

That is, while the data is indeed rare under H0, its probability is
actually zero under H1 (in other words, the data is very unlikely
under both the null and the alternative models). So, even if p ≈

0.0000001, it does not make sense to reject H0 and accept H1

because this data just cannot happen if H1 is true. If we only have
these two hypotheses to choose from then it only makes sense
to accept H0 because the data is still possible under H0 (Jaynes,
2003). In fact, using Bayes’ theorem we can formally show that
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the probability of H0 is actually 1 (Appendix 5 in Supplementary
Material).

In most real world problems multiple alternative hypotheses
compete to explain the data. However, by using NHST we can
only reject H0 and argue for some H1 without any formal
justification of why we prefer a particular hypothesis whereas it
can be argued that it only makes sense to reject any hypothesis
if another one better fits the data (Jaynes, 2003). We only have
qualitative arguments to accept a specific H1 and the exclusive
focus on H0 makes unjustified inference too easy. For example,
if we assume that H0 predicts normally distributed data with
mean 0 and standard deviation 1 then we have endless options
to pick H1 (Hubbard and Bayarri, 2003): Does H1 imply that
the data have a mean other than zero, the standard deviation
other than 1 and/or does it represent non-normally distributed
data? NHST allows us to consider any of these options implicitly
and then accept one of them post-hoc without any quantitative
justification of why we chose that particular option. Further,
merging all alternative hypotheses into a single H1 is not only
too simplistic for most real world problems but it also poses an
“inferential double standard” (Rozeboom, 1960): The procedure
pits the well-defined H0 against a potentially infinite number of
alternatives.

Vague H1 definitions (the lack of quantitative predictions)
enable researchers to avoid the falsification of their favorite
hypotheses by intricately redefining them (especially in fields
such as psychology and cognitive neuroscience where theoretical
constructs are often vaguely defined) and never providing any
definitive assessment of the plausibility of a favorite hypothesis
in light of credible alternatives (Meehl, 1967). This problem
is reflected in papers aiming at the mere demonstration of
often little motivated significant differences between conditions
(Giere, 1972) and post-hoc explanations of likely unexpected
but statistically significant findings. For example, neuroimaging
studies often attempt to explain why an fMRI BOLD signal
“deactivation” happened instead of a potentially more reasonable
looking “activation” (or, vice versa). Most such findings may
be the consequence of the data randomly deviating into the
wrong direction relative to zero between-condition difference.
Even multiple testing correction will not help such studies as
they still rely on standard NHST just with adjusted α thresholds.
Similarly, patient studies often try to explain an unexpected
difference between patient and control groups (e.g., the patient
group is “better” on a measure or shows “more” or “less” brain
activation) by some kind of “compensatory mechanism.” In such
cases what happens is that “the burden of inference has been
delegated to the statistical test,” indeed, and simply because p ≤ α

odd looking observations and claims are to be trusted as scientific
facts (Bakan, 1966, p. 423; Lykken, 1968).

Finally, paradoxically, when real life practicing researchers
achieve their “goal” and successfully reject H0 they may be left
in complete existential vacuum because during the rejection of
H0 NHST “saws off its own limb” (Jaynes, 2003; p. 524): If
we manage to reject H0 then it follows that pr(data or more
extreme data|H0) is useless because H0 is not true. Thus, we
are left with nothing to characterize the probability of our data
in the real world; we will not know pr(data|H1) for example,

because H1 is formally undefined and NHST never tells us
anything about it. In light of these problems Jaynes (2003)
suggested that the NHST framework addresses an ill-posed
problem and provides invalid responses to questions of statistical
inference.

It is noteworthy that some may argue that Jaynes’s argument
is formally invalid as the NHST approach can be used to
reject a low probability H0 in theory. However, recall that (1)
NHST does not deliver final objective theoretical decisions,
there is no theoretical justification for any α thresholds marking
a boundary of informal surprise and NHST merely aims to
minimize Type I error on the long run (and in fact, Neyman
and Pearson (1933) considered their procedure a theory-free
decision mechanism and Fisher considered it a heuristic). (2)
NHST can only reject H0 (heuristically or in a theory-free
manner) and (3) cannot provide support for any H1. We could
also add that many practicing biomedical and social scientists
may not have clear quantitative predictions under H0 besides
expecting to reject a vague null effect (see Section NHST in
Sciences with and without Exact Quantitative Predictions for the
difference between sciences with and without exact predictions).
Hence, their main (ultimate) objective of using NHST is often
actually not the falsification of the exact theoretical predictions
of a well-defined theory (H0). Rather, they are more interested
in arguing in favor of an alternative theory. For example,
with a bit of creativity fMRI “activation” in many different
(perhaps post-hoc defined) ROIs can easily be “explained” by
some theory when H0 (“no activation”) is rejected in any of
the ROIs. However, supporting a specific alternative theory is
just not possible in the NHST framework and in this context
Jaynes’ comment is perfectly valid: NHST provides an ill-defined
framework, after rejecting H0 real-world researchers have no
formal hypothesis test outcomes to support their “positive”
arguments.

NHST Is Unsuitable for Large Datasets
In consequence of the recent ‘big data’ revolution access to large
databases has increased dramatically potentially increasing power
tremendously (though, large data sets with many variables are
still relatively rare in neuroscience research). However, NHST
leads to worse inference with large databases than with smaller
ones (Meehl, 1967; Khoury and Ioannidis, 2014). This is due to
how NHST tests statistics are computed, the properties of real
data and to the lack of specifying data predicted by H1 (Bruns
and Ioannidis, 2016).

Most NHST studies rely on nil null hypothesis testing
(Nickerson, 2000) which means that H0 expects a true mean
difference of exactly zero between conditions with some
variation around this true zero mean. Further, NHST machinery
guarantees that we can detect any tiny irrelevant effect sizes if
sample size is large enough. This is because test statistics are
typically computed as the ratio of the relevant between condition
differences and associated variability of the data weighted by
some function of the sample size [difference/variability ×

f(sample size)]. The p-value is smaller if the test statistic is larger.
Thus, the larger is the difference between conditions and/or the
smaller is variability and/or the larger is the sample size the larger
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is the test statistic and the smaller is the p-value (see Figure 3

for examples). Consequently, by increasing sample size enough it
is guaranteed that H0 can be rejected even with miniature effect
sizes (Ziliak and McCloskey, 2008).

Parameters of many real data sets are much more likely to
differ than to be the same for reasons completely unrelated
to our hypotheses (Meehl, 1967, 1990; Edwards, 1972). First,
many psychological, social and biomedical phenomena are
extremely complex reflecting the contribution of very large
numbers of interacting (latent) factors, let it be at the level of
society, personality or heavily networked brain function or other
biological networks (Lykken, 1968; Gelman, 2015). Hence, if
we select any two variables related to these complex networks
most probably there will be some kind of at least remote
connection between them. This phenomenon is called “crud
factor” Meehl (1990) or “ambient correlational noise” (Lykken,
1968) and it is unlikely to reflect a causal relationship. In fact
some types of variables, such as intake of various nutrients and
other environmental exposures are very frequently correlated
among themselves and with various disease outcomes without
this meaning that they have anything to do with causing
disease outcomes (Patel and Ioannidis, 2014a,b). Second, unlike
in physical sciences it is near impossible to control for the
relationship of all irrelevant variables which are correlated with
the variable(s) of interest (Rozeboom, 1960; Lykken, 1968).
Consequently, there can easily be a small effect linking two
randomly picked variables even if their statistical connection
merely communicates that they are part of a vast complex
interconnected network of variables. Only a few of these tiny
effects are likely to be causal and of any portend (Siontis and
Ioannidis, 2011).

The above issues have been demonstrated empirically and
by simulations. For example, Bakan (1966; see also Berkson,
1938; Nunnally, 1960; Meehl, 1967) subdivided the data of
60,000 persons according to completely arbitrary criteria, like
living east or west of the Mississippi river, living in the north
or south of the USA, etc. and found all tests coming up
statistically significant. Waller (2004) examined the personality
questionnaire data of 81,000 individuals to see how many
randomly chosen directional null hypotheses can be rejected. If
sample size is large enough, 50% of directional hypothesis tests
should be significant irrespective of the hypothesis. As expected,
nearly half (46%) of Waller’s (2004) results were significant.
Simulations suggest that in the presence of even tiny residual
confounding (e.g., some omitted variable bias) or other bias, large
observational studies of null effects will generate results that may
be mistaken as revealing thousands of true relationships (Bruns
and Ioannidis, 2016). Experimental studies may also suffer the
same problem, if they have even minimal biases.

NHST in Sciences with and without Exact
Quantitative Predictions
Due to the combination of the above properties of real-world
data sets and statistical machinery theory testing radically
differs in sciences with exact and non-exact quantitative
predictions (Meehl, 1967). In physical sciences increased

measurement precision and increased amounts of data
increase the difficulties a theory must pass before it is
accepted. This is because theoretical predictions are well-
defined, numerically precise and it is also easier to control
measurements (Lykken, 1968). Hence, NHST may be used
to aim to falsify exact theoretical predictions. For example,
a theory may predict that a quantity should be let’s say 8
and the experimental setup can assure that really only very
few factors influence measurements—these factors can then
be taken into account during analysis. Hence, increased
measurement precision will make it easier to demonstrate
a departure from numerically exact predictions. So, a “five
sigma” deviation rule may make good sense in physics
where precise models are giving precise predictions about
variables.

In sciences using NHST without clear numerical predictions
the situation is the opposite of the above, because NHST
does not demand the exact specification of H1, so theories
typically only predict a fairly vague “difference” between groups
or experimental conditions rather than an exact numerical
discrepancy betweenmeasures of groups or conditions. However,
as noted, groups are actually likely to differ and if sample size
increases and variability in data decreases it will become easier
and easier to reject any kind of H0 when following the NHST
approach. In fact, with precise enough measurements, large
enough sample size and repeated “falsification” attempts H0 is
guaranteed to be rejected on the long run (see Section The
Rejection of H0 is Guaranteed on the Long-Run) even if the
underlying processes generating the data in two experimental
conditions are exactly the same. Hence, ultimately any H1 can be
accepted, claiming support for any kind of theory. For example,
in an amusing demonstration Carver (1993) used Analysis of
Variance to re-analyze the data of Michaelson and Morley
(1887) who came up with a “dreaded” null finding and based
on this they suggested that the speed of light was constant
(H0) thereby providing empirical support for Einstein’s theory
of relativity. Carver (1993) found that that the speed of light
was actually not constant at p < 0.001. The catch? The effect
size as measured by Eta2 was 0.005. While some may feel
that Einstein’s theory has now been falsified, perhaps it is also
worth considering that here the statistically significant result is
essentially insignificant. This example also highlights the fact we
are not arguing against the Popperian view of scientific progress
by falsifying theories. Rather, we discuss why NHST is a very
imperfect method for this falsification (see further arguments as
well).

A typical defense of NHST may be that we actually may
not want to increase power endlessly, just as much as we
still think that it allows us to detect reasonable effect sizes
(Giere, 1972). For example, equivalence testing may be used
to reject the hypothesis that a meaningfully large effect exist
(e.g., Wellek, 2010) or researchers may check for the sign
of expected effects (Gelman and Tuerlinckx, 2000). However,
because typically only statistically significant data is published,
published studies most probably exaggerate effect sizes. So,
estimating true (expected) effect sizes is very difficult. A more
reasoned approach may be to consider explicitly what the
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consequences (“costs”) are of a false-positive, true-positive, false-
negative, and true-negative result. Explicit modeling can suggest
that the optimal combination of Type 1 error and power may
need to be different depending on what these assumed costs are
(Djulbegovic et al., 2014). Different fields may need to operate
at different optimal ratios of false-positives to false-negatives
(Ioannidis et al., 2011).

NHST May Foster Selective Reporting and
Subjectivity
Because NHST never evaluates H1 formally and it is fairly
biased toward the rejection of H0, reporting bias against
H0 can easily infiltrate the literature even if formal NHST
parameters are fixed (see Section Serious Underestimation of
the Proportion of False Positive Findings in NHST about the
“u” bias parameter). Overall, a long series of exploratory tools
and questionable research practices are utilized in search for
statistical significance (Ioannidis and Trikalinos, 2007; John
et al., 2012). Researchers can influence their data during
undocumented analysis and pre-processing steps and by the
mere choice of structuring the data (constituting researcher
degrees of freedom; Simmons et al., 2011). This is particularly a
problem in neuroimaging where the complexity and idiosyncrasy
of analyses is such that it is usually impossible to replicate exactly
what happened and why during data analysis (Kriegeskorte
et al., 2009; Vul et al., 2009; Carp, 2012). Another term that
has been used to describe the impact of diverse analytical
choices is “vibration of effects” (Ioannidis, 2008). Different
analytical options, e.g., choice of adjusting covariates in a
regression model can result in a cloud of results, instead of
a single result, and this may entice investigators to select a
specific result that is formally significant, while most analytical
options would give non-significant results or even results
with effects in the opposite direction (“Janus effect”; Patel
et al., 2015). Another common mechanism that may generate
biased results with NHST is when investigators continue data
collection and re-analyse the accumulated data sequentially
without accounting for the penalty induced by this repeated
testing (DeMets and Lan, 1994; Goodman, 1999; Szucs, 2016).
The unplanned testing is usually undocumented and researchers
may not even be conscious that it exposes them to Type
I error accumulation. Bias may be the key explanation why
in most biomedical and social science disciplines, the vast
majority of published papers with empirical data report
statistically significant results (Kavvoura et al., 2007; Fanelli,
2010; Chavalarias et al., 1990-2015). Overall, it is important to
see that NHST can easily be infiltrated by several undocumented
subjective decisions. (Bayesian methods are often blamed
such subjectivity, see Section Teach Alternative Approaches
Seriously.)

The Rejection of H0 Is Guaranteed on the
Long-Run
If H0 is true, with α = 0.05, 5% of our tests will be statistically
significant on the long-run. The riskier experiments we run,

the larger are H0:H1 odds and bias and the larger is the long-
run FRP. For example, in a large laboratory with 20 post-docs
and PhD students, each person running 5 experiments a year
implementing 10 significance tests in each experiment we can
expect 20 × 5 × 10 × 0.05 = 50 [usually publishable] false
results a year at α = 0.05 if H0 is true. Coupled with the fact
that a large number of unplanned tests may be run in each
study (Simmons et al., 2011; Gelman and Loken, 2014) and that
negative results and failed replications are often not published,
this leads to “unchallenged fallacies” clogging up the research
literature (Ioannidis, 2012; p1; Sterling, 1959; Bakan, 1966;
Sterling et al., 1995). Moreover, such published false positive true
H0 studies will also inevitably overestimate the effect size of the
non-existent effects or of existent, but unimportantly tiny, effects
(Schmidt, 1992, 1996; Sterling et al., 1995; Ioannidis, 2008).
These effects may even be confirmed by meta-analyses, because
meta-analyses typically are not able to incorporate unpublished
negative results (Sterling et al., 1995) and they cannot correct
many of the biases that have infiltrated the primary studies.
For example, such biases may result in substantial exaggeration
of measured effect sizes in meta-analyses (see e.g., Szucs and
Ioannidis, 2017).

Given that the predictions of H1 are rarely precise and
that theoretical constructs in many scientific fields (including
psychology and cognitive neuroscience) are often poorly defined
(Pashler and Harris, 2012), it is easy to claim support for a
popular theory with many kinds of data falsifying H0 even if the
constructs measured in many papers are just very weakly linked
to the original paper, or not linked at all. Overall, the literature
may soon give the impression of a steady stream of replications
throughout many years. Even when “negative” results appear,
citation bias may still continue to distort the literature and the
prevailing theory may continue to be based on the “positive”
results. Hence, citation bias may maintain prevailing theories
even when they are clearly false and unfounded (Greenberg,
2009).

NHST Does Not Facilitate Systematic
Knowledge Integration
Due to high FRP the contemporary research literature provides
statistically significant “evidence” for nearly everything
(Schoenfeld and Ioannidis, 2012). Because NHST emphasizes
all or none p-value based decisions rather than the magnitude
of effects, often only p-values are reported for critical tests,
effect size reports are often missing and interval estimates
and confidence intervals are not reported. In an assessment
of the entire biomedical literature in 1990–2015, 96% of the
papers that used abstracts reported at least some p-value below
0.05, while only 4% of a random sample of papers presented
consistently effect sizes with confidence intervals (Chavalarias
et al., 1990-2015). However, oddly enough, the main NHST
“measure of evidence,” the p-value cannot be compared across
studies. It is a frequent misconception that a lower p-value
always means stronger evidence irrespective of the sample size
and effect size (Oakes, 1986; Schmidt, 1996; Nickerson, 2000).
Besides the non-comparable p-values, NHST does not offer any
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formal mechanism for systematic knowledge accumulation and
integration (Schmidt, 1996) unlike Bayesian methods which can
take such pre-study information into account. Hence, we end
up with many fragmented studies which are most often unable
to say anything formal about their favorite H1s (accepted in
a qualitative manner). Methods do exist for the meta-analysis
of p-values (see e.g., Cooper et al., 2009) and these are still
used in some fields. However, practically such meta-analyses
still say nothing about the magnitude of the effect size of the
phenomenon being addressed. These methods are potentially
acceptable when the question is whether there is any non-null
signal among multiple studies that have been performed, e.g., in
some types of genetic associations where it is taken for granted
that the effect sizes are likely to be small anyhow (Evangelou and
Ioannidis, 2013).

Family-Wise Error Rate (FWER) and FDR
Correction in NHST
An increasingly important problem is that with the advent of
large data sets researchers can use NHST to test multiple, related
hypotheses. For example, this problem routinely appears in
neuro-imaging where a large amount of non-independent data
points are collected and then the same hypothesis test may be
run on tens of thousands of observations, for example, from
a brain volume, or from 256 electrodes placed on the scalp,
each electrode recording voltage 500 times a second. Analysis
procedures that generate different views of data (e.g., time-
frequency or independent component analyses) may further
boost the amount of tests to be run.

Regarding these multiple testing situations, a group of
statistical tests which are somehow related to each other can
be defined as a “family of comparisons.” The probability that a
family of comparisons contains at least one false positive error
is called the family wise error rate (FWER). If the repeated
tests concern independent data sets where H0 is true than the
probability of having at least one Type I error in k independent
tests, each with significance level α, is αTOTAL = 1 - (1 - α)k.
For example if k = 1, 2, 3, 4, 5, and 10 than αTOTAL is 5, 9.75,
14.26, 18.55, 22.62, and 40.13%, respectively (see Curran-Everett,
2000; Szucs, 2016 for graphical illustrations and simulations for
non-independent data).

There are numerous procedures which can take multiple
testing into account by correcting p-values. The simplest of these
procedures is Bonferroni correction which computes an adjusted
p-value threshold as α/n where α is the statistical significance
threshold for a single test and n is the number of tests run. Hence,
if we run 5 tests which can be defined as a family of tests and our
original α is 0.05 then the Bonferroni corrected adjusted α level
is 0.05/5= 0.01. Any p-values above this threshold should not be
considered to demonstrate statistically significant effects. Besides
the Bonferroni correction there are other alternative methods of
FWER correction, like the Tukey Honestly Significant Difference
test, the Scheffe test, Holm’s method, Sidak’s method; Hochberg’s
method, etc. Some of these corrections also take the dependency
(non-independence) of tests into account (see e.g., Shaffer, 1995;
Nichols and Hayasaka, 2003 for review).

FWER control is a conservative procedure in keeping Type
I error rate low but it also sacrifices power increasing Type II
error. An alternative to FWER control is False Discovery Rate
(FDR) control which allowsmore Type I errors but assures higher
power. Using the same logic as the computation of FRP discussed
before, FDR control considers the estimated proportion of false
positive statistically significant findings amongst all statistically
significant findings (i.e., the proportion of erroneously rejected
null hypotheses out of all rejected null hypotheses; Benjamini and
Hochberg, 1995). FDR computation is illustrated by Table 3. If
we run M hypothesis tests then a certain number of them are
likely to test true null effects (M0 in Table 3) and some other
number of them are likely to test non-null effects with true
alternative hypotheses (M1 in Table 3). Depending on our α level
and power (1-β), a certain number of the M0 and M1 tests will
reject the null hypothesis (FP and TN, respectively, see Table 3
for abbreviations) while some other number of them will not
reject the null hypothesis (TN and FN, respectively). If we know
the exact numbers in Table 3 then the proportion of false positive
statistically significant findings can be computed as the ratio of
false positive results to all statistically significant results: Q =

FP/(FP+ TP)= FP/R (assuming that R6= 0).
Of course, in real research settings we do not know how

many of our tests test true null effects and we only know how
many tests we run and how many of them return statistically
significant and non-significant results. So Q can be considered
a random variable. However, as Q cannot be controlled directly
FDR is defined as the expected value of the proportion of false
positive errors: FDR = E[FP/R|R > 0] · pr(R > 0), a variable
which can be controlled (see Benjamini and Hochberg, 1995;
Curran-Everett, 2000; Nichols and Hayasaka, 2003; Bennett et al.,
2009; Benjamini, 2010; Goeman and Solari, 2014). Some FDR
estimation procedures can also factor in dependency between
tests (Benjamini and Yekutieli, 2001).

In contrast to FDR, using the notation in Table 3, FWER
can be expressed as FWER = pr(FP≥1) = 1 − pr(FP=0) that
is, the probability that there is at least one false positive Type
I error in a family of observations. If the null hypothesis is
true in all tests we run then FDR = FWER while if there are
situations with true alternative hypotheses then FDR < FWER
(see Table 3 for example). Also, various other FDR and FWER
measures can be derived (see the above cited reviews). It can be
argued that controlling FDR is more useful in research where a
very large number of tests are carried out routinely, like neuro-
imaging or genetics but less useful in behavioral psychological
and social science research where fewer hypotheses may be
tested at any one time and accepting any single hypothesis
as statistically significant may have large impact on inferences
(Gelman et al., 2012). This last statement is also true for
behavioral data used to support the interpretation of neuro-
imaging findings.

Most relevant to our paper, both FWER and FDR error
rate corrections are based on the same NHST procedure.
That is, they do not modify the procedure in any ways
other than aiming to decrease Type I error toward initially
expected levels when multiple NHST tests are run. That is,
these methods can help in constraining the number of random
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TABLE 3 | Illustrating the logic behind FDR computation.

Null hypothesis is true Alternative hypothesis is true Sums

H0 is rejected

(statistically significant outcome)

FP = False Positives

45 (if α = 0.05; 900·0.05 = 45)

TP = True Positives

60 (if power = 0.6; 100·0.6 = 60)

R

105

H0 is not rejected

(statistically non-significant outcome)

TN = True Negatives

855 (if α = 0.05; 900·0.95 = 855)

FN = False Negatives

40 (if β = 0.4; 100·0.4 = 40)

M – R

895

Sums M0

900

M1

100

M

1000

H0 (leftmost column) stands for the null hypothesis. The proportion of false positive statistically significant test outcomes to all statistically significant test outcomes is Q = FP/(FP + TP)

= FP/R (R6= 0). The numbers give an example for the case when α = 0.05 (so, FWER = α = 0.05) and β =0.4, so Power = 1 − β = 0.6. In the example we run 1,000 null hypothesis

tests. We test 9 times as many true null situations than situations with true alternative hypotheses (that is, every 10th of our experimental ideas are correct). In this case Q = 45/105 =

0.4286. That is, 42.86% of statistically significant results will be false positives. FDR = Q · pr(R > 0) = Q · [α · (M0/M) + Power · (M1/M)] = 0.045. If we only test true null effects then Q

= false positives/all significant results = α·M / α·M = 1; and FDR = Q · pr(R>0) = Q · α = α = FWER [pr(R>0) = α because all significant results are coming from true null situations].

Note that in real research only R, M, and M-R are known whereas M0, M1, and Q are not known.

findings when a single hypothesis is tested simultaneously in
many data points (e.g., voxels) but do nothing to protect
against many of the other problems discussed in this paper
(e.g., generating a high amount of false positives across the
literature; being sensitive to undocumented biasing procedures;
neglecting predictions under H1; not providing probability
statements for H1; neglecting pre-data probabilities; being unable
to effectively integrate study results). These problems are valid
even when just one single NHST test is run. In addition,
empirical analyses of large fMRI data sets found that the most
popular fMRI analysis software packages implemented erroneous
multiple testing corrections and hence, generate much higher
levels of false positive results than expected (Eklund et al.,
2012, 2016). This casts doubts on a substantial part of the
published fMRI literature. Further, Carp (2012) reported that
about 40% of 241 relatively recent fMRI papers actually did
not report having used multiple testing correction. So, a very
high percentage of fMRI literature may have been exposed to
high false positive rates either multiple correction was used
or not (see also (Szucs and Ioannidis, 2017) on statistical
power).

In the NHST framework the multiple comparison problem
is exacerbated by the fact that we may test a very large
number of precise null hypotheses (Neath and Cavanaugh,
2006), often without much theoretical justification (e.g., in many
explorative whole brain analyses). However, as the H0:H1 odds
may be high the NHST mechanism may produce a very large
number of falsely significant results. Similarly high numbers
of false alarms are produced under realistic conditions even if
some rudimentary model is used for the data (e.g., expecting
positive or negative difference between conditions; Gelman
and Tuerlinckx, 2000). In contrast, while currently there is
no standard way to correct for multiple comparisons with
Bayesian methods, Bayesian methods have been shown to be
more conservative than NHST in some situations (Gelman
and Tuerlinckx, 2000) and they offer various methods for
correcting for multiple comparisons (e.g., Westfall et al., 1997;
Gelman et al., 2014). In addition, Bayesian methods are
strongly intertwined with explicit model specifications. These
models can then be used to generate simulated data and

to study model response behavior. This may offer a way to
judge the reasonableness of analyses offering richer information
than NHST accept/reject decisions (Gelman et al., 2014). The
challenge of course is the development of models. However,
below we argue that efficient model development can only
happen if we refocus our efforts on understanding data patters
from the testing of often very vaguely defined hypotheses.
In addition, Bayesian methods are also able to formally
aggregate data from many experiments (e.g., adding data serially
and by hierarchical models; Gelman et al., 2014). This can
further maximize large-scale joint efforts for better model
specifications.

THE STATE OF THE ART MUST CHANGE

NHST Is Unsuitable as the Cornerstone of
Scientific Inquiry in Most Fields
In summary, NHST provides the illusion of certainty through
supposedly ‘objective’ binary accept/reject decisions (Cohen,
1994; Ioannidis, 2012) based on practically not very useful p-
values (Bakan, 1966). However, researchers usually never give any
formal assessment of how well their theory (a specific H1) fits the
facts and, instead of gradual model building (Gigerenzer, 1998)
and comparing the plausibility of theories, they can get away
with destroying a strawman: they disprove an H0 (which happens
inevitably sooner or later) with a machinery biased to disproving
it without ever going into much detail about the exact behavior of
variables under exactly specified hypotheses (Kranz, 1999; Jaynes,
2003). NHST also does not allow for systematic knowledge
accumulation. In addition, both because of its shortcomings and
because it is subject to major misunderstandings it facilitates
the production of non-replicable false positive reports. Such
reports ultimately erode scientific credibility and result in wasting
perhaps most of the research funding in some areas (Ioannidis,
2005; Macleod et al., 2014; Kaplan and Irvin, 2015; Nosek et al.,
2015).

NHST seems to dominate biomedical research for various
reasons. First, it allows for the easy production of a large
number of publishable papers (irrespective of their truth value)
providing a response to publication pressure. Second, NHST
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seems deceptively simple: because the burden of inference
(Bakan, 1966) has been delegated to the significance test all too
often researchers’ statistical world view is narrowed to checking
an inequality: is p ≤ 0.05 (Cohen, 1994)? After passing this test,
an observation can become a “scientific fact” contradicting the
random nature of statistical inference (Gelman, 2015). Third, in
biomedical and social science NHST is often falsely perceived as
the single objective approach to scientific inference (Gigerenzer
et al., 1989) and alternatives are simply not taught and/or
understood.

We have now decades of negative experience with NHST
which gradually achieved dominance in biomedical and social
science since the 1930s (Gigerenzer et al., 1989). Critique of
NHST started not much later (Jeffreys, 1939, 1948, 1961) and
has been forcefully present since then (Jeffreys, 1939, 1948, 1961;
Eysenck, 1960; Nunnally, 1960; Rozeboom, 1960; Clark, 1963;
Bakan, 1966; Meehl, 1967; Lykken, 1968) and continues to-date
(Wasserstein and Lazar, 2016). The problems are numerous, and
as Edwards (1972, p. 179) concluded 44 years ago: “any method
which invites the contemplation of a null hypothesis is open to grave
misuse, or even abuse.” Time has proven this statement and that
problems are unlikely to go away. We suggest that that it is really
time for change now.

When and How to Use NHST
Importantly, we do not want to ban NHST (Hunter, 1997),
we realize that it may be reasonable to use it in some well-
justified cases. In all cases when NHST is used its use must be
justified clearly rather than used as an automatic default and
single cornerstone procedure. On the one hand, NHST can be
used when very precise quantitative theoretical predictions can
be tested, hence, both power and effect size can be estimated
well as intended by Neyman and Pearson (1933). On the other
hand, when theoretical predictions are not precise, reasonably
powered NHST tests may be used as an initial heuristic look at
the data as Fisher (1925) intended. However, in these cases (when
well-justified theoretical predictions are lacking) if studies are not
pre-registered (see below) NHST tests can only be considered
preliminary (exploratory) heuristics. Hence, their findings should
only be taken seriously if they are replicated, optimally within the
same paper (Nosek et al., 2013). These replications must be well
powered to keep FRP low. As discussed, NHST can only reject
H0 and can accept neither a generic or specific H1. So, on its own
NHST cannot provide evidence “for” something even if findings
are replicated.

For example, if initially researches do not know where to
expect experimental effects in a particular experimental task, they
could run a whole brain, multiple-testing corrected search for
statistical significance in a group of participants. Such a search
would provide heuristic evidence if they identify some brain areas
reacting to manipulations. In order to confirm these effects they
would need to carefully study for example the BOLD signal or
EEG amplitude changes in areas or over electrodes of interest,
make predictions about the behavior of these variables, replicate
measurements andminimally confirm the previous NHST results
before the findings can be taken seriously. Much better, if
researchers can also provide some model for the behavior of

their variables, make model predictions and then confirm these
with likelihood-based and/or Bayesian methods. Making such
predictions would probably require intimate familiarity with a lot
of raw data.

Ways to Change
In most biomedical, neuroscience, psychology, and social science
fields currently popular analysis methods are based on NHST.
It is clear that analysis software and researcher knowledge
cannot be changed overnight. Below we summarize some further
recommendations which we think can minimize the negative
features of NHST even if it continues to be dominant for a while.
A very important practical goal would be to change the incentive
structure of biomedical and social science to bring it in line
with these and similar other recommendations (Wagenmakers
et al., 2011; Begley and Ellis, 2012; Nosek et al., 2013; Stodden
et al., 2016). Also note that we are not arguing against statistical
inference which we consider the “logic of science” (Jaynes, 2003;
p. xxii.), quantitative and well justified statistical inference should
be at the core of the scientific enterprise.

If Theory Is Weak, Focus on Raw Data, Estimating

Effect Sizes, and Their Uncertainty
The currently dominant, NHST influenced approach is that
instead of understanding raw data researchers often just focus
on the all or nothing rejection of a vaguely defined H0 and shift
their attention to interpreting brain “activations” revealed by
potentially highly misleading statistical parameter maps. Based
on these maps then strong (qualitative) claims may be made
about alternative theories whose support may in fact never be
tested. So, current approaches seem to reward exuberant theory
building based on small and underpowered studies (Szucs and
Ioannidis, 2017) much more than meticulous data collection and
understanding and modeling extensive raw data patterns. For
analogy, in astronomy theories typically built on thousands of
years of sky observation data open to everyone. For example,
Kepler could identify the correct laws of planetary motion
because he had access to the large volume of observational
data accumulated by Tycho Brache who devoted decades of
his life to much more precise data collection than previously
done. Similarly, the crucial tests of Einstein’s theories were
precise predictions about data which could be verified or falsified
(Smolin, 2006; Chaisson and McMillan, 2017).

Overall, if we just consider competing “theories” without ever
deeply considering extensive raw data patterns it is unlikely that
major robust scientific breakthroughs will be done whereas many
different plausible looking theories can be promoted. Imagine,
for example, a situation where astronomers would have only
published the outcomes of their NHST tests, some rejecting that
the sun is in the middle of the universe while others rejecting
that the earth is in the middle of the universe while publishing
no actual raw data. Meta-analyses of published effect sizes would
have confirmed both positions as both camps would have only
published test statistics which passed the statistical significance
threshold. Luckily, real astronomers recorded a lot of data and
derived testable theories with precise predictions.
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In basic biomedical and psychology research we often cannot
provide very well worked out hypotheses and even a simple
directional hypothesis may seem particularly enlightening. Such
rudimentary state of knowledge can be respected. However,
in such pre-hypothesis stage substantively blind all or nothing
accept/reject decisions may be unhelpful and may maintain
our ignorance rather than facilitate organizing new information
into proper quantitative scientific models. It is much more
meaningful to focus on assessing the magnitude of effects along
with estimates of uncertainty, let these be error terms, confidence
intervals or Bayesian credible intervals (Edwards, 1972; Luce,
1988; Schmidt, 1996; Jaynes, 2003; Gelman, 2013a,b; see Morey
et al., 2016 on the difference between classical confidence
intervals and Bayesian credible intervals). These provide more
direct information on the actual “empirical” behavior of our
variables and/or the precision of interval estimation. Gaining
enough experience with interval estimates and assuring their
robustness by building replication into design (Nosek et al., 2013)
may then allow us to describe the behavior of variables by more
andmore precise scientific models whichmay provide more clear
predictions (Schmidt, 1996; Jaynes, 2003; Gelman, 2013a,b).

The above problem does not only concern perceived “soft
areas” of science where measurement, predictions, control and
quantification are thought to be less rigorous than in “hard”
areas (Meehl, 1978). In many fields, for example, in cognitive
neuroscience, the measurement methods may be “hard” but
theoretical predictions and analysis often may be just as “soft”
as in any area of “soft” psychology: Using a state of the art fMRI
scanner for data collection and novel but extremely complicated
and often not well understood analysis paths will not make a
badly defined theory well-defined.

The change of emphasis suggested here would require that
instead of p-values and reporting the outcomes of all/nothing
hypothesis tests studies should focus on reporting data in
original units of measurement as well as providing derived
effect sizes. It is important to publish data summaries (means,
standard errors, nowadays extremely rarely plotted empirical
data distributions) in original units of measurement as derived
measures may be highly biased by some (undocumented)
analysis techniques. If we have clear and pre-registered
hypotheses then it is relatively straightforward to publish raw
data summaries (e.g., mean BOLD signal or ERP amplitude
change with standard errors) related to those hypotheses.
Clear data presentation usually gets difficult when there are
lots of incidental findings. Usually unlimited amount of data
summaries can now be published cost free in Supplementary
Materials.

Pre-registration
In our view one of the most important and virtually cost-
free (to researchers) improvement would be to pre-register
hypotheses and analysis parameters and approaches (in line with
Section 5.2 in Nichols et al., 2016; p11; Gelman and Loken,
2014). Pre-registration can easily be done for example, at the
website of the Open Science Foundation (osf.org), also in a
manner that it does not immediately become public. Hence,
competitors will not be able to scoop good ideas before the study
is published. Considering the extreme analysis flexibility offered

by high-dimensional neuroscience data (Kriegeskorte et al., 2009;
Vul et al., 2009; Carp, 2012) pre-registration seems a necessary
pre-condition of robust hypothesis driven neuroscience research.
Pre-registration would likely help to cleanse non-replicable
“unchallenged fallacies” (Ioannidis, 2012) from the literature. For
example, Kaplan and Irvin (2015) found that pre-registering the
primary hypotheses of clinical studies decreased the proportion
of positive findings from 57% (17 of 30 studies) to 8% (2 out of 25
studies). Hence, another benefit of pre-registration would be to
decrease publication volumes. This would require changing the
incentive system motivating scientists (Nosek et al., 2013).

It is to note that honesty regarding pre-registration and
challenging questionable research practices (Simmons et al.,
2011) is the shared responsibility of all co-authors. Some fields
in medical research have already over 10 years of experience
with pre-registration. This experience shows that pre-registration
needs to be thorough to be reliable. For example, many
observational studies claimed to have been registered but closer
scrutiny shows that registration has actually happened after the
study/analysis was done (Boccia et al., 2016). In other cases,
clinical trials may be seemingly properly pre-registered before
they start recruiting patients, but analyses and outcomes were
still manipulated after registration (Ioannidis et al., 2017). Hence,
proper safeguards should be put in place to ensure that scientists
are accountable for any misconduct regarding breaching pre-
registration rules.

Publish All Analysis Scripts with Analysis Settings
Another cost-free improvement is to publish all analysis scripts
with the ability to regenerate all figures and tables (Laine
et al., 2007; Peng, 2009, 2011; Diggle and Zeger, 2010; Keiding,
2010; Doshi et al., 2013). This does not require large storage
space and can also be done in Supplementary Material. If
researchers keep this expectation in mind from the start of a
project then implementing it becomes relatively straightforward.
Program code will often provide information which is missing
from papers. With regard to missing analysis information it is
important to be conscious of the fact that seemingly innocuous
and irrelevant analysis settings (e.g., slightly changing initial
filtering parameters) can have major impact on final statistical
outcomes at the end of a complicated processing pipeline. For
example, modified initial settings may change the statistically
significant/non-significant status of final important test statistics.
This can be an issue if multiple settings can be justified and/or
if some settings leading to significant outcomes are actually less
justified than alternative settings. Publishing scripts will also
provide more information on potential statistical errors (Bakker
and Wicherts, 2001; Nuijten et al., 2016).

It is to note that in-house analysis scripts may provide
substantial competitive advantage to researchers who are able
to programme these. Hence, the unconditional release of these
scripts may deprive researchers from an important competitive
asset. In such cases in house scripts could be documented in
brief methods papers which could be cited when the relevant
scripts are used so that researchers benefit from citations. Perhaps
specialized methods repository journals could be set up for
this purpose. For some recent recommendations for improving
computational reproducibility practices see Stodden et al. (2016).
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Publish Raw Data
In an ideal world researchers should publish all raw data. This
is easy with small volumes of behavioral data but it has serious
monetary and time investment costs with large neural data
volumes (see also Nichols et al., 2017). Some repositories have
already been set up and it is important that funders cover
these costs and optimally provide infrastructure (see Pernet
and Poline, 2015; Nichols et al., 2017). Incentives such as a
badge system may help promote availability of more raw data
(Nosek et al., 2015). In our opinion it is important to publish
unprocessed raw data because processed data may already have
been distorted/biased in undocumented ways. In general, it is
more and more usual to reanalyse data from large repositories,
so much further development can be expected in this area (e.g.,
Eklund et al., 2012).

Publish Data (Summaries) Irrespective of Statistical

Significance, Promote Building Good Quality

Datasets Including Large Replication Studies
It is important to publish data summaries and/or data sets,
including the ones not resulting in statistically significant
findings. Without these datasets true effect sizes simply cannot
be determined. This will require that these datasets become
citeable so that their authors can be rewarded if data is used
for secondary analyses. Considering for example the above
mentioned case of Tycho Brache it is clear that his data
collection exercise was a necessary precondition of crowning
the Copernican/Newtonian revolution of astronomy (Chaisson
and McMillan, 2017). Hence, we should be able to reward
the mere collection of large volumes of good quality data:
such activity can prove to be an immense service to the
whole profession. Initiatives, like registered multi-lab replication
studies should also be prioritized when the validity of important
proposals is at stake. Funders are currently often reluctant
to fund such studies. However, they should realize that the
continuous seeking of new results and theories may just waste
most of their resources (Ioannidis et al., 2014; Kaplan and Irvin,
2015).

Increase Statistical Power and Publish Pre-study

Power Calculations
In real world research it is usually impossible to determine
the statistical power of NHST tests exactly. However, if raw
data summaries and/or raw data is published irrespective of
statistical significance (Section Pre-registration, Publish Raw
Data, and Publish Data (Summaries) Irrespective of Statistical
Significance, Promote Building Good Quality Datasets Including
Large Replication Studies) then we have a much better chance of
trying to determine power. Another option is to determine power
to detect pre-defined standardized effect sizes. In any case, power
in psychology and neuroscience should be much higher than
what it is nowadays (Szucs and Ioannidis, 2017). We hypothesize
that pre-registration would facilitate increasing power because
researchers could less expect to rely on incidentally finding
something statistically significant to report from their studies.
Hence, they would have more interest in assuring that they are
able to respond their primary, registered hypotheses.

Better Training and Better Use of More Statistical

Methods: from Believers to Thinkers
A core problem seems to be that the statistical subject knowledge
of many researchers in biomedical and social science has been
shown to be poor (Oakes, 1986; Gliner et al., 2002; Castro Sotos
et al., 2007, 2009; Wilkerson and Olson, 2010; Hoekstra et al.,
2014). NHST perfectly fits with poor understanding because of
the perceived simplicity of interpreting its outcome: is p ≤ 0.05
(Cohen, 1994)?

We suggest that the weak statistical understanding is probably
due to inadequate “statistics lite” education. This approach
does not build up appropriate mathematical fundamentals
and does not provide scientifically rigorous introduction into
statistics. Hence, students’ knowledge may remain imprecise,
patchy, and prone to serious misunderstandings. What this
approach achieves, however, is providing students with false
confidence of being able to use inferential tools whereas
they usually only interpret the p-value provided by black box
statistical software. While this educational problem remains
unaddressed, poor statistical practices will prevail regardless of
what procedures and measures may be favored and/or banned by
editorials.

All too often statistical understanding is perceived as
something external to the subject matter of substantive research.
However, it is important to see that statistical understanding
influences most decisions about substantive questions, because
it underlies the thinking of researchers even if this remains
implicit. While common sense “statistics” may be able to
cope with simple situations, common sense is not enough to
decipher scientific puzzles involving dozens, hundreds, or even
thousands of interrelated variables. In such cases well justified
applications of probability theory are necessary (Jaynes, 2003).
Hence, instead of delegating their judgment to “automatized”
but ultimately spurious decision mechanisms, researchers should
have confidence in their own informed judgment when they make
an inference. Such confidence requires deep study.

Understanding probability is difficult. Common sense is
notoriously weak in understanding phenomena based on
probabilities (Gigerenzer et al., 2005). We cannot assume that
without proper training biomedical and social science graduates
would get miraculously enlightened about probability. Some
of the best symbolic thinking minds of humanity devoted
hundreds of years to the proper understanding of probability
and statisticians still do not agree on how best to draw statistical
inference (Stigler, 1986; Gigerenzer et al., 1989), e.g., the
recent American Statistical Association statement on p-values
(Wasserstein and Lazar, 2016) was accompanied by 21 editorials
from the statisticians and methodologists who participated
in crafting it and who disagreed in different aspects among
themselves.

There is no reason to assume that understanding twenty
first and twenty second century science will require less
mathematical and statistical understanding than before. Such
as there is no royal road to mathematics, there is no royal
road to statistics which is heavily based on mathematics. If
statistical understanding does not improve it will not matter
whether editorials enforce bootstrapping, likelihood estimation
or Bayesian approaches, they will all remain opaque to the

Frontiers in Human Neuroscience | www.frontiersin.org 16 August 2017 | Volume 11 | Article 390

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Szucs and Ioannidis Null Hypothesis Significance Testing: A Reassessment

untrained mind and open to abuse such as the NHST of the
twentieth century.

One approach would be to phase out the ‘statistics lite’
education approach for all research stream students and teach
statistics rigorously. A typical research stream undergraduate
training could include, for example, 3–4 semesters of calculus,
one semester of introductory statistics, three more semesters
of calculus based statistics, and then finally two semesters of
more specialized statistics. An alternative and/or complementary
approach would be to enhance the training of professional
applied statisticians and to ensure that all research involves
knowledgeable statisticians or equivalent methodologists. At a
minimum, all scientists should be well trained in understanding
evidence and statistics and being in a position to recognize that
they may need help from a methodologist expert (Marusic and
Marusic, 2003; Moharari et al., 2009; Vujaklija et al., 2010).

Teach Alternative Approaches Seriously
It is important that researchers are conscious that NHST only
represents a small segment of available statistical techniques.
Besides NHST, Bayesian and likelihood based approaches should
also be taught, with explanation of the strengths and weaknesses
of each inferential method. Hypotheses could be tested by
either likelihood ratio testing, and/or Bayesian methods which
usually view probability as characterizing the state of our
beliefs about the world (Pearl, 1988; Jaynes, 2003; MacKay,
2003; Sivia and Skilling, 2006; Gelman et al., 2014; for
neuroscience data see e.g., Lorenz et al., 2017). The above
alternative approaches typically require model specifications
about alternative hypotheses, they can give probability statements
about H0 and alternative hypotheses, they allow for clear
model comparison, are insensitive to data collection procedures
and do not suffer from problems with large samples. In
addition, Bayesian methods can also factor in pre-study (prior)
information into model evaluations which may be important
for integrating current and previous research findings. Hence,
the above alternative approaches seem more suitable for the
purpose of scientific inquiry than NHST and ample literature
is available on both. The problem is that usually none of these
alternative approaches are taught properly in statistics courses
for students in psychology, neuroscience, biomedical science
and social science. For example, across 1,000 abstracts randomly
selected from the biomedical literature of 1990–2015, none
reported results in a Bayesian framework (Chavalarias et al.,
1990-2015).

It is important to note that Bayesian methods are often
accused of subjectivity because they can take prior information
into account. However, Bayesian methods are able to consider
prior expectations formally and explicitly in their models
provided that necessary information (e.g., raw data and/or
extensive reporting of data parameters) from previous studies is
available. In contrast, as we have discussed NHST can be latently
biased by subjectivity at many points without ever revealing any
of the biases. In contrast, different reasonable Bayesian priors can
be implemented and their impact on outcomes can be debated
explicitly and ultimately, the goodness of model predictions can
be tested. Hence, we do not see the use of Bayesian priors
as a drawback. Rather, explicit priors can represent a strength

as they allow for formal knowledge integration from previous
studies.

There Is No Automatic Inference: New-Old
Dangers Ahead?
Perhaps the most worrisome false belief about statistics is the
belief in automatic statistical inference (Bakan, 1966; Gigerenzer
andMarewski, 1998), the illusion that plugging in some numbers
into some black box algorithm will give a number (perhaps
the p-value or some other metric) that conclusively proves or
disproves hypotheses (Bakan, 1966). There is no reason to assume
that any kind of “new statistics” (Cumming, 2014) will not
suffer the fate of NHST if statistical understanding is inadequate.
For example, it has been shown that confidence intervals are
misinterpreted just as badly as p-values by undergraduates,
graduates, and researchers alike and self-declared statistical
experience even slightly positively correlates with the number
of errors (Hoekstra et al., 2014). Or, many times black box
machine learning algorithms may be run uncritically and/or
on relatively small data volumes. However, the more complex
is a dataset the more chance such substantively blind search
algorithms have to find some relationships where nothing worthy
of mention exist. So, uncritical applications are likely to further
boost the proportion of false positive findings irrespective of the
sophistication of the algorithms (Skokic et al., 2016). Similarly,
the proper use of Bayesian methods may require use of advanced
simulation methods and a clear understanding and justification
of probability distribution models. In contrast to this, it is
frequent to see a kind of “automatic” determination of Bayes
factors or posterior estimates, again, provided by black box
statistical packages which again, promise to take the load of
thinking off the shoulders of researchers.
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