
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12559-021-09865-2

When Old Meets New: Emotion Recognition from Speech Signals

Keith April Araño1  · Peter Gloor2 · Carlotta Orsenigo1 · Carlo Vercellis1

Received: 15 October 2020 / Accepted: 12 April 2021 

© The Author(s) 2021

Abstract

Speech is one of the most natural communication channels for expressing human emotions. Therefore, speech emotion 

recognition (SER) has been an active area of research with an extensive range of applications that can be found in several 

domains, such as biomedical diagnostics in healthcare and human–machine interactions. Recent works in SER have been 

focused on end-to-end deep neural networks (DNNs). However, the scarcity of emotion-labeled speech datasets inhibits the 

full potential of training a deep network from scratch. In this paper, we propose new approaches for classifying emotions 

from speech by combining conventional mel-frequency cepstral coefficients (MFCCs) with image features extracted from 

spectrograms by a pretrained convolutional neural network (CNN). Unlike prior studies that employ end-to-end DNNs, our 

methods eliminate the resource-intensive network training process. By using the best prediction model obtained, we also 

build an SER application that predicts emotions in real time. Among the proposed methods, the hybrid feature set fed into 

a support vector machine (SVM) achieves an accuracy of 0.713 in a 6-class prediction problem evaluated on the Ryerson 

Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, which is higher than the previously published 

results. Interestingly, MFCCs taken as unique input into a long short-term memory (LSTM) network achieve a slightly 

higher accuracy of 0.735. Our results reveal that the proposed approaches lead to an improvement in prediction accuracy. 

The empirical findings also demonstrate the effectiveness of using a pretrained CNN as an automatic feature extractor for the 

task of emotion prediction. Moreover, the success of the MFCC-LSTM model is evidence that, despite being conventional 

features, MFCCs can still outperform more sophisticated deep-learning feature sets.

Keywords Speech emotion recognition · Machine learning · Deep learning

Introduction

Sentiment analysis and affective computing have been 

receiving a surge of interest from both the academic and 

business communities in recent years due to the prolifera-

tion of opinion-rich social media data and their increasing 

applications in different use cases. The research in this field 

has been traditionally focused on analyzing textual data. 

However, the limitations of interpreting emotions from text 

features alone have led to studies devoted to predicting emo-

tional states from other forms of modalities, such as speech 

[1]. Speech signals are the most natural, intuitive and fast-

est means of interaction for humans and are known to carry 

much more information than text or spoken words [2].

Emotion recognition from speech signals has been studied 

for decades. However, finding effective features and training 

machine learning models that can generalize well to real-

world applications are still challenging tasks. This undertak-

ing, along with the emergence of speech-based virtual assis-

tants that provide readily available platforms for voice-based 

emotion recognition systems [3], drives a growing interest in 

the speech emotion recognition (SER) body of research [2].

With advancements in technology and the heightened 

optimism in deep learning, SER applications are expanding 

rapidly in different domains. In the healthcare sector, for 

instance, an SER system can be used as a medical diagnostic 

tool in which the acoustic properties of speech are analyzed 
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as indicators of depression and suicide risk [4]. In [5], the 

authors developed a real-time SER for online learning. Addi-

tionally, the automotive industry can benefit from SER for 

the purpose of automatically recognizing the emotional state 

of the driver and responding intelligently in order to improve 

the driving experience and encourage better driving [6].

A variety of approaches have been proposed in terms of 

preprocessing, feature extraction and classification algo-

rithms using different SER databases. Traditional SER sys-

tems involve the calculation of statistical functions for low-

level descriptors such as pitch, zero-crossing rate (ZCR), 

energy and mel-filter bank features, which are fed into 

traditional supervised learning algorithms such as support 

vector machines (SVMs) [7]. Recently, the growing interest 

in deep learning has led to more advanced approaches that 

use, for instance, deep neural networks (DNNs) to automati-

cally learn speech features [8]. Various DNN architectures 

for classifying emotions have also been presented and have 

exhibited the viable results [9].

A major challenge in fully exploiting the potential of 

DNNs for the task of emotion recognition is the lack of a 

large number of emotion-labeled speech datasets, which 

inhibits the training of a deep network from scratch. For this 

reason, traditional speech features such as mel-frequency 

cepstral coefficients (MFCCs) are still widely used due to 

their remarkable performance in SER experiments [3]. In 

this paper, we leverage the strengths of both traditional and 

deep learning approaches by combining the classical MFCC 

features with image spectrogram features extracted by means 

of a pretrained DNN.

In terms of classification algorithms, SVM is considered 

one of the most popular options in SER [7] and is among the 

best known classical methods for image classification [10]. 

A long short-term memory (LSTM) network, on the other 

hand, is one of the most powerful algorithms for modeling 

sequential data, which are inherent in speech features [8]. 

Hence, we carried out various experiments on the above-

mentioned features using the two classification algorithms 

SVM and LSTM. In particular, the main contributions of 

this paper are as follows: 

1. We evaluated the predictive power of different feature 

sets represented by handcrafted MFCCs and deep-

learned image features by carrying out various experi-

ments using two classification algorithms, namely SVM 

and LSTM. To the best of our knowledge, the combina-

tions of the aforementioned input features and super-

vised learning methods have not been considered in 

previous studies of this subject.

2. We investigated the use of a hybrid feature set to clas-

sify emotions from speech, specifically, a fusion of 

MFCCs and deep-learned features that were extracted 

from images depicting speech spectrograms by using a 

pretrained convolutional neural network (CNN) model, 

namely ResNet50. To the best of our knowledge, this is 

the first attempt to fuse such feature sets for SER tasks.

3. We developed a real-time SER application for recogniz-

ing six emotional categories by using the best prediction 

model generated in our experiments.

Related Work

Affective Computing and Sentiment Analysis

Emotion recognition and polarity detection are the basic 

tasks in affective computing and sentiment analysis [11]. 

Earlier works in the field have been focused on the task of 

polarity detection, which often involves a binary classifi-

cation problem that predicts “positive” versus “negative” 

sentiments [12, 13]. Emotion recognition, which aims to 

categorize different emotional states, has also been widely 

studied. One of the most influential emotional theories was 

introduced by Lazarus [14], who distinguishes three phases 

in the execution of an emotion. First is cognitive appraisal, 

where the individual assesses the event that triggers the emo-

tion. Second are physiological changes, such as changes in 

the heart rate or hormones, and third is action, where the 

individual feels the emotion and reacts to it. Different emo-

tion categorization models have been commonly used by 

the research community, such as the Hourglass of Emotions 

[15], the Circumplex Model of Affect [16] and Paul Ekman’s 

emotion model [17], among others.

The Hourglass of Emotions uniquely combines the tasks 

of polarity detection and emotion recognition by infer-

ring the polarity of a sentence directly from the conveyed 

emotions [11]. The Circumplex Model of Affect, on the 

other hand, is a two-dimensional model in which valence 

describes the range of negative and positive emotions and 

arousal characterizes the level of alertness. High valence and 

high arousal, for example, represent a pleasant feeling with 

high activation, which describes emotions such as happiness 

and excitement. One of the most widely applied emotion 

categorization frameworks is Paul Ekman’s emotion model, 

where he classifies emotions into six basic categories: anger, 

happiness, fear, surprise, disgust and sadness.

Various machine learning methods have been proposed 

for recognizing sentiment and emotional states, which are 

normally applied to textual data. Supervised learning tech-

niques such as Naive Bayes, maximum entropy and SVM, 

which rely on annotated corpora, are among the most suc-

cessful approaches [18]. However, the lack of labeled data-

sets, especially in cross-domain and cross-lingual contexts, 

paved the way for using semisupervised methods, which 

train classifiers on both annotated and unannotated corpora 

in order to reduce the dependence on annotated data. In 
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[19], for example, the authors proposed a semisupervised 

approach that first determines the sentiment ambiguity 

through a spectral clustering algorithm and then adopts 

an ensemble of transductive SVMs to train a final classi-

fier on labeled data. Extreme learning machines, which are 

primarily applied to supervised learning problems, have 

also been extended to semisupervised tasks in social data 

analysis [20].

Clearly, ensemble methods gained popularity in senti-

ment analysis because they take advantage of multiple 

approaches employed together. Recently, Akhtar et al. 

[21] proposed a stacked ensemble method for emotion 

and sentiment intensity prediction by combining the out-

puts obtained from several deep learning (i.e., LSTM) and 

classical feature-based (i.e., support vector regression) 

models. Another key challenge in resorting to machine 

learning methods is the use of black-box algorithms that 

often generate the uninterpretable results. An attempt to 

address this challenge is leveraging both subsymbolic 

(i.e., machine learning) and symbolic (i.e., knowledge 

base) approaches. In [22], for example, a new version of 

SenticNet [23] was proposed by integrating logical rea-

soning with deep learning networks to build a knowledge 

base.

The aforementioned studies on polarity detection and 

emotion recognition are limited to the analysis of tex-

tual data. When analyzing texts, however, the algorithms 

deal only with words, phrases and relationships, which 

are often not sufficient to interpret affective content [24], 

especially in more challenging tasks such as polarity dis-

ambiguation [25] and sarcasm detection [26, 27]. One 

approach to overcoming these problems is to use fuzzy 

logic [28], which depends on approximate reasoning. 

Chaturvedi et al. [29], for instance, proposed a sentiment 

classifier that integrates deep learning networks and fuzzy 

logic. Such challenges can also be addressed by looking 

at other forms of modalities, which is often referred to 

as multimodal analysis. One of the most notable works 

in the field of multimodal sentiment analysis proposed a 

technique that is able to continuously interpret affect over 

time by combining natural language text and facial expres-

sions, termed sentic blending [30]. In [31] and [32], the 

authors combined audio, visual and textual data for real-

time multimodal sentiment analysis.

While multimodal sentiment analysis is certainly effec-

tive in predicting sentiments and emotions, the precise 

detection of affect in each modality is a critical component 

for the success of the entire multimodal model. Since each 

modality is deemed important, distinct bodies of research 

dedicated to each type of modality have arisen, such as 

natural language processing for the study of natural lan-

guage, computer vision for analyzing image data and SER 

for speech signals.

Speech Emotion Recognition

Psychological studies of emotions suggest that vocal param-

eters, especially pitch, intensity, speaking rate and voice 

quality, play a significant role in the recognition of emo-

tions and sentiments [33]. SER has been an active area of 

research for decades primarily because speech is one of the 

principal communication channels for expressing human 

emotions and is therefore fundamental in the field of emo-

tion recognition. Similarly to other approaches in sentiment 

analysis, the development of an SER system involves three 

main aspects: training data preprocessing, feature extraction 

and classification.

Due to the laborious nature of labeling emotions from 

speech, emotion-labeled speech datasets with a large number 

of samples are inherently limited. Moreover, most publicly 

available datasets are collected in a controlled environment 

containing clean data that are free of noise and may not 

accurately represent conditions in the real world [3]. These 

obstacles are often addressed by applying preprocessing 

techniques such as augmenting audio data through various 

random transformations such as time stretching, pitch scal-

ing and noise addition [34, 35].

Emotion recognition heavily relies on the effectiveness 

of the features used for the task of classification. As a con-

sequence, feature extraction plays a prominent role, and sig-

nificant research has therefore been focused on identifying 

the speech features that best represent different emotional 

states. Classical feature extraction approaches involve hand-

crafted acoustic features such as MFCCs, pitch, energy and 

ZCR [36, 37]. The recent breakthroughs in deep learning, 

however, have led more studies to propose end-to-end DNNs 

to automatically extract speech features [38, 39]. For exam-

ple, in [40], a context-aware emotional feature extractor was 

proposed by combining a CNN with LSTM in order to auto-

matically learn the best speech representation from raw audio 

signals. In another study, Lee and Tashev [8] proposed a pow-

erful learning method with a bidirectional LSTM to extract 

a high-level representation of emotional states from speech.

While such end-to-end DNNs may provide the valuable 

results, the limitation due to the scarcity of emotion-labeled 

speech datasets hinders the training of DNNs from scratch. A 

relevant number of studies, therefore, still employ traditional 

handcrafted speech features, particularly MFCCs, which are 

reportedly one of the most conventional and effective feature 

sets [3, 41]. In [42], for example, MFCCs achieved notable 

performance on the Audio Video Emotion Challenge 2016. 

Other classical audio features, including MFCCs, were used 

in another study by AlHanai and Ghassemi [43] to predict 

emotional states in real time.

In terms of classification algorithms, SVM is one of the 

most popular and accurate classifiers in SER studies [7], 

where it has proven to be on par with or better than many 
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other advanced approaches [42]. In particular, deep-learned 

features combined with SVM have been shown to achieve 

state-of-the-art performance [44]. DNNs, such as LSTM, 

are also widely used for emotion recognition in speech [8, 

45]. In [46], Satt et al. successfully proposed an SER system 

based on LSTM applied directly to raw spectrograms.

Recognizing emotions from speech spectrograms is a rel-

atively new approach in SER as most studies have resorted 

to traditional low-level descriptors and, more recently, to 

deep-learned features from raw audio signals. Motivated by 

the well-established success of classical MFCCs as well as 

by the recent optimism on the use of spectrogram images, 

we propose a new SER approach by concatenating MFCC 

features with the spectrogram image features extracted by 

a pretrained CNN (i.e., ResNet50). Note that the use of a 

pretrained model for automatic feature extraction addresses 

the issue of the scarcity of training data and eliminates the 

lengthy and resource-intensive end-to-end network training 

process.

Methodology

Dataset

One of the main objectives of the present study is to develop 

a real-time SER system that can cover a wide range of appli-

cation areas in emotion recognition. A number of theories 

have been proposed that categorize different types of emo-

tions; among these, one of the most widely used in emotion 

recognition research is Paul Ekman’s model [17], in which 

emotions are classified into six basic categories: happiness, 

sadness, fear, anger, disgust and surprise. Our experiments 

were therefore based on the Ryerson Audio-Visual Database 

of Emotional Speech and Song (RAVDESS) [47] dataset, as 

it is one of the few publicly available SER datasets labeled 

with the six emotion types listed above. This dataset has 

been used extensively in similar studies focused on emotion 

recognition from speech [9, 48, 49], therefore allowing us to 

compare our results with previous research findings.

The RAVDESS dataset contains recordings from 24 

professional actors (12 females and 12 males) vocalizing 

each emotion type at two levels of emotional intensity. The 

emotion content of the dataset was validated by 247 partici-

pants, where each utterance was rated 10 times by 10 dif-

ferent raters. In our tests we used a total of 1880 audio-only 

files (16 bit, 48 kHz .wav) that covered the six basic emo-

tions. Specifically, for happiness, sadness, anger and fear, 

we included 376 instances each; for disgust and surprise, we 

analyzed 192 instances.

Proposed Method

The general framework of the proposed approach is depicted 

in Fig.  1. As illustrated, the feature extraction process 

involves two parallel tasks: The first generates the MFCC 

feature set from the raw speech signals, and the second 

builds the image features from the spectrograms.

Mel-frequency cepstrum (MFC) is a special kind of cep-

strum analysis originally designed to mimic how the human 

auditory system processes sounds. Whereas classical cep-

strum analysis equally weights different frequency ranges, 

MFC assigns more weight to lower frequencies. This is in 

line with the well-known dependence on frequency of the 

human ear’s critical bandwidths. Indeed, the range of human 

hearing varies generally between 20 Hz (lowest pitch) and 

20 kHz (highest pitch), but its ability to distinguish indi-

vidual tones is markedly greater at low frequencies. As a 

consequence, the distance between 100 Hz and 200 Hz is 

perceived by a human as being much more relevant than that 

Fig. 1  Diagram of the proposed speech emotion recognition system
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between 10 kHz and 10.1 kHz, even though their pairwise 

distances are the same.

MFCCs are the result of a cosine transform of the logarithm 

of the short-term spectrum expressed on a mel-frequency scale. 

MFCC feature extraction has been the dominant approach in 

speech recognition for a long time and has proven to be rather 

effective and robust under different conditions. Its success has 

also been due to the ability of emphasizing the perceptually 

significant characteristics of the audio spectrum and of provid-

ing a compact representation of it.

The process of generating MFCC features encompasses 

some major steps, where each step is motivated by percep-

tual or computational issues. Specifically, the raw audio sig-

nal is first passed through a high-pass filter (pre-emphasis) 

to amplify the high frequencies and is cut into overlapping 

frames to capture local spectral properties (framing). Win-

dowing is then performed on the frames to reduce the ampli-

tude of the discontinuities at the boundaries and therefore 

minimize the spectral distortion. A discrete Fourier trans-

form is then applied to transform each frame into the fre-

quency domain and to generate the short-term power spec-

trum. This is subsequently warped along the mel-frequency 

scale (mel-frequency warping), which can be defined as a 

perceptual scale of pitches. This warping is applied with the 

aim of reflecting the response of the human ear, which does 

not perceive pitches in a linear manner but is more sensitive 

to lower-frequency components. The mel-warped spectrum 

is then segmented into a number of critical bands by means 

of a filter bank, which typically consists of overlapping trian-

gular filters. Finally, to generate the MFCC vector, a discrete 

cosine transformation is applied to the logarithm of the K 

filter bank outputs, E
k
, k = 1,… , K , so that the dth MFCC 

can be computed as

To create the MFCC vector, we used the feature extrac-

tion module of librosa, a Python package for music and audio 

analysis [50]. Specifically, we extracted the audio time series 

data from the audio recordings by means of a standard sam-

pling rate (i.e., number of samples per second) of 44.1 kHz 

and used the default parameters pertaining to the short-time 

Fourier transform (STFT). In particular, we fixed the STFT 

window (i.e., the number of samples per window) to 2048 

and the hop length (i.e., the number of samples between suc-

cessive frames) to 512 samples. This package implements the 

Hann window function, which has a sinusoidal shape similar 

to that of the most common Hamming window but, in con-

trast to it, touches zero at both ends, thereby removing any 

discontinuity. In our experiments, a vector of 40 MFCCs was 

extracted ( D = 40 ) by excluding the zero-order coefficient, 

which indicates the average power of the input signal and has 

(1)MFCC
d
=

K
∑

k=1

E
k

cos
[

d(k − 0.5)�∕K
]

, d = 1,… , D.

been shown to carry limited speech information [51]. Notice 

that in MFC, the lower-order coefficients generally contain 

most of the information on the overall spectral shape, and few 

of them, approximately 12–20, are usually retained for speech 

analysis. Based on our tests, however, we deemed it appro-

priate to include higher-order coefficients, which represent 

increasing levels of spectral detail.

To generate the RGB spectrograms from the speech signals, 

we used the same audio package, which performs a short-time 

Fourier transform to calculate the frequency spectrum over 

short, overlapping windows based on the following equation:

where x(n) is the input signal at time n and w(n) is the win-

dow function of length R. Also, in this case, we adopted the 

Hann window and set the hop length to 512 samples. The 

image features were then extracted from the spectrograms by 

using a pretrained CNN model similar to that of [52], where 

the authors explored a transfer learning approach to deter-

mine the relevance of using spectrograms for the purpose of 

emotion prediction. In particular, we performed experiments 

on image feature extraction by trying different ImageNet 

pretrained models, namely ResNet50, VGG19, InceptionV3 

and Xception. Among these deep learning neural networks, 

ResNet50 provided the best performance and was therefore 

selected as our image feature extractor. For this reason, the 

spectrogram images were resized to 224 x 224 pixels con-

sistently with the input shape required by the Res-Net50 

model. Figure 2 shows some sample spectrograms for each 

of the six emotion types in the RAVDESS dataset.

For the purpose of generating a single hybrid feature vector, 

we combined the MFCCs with the spectrogram image features 

according to the early fusion method, which creates a joint 

representation of input features of multiple modalities and can 

therefore be considered a viable way to perform multimodal 

learning. Indeed, early fusion has proven to be rather effective 

in the area of multimodal emotion recognition, where features 

extracted from various modalities, such as image, audio and 

text, are fused into a single vector for analysis [1]. The joint 

representation adopted here is based on the most commonly 

used criterion, which consists of concatenating the features. 

In this way, the subsequent classifier is expected to learn the 

interactions between the low-level features of each modality. 

In our study, the early fusion method gave rise to the following 

hybrid feature vector:

where the first sub-vector contains 40 MFCCs and the 

second contains 100352 image features derived from the 

spectrograms. In case of the hybrid representation, the final 

(2)X(�, m) = STFT(x(n)) =

R−1
∑

n=0

x(n − m)w(n)e−i�n

(3)Hybrid =

(

MFCC1,… , MFCCD, IF1,… , IFL

)
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dataset was therefore described in terms of 100392 predic-

tors, which were provided as input to the selected classifiers 

for the purpose of emotion recognition.

To evaluate the usefulness of the proposed methods, we 

investigated and compared the performance of MFCCs and 

spectrogram-based features, denoted as SpecsResNet, taken 

individually as inputs, as well as the performance of their 

early fusion combination in forming hybrid features (called 

Hybrid). In particular, we trained and evaluated six different 

models by using SVM and LSTM as classifiers. The first 

three models, relying on SVM and fed the alternative feature 

sets, were denoted as MFCC-SVM, SpecsResNet-SVM and 

Hybrid-SVM. The remaining models, employing the same 

LSTM architecture, were instead denoted as MFCC-LSTM, 

SpecsResNet-LSTM and Hybrid-LSTM.

The performance of all methods was evaluated according 

to the following scheme: The original dataset was divided 

into a training and a test set composed of 70% and 30% of 

the available instances, respectively. In doing this, a strati-

fied random sampling strategy was adopted so that the train-

ing and test sets had approximately the same class distribu-

tions. Moreover, on the training set, a preprocessing step 

was performed with the purpose of fine-tuning some model 

parameters. In particular, threefold cross-validation was 

applied to select the kernel type for SMV-based models and 

the size and the activation function for LSTM. Based on this 

first round of experiments, SVM with a linear kernel turned 

out to be the best choice for SpecsResNet and the Hybrid 

feature sets, whereas a polynomial kernel with degree 2 was 

selected for the MFCC-based model. For LSTM, instead, 

the architecture used in combination with the three sets of 

input features was composed of one input layer, three hid-

den layers (i.e., one dropout layer and two dense layers) and 

one dense output layer with a softmax activation function. 

Finally, to solve the multicategory problem with SVM, we 

used a one-versus-all framework.

Results

The classification results of the competing techniques are 

illustrated in Table 1, which contains the F1-score on the test 

set for each emotional state as well as two global measures 

represented by the overall F1-score and the overall accuracy. 

Here, the term overall refers to the average of the outcomes 

across the different prediction tasks. In particular, the global 

measures were computed as the mean over the six F1-score 

and accuracy values weighted by the number of samples 

belonging to the different classes. The use of the F1-score 

and the weighted accuracy as performance metrics ensures 

Fig. 2  Spectrograms of the six emotions

Table 1  Performance of all the 

models on the test set across the 

six emotions

Model F1-Score Accuracy

Happiness Sadness Fear Anger Disgust Surprise Overall Overall

MFCC-LSTM 0.769 0.748 0.672 0.791 0.715 0.690 0.736 0.735

Hybrid-SVM 0.646 0.689 0.633 0.791 0.838 0.736 0.710 0.713

SpecsResNet-SVM 0.657 0.621 0.575 0.771 0.724 0.767 0.674 0.676

MFCC-SVM 0.667 0.694 0.655 0.779 0.643 0.662 0.689 0.690

SpecsResNet-LSTM 0.523 0.601 0.490 0.682 0.680 0.586 0.586 0.582

Hybrid-LSTM 0.444 0.505 0.460 0.636 0.642 0.458 0.519 0.524

Average F1-Score 0.618 0.643 0.581 0.742 0.707 0.650
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that the class imbalance in the dataset is accounted for. To 

refine the performance evaluation, we also combined the 

individual outcomes in Table 1 across the emotional states. 

Specifically, for each method, we computed a score given 

by the ratio between its error rate, defined as 1 minus the 

F1-score, and the lowest error rate on a given emotion. For 

a model, the sum of the scores on all emotions can be seen 

as a measure of its ability to generate predictions that are 

close, if not equal, to the best ones in terms of accuracy. The 

results of this analysis are depicted in Fig. 3.

From the outcomes of Table 1 and Fig. 3, some empiri-

cal conclusions can be drawn. By focusing on the use of 

SVM as the classifier, we observe that the proposed hybrid 

input feature vector outperformed MFCCs and spectro-

gram-based features taken individually. In particular, com-

pared to MFCC-SVM and SpecsResNet-SVM, Hybrid-

SVM led to an improvement in the overall F1-score and 

accuracy of at least 2% and 2.3%, respectively. Note that 

the results of Hybrid-SVM are fairly superior to the accu-

racy achieved on the same RAVDESS dataset in prior 

studies that use SVM-based methods for classification. For 

example, Zhang et al. [48] investigated the usefulness of 

alternative groups of acoustic features represented by dif-

ferent types of low-level descriptors. Among these, in the 

emotion recognition task, MFCCs derived by all (spoken 

and sung) utterances and combined with SVM achieved an 

accuracy of 0.538, which dropped to 0.487 when only spo-

ken utterances were used. Our computational tests, there-

fore, support the effectiveness of a hybrid representation 

relying on MFCCs and spectrogram-based features, where 

the latter descriptors enhance the predictive ability of the 

former when they are used in conjunction with classical 

learning methods such as SVM. In particular, our findings 

shed light on the effectiveness of a pretrained CNN model, 

namely ResNet50, used as a feature extractor from speech 

spectrogram images. For the task of emotion prediction, 

Fig. 3  Prediction scores based on the F1-scores of the different models across the six emotions
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indeed, this approach also showed the interesting results 

on certain emotional states (i.e., surprise) when it was 

exploited to generate a unique input feature vector to feed 

an SVM classifier (SpecsResNet-SVM model). Note that 

this method eliminates the lengthy and resource-intensive 

process of network training from scratch. Therefore, it 

deserves attention as a promising novel approach for emo-

tion classification from speech data when this task is for-

mulated as an image classification problem, as suggested 

in [53]. Finally, our experiments also confirmed the suit-

ability of SVM when hybrid representations are involved 

as input for classification. Indeed, our results agree with 

prior studies that demonstrated the effectiveness of SVM 

for emotion prediction when the learning is based on mul-

timodal or fused data sources [54].

When deep learning algorithms (i.e., LSTM) were 

exploited for classification, we observed the superiority of 

MFCCs, which, taken as unique input, were able to out-

perform to a large extent the spectograms and hybrid fea-

tures combined with LSTM and to achieve a slightly higher 

accuracy compared to that of Hybrid-SVM. This noteworthy 

behavior is confirmed by the score analysis. Indeed, MFCC-

LSTM reached the highest total score, being associated with 

ratios that were more densely distributed around 1 compared 

to those of the other techniques (Fig. 3). The success of 

MFCC-LSTM shows that, despite being traditional speech 

descriptors, MFCCs can still dominate more sophisticated 

deep-learning features. We observe that a known benchmark 

on the RAVDESS dataset was achieved in [49], where the 

authors reached an accuracy of 0.787 by using MFCCs and 

variants of artificial neural networks. Their result, however, 

is not directly comparable with our outcome for certain 

reasons. In particular, they cast the problem as a 5-class 

prediction task by including the unified anxiety/stress emo-

tion in place of fear and surprise, where the former is the 

most difficult emotion to detect, as reported by the last row 

in Table 1, which indicates, for each emotion, the average 

F1-score over all methods. Moreover, they built the model 

on a larger training set by selecting 25% of the examples for 

testing. Nevertheless, the result achieved in our more dif-

ficult 6-class prediction problem can be judged to be at least 

on par with the benchmark obtained for the 5-class learn-

ing task. Furthermore, it is worth noting that the superior-

ity of MFCC-LSTM over Hybrid-SVM is evaluated based 

on the global F1-score and the global accuracy, which both 

account for the class imbalance. Consequently, the difference 

in performance between MFCC-LSTM and Hybrid-SVM, 

where the latter prevailed over the former for disgust and 

surprise and was equally accurate on anger, can be signifi-

cantly reduced by including more samples for disgust and 

surprise, which are precisely the underrepresented classes 

in the dataset.

By looking closely at the outcomes for the six emotion 

types, we observed that fear and happiness emerged as the 

most difficult to predict, while anger was consistently well 

detected by all models (Fig. 3). These findings are aligned 

with previous studies that showed that happiness is difficult 

to recognize due to its specific characteristics (i.e., it relies 

on distinct contextual information more than other emotion 

types) [9], whereas anger is often associated with the high-

est prediction accuracy and is therefore clearly the easiest 

emotion to predict from speech features [2, 55].

The direct comparison between the two top-ranked mod-

els, MFCC-LSTM and Hybrid-SVM, also revealed that the 

performance gap largely depends on happiness, which is 

more heavily misclassified by the latter. To investigate this 

discrepancy we analyzed the confusion matrices (Fig. 4), 

which showed that, for models exploiting spectrogram-based 

features, happiness is more often confused with sadness, 

fear and anger. This behavior suggested that a possible cause 

could be sought in the spectrograms of the aforementioned 

emotions, which make their mutual distinction more diffi-

cult. For this reason, we further analyzed the spectrograms 

by evaluating their similarity, based on the idea that features 

extracted from highly similar spectrograms may hinder the 

classification of the related emotions in the subsequent pre-

diction task. To this end, we computed two indices between 

the spectrograms for each pair of emotions, represented by 

the cosine similarity and the structural similarity (SSIM) 

index [56], which accounts for image luminance l, contrast 

c and structural similarity s, as follows:

where x and y are two image signals and � , � and � are non-

negative parameters used to regulate the importance of the 

three components, which are all set to 1 in our tests.

The results of this analysis are depicted in Fig. 5, which 

contains the average pairwise cosine similarity of the six 

emotions (part (a)) and a graph-based representation of 

the SSIM index (part (b)). These results support our con-

jecture regarding the misclassification of happiness by 

spectrogram-based models, which can be misleading due 

to the high degree of spectrogram similarity between hap-

piness and sadness, fear and anger, as emerges clearly 

from Fig. 5. The same analysis highlights also a substan-

tial similarity between fear and sadness. This may explain 

the performance on these two emotions of the spectro-

gram-based methods, which labeled examples as sad and 

fearful in at least 15.9% of cases. Hence, as a general 

remark, spectrogram-related features can be useful for the 

prediction of some emotions (i.e., sadness, anger, disgust, 

and surprise), but not all. This paves the way for further 

investigation of the effectiveness of such descriptors by 

(4)SSIM(�, �) =
[

l(�, �)
]�

⋅

[

c(�, �)
]�

⋅

[

s(�, �)
]�
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devising novel features to be extracted that are able to 

better grasp and reflect the inherent diversity among the 

visual representations of the spectrum of frequencies of 

emotions’ signals.

By adopting the best classification model based on our 

experiments (i.e., MFCC-LSTM), we built a real-time SER 

tool that takes speech signals as input and makes instantaneous 

emotion predictions. In particular, to increase the generaliz-

ability of the application, we retrained the final model on a 

larger sample obtained by combining different publicly avail-

able datasets: the Surrey Audio-Visual Expressed Emotion [57] 

dataset, Crowd-Sourced Emotional Multimodal Actors Dataset 

[58], Interactive Emotional Dyadic Motion Capture [59] data-

set, Toronto Emotional Speech Set [60] and Berlin Database of 

Fig. 4  Confusion matrices of the six models

Fig. 5  Spectrogram similarities between all pairwise emotion combinations: (a) average pairwise cosine similarity (b) graph-based representa-

tion of the SSIM index
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Emotional Speech [61]. The collection of these data provided 

a total of 14,309 instances of 2–5 seconds of speech.

Figure 6 illustrates the graphical user interface of the SER 

application, which displays the instantaneous probabilities 

for each of the six emotions as well as the overall emotion 

probabilities of the speech stream over time. These prob-

abilities are derived from the softmax layer of the LSTM 

network. In particular, the overall predicted emotion ê was 

computed over the entire length of the input speech signals 

by means of a hard majority voting scheme. Thus, it was 

defined as the most frequent emotion label assigned to the 

entire speech stream from time t
1
 to time t

n
 , according to the 

following expression:

where e
t
i

 is the predicted emotion at time t
i
, i = 1, ..., n.

The performance of real-time SER systems is subject to 

the length of time necessary to process the speech features. 

(5)ê = mode{e
t1

, e
t2

, ..., e
t
n
}

The use of our MFCC-LSTM model enables the real-time 

feasibility of our tool primarily because the extraction 

and preprocessing of the MFCC features require minimal 

computational effort. As shown in Table 2, the process of 

feature extraction and preprocessing is on the order of mil-

liseconds, allowing for real-time prediction of emotional 

states. Note that this analysis was performed on a machine 

with 8 GB RAM and a 4-core CPU.

The proposed SER tool, through the related application 

programming interface (API), can be effectively framed 

within intelligent systems in order to automatically recognize 

emotions from speech, contribute to a better interpretation of 

verbal communication and enhance their capacity to interact 

with humans in a natural way. This plays a fundamental role 

currently, when it is believed that artificial systems need to 

become more sensitive toward human emotions in order to 

be more user friendly, trustworthy and effective. The devel-

oped SER application is available upon request.

Fig. 6  Real-time SER system
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Conclusions and Future Work

In this paper, we investigated the fusion of speech MFCCs 

and image features extracted from signal spectrograms for 

the task of emotion recognition. In particular, we evaluated 

the effectiveness of different combinations of supervised 

learning algorithms, namely SVM and LSTM, and feature 

sets, represented by MFCCs, spectrogram images and their 

hybrid fusions, on the benchmark RAVDESS dataset. By 

using the best-trained model, we built a real-time SER tool 

that takes in input speech signals and predicts instantaneous 

and overall emotions over time.

Our results demonstrated that with a suitable classi-

fier, in the hybrid fusion approach, MFCCs and spectro-

gram images do complement each other, resulting in an 

improvement in the prediction accuracy. Concerning the 

classification algorithms, our experiments revealed that 

classical SVM is recommended for handling such hybrid 

features, whereas LSTM provides the most favorable 

results when the more conventional MFCC features are 

taken as unique input. In regard to the six basic emotions, 

happiness emerged as one of the most difficult to predict 

when using speech features. Indeed, as noted previously 

in the literature, it relies more on context information than 

the other emotion types [9]. To build a real-time SER tool, 

we used the MFCC-LSTM model, which was shown to 

be the best in our experiments. It is worth noting that the 

extraction and preprocessing of the MFCC features in 

real time require less computational effort than the hybrid 

approach. This enhances the feasibility of the real-time 

system. By means of the related API, our SER applica-

tion can be integrated into any intelligent system and can 

help practitioners who are working on the development of 

real-time emotion recognition tools. The developed SER 

software can be useful in several areas. For example, it 

could effectively support activities in a call center, where 

emotions stemming from phone conversations could be 

monitored in real time. This would enable agents to better 

handle phone calls and ultimately increase customer sat-

isfaction [62, 63]. Team collaboration measurement tools, 

such as the Happimeter [64], are other promising use cases 

for our work.

Despite the novel contributions of this study, we are 

aware of certain challenges and limitations. First, the lim-

ited number of emotion-labeled speech datasets prevented 

us from building and evaluating our models on larger and 

more diverse datasets. The generalizability of our predic-

tion models could be further enhanced by using a larger 

speech training dataset collected from diverse popula-

tions in terms of language or culture, when such a dataset 

becomes available. Second, we found it challenging to 

predict happiness from speech features. Future works can 

therefore focus on finding novel descriptors that best rep-

resent this emotional state. For example, happiness could 

be better detected by means of other forms of modalities 

such as text, where the context can be better captured, 

or facial expressions and physiological characteristics 

such as changes in heart rate, which have been studied 

in multimodal emotion recognition research [42, 54]. 

Finally, our work evaluated two well-known algorithms 

for classification. Our findings, however, encourage future 

research directions devoted to exploring more sophisti-

cated ensemble learning algorithms as well as alternative 

fusion methods.
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Table 2  Time analysis of 

the real-time SER tool on a 

machine with 8 GB RAM and a 

4-core CPU

Time stamp Feature extraction Feature preprocessing Emotion prediction Total time

(H:M:S) (milliseconds) (milliseconds) (milliseconds) (milliseconds)

14:25:54 100.868 0.857 2.290 104.015
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14:26:04 100.782 0.860 2.632 104.274

14:26:08 99.688 0.878 2.602 103.168
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14:26:26 96.400 0.8500 2.358 99.608

14:26:31 96.706 0.866 2.566 100.138

14:26:36 98.009 0.857 2.736 101.602

Average Time 99.043 0.867 2.481 102.390
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