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Abstract. After Amdahl’s trailblazing work, many other authors pro-
posed analytical speedup models but none have considered the limit-
ing effect of the memory wall. These models exploited aspects such as
problem-size variation, memory size, communication overhead, and syn-
chronization overhead, but data-access delays are assumed to be con-
stant. Nevertheless, such delays can vary, for example, according to the
number of cores used and the ratio between processor and memory fre-
quencies. Given the large number of possible configurations of operating
frequency and number of cores that current architectures can offer, suit-
able speedup models to describe such variations among these configura-
tions are quite desirable for off-line or on-line scheduling decisions. This
work proposes new parallel speedup models that account for variations
of the average data-access delay to describe the limiting effect of the
memory wall on parallel speedups. Analytical results indicate that the
proposed modeling can capture the desired behavior while experimental
hardware results validate the former. Additionally, we show that when
accounting for parameters that reflect the intrinsic characteristics of the
applications, such as degree of parallelism and susceptibility to the mem-
ory wall, our proposal has significant advantages over machine-learning-
based modeling. Moreover, besides being black-box modeling, our exper-
iments show that conventional machine-learning modeling needs about
one order of magnitude more measurements to reach the same level of
accuracy achieved in our modeling.

1 Introduction

Amdahl’s Law [Amd67] has driven the chase for single-processor performance
improvements for decades, but the end of frequency-upscaling and the stagnation
of instruction level parallelism altogether led to the dawn of a new computational
era: the multi-core and many-core era.

In this new era, parallel computing has become the conventional approach
to achieve ever-increasing computational performance. Although parallelism is
not new in computational systems, its real potential has been obfuscated for
many decades by two main factors: Amdahl’s skepticism on the ability of par-
allel systems to scale performance, and the exponential speed growth of single
processor systems. It is now a consensus that Amdahl had a limited view on
parallelism, and thus numerous works have been emerging towards expressing
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and exploiting the advantages that parallel computing can offer [Gus88, SN93,
Shi96, HMO08, SC10]. Continuing to broaden and explore different views on par-
allelism remains of vital importance in maximizing the potentials that parallel
computing can offer.

This paper widens the views on parallelism by exploring the effects of the
number of cores and their operating frequency on the data-access delay for par-
allel applications that make extensive use of the main memory. Memory-bound
programs are hard to model because their behavior is volatile across runs with
different inputs and system configurations due to the variability of how such ap-
plications exploit the memory hierarchy. We dedicate the following paragraphs
to describe the existing views on parallelism, which we argue do not consider
these aspects.

Amdahl showed that even a tiny not parallelized code fraction of an ap-
plication could compromise the applicability of multiple processors to scale the
application’s performance [Amd67]. Long after Amdahl’s work on the inability of
using multiple processors to scale performance, Gustafson’s “fixed-time speedup”
approach to parallelism has shown that larger programs can benefit from more
processors [Gus88]. Amdahl’s “fixed-size speedup” had a limited view on the
potential of parallelism. Gustafson’s scaling model, known as Gustafson’s Law,
opened the path to the multi-core and many-core era. In [Shi96], the author uni-
fies Amdahl and Gustafson’s works and concludes that using the execution times
instead of the serial and parallel fractions of the code could have avoided decades
of unconstructive criticism against the advantages of using parallel processing.
Sun and Ni [SN93] coined another prevalent model shortly after Gustafson’s
seminal work. The authors present a memory-bounded speedup model, known
as Sun and Ni’s Law. Their modeling demonstrates that the memory size is a
limiting factor for parallel scalability.

More recently, other models extend these analyses to multi-core architec-
tures, showing that they scale better for asymmetric and dynamic multi-core
chips [HMO08]. In [SC10], the authors summarize the contributions of three main
speedup models (fixed-size, fixed-time, and memory-bounded speedups models)
to the multi-core era, presenting a very optimistic view. However, their view as-
sumes that the data-access delay is fixed and independent of the number of cores
and problem sizes. This assumption is often unrealistic because of the memory
wall [WM95], caused by the increasing data-access delay as the number of cores
increases. In the following, we discuss three of the significant factors that can
affect the data-access delay of an application: the application’s problem/input
size, the number of cores utilized, and the ratio of the processor’s and memory’s
frequencies.

While the scaling of the problem size may affect the data-access delay, whether
this effect is negative or positive for performance depends on the application’s na-
ture and on how the application is utilizing the targeted architecture. In general,
increasing the input size can trigger a higher activity in the memory hierarchy,
causing more cache misses, which subsequently generates more main memory
accesses per cycle. Often, cache-blocking techniques can be applied to avoid or
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reduce this effect. The modeling presented in this paper does not consider vari-
ations in the problem/input size.

Increasing the number of cores can have an even more significant effect on the
data-access delay depending on the architecture’s characteristics. For instance,
even with the problem size kept constant, using more processing cores can cause
an increasing data-access delay because the rate of access-requests per cycle can
increase due to more cores making simultaneous requests to the same memory.
When the demand for accesses reaches the memory’s nominal rate of attended
requests per cycle, the average data-access delay starts to increase, stagnating
the performance scaling in the number of cores, even for codes that are entirely
parallel or that have a tiny serial fraction. Hence, for these cases, increasing the
number of cores can indeed increase the data-access delay, which will undesirably
generate an adverse effect on speedup in a form that resembles an increase in
the serial fraction of the application. On the other hand, in the case of private-
caches, increasing the number of cores can lead to more available caches, and
thus, to fewer memory accesses that, up to a degree, will have a positive effect
on the data-access delay and thus will possibly allow further performance gains
through parallelization.

A third factor to consider is the ratio of the processor’s and memory’s fre-
quencies. If the processor is running significantly faster than the memory, the
data-access delay relative to the processor speed may also increase. Considering
all these factors and their interactions is crucial both for developing parallel pro-
grams that do not become bounded by the memory and for finding the optimal
configuration of the number of cores and the processor’s frequency that achieves
maximum speedup for an application. Currently, there is no model to capture
these effects altogether.

In this paper, we present a new analytical speedup-model for multi-core ar-
chitectures that captures the adverse and the favorable effects on performance
due to variations in the data-access delay caused by increasing the number of
cores (see Section 2).

We initially investigate the potential abilities of our model to capture the
above effects analytically (Section 3). The analytical results indicated that the
speedup is dependent on the ratio between the frequencies of the processor and
the main memory, both for memory-bound applications and for processor-bound
applications that became memory-bounded after an increase in the number of
cores. The analysis indicated that the larger this ratio, the higher its limiting
effect can be on the speedup and that this limitation grows with the degree of
parallelism of the code.

The proposed modeling was then fitted with actual hardware measurements
to validate our analytical findings (Section 4). Furthermore, we demonstrate that
our approach has higher accuracy and lower variance than Amdahl’s model (Sec-
tion 4.2). Comparisons to other analytical speedup models would not be more
relevant since the other existing models differ from Amdahl’s model by aspects
that were kept constant in our experiments, such as the problem size and archi-
tectural features like memory hierarchy and the amount of memory available.
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These behavioral aspects are orthogonal to the memory wall aspect and comple-
ment our work.

We compare our model proposition to a non-linear machine learning regres-
sion approach (Section 4.3), which is arguably more flexible than any analytical
model. In this comparison, the proposed model is demonstrated to exhibit a
higher accuracy while using fewer hardware measurements.

Finally, based on the presented modeling and experimental results, we then
discuss the implications that the contributions of this paper can have in application-
specific multi-core design and towards more energy-efficient parallel software.

The paper is organized as follows. In Section 2 we present our modeling for
speedup as a function of the ratio between processor and memory frequencies. In
Section 3 we analyze the model behavior. In Section 4, we detail the methodology
used to validate the proposed models and provide results of experiments in real
hardware. In Section 5 we put our contributions in perspective with the existing
literature and, finally, in Section 6, we draw conclusions and suggest future work.

2 Variable-delay speedup model

In this section, we devise a new parallel speedup model that accounts for the
effect of the variation in the number of cores on the data-access delay. Fur-
thermore, the model allows us to describe the effect that variations of the ratio
between processor and memory frequencies have on the speedup.

Let us first restate the equation for the speedup of an application running in
parallel with p cores as follows:

S, = T./Tp, (1)

where Ty is the sequential time, measured when running the application on a
single core processor, and T}, is the time for running the same application in
parallel with p cores.

We now make some assumptions, necessary to devise the proposed model.
These are later proved to be satisfactorily sustained by the model validation
presented in Section 4:

Assumption 1: the computations of a given application can be divided into
two types of instructions: memory instructions and processor instructions.
The former representing the loads and stores that generate accesses to the
main memory and the latter representing those instructions that are carried
out without data transfer and those loads and stores that are captured by
the cache hierarchy. The total number of instructions is then given by

W =C+ M, (2)

where C' is the number of processor instructions, and M is the number of
memory instructions.
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Assumption 2: the memory system is a centralized entity and serves all the
processing cores uniformly, which reassembles most of current multi-core
architectures.

Assumption 3: For a specific processor frequency, the execution time of pro-
cessor instructions can be approximated by an average value t., which is
inversely proportional to the processor operating frequency.

Assumption 4: For a specific processor frequency and memory frequency, the
time necessary to execute a memory instruction, as defined in Assumption 1,
can be approximated by an average value t,,.

Then, the sequential execution time for the computation of all W instructions
can be given by

T, =t.C+t,, M. (3)

Accordingly, the formulation of an equation for the parallel execution time for
the computation of the same W instructions depends on how these instructions
are distributed and carried out by multiple processing elements. We use a sim-
plistic model first coined by Amdahl in [Amd67] to model parallel software. The
computation is modeled by a parallel fraction f, representing the instructions
that have no dependencies among them and that could be executed in parallel
with no performance penalty, and its complement (1 — f), which correspond to
the serial fraction or the fraction of code that cannot be parallelized. The parallel
execution time for p processing cores would then be given by

Tp=(1—f)Ts+f%. (4)

Amdahl’s model arises from combining (1) and (4), such that

1
§ =T (5)
b f
(1—f)+;

However, with Assumption 2, we must consider that the memory system
can only attend requests at a given maximum rate. Therefore, the term that is
divided by p in (4) cannot decrease indefinitely. In fact, the execution time of the
whole parallel computation cannot be accelerated beyond t,, M by increasing p,
which leads us to the following equation for the parallel execution time of the
W instructions with p processing cores.

T, = max ((1 — Ty +fj];5,th> . (6)

Next, we devise a model that accounts for the variation in the number of
memory accesses, dependent on the number of cores used, and the variation in
the average duration of a memory instruction, dependent on the processor and
memory frequencies ratio.
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By combining (1), (3) and (6), we derive the first form of our speedup model:
te ty M
C+ - )
max ((tcC +tm M) ((1 -+ ) ,th>
p

Sp =

In terms of the ratio between the time to complete a memory instruction and
the time to complete a processor instruction, by dividing everything by t., we
can rewrite (7) as

C + pM | -
s (1000 (11~ 17+ £) o)

where p denotes the ratio between t,, and t..

The average duration of a memory instruction should depend on the pro-
cessor instruction execution time and memory access frequency according to
Assumption 4, which we model as follows.

Sp =

k

tm, =1
m C+FMem’

(9)

where k is an application model parameter that models how the computation
of memory instructions is affected by the frequency of the main memory. The
effect of k is stronger for memory-bound applications and weaker for those that
are CPU-bound.
So, considering (9) and Assumption 3, the ratio p can be expressed as
tm

where ¢ is the ratio between processor and memory frequencies,

Feru
= . 11
) Fos (11)

with Fepy and Fyem denoting the processor and memory frequencies, respec-
tively.

Finally, to remove the absolute values of M and C from (8), we can rewrite
it in terms of the fraction of memory instructions over the total number of
instructions, u, as follows.

1—p)+
s, = (I—p)+pp - , (12)
waxc (0 =+ o) (1= 1+ L) o)

where
(13)

=
Il
SE
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Consequently,
wW-M C
W W
is the fraction of processor instructions over the total number of instructions in-
volved in the computation. The ratio u, however, is not fixed due to Assumption
1. When we vary the number of cores, the value of 1 may also change due to the
addition of more private caches, as discussed in Section 1. To account for varia-
tions in the number of memory instructions caused by variations in the number
of cores, we rewrite (12) to express the final form of our proposed variable-delay
speedup model as follows.

l—p= (14)

_ (1 —p1) + ppa
e max (((1 — pp) + ,0/:;1) ((fi )+ i) ,pup> | "

for p, being the fraction of memory instructions observed when using p cores,
defined by

fp = min (ml 2, 1) , (16)

with m; and mo denoting application model parameters and p; representing
the serial case of pp, with p = 1. The minimum function min(-,1) limits the
upper value of i, to 1, which represents an application that is 100% dependent
on memory instructions. The term m; accounts for the portion of accesses that
are not affected by changes in the number of cores. The term mso accounts for
the portion of accesses that vary with changes in the number of cores, which for
example would vary g due to the addition of more private caches. With more
caches, the main memory receives fewer accesses, and p should decrease.

3 Model Analysis

In this section, we perform two parametric analyses with the model proposed
in (15) to investigate the model’s behavior. What we intend is to present the
model’s ability to capture the performance-limiting behavior caused by a change
in the data-access delay. Then, in Section 4, this ability is validated by fitting
the model in (15) to hardware measurements.

Firstly, we investigate the dependency between the number of cores and the
data-access delay which causes the memory performance to decrease with an
increase in the number of active cores. Secondly, we investigate the performance
predictions for variations on the ratio between processor frequency and memory
frequency.

Because exhaustive analyzes with seven parameters (f, k, m1, ma, f, ¢, and
p) would be impractical, we propose a set of parameter-value combinations whose
variations can better expose the behavior expected to be modeled.
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3.1 Number of cores versus data-access delay

We analyzed the behavior of the proposed speedup model for systems with 2,
4, 8, 16, 32 and 64 processing cores. We assumed a parallel fraction f = 0.99,
representing a highly parallel code, and a processor and memory frequencies ratio
¢ = 3.0, which would denote, e.g. the memory functioning at 1.0 Ghz and the
processor at 3.0 GHz. Fig. 1 presents the speedup plots of these configurations
for different values of k, mq, and mso.

my=0.12, my=0.0 =008 m=0.03 =006, my=0 06 my =003, my=0.08

« params
g - P

- k=05
] ] E . 1 4 k10
h o

Spasdip

Spacdup
g

Fig. 1. Speedup plots for a computational task with parallel fraction f = 0.99, fre-
quencies ratio ¢ = 3.0 and a varying number of cores p = {2, 4, 8, 12, 16, 32, 64}.
Each plot and curves refers to combinations of £ and m parameters. For k plots, the
curves represent different m parameters, and vice versa.

As Fig. 1 shows, the model indicates that the ratio p, affected by k, has a
significant effect on the speedups. The higher the k, the higher the limiting effect
on speedups as the number of cores increases, which resembles the effect of a
reduction of the parallel fraction of the code. So, the k parameter controls the
memory access behavior of applications that depend on the variations of CPU
and memory frequency ratio. For lower values of k and ms, the speedups saturate
faster with the increase in the number of cores, indicating that the application
transitions from a processor-bound mode to a memory-bound one.

Fig. 1 also indicates the positive effects on the speedups caused by varying
the number of cores with private caches. For larger values of msy, which drives the
number of memory instructions down with the use of more cores, the speedups
are considerably larger. Higher values of moy allow the transition to a memory-
bound mode behavior to happen at a larger number of cores with higher speedups
whereas lower values force this to happen at smaller numbers of cores with lower
speedups.
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3.2 Frequency ratio versus data-access delay

The analytical results of the previous subsection indicate that memory-bounded
applications lose the apparent advantages of using more cores to achieve more
considerable speedups at some point. The capacity of the memory to hold down
the average data-access delay limits the speedup. Nonetheless, the effects of
varying the ratio between the processor and memory frequencies remain to be
analyzed.

With the following analysis, we intend to show that, according to the pro-
posed model, a memory-bounded application can become processor bounded
with a suitable adjustment of the ratio ¢ in order to make the processor work
more symbiotically with the memory and, thus, could avoid processor idling,
increase efficiency and decrease energy consumption.

We analyzed the behavior of our speedup model for computational tasks
with parallel fractions f = 0.99 running with 32 processing cores. Processor
and memory frequency ratios varied according to ¢ = {1.0,1.5,2.0,2.5,3.0}, for
which the plots are depicted in Fig. 2.

[ RERE R =008, m,=0 03 =006, m =0 06 =0 e e

—————
& ‘\‘\\’\Q K params
3 b 14—, ‘\'\‘. —+ o
i — — =g

1.0 18 20 a5 i 10 15 Fi 25 0 10 |I5 2'-3 2'5 aw 10 18 29 a5 0
[ [} @ ¢

—4— =100

Ll k=15 k=10 k=100

Speadup

Fig. 2. Speedup plots for computational tasks varying the ratio between the processor
and memory frequencies ¢ = [1.0, 1.4, 1.8, 2.2, 2.4, 3.0], with number of cores p = 32
and parallel fraction f = 0.99. Each plot and curves refers to combinations of k and m
parameters. For plots by k parameter, the curves represent different m parameters, or
vice versa.

Note, in Fig. 2, that larger speedups can be achieved by reducing the ratio
¢ in almost all analyzed configurations. This shows that the decay in memory
performance could be avoided by a suitable reduction of the processor’s operating
frequency.
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4 Model validation

In this section, we present the results of several modeling experiments in order
to validate the proposed model with real applications running on multi-core
Processors.

4.1 Experimental Setup

We have measured the execution times for a set of applications varying the num-
ber of cores and their operating frequency in order to calculate their speedups for
each frequency value. For our validation, applications from the PARSEC [Biell]
and SPLASH-2 [WOT™*95] parallel benchmark suites have been used. They com-
prise a large and diverse set of applications, covering several different application
domains, such as computational finance, computer vision, real-time animation
or media processing. In total there were 25 programs, 11 from the PARSEC suite
and another 14 from the SPLASH-2 suite.

The measured execution times were used to fit the proposed model and Am-
dahl’s model for each application. All model variables were fitted using the Parti-
cle Swarm Optimization (PSO) [KE95] global optimization method to minimize
the Mean Squared Error (MSE) between the measured application speedups and
their models. The PSO algorithm used was the version with the coefficient of
constriction [CK02].

To vary the ratio between processor frequency and memory frequency, we
changed the processor’s frequency while the operating frequency of the memory
system was kept at a fixed value.

The measurements were taken on a dual-socket shared memory platform with
2x Intel(R) Xeon(R) CPU E5-2680 v3, 12 cores at 2.50 GHz with hardware
multi-threading disabled, and 30 MB shared L3 cache. The L1 and L2 private
caches have 64 KB and 256 KB, respectively. The operating processor core fre-
quencies ranged from 1.2 GHz to 2.5 GHz, with steps of 100 Mhz. The number
of cores ranged from 1 to 24, with unity steps, except for some applications that
have the number of cores limited to a power of two.

A Python version 3 library was developed® to implement the PSO algorithm
and the utility methods to fit the models, to store the collected data, and to
plot the graphs of the experiments performed in this paper. The repository also
contains text files with information on measurements, execution metadata, the
model parameters and the respective modeling errors for all experiments.

In Section 4.2, we assessed Amdahl’s and the proposed model’s accuracy by
fitting them to each application using all measurements available to compute
the MSE values.

In Section 4.3, we investigate how the accuracy of these models and the ac-
curacy of an unstructured machine learning model vary according to the amount
of information used to construct them.

3 https://gitlab.com /lappsufrn/parsecpy.git
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Table 1. Model parameters and MSE for Amdahl’s model and for the proposed model
for the PARSEC and the SPLASH2 benchmark applications using all available execu-
tion time measurements.

‘ Number of ‘Amdahl’s Model (5)‘ Proposed model (15) Accuracy
Benchmark Program |Measurements| f MSE f k mi mz  MSE | Gain

parsec-blackscholes 322 1.0000 0.0042|0.9239 10.0000 0.0003 0.8761 0.0021| 49.43 %
parsec-bodytrack 322 0.8934 0.1417|0.6964 10.0000 0.0373 0.2454 0.0945| 33.31 %
parsec-canneal 322 0.9985 0.2325/0.9982 0.4376 0.0057 0.8556 0.1124| 51.66 %
parsec-dedup 322 0.6745 0.1969|0.7387 0.1561 0.3205 0.0000 0.1481| 24.82 %
parsec-facesim 84 0.9731 0.1443|0.9734 0.0852 0.0447 0.6742 0.0220| 84.74 %
parsec-ferret 322 0.9912 1.3371{0.9949 0.2422 0.0363 0.1681 0.1114| 91.67 %
parsec-fluidanimate 56 0.9834 0.0036/0.9984 0.0000 0.0173 0.9728 0.0029| 19.26 %
parsec-freqmine 322 0.9791 0.1316/0.9915 0.0000 0.0294 0.8215 0.0097| 92.64 %
parsec-raytrace 322 0.9959 0.0675/0.9016 10.0000 0.0039 0.7799 0.0623| 7.71 %
parsec-streamcluster 322 0.9860 0.3274(0.8188 9.5443 0.0077 0.3525 0.1788| 45.40 %
parsec-x264 322 1.0000 4.6452|1.0000 0.4837 0.0152 0.4200 0.4944| 89.36 %
splash2x-barnes 322 0.9969 0.0290(0.9360 5.8737 0.0029 1.0000 0.0268| 7.80 %
splash2x-cholesky 322 0.8978 1.8236(0.9274 0.1330 0.1293 0.0000 1.2996| 28.73 %
splash2x-{ft 56 0.9999 0.0436/0.6850 10.0000 0.0013 0.7152 0.0377| 13.61 %
splash2x-fmm 322 0.9629 0.0326/0.7545 10.0000 0.0262 0.6271 0.0253| 22.38 %
splash2x-lu-cb 322 0.9950 0.0668|0.8822 10.0000 0.0049 0.9270 0.0664| 0.53 %
splash2x-lu-ncb 322 0.9538 3.0182(0.8492 10.0000 0.0124 0.1426 2.5273| 16.27 %
splash2x-ocean-cp 56 0.9769 0.6297|0.8710 10.0000 0.0093 0.2049 0.3457| 45.10 %
splash2x-ocean-ncp 56 1.0000 0.3854/0.9011 10.0000 0.0026 0.2958 0.1787| 53.64 %
splash2x-radiosity 322 0.9408 0.8001|0.9673 0.1187 0.0942 0.0404 0.0844| 89.46 %
splash2x-radix 56 0.9961 0.0172|0.8842 4.9551 0.0036 1.0000 0.0156 9.21 %
splash2x-raytrace 322 0.9973 0.0493|1.0000 0.0000 0.0056 0.9403 0.0281| 42.98 %
splash2x-volrend 308 0.7060 0.1251|0.2340 8.0727 0.2719 1.0000 0.0815( 34.79 %
splash2x-water-nsquared 322 0.9892 0.1468|0.7221 9.6431 0.0103 1.0000 0.1243| 15.34 %
splash2x-water-spatial 322 1.0000 41.7510(0.9943 1.7865 0.0021 0.2746 4.0742| 90.24 %

4.2 Model accuracy

The accuracy for Amdahl’s model and the proposed model is summarized in
Table 1 for all applications in terms of MSE. The table also shows the number
of measurement points available for each application. Each measurement point
represents a configuration of frequency and number of cores. These points are
relative to the median of 10 runs of an application.

The MSE columns in Table 1 show that the results of the proposed model
are considerably better than Amdahl’s model, with the proposed model scoring
always better or the same. The application with the most similar MSE value
is ”splash2x-lu-cb”, whose accuracy was only 0.5% better than with Amdahl’s
model. On the other hand, ”splash2x-water-spatial” was the application whose
difference in MSE value was 90.24% better for the proposed model. On average,
the proposed model was 42.40% more accurate than Amdahl’s model considering
all modeled applications.

To better present the ability of the proposed model to describe the speedup
features of parallel applications correctly, we have selected a few applications for
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a more detailed analysis. For example, the PARSEC Dedup, a workload that uses
”deduplication” to compress a data stream [BKSLO08], presents small differences
in the MSE values of the two models. This application is hard to model because
of abrupt speedup variation due to workload imbalance among threads [SR16].
Nevertheless, the proposed model improves Amdahl’s accuracy and accomplishes
its task of modeling access-delay limitations by tilting speedups down for more
substantial amounts of cores and larger ¢ ratios, as shown in Fig. 3b. The model
manages to capture the angle of the speedups along the frequency axis which
represents the ¢ ratio. The proposed model also presents a better fit for a smaller
number of cores with a steeper slope enabled by the variable number of memory
instructions in (16) that allows the modeling of the effect of overcoming cache
size limitations.

Parsec-dedup Parsec-dedup
Speedup Model m Model Speedup Model = Model

+ Measures « Measures

Speedup

(a) Modeled by Amdahl (5). (b) Proposed model (15).

Fig. 3. Amdahl’s and proposed models for the PARSEC Dedup application.

For the PARSEC x264 application, an H.264/AVC video encoder, the pro-
posed model reduces the MSE error by one order of magnitude. Fig. 4b shows
how the proposed model surface is very close to the scatter plot of the measure-
ments. It captures the super-linear speedup that occurs with this application
because of the mg term in (16) that allows the number of memory instructions
p to decay with increase of the number of cores.

Fig. 5 presents the models for the SPLASH-2 Radiosity application. It com-
putes the equilibrium distribution of light in a scene [WOTT95]. One of the
computational characteristics of this algorithm is a large number of memory in-
structions and, therefore, it is an appropriate case study to prove the proposed
model’s ability to capture the memory-wall effect on speedups. As in the previ-
ous applications, the proposed model presents a much better fit than the fit of
Amdahl’s model. Fig. 5b shows how the proposed model captures the speedup’s
slope that increases as processor frequency decreases. The model also captures
the abrupt saturation that occurs when speedups hit the memory wall.
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Fig. 4. Amdah!l’s and proposed model for the PARSEC X264 application.
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Fig. 5. Amdahl’s and proposed model for the SPLASH-2 Radiosity application.

For SPLASH-2 Water Spatial application, which computes the forces that oc-
cur over time on a system with water molecules, Amdahl’s model failed to capture
the super-linear speedup behavior, achieving the worst MSE errors among the
other applications, as Fig. 6 illustrates. The proposed model presents a better
fit, despite it underestimating speedups at lower frequencies. Nevertheless, its
accuracy is more than 90% better.

4.3 Accuracy versus the number of measurements

The results of the previous section were obtained using all available measure-
ments for all configurations of processor frequency and the number of cores. In
most cases, each application was executed on 336 different configurations—14
different frequencies and 24 different numbers of cores. For practical scenarios,
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Fig. 6. Amdahl’s and proposed model for the SPLASH-2 Water Spatial application.

using as few measurements as possible is desirable to reduce the modeling over-
head in terms of the use of computational resources and energy consumption.

In this section we study how the use of fewer sampling points affects model
accuracy. With that we intend to support two claims:

— the proposed model can achieve reasonable accuracy even for a small number
of measurements; and

— the number of measurements required for reasonable accuracy is much smaller
than that required for unstructured models, such as those based on machine
learning.

To support the former claim, we observed the accuracy of the models when
fitted using various different numbers of measurements, starting from only 4
measurements and then doubling this number several times until reaching the
closest power of two below the total number of available measurements for each
application. To support the latter claim, we used a machine learning technique
called Support Vector Machine Regression (SVR) [SS04] to model the applica-
tions using the same inputs used to fit the analytical models. Full details of the
experiments can be found in the open-source repository mentioned earlier. In the
following, we describe the methodology used to evaluate accuracy and variance
for the three models under analysis: Amdahl’s model (1) fitted with PSO; the
proposed variable-delay model as given in (15) fitted with PSO; and the SVR
model. For Amdahl’s model we fitted the parallel fraction f and for the proposed
model we fitted f as well as the other new parameters k, my, and mo.

For each number of samples, all measurement data were divided into a train-
ing or fitting set and a test set. The test set was always the remaining set of
samples after removing the samples used to train or fit the models. The training
or fitting for a given number of samples was repeated 100 times using each time
a different set of random samples. All reported Mean Square Errors (MSEs) are
the average of the MSE values of all 100 repetitions calculated using only the



When parallel speedups hit the memory wall 15

corresponding test sets. Fig. 7 illustrates the procedure used to compute the
median of the MSE values for each set of 100 repetitions. The PSO method used
200 particles limited to 100 iterations to fit the analytical models. The minimum
and maximum limits of the model parameters were set to be between 0.0 and
1.0, for f, m; and mso, and between 0.0 and 10.0 for k. For the SVR model
we used the implementation of the Scikit-learn Python module [PVG™11a]. The
hyper-parameters of the Radial Base Function (RBF) kernel [PVGT11b] used
in the SVR were tuned using a 3-fold cross-validation with a grid search that
was repeated for each new set of random measurements. The search range for
the error penalty parameter C and the kernel coefficient v were C' = {100, 1000}
and v = {107%,107%4,10793,107°2, 10791, 1.0}.

Init. training size sample:
ts=4

l

Load measures (“n” points) |
i=1

l

Take randomly
“ts” points of measures

'

For each model:
Adjust parameters using:
* PSO to Analytical Models

* Grid-search to SVR

Increment “ts”
l by multiplying
by 2

A

For each model:
Predict speedup and
Calculate MSE

For each
model:
Store MSE

Increment “i”

For each model: Yes No
Calculate Median
and Standard
Deviation of MSEs

End

Fig. 7. Flow chart of procedure used to compute the median and the standard deviation
of the MSE for each model using different sizes of the training or fitting data.
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Fig. 8 and Fig. 9 resumes all MSE results for each application using different
numbers of measurements. The horizontal axis is in logarithmic scale and holds
the number of sample measurements used to fit or to train the models: 4, 8, 16,
32, 64, 128, and 256 samples. Some applications restrict the number of cores
that can be used, and thus, have fewer data points in the plots. For example,
PARSEC Fluidanimate is limited to run only with numbers of cores that are
a power of two. The last data point in the plot is always the power-of-two
number immediately below the total number of measurements available for each
application.
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Fig. 8. Median of the MSE, of the first 15 applications listed in Tab. 1, for 100 different
model fittings using different sets of random measurements.

Table 2 shows the time spent to model the speedups of each application
using the proposed and the SVR models. The values reported for the proposed
model refer to the number of points at which the accuracy of the proposed
model surpasses the accuracy of Amdahl’s model. For example, for the Canneal
application, the proposed model shows better results when the training set size
was at least 16 points. On the other hand, the values reported for the SVR
Model refer to the number of points at which the the SVR model achieves higher
accuracy than the proposed model. In this case, for Canneal, SVR performs
better only after 256 points are being used for training. The table shows that
the difference in time and, proportionally, in energy consumption between both
models can often be around one order of magnitude. On average, considering all
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Fig. 9. Median of the MSE, of the last 10 applications listed in Tab. 1, for 100 different
model fittings using different sets of random measurements.

applications, the SVR needed 293.27% more time to obtain better results than
the proposed model.

The main behavior observed in Fig. 8 and Fig. 9 is that the analytical models
obtain better results as they use more measurements for modeling until they
reach a plateau. Another important observation is that all analytical models
have better accuracy for smaller training sizes than the SVR model. Although
the SVR model is generally more accurate for sets of measurements with more
than 128 samples, the proposed model was overall better for the smaller-number
sets except for size 4 and 8, for which Amdahl’s models scored best in many
cases.

The overall mean of the median MSE and standard deviation values of the
three models across all applications according to the size of the sample set used
in the modeling is depicted in Fig. 10 and Fig. 11.

In contrast to the machine learning model, the architecturally-inspired mod-
els require only a few executions of the application to provide reasonably good
predictions of their speedups in configurations that were not previously assessed.
This demonstrates an important advantage of these models, which allows an es-
timation of application performance for unseen configurations of a given archi-
tecture with reduced overheads of time and energy. On the other hand, if more
sampling points are available, SVR provides better accuracy at the cost of a
higher overhead.

5 Related Work

Inspired by earlier analytical models, such as [Amd67, Gus88, SN93], many more
recent models attempt to capture better the behavior of application and archi-
tecture features that describe parallel speedups more precisely. None of them,
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Table 2. Time spend to collect applications measurements on specific number of points
for each of Proposed and SVR model.

Proposed ‘ SVR

Benchmark Program |points time (s)|points time (s)
parsec-blackscholes 16 2.9e+03| 256 1.1e+04
parsec-bodytrack 4 1.1e4+03| 128 1le+04
parsec-canneal 16 3.1e4+03| 256 1.2e+04
parsec-dedup 8 3.6e+02 16 6.1e+02
parsec-facesim 16 1.2e+4-04 64 2.4e+04
parsec-ferret 8 3.7e4+03| 128 1.5e+04
parsec-fluidanimate 32 1.3e+04 32 1.3e+04
parsec-freqmine 8 5.7e+03| 256 3.8e+04
parsec-raytrace 16 3.5e+03| 256 1.4e+404
parsec-streamcluster 16 1.4e4+04| 128 3.5e+04
parsec-x264 4 8e+02| 128 5.3e+03
splash2x-barnes 8 1.8e+03| 256 1.2e+04
splash2x-cholesky 4 0.71 16 2.1
splash2x-fft 32 1.6e+03 32 1.6e+03
splash2x-fmm 8 1.5e+03| 256 1le+04
splash2x-lu-cb 64 5.2e+09| 256 1.1e+10
splash2x-lu-ncb 8 1.8e+09 64 6.1e+09
splash2x-ocean-cp 16 4.1e4-03 32 5.9e+03
splash2x-ocean-ncp 16 6.4e+03 32 9.6e+03
splash2x-radiosity 8 1.4e+03 64 4.4e+03
splash2x-radix 16 1.2e+4-03 32 1.9e+03
splash2x-raytrace 16 4.6e4+03| 256 1.7e+04
splash2x-volrend 4 8.8e+02 64 6e+03
splash2x-water-nsquared 4 3.4e+03| 128 2.5e+04
splash2x-water-spatial 4 1.5e+03 64 7.3e+03

however, consider the effect of the memory wall [WM95] on parallel speedups as
considered in this work.

Analytical speedup models for multi-core processors were devised to de-
scribe communication [HZQ"13] and synchronization [EE10] overhead sepa-
rately. Communication and synchronization overheads were modeled together
in [YMG14] providing a more general description of both behaviors. Apart from
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Fig. 10. Average of all MSE values across all applications as function of the training
set size.

not considering the effect of the memory wall on the modeled speedups, no
hardware or simulation validation was presented to confirm their results.

Other analytical models for multi-core architectures consider the variations
in parallel speedups caused by variations in the problem or input size, including
the modeling of the parallel overhead [OFS*18] or not [NSS15]. The parallel
overhead was also modeled together with the parallel speedup for distributed
parallelism in [HH17]. Similar to our work, these studies also validated the models
using execution time measurements, but no feature was associated with the effect
of the memory wall.

The work of Liu and Sun [LS17] combines the limitations related to the finite
size of the memory [SN93] with memory access concurrency [SW14] to provide
a speedup model that can be used for multi-core design space exploration. Al-
though this model contains elements that relate to our data-access delay speedup
model, the authors focus on chip design and perhaps, for this reason, do not ex-
plore the effects of frequency variations on speedups.

Therefore, to the best of our knowledge, this work is the first to explore this
effect. For this reason, the only model mentioned in this section that we used for
comparison was the original Amdahl’s model, as many of the other works did.
Moreover, since those models differ from Amdahl’s by aspects that were kept
fixed in our experiments, such as the problem size and architectural features
like memory hierarchy and the amount of memory available, other comparisons
would not be relevant to this study.
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Fig. 11. Standard deviation of all MSE values across all applications as function of the
training set size.

6 Conclusions

We have presented a new modeling approach for estimating speedups of parallel
applications that are subject to the limitations of the memory wall. The pro-
posed modeling considers variations in the data-access delay of the main memory
when the number of cores increases and when the processor’s or memory’s op-
erating frequency change; capturing the effect of changing the ratio between the
processor’s and the memory’s frequencies. To the best of our knowledge, this
behavior was not described by previous analytical speedup models.

Several hardware experiments presented in this paper validate the ability of
the proposed models to describe the memory wall behavior in many different
applications.

Our analysis shows that reducing processor frequency reduces the adverse
effect of the memory wall on parallel speedups, suggesting that there could be
an optimal processor frequency for each number of cores used to run a given
application. Therefore, we argue that this work is not a pessimistic view of multi-
core scalability. Instead, it shows that the race toward single-core performance
under the influence of Amdahl’s Law has perhaps obfuscated a more efficient
way to match processor and memory frequencies for parallel applications. That
is undoubtedly true if the focus is energy efficiency; as such models could be
applied, for example, to devise better Dynamic Voltage and Frequency Scaling
(DVFS) schemes for the Internet of Things [GXdSE17], data centers [PPZT16],
and high-performance computing [SFGT18].

Ideally, these new DVFS schemes may also consider the number of cores
used by the application, such as in [DSDMD18, LCB16]. To be practical for



When parallel speedups hit the memory wall 21

this, the speedup models need to be able to predict performance at non-visited
configurations with the smallest possible number of measurements. In this sense,
we showed that the proposed model can reach a level of accuracy with about
a dozen of measurements that Support Vector Regression can only reach with
hundreds of measurements. On average, our modeling presented higher accuracy
than Amdahl’s model, when using more than 8 random measurements, and than
support vector regression, when using 128 random measurements or less. The
standard deviation of our modeling was better than Amdahl’s model for all
number of measurements, and was better than Support Vector Regression for 64
random measurements or less.

In contrast with ML speedup models, the proposed model holds an inherent
mapping of the application features, such as rate of memory versus processor
instructions and the value of the parallel and serial fractions of the code, which
is often relevant to software and hardware development. In its turn, machine
learning schemes, such as Support Vector Regression, work as black boxes with
relations between model parameters and applications behavior that are hard to
infer. Additionally, evaluating analytical models is also faster, which makes it
suitable for use in on-line performance and/or energy optimization schemes.

Despite the many different existing models for parallel speedups, the practical
use of these models requires both better generalization and a lower fitting over-
head. In this work, we have made contributions to both aspects, but there is still
room for further improvements. For example, to make the model more general,
the modeling of problem size could be included. For reducing fitting overhead,
devising a heuristic to choose the initial measurements might work better than
random sampling, as it has been observed in [Senl6]. For on-line fitting, increas-
ing the complexity of the models as the number of measurements increases might
also reduce fitting overhead. Extending this approach for speedup models in het-
erogeneous systems [BSVXdS15] is also promising, as the use of these systems
has grown substantially in recent years.
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