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Abstract

Several recent heuristics for domain independent planning
adopt some action cost partitioning scheme to derive admissi-
ble heuristic estimates. Given a state, two methods for obtain-
ing an action cost partitioning have been proposed: optimal
cost partitioning, which results in the best possible heuris-
tic estimate for that state, but requires a substantial computa-
tional effort, and ad-hoc (uniform) cost partitioning, which is
much faster, but is usually less informative. These two meth-
ods represent almost opposite points in the tradeoff between
heuristic accuracy and heuristic computation time. One com-
promise that has been proposed between these two is using
an optimal cost partitioning for the initial state to evaluate all
states. In this paper, we propose a novel method for deriv-
ing a fast, informative cost-partitioning scheme, that is based
on computing optimal action cost partitionings for a small
set of states, and using these to derive heuristic estimates
for all states. Our method provides greater control over the
accuracy/computation-time tradeoff, which, as our empirical
evaluation shows, can result in better performance.

Introduction
Recent years have seen a significant advance in the field
of admissible heuristics for domain independent planning.
Many of these new heuristics are based upon action cost
partitioning (simply referred to as cost partitioning through-
out the rest of this paper), for example: additive-disjunctive
heuristics (Coles et al. 2008), the admissible landmarks
heuristic hLA (Karpas and Domshlak 2009), and additive
implicit abstractions (Katz and Domshlak 2010b; 2010a).
The basic idea underlying cost partitioning is elegantly sim-
ple: the cost of each action a is divided between different
objects (action representatives or landmarks). The heuris-
tic estimate is computed by summing up estimates obtained
from each of these objects, and admissibility is guaranteed
by ensuring that each action a does not contribute more than
its true cost in the original task to the sum.

Such cost partitioning was originally achieved by ac-
counting for the whole cost of each action in a single ob-
ject, while ignoring the cost of that action in all the others
(Edelkamp 2001; Felner, Korf, and Hanan 2004; Haslum,
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Bonet, and Geffner 2005). Recently, heuristics that use ar-
bitrary cost partitioning have been shown to lead to state-
of-the-art performance in cost-optimal planning. Two of
these heuristics are the additive implicit abstraction heuris-
tic (Katz and Domshlak 2010b; 2010a), and the admissi-
ble landmarks heuristic hLA (Karpas and Domshlak 2009).
Both of these heuristics formulate the problem of finding the
most informative (that is, an optimal) cost partitioning for a
given state as a linear program (LP), which they attempt to
solve. Although solving a linear program is polynomial, the
resulting heuristic is prohibitively slow. Another option is
to use an ad-hoc uniform cost-partitioning scheme, where
the cost of each action is divided equally between the rele-
vant objects. While using uniform cost partitioning leads to
a much faster heuristic, it is also much less informative.

The optimal and uniform cost-partitioning schemes offer
two opposite points of the tradeoff between heuristic accu-
racy and heuristic computation time. While optimal cost
partitioning is informative but slow, uniform cost partition-
ing is fast but less informative. In order to try and get the
best of both worlds, Katz and Domshlak (2010b) proposed
computing an optimal cost partitioning for the initial state,
and using that cost partitioning to evaluate all other states.
While this method offers a compromise between heuristic
accuracy and computation-time per state, it does not offer
any control over the accuracy/computation-time tradeoff.

In this paper, we present a novel method that provides
control over the tradeoff between heuristic accuracy and
computation-time per state. Using this method, we can de-
rive heuristic estimates that are almost as informative as
those of the optimal cost-partitioning scheme, while keeping
computation-time per state at the same order of magnitude
as that of the uniform cost-partitioning scheme. Our method
consists of selecting a small number of states in a pre-search
phase, and computing an optimal cost partitioning for each
of these representative states. During search, these optimal
cost partitionings are used to evaluate every state encoun-
tered during search, which is very cheap computationally.

Taking implicit abstraction heuristics (Katz and Domsh-
lak 2010a) as a case study, we empirically show that the sug-
gested approach is competitive with both optimal and any
known ad-hoc cost-partitioning schemes.
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Notation
We consider classical planning tasks described by the SAS+

formalism (Bäckström and Nebel 1995) with non-negative
action costs. Such a planning task is given by a quin-
tuple Π = 〈V ,A, s0, G, C〉, where V is a set of state
variables, each v ∈ V is associated with a finite domain
dom(v); each complete assignment to V is called a state,
and S = ×v∈V dom(v) is the state space of Π. The state s0
is called an initial state. The goal G is a partial assignment
to V ; a state s is a goal state iff G ⊆ s.
A is a finite set of actions. Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
ditions and effects, respectively. C : A → R0+ is a real-
valued, non-negative action cost function.

An action a is applicable in a state s iff pre(a) ⊆ s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by sJaK; by sJ〈a1, . . . , ak〉K we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions a1, . . . , ak starting at state s. Such an action
sequence is an s-plan if G ⊆ sJ〈a1, . . . , ak〉K, and it is a
cost-optimal (or, in what follows, optimal) s-plan if the sum
of its action costs is minimal among all s-plans. The purpose
of (optimal) planning is finding an (optimal) s0-plan.

For a pair of states s1, s2 ∈ S, by C(s1, s2) we refer to
the cost of a cheapest action sequence taking us from s1 to
s2 in the state model of Π; h∗(s) = mins′⊇G C(s, s′) is the
notation for the cost of optimal s-plans for Π.

Background
In this paper, we are concerned with solving planning tasks
optimally, using A∗ with a cost-partitioning based heuristic.
Furthermore, we are only interested in heuristics that have a
feasible method for finding an optimal cost partitioning for a
specific state. We are familiar with two such heuristics: the
admissible landmarks heuristic hLA, and the additive im-
plicit abstraction heuristic.

The hLA heuristic (Karpas and Domshlak 2009) works by
partitioning the cost of each action between the landmarks it
achieves (a landmark is a fact which must be true at some
point along every plan). A set of linear constraints ensures
admissibility, and thus finding an optimal cost partitioning
can be formulated as a linear program (LP). However, the
hLA heuristic is defined using the set of landmarks that still
need to be achieved, which is determined by the path taken
to reach the state, and not by the state itself. Therefore, hLA

is not a proper, state-dependent heuristic, but rather a path-
dependent heuristic. More accurately, it is multi-path depen-
dent, and can thus give several different heuristic estimates
for the same state, depending upon the path or paths found
leading to that state.

The (additive) implicit abstraction heuristic (Katz and
Domshlak 2010a; 2010b) belongs to the family of additive
ensembles of admissible heuristics. An additive ensemble
is composed of several different component heuristics, and
the cost of each action is divided between its representatives
in the component heuristics, while ensuring that the cumu-
lative counting of the cost of the action does not exceed its

true cost in the original task. This admissibility condition
subsumes earlier admissibility criteria for additive pattern
database heuristics by Edelkamp (2001) and for general ad-
missible heuristics by Haslum et al. (2007).

Of course, different cost partitions lead to additive heuris-
tics of different quality. For abstraction based heuristics, a
procedure for computing an optimal cost partitioning for a
given state exists (Katz and Domshlak 2010b). This proce-
dure works by formulating the conditions for admissibility
as linear constraints, and solving an LP that maximizes the
heuristic estimate. This procedure gives the most informa-
tive estimate possible (for the given state), but is very slow,
and does not work well in the standard time-bounded setting.

Another option is to use an ad-hoc uniform cost-
partitioning scheme. This results in a heuristic which is
much faster, but also less informative. Katz and Domsh-
lak (2010b) suggested a method that provides a compromise
between the optimal and uniform cost-partitioning schemes.
Their compromise involves computing optimal cost parti-
tionings for only a subset of evaluated nodes. They only
implemented this for the trivial case, where this subset of
evaluated nodes contains only the initial state. However,
even this sometimes leads to an improvement over using the
uniform cost-partitioning scheme.

In this paper, we suggest a concrete method for obtain-
ing a set of states for which optimal cost partitionings can
be computed. We also suggest two different ways of using
these cost partitionings to derive a heuristic. The setup we
consider is as follows: we are given a single planning task
Π which we want to solve. Our method takes a parame-
ter k, that controls the tradeoff between heuristic accuracy
and heuristic computation time. The method we present be-
low then selects k states and computes an optimal cost par-
titioning for each of them. These states are used to create
a heuristic, which is then used by the A∗ search algorithm.
Note that although our method works before search, it works
for a single specific planning task, and can thus be consid-
ered to work in a pre-search phase. Specifically, the time our
method uses is counted as part of the time-limit per task.

Since the hLA heuristic is multi-path dependent (and not
state-dependent), applying our method to the hLA heuristic
is a bit complicated. Therefore in this paper we apply our
method only to implicit-abstraction heuristics, and leave ap-
plication to hLA as future work.

Algorithm
Given some cost-partitioning based heuristic family h, let hc
denote the heuristic induced by cost partitioning c. Denote
by cs some optimal cost partitioning for heuristic h at state
s (that is, cs = argmaxc∈P hc(s) where P denotes the set
of all admissible cost partitionings). By definition, the best
estimate we can get for state s using heuristic h is hcs(s).
Note that computing hcs(s) consists of two parts: comput-
ing cs, which is usually very slow, and then computing the
heuristic estimate hc given c = cs, which is much faster.

The approach proposed in this paper is based on the as-
sumption that if two states s and s′ are close to each other
(in the transition system of the planning task), then an op-
timal cost partitioning for s will also give a good (informa-
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tive) heuristic estimate for s′ (that is, the loss of accuracy
hcs(s)−hcs′ (s) is small when s and s′ are close). Although
we cannot prove this assumption, our empirical evaluation
supports it.

General Framework
Assume we have a set of k states, R = {s1, . . . , sk}. As-
sume we also have a set of associated optimal cost parti-
tionings C = {c1, . . . , ck}, such that ci is an optimal cost
partitioning for state si.

We can define a heuristic which combines these as fol-
lows:

hall(s) = max
c∈C

hc(s)

Since computing h given a cost partitioning is fast, hall is
still rather fast — it requires evaluating h (with a given cost
partitioning) k times.

Another option is to only look at at the state in R that
is closest to s. Based on our assumption, using the closest
state’s cost partitioning should give the best heuristic esti-
mate possible by using any cost partitioning from C. How-
ever, finding the closest state to s is as hard as optimal plan-
ning, so we use a distance metric d instead of the true dis-
tance. This leads to the following heuristic:

hnn(s) = hcN(s)
(s)

where N(s) := argmins′∈R d(s, s′) is the state in R which
is closest to s. This requires using h (with a given cost par-
titioning) only once, but computing the distance metric k
times. Note that a good distance metric might be as expen-
sive to compute as h with a given cost partitioning.

These heuristics lead to the following method for fast, in-
formative cost partitioning:

1. Choose a set R of k states. Assume R = {s1, . . . , sk}.
2. For each si ∈ R compute an optimal cost partitioning ci.

Let C = {c1, . . . , ck}.
3. Use either hall or hnn (with an appropriate distance met-

ric) as a heuristic.

This leads to the obvious question of — how to choose the
set of states R?

In the following we assume we are using hall, although
the arguments for hnn are similar. Given a budget for k
optimal cost partitionings, our objective is to choose R, so
as to minimize the number of states expanded by A∗.

From the well-known analysis of A∗ (Pearl 1984), this can
be achieved by making hall as informative as possible (ig-
noring pathological cases with tie-breaking). In other words,
we want to maximize the informativeness of hall over the
entire state space. However, it is not feasible to work with
the entire state space, so we limit ourselves to a sample of
the state space.

Given a sample of the state space (denoted by S′), we
must still choose k states out of S′. Here, we use our as-
sumption that if two states are close to each other, then an
optimal cost partitioning for one will also give a good heuris-
tic estimate for the other. Therefore, we want to choose R
so as to minimize the distance from each state in our state

space sample to a state in R. Although this objective can
be formulated mathematically in several ways, we choose
to minimize the sum of distances from each state s ∈ S′

to the closest state to it in R (that is, we want to minimize∑
s∈S′ mins′∈R C(s, s′)). It is also possible to consider min-

imizing the maximum distance for each state to the closest
state, but we consider this a bad alternative, since it only
takes into account one pair of states.

Since we don’t know the true cost C(s, s′), we can approx-
imate it by some easier to compute distance metric d, and
try to minimize

∑
s∈S′ mins′∈R d(s, s′). Although it might

seem like it is difficult to find such a set of states R, this is
basically a clustering problem, with the objects to cluster be-
ing states (from the sample), and the distance between them
defined by d.

After we cluster our state space sample, we need to choose
a representative from each cluster, and compute an optimal
cost partitioning for that representative. The other states
in the cluster should be similar to the representative, and
so (hopefully), will get a high heuristic estimate using the
representative’s optimal cost partitioning. Note that this is
similar to the ISAC instance specific algorithm configura-
tion method (Kadioglu et al. 2010), where problem instances
are objects, and they are clustered according to some user-
defined similarity measure, and then a “best configuration”
is found for each cluster.

The approach described above is rather general. In the
following, we give a more detailed description of each of
the steps we use in our approach.

State Space Sampling
The state space sampling procedure we use here is the one
suggested by Haslum et al. (2007). An initial goal depth
estimate is first obtained. We estimate the goal depth by
using twice the value of the FF heuristic’s (Hoffmann and
Nebel 2001) estimate of the initial state. Then a series of
random walks is performed, where the last state in each such
walk is added to the sample.

Each random walk has a random depth limit, which is
drawn from a binomial distribution that is centered around
the estimated goal depth. Each walk is uniformly random
(that is, one of the successors of the current state is chosen
with equal probability), and walks that reach dead ends are
discarded. The number of random walks we perform is 1000
times the number of clusters we want (that is, 1000k).

We remark that other state space sampling methods exist,
such as the probing method proposed by Domshlak, Karpas,
and Markovitch (2010). However, the probing method does
not provide an independent sample, since a state cannot be
in the sample without one of its predecessors.

Clustering Algorithm
While clustering algorithms abound, we have a few require-
ments that limit our selection. We require the clustering al-
gorithm to allow manual control of the number of clusters
generated. We also need the algorithm to return a represen-
tative for each cluster, which will later be used as one of the
states for which an optimal cost partitioning is computed.
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The k-means algorithm (Hartigan and Wong 1979) seems
to fit the above requirements, but it has one problem. The k-
means algorithm maintains a centroid for each cluster, and
assigns instances (in our case, states from the state space
sample) to the closest centroid. However, these centroids are
not necessarily instances (states), but rather the arithmetic
mean of several of those. In our case, they would be the
mean of several states, which is not well defined (consider
the meaning of 0.5 · on(A,B) + 0.5 · on(A,C)).

Therefore we use k-medoids (Kaufman and Rousseeuw
1987), which performs clustering around representatives,
such that the representative for each cluster is the most “cen-
tral” member of that cluster (the median), and is always one
of the given instances. We used an efficient implementa-
tion of k-medoids, ultra k-medoids (Breitkreutz and Casey
2008), for the weka toolkit (Hall et al. 2009).

Distance Metric and Features
Any type of clustering algorithm requires a distance metric
between instances (which could be defined by features for
each instance). In this paper, we use the Euclidean distance
metric (l2), over two types of features. First, we use the val-
ues of state variables as features (as suggested by Domshlak,
Karpas, and Markovitch 2010). These features can be used
regardless of the exact heuristic we use.

The second type of features, which we call the ensem-
ble member value features, is derived from the component
heuristics that define the additive implicit abstraction heuris-
tic. The feature values are the heuristic values of each indi-
vidual component heuristic (ensemble member) under the
uniform cost partitioning. That is, the number of features is
equal to the number of component heuristics, and for state
s, the value of feature fi is simply the heuristic estimate in-
duced by the ith component heuristic, hi(s), under the uni-
form cost partitioning. Note that any other cost partitioning
can be used to generate features — the uniform cost parti-
tioning is simply the natural choice since it is easy to com-
pute, and does not require any additional information.

Once we have our features, we need to define a distance
metric based upon them. The ensemble member value fea-
tures are numeric, and thus require no further definitions.
However, the state variable value features are discrete, but
not numeric, and thus we define the distance as 0 for equal
values, and 1 for different values of the same feature.

In our empirical evaluation we use both types of features
(state variable value features and ensemble member value
features). We also tried using both types of features together,
but this does not make a noticeable difference, and so for
clarity of presentation, we do not give these results.

Empirical Evaluation
The approach presented above is based on the assumption
that if state s is close to s′, then an optimal cost partitioning
for s will result in a good heuristic value for s′. First, we
attempt to validate this assumption empirically.

Validating the Basic Assumption
In order to validate our assumption emprically, we must first
formulate it in statistical terms: Let s, s′ be two states, such

Domain Inverted Forks Forks
T S T S

airport-ipc4 9 5 2 0
blocks-ipc2 19 16 19 16
depots-ipc3 0 0 3 3
driverlog-ipc3 6 6 0 0
freecell-ipc3 5 5 3 3
grid-ipc1 1 0 0 0
gripper-ipc1 7 7 7 7
logistics-ipc1 2 2 2 2
logistics-ipc2 10 10 10 10
miconic-strips-ipc2 43 43 43 39
mprime-ipc1 16 13 13 9
mystery-ipc1 18 12 12 9
openstacks-ipc5 0 0 0 0
pathways-ipc5 2 1 2 1
pw-notank-ipc4 15 13 5 4
pw-tank-ipc4 0 0 6 4
psr-small-ipc4 33 30 33 28
rovers-ipc5 7 7 7 7
satellite-ipc4 4 4 4 4
schedule-ipc2 41 25 28 18
tpp-ipc5 4 3 5 5
zenotravel-ipc3 7 7 7 6

TOTAL 249 209 211 175

Table 1: Results of Basic Assumption Statistical Test
For each domain, we list the total number of tasks with at least 30
points in their sample (T) and the number of tasks for which the
correlation was statistically-significant with p < 0.05 (S).

that the minimal distance from s to s′ is d. Denote the rela-
tive loss of accuracy from using an optimal cost partitioning
of s′ to evaluate s by ∆s,s′ := (hcs(s) − hcs′ (s))/hcs(s).
Then ∆s,s′ and ∆s′,s are positively correlated with d.

In our empirical evaluation, we collect pairs of states, for
which we know the minimal distance. For each pair 〈s, s′〉,
we compute ∆s,s′ and ∆s′,s. We do this for each planning
task in our benchmarks, by choosing 10 states using ran-
dom walk (in the same manner as our state space sampling).
From each of these states, we perform breadth-first expan-
sion (eliminating duplicates), up to a depth of hFF (s0). For
each such expansion (based in state s) and for each layer
1 ≤ l ≤ hFF (s0), we randomly and uniformly select a state
sl from layer l, and add ∆s,sl and ∆sl,s with minimal dis-
tance l to our sample. While we do not claim that this is an
unbiased sample, we believe it can provide a good indication
whether our assumption is valid.

Having collected such a sample for each planning task, we
can use a statistical test to validate our assumption — that
there is a positive correlation between distance and relative
loss of accuracy. We use the Kendall rank correlation test
(Kendall 1938), which is a non-parametric test, that does
not assume a linear correlation between the variables. The
specific variant of the Kendall test we use is the τ -b variant,
which makes adjustments for ties. We discard planning tasks
for which we do not have at least 30 pairs in our sample, and
perform the Kendall test for each of the remaining planning
tasks. The results of this evaluation are detailed in Table
1. Overall, we found a statistically significant correlation
(p < 0.05) in over 80% of the tasks, for both forks and
inverted forks.

Evaluating Our Approach
Even if we accept the basic assumption, there are several ap-
proximations involved in using our approach: using the state
space sample is an approximation (of the unfeasible option)
of using the entire search space, and clustering is an approxi-
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mation of some unknown target function. Therefore we also
performed an empirical evaluation of the performance of our
approach on planning tasks from well known benchmarks.

We implemented our approach on top of the Fast Down-
ward planning system (Helmert 2006), and conducted an
empirical evaluation on the same set of benchmark problems
used by Katz and Domshlak (2010b). Since preliminary re-
sults showed that hall does better than hnn, we only evaluate
hall emprically.

We used two different types of implicit abstraction heuris-
tics: forks and inverted forks. For both of these, we compare
our approach to the three baseline approaches proposed by
Katz and Domshlak (2010b): optimal cost partitioning at
each state (opt), uniform cost partitioning (uni), and using
an optimal cost partitioning for the initial state to evaluate
all states (ini). We compare these to hall with various values
for k, where the representative states are chosen using clus-
tering with the different features discussed above: state fea-
tures (clstr-s) or ensemble features (clstr-e). In addition, we
compare to a variant which chooses k representative states
from the sample at random (rand). All of the experiments
were run on Intel E8400 machines with the standard time
limit of 30 minutes and a memory limit of 1.5 GB.

There are a few differences between fork-based and in-
verted fork-based implicit abstraction heuristics, which are
worth noting. First, using uniform cost partitioning seems
to be much more effective for forks than for inverted forks.
As our empirical evaluation demonstrates, with fork-based
heuristics, uni is slightly more informative than ini, while
with inverted forks, ini is much more informative than uni.

Another important difference is that finding an optimal
cost partitioning for a given state with an inverted fork-based
heuristic is usually much faster than finding the optimal cost
partitioning for a fork-based heuristic. This is because the
LP formulation for inverted forks is much smaller, and so the
LP solver can find an optimal solution much faster. In fact,
for some planning tasks, with fork-based heuristics, the LP
Solver we use (MOSEK 2009) fails to find an optimal cost
partitioning within our default timeout of 5 minutes, and so
any method that tries to find an optimal cost partitioning fails
on these tasks. Therefore, for the fork-based heuristic, we
provide evaluation over two separate sets of tasks: all tasks
(including those where the LP solver fails to find an optimal
cost partitioning), and non-hopeless tasks, which we define
as the planning tasks for which an optimal cost partitioning
for the initial state was found by the LP solver. For inverted
forks, almost all tasks that can be solved are non-hopeless,
and so we only report results for the set of all tasks.

In our evaluation we examine the tradeoff between heuris-
tic accuracy and heuristic computation time. We also look at
the bottom line — the number of planning tasks solved.

Informativeness
We evaluate heuristic accuracy (informativeness) on the set
of tasks solved by all methods (236 tasks for inverted forks
and 194 tasks for forks). Note that these are always non-
hopeless tasks, since they are solved by opt. For a given
task, the method which expanded the least number of states
is assigned a score of 1, and the other methods are assigned

a score in the range (0, 1], relative to the best method (so if
a method expanded twice as many states as the best method,
it is assigned a score of 0.5). The total score for a method is
the sum of scores over all tasks. The same scoring method
was used by Domshlak, Katz, and Lefler (2010) to evalu-
ate informativeness, and it is based on the metric score for
evaluating plan quality introduced in IPC-2008.

Figure 1 shows the informativeness of each method, as
measured by the score defined above. Looking at the graph,
we can see that the informativeness of our approach in-
creases with k, and for k = 3 it already passes the best of
uni and ini . In addition, we can see that using clustering
results in more informative heuristic estimates than random
selection of representatives. The only exception is the case
of k = 2 with forks, for which we can only speculate that
clustering the state space sample into 2 parts leaves a lot of
states in the “middle” of the sample with a large distance to
the closest representative.

Computation Time
Figure 2 shows the average time per state for each method.
This is the total run-time divided by the number of evaluated
states, averaged over all tasks solved by all methods. The
graph shows that the runtime of our approach increases with
k, but is still much lower than the time per state of using
optimal cost partitioning at each state (note that the y-axis
is in logscale). In addition, the overhead of our approach
(sampling the state space, clustering) is evident, since with
k = 1, it still takes more time per state than using an optimal
cost partitioning for the initial state.

Tradeoff
While figures 1 and 2 each look at one aspect of the tradeoff
between heuristic accuracy and heuristic computation time,
Figure 3 gives an overall view of this tradeoff. Each point
in the plot gives heuristic computation time (as measured
by the average time per evaluated state) as the x-coordinate,
and heuristic accuracy (as measured by the informativeness
score defined above) as the y-coordinate. Both accuracy and
computation time are averaged over the tasks solved by all
methods. Each of the baseline approaches is a single point
in this plot. Our approach gives us a curve (for each method
of choosing representatives), which illustrates that our ap-
proach gives us more control over this tradeoff. Note that a
point in this plot dominates the area below and to the right of
it. As the plots show, with fork-based heuristics, uni domi-
nates ini . In contrast, our methods are non-dominated with
k ≥ 3 for both forks and inverted forks.

Number of Solved Tasks
Although looking at the tradeoff between heuristic accuracy
and computation time is very interesting, the bottom line (at
least as measured in the International Planning Competition)
is the number of tasks solved. Table 2 gives the number of
solved tasks for each configuration. As explained above, our
methods, which compute an optimal cost partitioning, have
an inherent disadvantage in comparison to uni with fork-
based heuristics. Therefore, for fork-based heuristics we
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give results over the non-hopeless tasks in addition to results
over all tasks. We can justify this by arguing that if, when
using our approach, the LP solver fails to find a solution, we
can use uni as a fall-back method. The same fall-back tech-
nique was used by Katz and Domshlak (2010b) for ini, when
computing the optimal cost partitioning for the initial state
failed, with very good results. However, our purpose here is
to study our cost-partitioning scheme in a clean setting, and
so we did not evaluate this fall-back option empirically.

The results in Table 2 show that with inverted forks, us-
ing k = 5 and clustering by state features yields a slight
improvement over the best baseline (ini). With forks, uni
dominates every other method when considering all tasks.
However, looking only at the non-hopeless tasks (those for
which an optimal cost partitioning for the initial state was
found within 5 minutes), using k = 3 and selecting repre-
sentative states at random emerges as the winner. Although
understanding why random selection outperforms clustering
with forks is future work, we believe this means there is po-
tential for improvement by using better features and/or clus-
tering algorithms.

Looking at the number of tasks solved given an arbitrary

(although commonly accepted) timeout of 30 minutes does
not tell the complete tale. Figure 4 plots the number of tasks
solved under different timeouts for the three baseline meth-
ods, as well as for the best of our methods. The plot shows
that for both forks and inverted forks, both uni and ini reach a
plateau fairly quickly. On the other hand, our methods seem
to still be in an increasing region when the 30 minute time-
out expires. This is a good indication that given more time,
the gap between our method and the best basline methods
will keep growing. Note that opt is also still increasing af-
ter 30 minutes, since the main bottleneck there is time rather
than memory. However, the timeout until opt pays off is very
large, and is infeasible in practice.

Table 2 and Figure 4 both look at results where a single
value for k is used across all planning tasks, from different
domains. However, the k parameter is used to control the
tradeoff between heuristic accuracy and heuristic computa-
tion time, and there is no reason to assume that a single value
of k is suitable for all domains. Table 3 gives the number
of tasks solved for each domain, when using the best k for
each method, for that domain. The table shows that with in-
verted forks, there are 6 domains where using our approach
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Figure 3: Tradeoff between Time and Accuracy
Each point in the graph corresponds to one method. The x- and y-axes capture the average computation-time per state and the total metric
score for expanded states, respectively. Both are over all tasks solved by all methods. The region dominated by ini for inverted forks and by
uni for forks is marked by dotted arrows. Note that the x-axis is in log-scale.

Inverted Forks
k ini uni opt rand clstr-s clstr-e
1

358 329 238

341 346 345
2 356 356 354
3 354 354 356
4 354 354 355
5 353 359 358
6 351 357 355
7 353 353 353

Forks
Non-Hopeless Tasks

k ini uni opt rand clstr-s clstr-e
1

315 311 196

310 311 313
2 316 312 313
3 318 314 314
4 316 313 312
5 313 312 313

All Tasks
k ini uni opt rand clstr-s clstr-e
1

315 362 196

312 316 317
2 318 315 315
3 319 316 315
4 317 315 313
5 314 313 314

Table 2: Total Number of Tasks Solved Using Each Method

results in more tasks solved, and with forks there are 3 do-
mains where our approach helps, and only 1 where it hurts.
Note that the best value of k for a domain can be obtained
by using automated parameter tuning (Hutter et al. 2009;
Ansótegui, Sellmann, and Tierney 2009), so there is no need
to try all possible values for k across all tasks.

Discussion
We presented a method for performing fast, informative cost
partitioning. Our method is parameterized by k, the number
of optimal cost partitionings that are computed. This param-
eter gives us much more control over the tradeoff between
heuristic accuracy and heuristic computation time than pre-
vious methods.

The representative states, for which an optimal cost parti-
tioning is computed, are chosen by selecting k states out of a
sample of the state space, using either a clustering algorithm,
or simply at random. The state space sampling method, as
well as the clustering algorithm and the features or distance
metric it uses are all components of our method.

We evaluated our approach empirically, and showed that
it outperforms any of the previous methods of using implicit
abstraction heuristics when an optimal cost partitioning can
be feasibly computed. The fact that random selection of rep-
resentatives sometimes leads to better results than clustering
implies that finding a principled way of choosing representa-
tives is of definite interest, and that there is potential for im-
provement. In addition, coming up with a better state space
sampling technique, which does not depend on a heuristic
estimate of the goal depth, might also prove beneficial.
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Figure 4: Anytime Results
Number of solved instances under different timeouts. The x-axis captures the timeout in seconds, and the y-axis captures the number of tasks
solved under that timeout.

Inverted Forks
Domain ini uni opt rand clstr-s clstr-e

airport-ipc4 21 20 15 21 22 22
blocks-ipc2 21 18 17 22 22 22
depots-ipc3 7 4 2 7 7 7
driverlog-ipc3 14 12 8 14 14 14
freecell-ipc3 4 4 1 5 5 5
grid-ipc1 2 1 0 2 2 2
gripper-ipc1 7 7 3 7 7 7
logistics-ipc1 4 4 2 4 4 4
logistics-ipc2 20 16 16 19 20 20
miconic-strips-ipc2 53 50 30 53 53 53
mprime-ipc1 19 19 13 19 19 19
mystery-ipc1 13 13 10 13 13 13
openstacks-ipc5 7 7 5 7 7 7
pathways-ipc5 4 4 4 4 4 4
pw-notank-ipc4 17 15 6 18 18 18
pw-tank-ipc4 11 9 2 11 12 12
psr-small-ipc4 48 49 46 49 49 49
rovers-ipc5 7 7 4 7 7 7
satellite-ipc4 7 6 5 7 7 7
schedule-ipc2 49 40 34 53 54 53
tpp-ipc5 6 6 5 6 6 6
trucks-ipc5 7 7 2 7 7 7
zenotravel-ipc3 10 11 8 10 10 11

TOTAL 358 329 238 365 369 369

Forks (Non-Hopeless Tasks)
Domain ini uni opt rand clstr-s clstr-e

airport-ipc4 9 9 6 9 9 9
blocks-ipc2 21 21 11 21 21 21
depots-ipc3 4 4 1 4 4 4
driverlog-ipc3 11 11 6 11 11 11
freecell-ipc3 3 3 1 3 3 3
grid-ipc1 0 0 0 0 0 0
gripper-ipc1 7 7 3 7 7 7
logistics-ipc1 5 5 3 5 5 5
logistics-ipc2 23 22 18 25 25 25
miconic-strips-ipc2 53 51 35 54 54 54
mprime-ipc1 16 16 9 16 16 16
mystery-ipc1 10 10 7 10 10 10
openstacks-ipc5 7 7 5 7 7 7
pathways-ipc5 4 4 4 4 4 4
pw-notank-ipc4 8 7 1 8 8 8
pw-tank-ipc4 6 6 1 6 6 6
psr-small-ipc4 49 49 41 49 49 49
rovers-ipc5 7 6 4 7 7 7
satellite-ipc4 6 6 4 6 6 6
schedule-ipc2 41 44 21 45 43 43
tpp-ipc5 6 6 5 6 6 6
trucks-ipc5 6 6 2 6 6 6
zenotravel-ipc3 13 11 8 12 11 11

TOTAL 315 311 196 321 318 318

Table 3: Number of Tasks Solved by Using the Best k per
Domain for Each Method
The best result in each domain is highlighted, unless there was a tie
between the best baseline method and the best of our methods.
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