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We document that eBay bidders exhibit a biased preference for auctions with more bids, even if these are non-diagnostic of 

quality, creating an incentive for sellers to lower starting prices to attract early bids.  We find that lowering starting prices 

succeeds in increasing the likelihood that an auction will receive additional bids, conditioning on its current price.  We also find 

that, conditioning on dollar amount bid by bidders, those who engage in non-rational herding are less likely to win, and when 

they do win they pay higher prices.  Supporting the premise that this is a mistake, experience reduces dramatically the tendency 

to engage in non-rational herding.  Remarkably, the seller side of the market is in equilibrium: a high enough share of sellers 

chooses low starting prices for expected revenues to be identical for high and low starting prices.  In sum, market forces in eBay 

eliminate the rents associated with exploiting the behavioral bias we identify, but not the bias itself. 

 
Keywords: herding, auctions, biases, rationality, industrial organization. 
____________________________________________________________________________________ 

1.  Introduction 

How do rational sellers respond to the non-rationality of the consumers they serve?  A nascent 

literature, often referred to as behavioral industrial organization, attempts to address precisely this 

question.  It contains a handful of empirical papers that provide explanations for otherwise puzzling firm 

behavior based on a particular deviation from rationality on the part of the consumers these firms serve 

(DellaVigna & Malmendier, 2006; Morgan & Hossain, 2006; Morton & Oster, 2003), and a couple of 

theoretical papers that demonstrate that competition among firms can lead to the elimination of rents 
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associated with exploiting a bias without eliminating the bias itself (DellaVigna & Malmendier, 2004; 

Gabaix & Laibson, 2006).1 

In this paper we contribute to this literature on both accounts.  That is, we identify a specific bias 

in how consumers make decisions that incentivizes an otherwise suboptimal strategy on the part of sellers, 

and we demonstrate that enough sellers are exploiting the bias that in the margin they are indifferent 

between exploiting and not exploiting it.  

More specifically, using data from eBay auctions for DVD movies we show that bidders have a 

tendency to choose auctions with more existing bids even when these do not provide useful information.  

This bias creates an incentive for sellers to obtain early bids, which they can do by lowering the starting 

price of their auctions.  In our sample, for example, auctions starting at $1 accumulate 8.8 bids by the 

time they reach $10, compared to just 2.7 bids by those starting at $9. 

Although standard auction models (e.g. Milgrom & Weber, 1982; Myerson, 1981) propose that 

sellers should not set the starting price of their auctions below the opportunity cost of the item they are 

offering, if bidders prefer auctions with more bids it may be optimal for (some) sellers to do so.  Indeed, 

we find that additional bids obtained through lower starting prices are effective in obtaining additional 

bids.   For auctions currently at $10, for example, we find that 83% of those starting at $1 receive an 

additional bid, compared to 60% of those starting at $10.   

There is nothing surprising, of course, in bidders choosing to bid on auctions with low starting 

prices while they still have a lower price, but there is with them continuing to prefer them once their 

prices are no longer low.  We believe that bidders’ non-rational tendency to prefer auctions with more 

bids can explain the high prevalence of below-cost starting prices on eBay.  In our sample of DVD 

movies, for example, 22.1% of auctions started at $1 or less, clearly below their opportunity cost 

considering that just 0.2% of auctions in the sample sold for less than $1. 

                                                 
1 For a survey of this latest and also previous attempts in Industrial Organization to incorporate bounded rationality 
see (Ellison, Forthcoming). 
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Although lowering the staring-price has the advantage of attracting early bids, as more and more 

sellers do so, it becomes increasingly likely that the listed item will ultimately sell for a lower price.  In 

the extreme, if an infinite number of items were started at $1, all sold items would sell for $1. 

In equilibrium, the expected revenue associated with a low and high starting price should be the 

same (otherwise sellers would change the starting price of their auctions).  We find evidence consistent 

with the seller side of the market being in equilibrium (i.e. with an optimal number of sellers exploiting 

this bias).  The expected revenue associated with starting an auction at $1 is $9.260, virtually identical to 

the $9.265 expected for a starting price of $10. 

Although we find that market forces have eliminated the rents associated with exploiting the 

identified bias, the bias itself survives.  Indeed, the persistence of the bias explains why choosing a below 

cost starting price is not a dominated strategy in equilibrium.   Furthermore, consumers not only continue 

engaging in non-rational herding after market forces have acted, they continue suffering the negative 

consequences from doing so as they are, conditioning on the dollar amount of their bid, less likely to win 

and when they do win they pay higher prices.  For example, a bid for $10 on an auction that started at $1 

has only a 16% chance of winning, while it has a 40% chance of winning an auction starting at $10.  

Similarly, winners of auctions that start at $1 pay around 3% more than winners of auctions starting at 

$10, again, conditioning on dollar amount bid.   

The key assumption behind our interpretation of these findings as evidence of non-rational 

herding is that starting price is not correlated with (unobservable) quality differences across auctions 

and/or sellers.  In section 5 we discuss in detail five arguments to support this assumption, among them: 

(i) excluding observable heterogeneity from our analyses barely influences the estimated impact of 

starting price, (ii) expected revenues for auctions with low and high starting price auctions are practically 

identical; if low starting price auctions are of superior quality or are offered by superior sellers they 

should collect more revenue, and (iii) experienced bidders are less likely to choose low starting price 

auctions, conditioning on current price, suggesting that doing so is a mistake experience teaches bidders 

to avoid.   
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In addition to unobserved heterogeneity, we also rule out as alternative explanations the 

possibility that our findings are driven by attachment (namely, early bidders increasing their willingness 

to pay for the item they have already bid on) or by distracted snipers (i.e. last-minute bidders choosing 

which auctions to bid on early during the auctioning process).  

The paper contributes to various literatures.  It is among the first to study herding utilizing 

individual level data from the field, and the first to propose a specific testable (and tested) alternative to 

rational information-based herding models that assume perfect Bayesian updating based on observed 

behaviors.  It also contributes to the auctions literature by providing an explanation for sellers’ marked 

tendency to start their auction well below the opportunity cost of the items they offer.  Finally, as 

mentioned, it contributes to the developing field of behavioral industrial organization by both studying 

how rational sellers respond to biased consumers and by demonstrating the survivability of biases to 

market forces.  

The remainder of the paper is organized in the following way:  section 2 reviews the existing 

literature and puts forward four predictions, section 3 describes the data, section 4 presents the empirical 

results which we interpret as supporting the proposition that bidders engage in non-rational herding and 

that sellers are best-responding to such bias, section 5 discusses alternative explanations for our results 

and section 6 concludes.   

2. Herding in auctions 

People often observe the decisions of others before making a decision of their own.  If these 

observed decisions reveal valuable information, it may be optimal for observers to imitate them, engaging 

in information-driven herding (Banerjee, 1992; Bikhchandani, Hirshleifer, & Welch, 1992).  A common 

example of this type of social learning consists of choosing busier restaurants, implicitly assuming that 

previous choosers had private information about them. 2  

                                                 
2 Of course people may engage in herding for non-information related reasons including network externalities (Katz 
& Shapiro, 1985), social sanctioning of deviants (Akerlof, 1980) and taste for conformity (Becker, 1991).  None of 
these factors are likely to influence how people choose auctions and hence throughout this paper we will always 
refer to information driven herding. 
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In order for information-based herding to be rational, observers must make correct attributional 

inferences about the behaviors they observe.  In particular, they must make unbiased estimates of the 

private information held by prior decision makers.  Abundant research from psychology, however, 

suggests that people fall prey to systematic biases when making attributions about causality.  Beginning 

with Heider (1958), psychologists have proposed that when people observe actions that can be attributed 

to multiple causes, they overattribute causality to focal ones (e.g. those they are assessing or that are 

perceptually salient), and underattribute it to non-focal ones.   

A classical experiment by Jones & Harris (1967), for example, showed that people’s inferences 

about the political views of a speaker were influenced by the topic of the speech (focal) but not by 

whether or not the topic had been assigned or chosen (non-focal).  Another well known study is that of 

Schwarz & Clore (1983).  They found that people reported higher overall life satisfaction on sunnier days, 

presumably because they failed to attribute to the weather their current mood.  Taylor and Fiske (1975) 

had eight different subject observing the same conversation between two people from different angles.  

Subjects judged the person they were facing directly (the focal target) as having had a more central role in 

the conversation.  For a review of the psychology literature on misattribution of causality behind observed 

behaviors see (Gilbert & Malone, 1995). 

Returning to the issue of herding, if people overestimate the importance of focal causes, they will 

tend to make systematically erroneous inferences about the private information held by previous decision 

makers in a sequential choice setting.  In particular, observers will tend to overestimate how good their 

focal attribute is for the most commonly chosen alternative, leading to non-rational herding, i.e. to 

herding driven by misinterpreted information.  

For example, imagine two bars, only one of which offers a happy-hour promotion, attracting a 

larger number of costumers early in the evening.  After the happy-hour is over, new costumers deciding 

between the two bars are likely to underestimate the importance the non-focal attribute (happy-hour 

prices) had on earlier decision makers.  Doing so would lead observers to incorrectly believe that the 

crowd in the more popular bar is a signal of quality when in reality it is a signal of formerly lower prices.   
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Auctions are ideal for studying non-rational herding because an auction’s starting price can, 

completely independently of the auctioned item’s actual quality, influence the number of existing bids the 

auction will have by the time it reaches a certain price.  A bidder choosing between auctions with the 

same current price faces a situation analogous to a customer choosing whether to enter a bar with a 

recently expired happy-hour: popularity is a signal of no longer available low prices rather than of 

enduring higher quality.   

If bidders attribute causality the way subjects in psychology experiments do, they will 

underappreciate the role that starting price had on number of existing bids (since it is not focal) and be 

more likely to choose, from auctions with the same current price, the one with the lowest starting price. 3  

This leads us to our first prediction,   

Prediction 1:  Conditioning on current price, low starting price auctions are more likely to receive 

additional bids. 

Although previous research has shown that low starting price auctions receive more bids that high 

starting price ones (see e.g. Bajari & Hortacsu, 2003; Haubl & Popkowski Leszczyc, 2003b; Morgan & 

Hossain, 2006), a distinction has not been made as to whether these additional bids are for amounts above 

or below the higher starting price.  Setting a low starting price mechanically increases the number of bids 

placed below the high starting price because of the simple truncation effect of the starting price; bids for 

low dollar amounts cannot be placed on high starting price auctions.  Prediction 1 states that setting a 

lower starting price will also increase the number of bids placed above the higher starting price, because 

late bidders herd behind the otherwise truncated away low value bids. 

Another reason why auctions are ideal for studying non-rational herding is that bidders have an 

incentive not to herd, because the probability that they win the item they bid on, and the price they expect 

to pay for it, depend on the behavior of other bidders.  Herding should, on average, hurt bidders who 

engage in it for at least two reasons.  First, by choosing low starting price auctions bidders are choosing 

                                                 
3 Information about an auction starting price is available to bidders, but, unlike current price and number of existing 
bids, it is not displayed unless bidders request it (with a single click).  
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auctions which are more likely to receive future bids.  Secondly, choosing an auction with more existing 

bids increases the chances that a bid has already been placed for an amount above the current price.  This 

leads us to two related predictions: 

Prediction 2a: A bid of a given dollar amount is less likely to be a winning bid on a low starting price 

auction than on a high starting price one, 

and 

Prediction 2b:  Winners of low starting price auctions will, conditioning on the dollar amount of their 

bid, pay higher prices than winners of high starting price auctions,  

 

If sellers can increase their revenues by simply lowering the starting price of their auction, we 

would expect them to do so.  Doing so increases the chances that they (and all other low starting price 

sellers) actually sell for a lower final price.  In equilibrium there should be enough low starting price 

auctions that the marginal seller is indifferent between a high and a low starting price,  

Prediction 3:  Sellers’ expected revenue from setting a low and a high starting price is the same. 

 After describing the dataset in the next section, we test these predictions in section 4. 

3. Description of the Data 

The dataset 

The data was provided to us directly by eBay.  It consists of auctions for DVD movies taking 

place during October 2002.  We chose to study DVDs (a commodity) in order to reduce to a minimum 

unobserved heterogeneity across goods with different starting prices.  The dataset consists of auctions for 

movie titles that were top-30 bestsellers in dvdmojo.com in September of 2002 or July of 2001.  Six of 

these 60 titles had either too few observations or had titles that were easily confused with other movies 

and were hence dropped from the sample.4 

                                                 
4 eBay does not use unique product identifiers so the identity of items being auctioned must be inferred from sellers’ 
descriptions.  



 

 8

We excluded auctions with starting price above $10.49 primarily because some of our analyses 

control for starting price through dummies for each rounded amount (less than 4% of the sample had 

starting prices above that figure).  We also excluded auctions with a reserve price and those offering the 

“buy-it-now” option (1% and 13% of the sample respectively).  The “buy it now option” is a feature 

which essentially converts an auction into a fixed price item.  The qualitative nature of our results remains 

unchanged if we do not impose these restrictions.  After these exclusions the sample contains 54 movie 

titles for a total of 8,333 auctions, posted by 2,481 different sellers and receiving 37,535 bids,  

Variables 

For each auction we know the starting price, the final price, the seller’s description of the item, 

the identity of the seller, their reputation (net number of positive evaluations they have received in 

previous transactions), whether they are an eBay store (if they have established a contractual relationship 

with eBay) and the total number of DVDs they have offered on eBay since January of 2002.  Based on the 

description of the item by the seller we also created a dummy variable, new, which takes the value of 1 if 

the seller described the item as ‘new’, ‘wrapped’ or ‘sealed’, and 0 otherwise.   Surprisingly, eBay 

collects shipping fees information only for items paid through their internal payment system and hence 

28% of the data does not contain information on shipping charges.  Controlling for shipping, therefore, 

reduces sample size. 

For each bid we know the dollar amount of the bid, how many minutes were left when the bid 

was placed, the reputation of the bidder (analogous to the sellers’) and the price the bidder faced when she 

placed her bid; we will refer to this price as current price throughout the paper. 5  Note that current price 

seldom corresponds to the highest bid placed on the auction so far, since these values are only revealed 

once outbid;  current price equals either the second highest bid so far or the starting price if only one bid 

has been placed. 

                                                 
5 Bidders submit bid amounts which correspond to the maximum they are willing to pay.  eBay then automatically 
places bids for them, outbidding existing bids only by the minimally required increment.  Our data consists of the 
actual maxima, not the proxy bids placed by eBay’s automatic bidding system. 
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  The dataset does not include bidders’ identifiers; to determine whether a bid belongs to a new 

bidder or to a bidder who has already participated in that auction, we rely on the bidder’s reputation.  Bids 

coming into the same auction from different bidders who happen to have the exact same reputation will 

therefore be coded as if they were placed by the same bidder.  Given the relative low number of bidders 

per auction and the large range of reputation, it is unlikely that we are incorrectly identifying a large 

number of bidders.  

Descriptive Statistics 

Figure 1a shows the distribution of (rounded) starting prices in our sample.  It shows large 

dispersion in the starting prices chosen by sellers.  Contrary to standard auction models, a large portion of 

sellers set a starting price that is clearly below the cost of the item being auctioned.  For example, 22.3% 

of auctions start at $1 or less, clearly below the opportunity costs of popular DVD movies (only 0.2% of 

auctions sell for such low final prices).  

Overall 78% of auctions resulted in a sale, figure 1b plots the probability of sale by (rounded) 

starting price; it shows that practically all movies with a starting price below $4 are sold, and that 

probability of sale decreases as starting prices increase above $4.  Excluding non-sold items, the average 

auction received 5.5 bids.  The average price of sold auctions was $10.29, and the average shipping 

charges were $3.53. 

*** Figures 1a and 1b *** 

Finally, Figure 2 shows the distribution of final prices for auctions starting at $1 and $10.  The 

figure shows that auctions starting at $1 are more likely to obtain final prices below $10 than auctions 

starting at $10, of course, but they are also more likely to obtain final prices above $10, the expected 

losses and gains respectively.  This highlights the aforementioned trade-offs involved in lowering a 

starting price: increase in the chance of a high price but also of a low price. 

*** Figure 2 *** 
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4 Empirical Analyses 

This section begins by documenting a correlation between the number of existing bids on an 

auction and the number of additional bids it receives.  It then demonstrates that this tendency to follow 

existing bids persists even when it is entirely driven by lower starting prices.  Then predictions 1, 2a and 

2b are tested, followed by an assessment of the role of bidder experience.  Finally, the expected revenues 

associated with low and high starting prices are examined, finding support for prediction 3: in the margin 

exploiting non-rational herding is as profitable as not exploiting it. 

Existing bids predict future bids. 

Although in this paper we are interested in variation in number of existing bids that results only 

from variation in starting price, before presenting the analyses of the impact of starting price it is useful to 

assess whether number of existing bids, caused by starting price or by any other factor, is a predictor of 

future bids.  This introductory analysis suffers from the usual identification problems afflicting empirical 

work on peer-effects: the correlation between past and future choices could be caused by omitted 

variables (for example auctions that happen to end on a rainy afternoon may have more existing and 

forthcoming bids).  Nevertheless, it would be hard to argue that starting price influences consumer 

choices by affecting the number of existing bids, if these were not a significant predictor by themselves. 6  

Before assessing the impact of starting price, therefore, we begin by documenting that the number of 

existing bids is a significant predictor of the likelihood that an auction will receive additional bids. 

To this end we estimated a regression where bids are the unit of observation, the dependent 

variable takes the value of 1 if at least one more bid is placed on the auction and 0 otherwise.  The key 

predictor is how many bids have already been placed in the auction, controlling for current price, minutes 

left in the auction and various other controls.   

The results from this regression are consistent with the notion that auctions with more existing 

bids are more likely to obtain more additional bids.  The point estimate for log(existing bids) is β=1.52, 

                                                 
6 One interpretation of our analyses that focus on starting price is that we are instrumenting for number of existing 
bids with an auction’s starting price. 
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with a SE=.039.  The full regression is presented in Column 1 of Table 1 (this table is discussed in detail a 

few paragraphs below).  

Again, it is quite clear that this result does not provide unambiguous evidence of herding.  The 

correlation we find could be the result of an omitted variable causing both the existing and the new bids. 

It does, nevertheless, lend plausibility to our explanation that starting prices influence an auction’s 

outcome by influencing the number of existing bids bidders observe when they arrive at an auction.7  We 

now move on to our main analyses which focus on starting prices. 

Early bidding, a necessary condition for herding 

For late bidders to herd behind early bidders there must be early bidders to follow;  if in the 

extreme, all bids were placed in the last minute, herding would not be a plausible explanation for potential 

differences in the performance of low and high starting price auctions.  Figure 3a plots both the average 

dollar amount of first bids and the number of hours left until the end of the auction when they were 

placed.  The figure shows that low starting price auctions receive bids much earlier than auction with high 

starting prices:  the average auction starting at $1 received the first bid around 5 days before the end of the 

auction, compared to 8 hours for auctions starting at $10.  Figure 3a also illustrates that early bids are for 

lower dollar amounts, the first bid in auctions that start at $1 is, on average, for just $2.   

*** Figures 3a & 3b *** 

Since low starting price auctions receive low value bids early-on, by the time they catch-up with 

higher starting price ones they are likely to accumulate a much larger number of bids than auctions that 

started higher.  Figure 3b plots the average number of bids received by the time auctions with different 

starting prices reached a price of $10.  As expected, auctions with lower starting prices receive a much 

larger number of bids by the time they reach $10.  

Since low starting price auctions receive bids early-on and accumulate a number of them by the 

time they catch up in price, the non-rational herding mechanism we propose is a plausible explanation for 

                                                 
7 Dholakia and Soltysinski  (2001) also propose that existing bids are correlated with new bids.  They do not appear 
interested, however, in disentangling between a causal and a spurious correlation, or on how the market responds to 
such correlation. 
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potential differences in performance by low and high starting price auctions.  Figures 3a and 3b are not 

evidence of herding, but of the necessary conditions for herding to occur.   

Choosing Auctions – Testing Prediction 1 

Prediction 1 states that, conditional on current price, lower starting price auctions are more likely 

to receive additional bids.  We test prediction 1 with two closely related analyses.  The first consists of 

pairwise comparisons of the probability of receiving an additional bid for auctions that started at $1 and 

achieved a price of $6, $7, $8, $9 and $10, and the analogous probability for auctions that started at those 

prices. We also estimated regressions that use the whole dataset and control for current price.   

Pair-wise comparisons of auctions at the same current price  

Figure 4 reports pairwise comparisons of the probability that an auction at a given current price, 

$x, will receive at least one additional bid, for auctions that started at $x and those that started at $1.  

Figure 4a shows the relative frequencies in the raw data (i.e. without any controls) while Figure 4b the 

predicted probabilities arising from logistic regressions, controlling for movie and seller observable 

heterogeneity. 

The results presented in Figure 4 are consistent with prediction 1: conditioning on current price, 

low starting price auctions are more likely to receive additional bids.  For example, Figure 4a shows that 

91% of auctions starting at $1 and currently at $8 receive an additional bid, while only 76% of auction 

that start at $8 receive any bids.   Figure 4b shows that once movie and seller characteristics are controlled 

for, the predicted probabilities are 90% and 77% respectively, almost identical.   

***Figure 4 *** 

Logistic regression including all auctions in the sample 

To extend the previous analysis to all observations in the dataset, we estimated a logistic 

regression where every bid in the sample is an observation and the dependent variable takes the value of 1 

if there was at least one more bid placed after it, and 0 otherwise (e.g. if an auction had three bids, the 

dependent variable is 1 for the first two bids, and 0 for the third).   The results are presented on columns 
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2-6 of Table 1 (column 1 reports the previously discussed regression where number of existing bids is the 

key predictor). 

*** Table 1 *** 

It is obviously important to control for current price since only low starting price auctions were 

ever at a low current price, and auctions at current lower prices are more likely to receive additional bids.  

In order to avoid imposing an arbitrary functional form on this key control variable, we use 21 dummies 

(between $0 and $20) for the rounded dollar amount of the current price of the auction.  This reduces the 

likelihood of starting price being a significant predictor of probability of receiving bids because current 

price is not adequately controlled for.  Given than many auctions have multiple bids, standard errors are 

clustered by auction (with the exception of column 5 where there are too few observations per auction for 

the clustered standard errors to be computed).   

Column 2 presents the baseline specification, column 3 adds controls for movie characteristics 

(movie title fixed effects and the “new” dummy) and column 4 adds seller controls (experience, 

reputation and the store dummy).  As predicted, the coefficient of starting price is negative and significant 

across all specifications: auctions with lower starting prices are more likely to receive additional bids 

conditioning on current price.  The parameter estimate for starting price is practically unaffected by the 

inclusion of observable heterogeneity, this suggests that unobserved heterogeneity is an unlikely 

alternative explanation. 8 

To further rule out the possibility that the significant influence of starting price reported in 

columns 2-4 is driven by the fact that only low starting price auctions were ever at low prices, column 5 

reports the results from a regression run on the subset of observations when current price was at or above 

$10.  Starting price remains negative and highly significant.  The drop in the size of the parameter is not 

easily interpretable, for it refers to the average effect over a different range of current prices.  Column 6 

will be discussed in the alternative explanations section.   In sum, both the pairwise comparisons and the 

regression analyses of all bids find evidence consistent with prediction 1.   
                                                 
8 If current price is controlled for with a linear term, similar results are obtained (β=-0.171; SE=0.005). 
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Winning Auctions – Testing Prediction 2a 

Prediction 2a indicates that bids for a given dollar amount are less likely to win auctions with 

lower starting prices.  This means that a bidder willing to bid a certain amount of money for a given 

movie is more likely to win it if the bid is placed on a higher starting price auction.  Two forces are 

behind this prediction: the first is that choosing low starting price auctions means choosing auctions 

which future bidders are likely to choose, and the second is that choosing an auction with existing bids 

increases the chances that a bid that has already been placed (but whose maximum dollar amount is 

hidden) is higher than the currently displayed price.  As was the case with prediction 1, we begin with a 

simple test on a subset of the data and we then extend the analysis to the whole dataset.  

Comparison of $10 bids across auctions 

Figure 5 plots the probability that a $10 bid wins an auction as a function of the starting price of 

the auction where it is placed both controlling and not controlling for movie and seller variables.  The 

probability estimates without controls correspond to the relative frequency in the raw data.  For example, 

there were 1,277  $10 bids placed on auctions with a starting price of $1, of which 206 ended up winning 

the auction, hence the probability that an observed $10 bid wins an auction starting at $1 is 

206/1,277=16.1%.  9 

The calculations with controls were obtained with a linear probability model where we included 

dummies for each starting price and controlled for both movie and seller characteristics; the reported 

probabilities correspond to the parameter estimates of each starting price dummy variable, plus a constant 

that facilitates comparisons. 

The results presented on Figure 5 are consistent with prediction 2a.  Bids of a given dollar amount 

($10) are more likely to win higher rather than lower starting price auctions.  For example, a $10 bid had 

a 16% chance of winning an auction that started at $1, but it had a 41% chance of winning an auction that 

                                                 
9 Note that we are looking at the actual relative frequency of bids for a certain dollar amount winning auctions, 
rather than at whether a bid would have won had it been placed.  The latter is a problematic counterfactual since it 
assumes that placing a bid on an auction does not influence the behavior of other bidders, which is precisely the 
question we address in this paper.   
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started at $10.  The similarity of both lines suggests heterogeneity across auctions with different starting 

prices is not what’s behind the relationship between probability of winning an auction and starting price.  

At face value these results mean that a bidder who is willing to pay up to $10 for a specific DVD 

movie would increase her chances of winning it from 16% to 41%  by placing her bid in an auction that 

started at $10 rather than at $1. 

*** Figure 5 *** 

Logistic regression including all bids in the sample 

To conduct a more comprehensive test we run a regression where each bid is an observation, the 

dependent variable is whether the bid won the auction, and the key predictor is the starting price of the 

auction.   As was the case for prediction 1, standard errors are clustered by auction. 

It is of high importance to control for the dollar amount of the bid being placed, since only low 

starting price auctions can receive bids for low dollar amount, and such bids are less likely to win 

auctions.  As we did with current price when testing prediction 1, we control for the dollar amount of the 

bid with dummy variables for each rounded dollar between $0 and $20, avoiding the need to impose an 

arbitrary functional form on our key control variable.  

The results of these regressions are presented in Table 2.  Column 1 controls for auction 

characteristics and for the number of minutes left when the bid was placed, column 2 adds movie controls 

and column 3 seller controls.  The coefficient of starting price is positive and greatly significant across all 

specifications.  Comparing the parameter estimates for starting price across columns 1-3 we see that, as 

was the case for prediction 1, including observable heterogeneity does not diminish the estimated 

influence of starting price, suggesting that unobserved heterogeneity is an unlikely alternative 

explanation.  10 

*** Table 3 *** 

To further rule out the possibility that coefficient estimates for starting price from columns 1-3 

are driven by the fact that only low starting price receive low value bids, Column 4 restricts the analysis 
                                                 
10 Controlling for current price linearly leads to a similar point estimate for starting price (β=.0882, SE=.0049). 
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to bids for $10 or more.  The coefficient for starting price is still positive and highly significant.  The 

change in size of the coefficient is not easy to interpret because it refers to the average effect over a 

different range of bid amounts.   

Price paid by winner, conditional on bid amount – Prediction 2b 

Prediction 2b indicates that winners of low starting price auctions will pay higher prices for the 

auctions they win, conditional on the amount they bid.  To test for prediction 2b we estimated a regression 

where each winning bid is an observation, the dependent variable is the price paid by the winner of the 

auction, the key predictor is the starting price of the auction and the key controls are the current price at 

the time the bid was place, and the dollar amount of the bid.  The results are presented in Table 3.11 

***Table 3*** 

Column 1 in Table 3 presents the regression estimates controlling only for dollar amount of bid, 

minute left in auction when bid was placed and current price when bid was placed.  Column 2 adds movie 

controls, columns 3 seller controls, and column 4 shipping.  Across all four columns the point estimate for 

starting price is, consistent with prediction 2b, negative and significant: conditioning on the amount of the 

bid, winners of lower starting price auctions pay higher prices.  As was the case with predictions 1 and 2, 

introducing observable heterogeneity barely influences the point estimate of starting price.   

The effect size is small, specially compared to those resulting from predictions 1 and 2a.  

According to the point estimates from column 4, winners of auctions starting at $10 pay 30 cents less, on 

average, than winners of auctions starting at $0, (again, conditional on bid amount), that’s about 3% of 

the final price.  It would be difficult to obtain larger effect sizes in this sample, however, considering that 

eBay’s required minimum increment is just 50 cents (in this price range).   

                                                 
11 The regression obtains such a high R2 probably because it controls both for the dollar amount of the winning bid 
and the price at which the bid was placed. 
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The role of bidder experience 

 If the behavior of bidders that leads to the previous findings is a mistake, as we posit, then bidders 

may learn not to interpret bids that result from lower starting prices as informative and hence avoid low 

starting price auctions once they catch up in price with higher starting price ones. 

We do not have data on bidder experience per-se, but we do know bidders’ ratings, which consist 

of the net number of evaluations bidders have received from sellers they have purchased from.  Sellers 

can evaluate buyers with a positive (+1), negative (-1) or neutral score (0); the variable we have consists 

of the sum of all of these scores.  Although bidder rating is not perfectly correlated with experience it is 

probably a good proxy for it.  There is ample variation in the ratings of bidders in the sample.  For 

example, the average rating in the lowest decile is 1.27, compared to 651.3 for bidders in the highest 

decile.   

To intuitively assess the role of experience, we compared the auctions bidders with different 

amounts of experience chose to bid on.  In particular, we concentrated on bidders placing a bid on 

auctions currently at $10, and compared the share of these auctions that had a starting price of $1 and of 

$10 for bidders across different experience levels.  The results are presented in Figure 6.    

The figure shows, for example, that (of auctions currently at $10) bidders in the lowest decile of 

experience placed 32% of bids on auctions that started at $1, compared to 52% by bidders in the highest 

decile of experience.   The slopes in the graph indicate that bidders with more experience are more likely 

to choose auctions with a starting price of $10, and less likely to choose auctions with a starting price of 

$1, conditioning on the current price. 

**Figure 6** 

We also estimated a regression where each bid is an observation, the dependent variable is the log 

of the rating of the bidder placing the bid, and the key predictor is the auction’s starting price.  We control 

for all observables, including dummy variables for the current price of the auction at the time the bid was 

placed.  If bidders with more experience tend to choose auctions with higher starting prices the coefficient 

of starting price on the rating of bidders should be positive.  As predicted, the point estimate of the 
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relationship between starting price and buyer rating of the bidder placing the bid is positive and 

significant, β=.020, SE = .003.   

It is worth noting that although both Figure 6 and this regression present evidence consistent with 

experienced bidders preferring higher starting price auction, given the cross-sectional nature of the data, 

we cannot distinguish between a learning explanation, where bidders learn not to bid on low starting price 

auction, and a selection one, where bidders who chose low starting price auctions are less likely to come 

back to eBay.  

Are sellers best-responding to the herding behavior of bidders?- Prediction 3 

Sellers seem to at least partially recognize bidders’ non-rational herding, since a substantial 

proportion of auctions start at prices well below the cost of popular DVDs, contrary to standard auction 

model predictions.  22.3% of auctions start at $1 or less, well below the opportunity cost of popular DVD 

movies (only 0.2% of auctions sell for $1 or less).  An interesting question is whether 22% is the 

equilibrium percentage of auctions starting at $1, i.e. whether a marginal seller could increase her 

expected revenue by lowering the starting price of her auctions.   

 There is a tradeoff involved in lowering an auction’s starting price.  Although it attracts low 

value bids which in turn may attract more bids, if no high dollar amount bid is placed, then rather than 

keeping the item, the seller has to sell it for a low price.  In the extreme, if an infinite number of sellers 

listed DVD movies for $1 on eBay, all sold movies would go for just $1.  In equilibrium the number of 

sellers setting low prices should be such that the expected revenue associated with starting at high and 

low prices was the same.  This tradeoff between potential gains and losses was highlighted above in 

Figure 2, which shows the distribution of final prices for auctions starting at $1 and $10.   

To test whether the seller side of the market is in equilibrium, i.e. if in the margin these two 

forces cancel each other out, one needs to compare the expected revenues associated with low and high 

starting prices.  Revenues differ from prices because eBay charges listing fees which, as we shall see, will 

be (indirectly) affected by starting prices as well.   
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To compute expected revenues one needs to make assumptions about what sellers do with unsold 

items.  Considering that if sellers had an alternative to listing on eBay that lead to higher expected 

revenues they would have not listed their item on eBay in the first place, we assume that unsold items are 

re-listed, for the same starting price, until they eventually sell.  

Sellers pay a listing fee for each item they post on eBay, regardless of whether the item sells.  If 

an item does not sell, however, sellers get one second listing for free; if on a second instance the item 

does not sell, the seller must pay for each listing after that.  So if an item is listed either once or twice 

before selling, the seller pays the listing fee once ($.35), but if the item is listed three or more times before 

it sells, the sellers pays $.35 multiplied by the number of times the item was listed, minus one. 

The average final prices for auctions starting at $1 and $10, the two most popular starting prices, 

controlling for all observables, are $9.61 and $9.71 respectively, i.e. auctions starting at $10 sell for 

around $.10 more than auctions starting at $1. 12  Auctions starting at $10, however, need to be listed more 

times, on average, before they are sold, because their probability of sale is so much lower (see figure 1b).  

Once we subtract the corresponding expected costs in listing fees, expected revenues for auctions starting 

at $1 and $10 are $9.260 and of $9.265 respectively.  This suggests that, at least with respect to the 

starting price decision, the seller side of the market is in equilibrium; the gains a seller obtains in terms of 

increasing the chances of a higher final price are exactly cancelled out by the losses associated with the 

now possible lower final prices.  13 

This highlights an important point we make in this paper.  Market forces have eliminated the 

rents associated with exploiting non-rational herding (i.e. with setting a low starting price) but they have 

                                                 
12 These are the sum of the intercept plus the parameter estimates from starting price dummies in a regression where 
each sold auction is an observation, and both movie and seller observables are controls. 
13 Several papers have investigated the correlation between starting and final prices, obtaining mixed results.  Some 
find a negative association (Kamins, Dreze, & Folkes, 2004; Ku, Galinsky, & Murnighan, in press.; Reiley, 2005), 
while others find a positive one (Brint, 2003; Haubl & Popkowski Leszczyc, 2003b; Lucking-Reiley, Bryan, Naghi, 
& Reeves, 2000; Park & Bradlow, 2004).  These papers have many differences which are beyond the scope of this 
paper to discuss in detail.  The most important differences between our paper and most previous ones are that (i) we 
concentrate on expected revenues rather than prices (taking into account fees and probability of sale) (ii) we 
compare the expected revenues for the two most commonly chosen starting prices, rather than arbitrarily “high” and 
“low” ones, and (iii) we used data from auctions for a commodity where unobserved heterogeneity (real or 
perceived) is trivial. 



 

 20

not eliminated non-rational herding per-se.  Indeed setting a starting price of $1 is not dominated by a 

starting price of $10 because bidders continue to engage in non-rational herding. 

5 Alternative Explanations 

Our interpretation of the evidence presented above is that bidders engage in non-rational herding 

choosing auctions with lower starting prices because they have accumulated more bids by the time they 

catch up in price with higher starting price ones.  In this section we entertain three alternative 

explanations.  These are: (i) low starting price auctions are unobservably superior to high starting price 

ones, (ii) bidders become attached to auctions they have already placed bids on, and (iii) last-minute 

bidders choose auctions when current prices of low starting price auctions are still lower than that of high 

starting price ones.  

Unobserved heterogeneity 

The first alternative explanation we discuss is the possibility that bidders prefer low starting price 

auctions because they offer unobservably better products or are offered by unobservably better sellers.  

We present five arguments against this alternative explanation. 

(i) Lack of ex-ante candidates for correlates: We intentionally selected DVD movies as the 

product for our study because we wanted to analyze goods that were highly standardized.  Once the movie 

title, new vs. used, reputation of the seller, experience of the seller, shipping charges and whether the 

sellers is a store are controlled for, no obvious relevant attribute (likely to be correlated with starting 

price) seems to remain unobserved.   

(ii) Counterintuitive unobserved correlation: in order for unobserved heterogeneity to explain our 

results, lower starting price auctions (or sellers of) would need to be unobservably superior to higher 

starting price ones.  As we mentioned earlier, standard auction models predict that sellers set starting 

prices at or above the opportunity cost of the item they offer, however, and hence, according to existing 

rational models, failing to control for unobserved heterogeneity should bias our estimates towards finding 

a preference for higher starting price auctions. 
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(iii) Observable heterogeneity does not alter estimates: one way to assess the potential impact of 

unobserved heterogeneity on our parameter estimates for starting price is to examine the impact of 

excluding observed heterogeneity.  If unobservable heterogeneity is behind our findings, the point 

estimates for starting price should be greatly influenced when observable heterogeneity is excluded.   

This, however, is not the case.  None of the regressions presented in tables 1-3 show noticeable changes 

in the point estimate of the coefficient for starting price when observable heterogeneity is added to the 

regression, suggesting that unobservable heterogeneity is an unlikely explanation for our findings. 

(iv) Experienced bidders stay away from low starting price auctions:  as was reported above, 

experienced bidders are less likely to choose low starting price auctions, conditional on current price, that 

inexperienced bidders (see Figure 6).  The fact that experience diminishes bidders’ tendencies to choose 

low starting price auctions is consistent with such tendency being caused by a mistake (non-rational 

herding) but not with the alternative explanation based on unobservable higher quality.  Why would 

experienced bidders shy away from bidding on superior items?   

(v) Equal expected revenues for auctions with low and high starting prices: Finally, in a 

competitive market such as eBay, superior items and/or superior sellers of items should obtain higher 

revenues.  The fact that revenues are nearly identical for auctions starting at $1 and $10 suggests that that 

the quality of items listed at $1 and $10 must also be virtually identical. 

In sum, there is no evidence that points to low starting price auctions being of higher quality than 

high starting price auctions. 

Attachment 

The second alternative explanation we consider is that bidders who bid early-on on low starting 

price auctions (when the price is still low) become more determined to win the item than if they had not 

placed an early bid.  This could be the result of selective attention to auctions one has already bid on, of 

the excitement or arousal generated by the bidding process itself (Ariely & Simonson, 2003; Haubl & 

Popkowski Leszczyc, 2003a; Ku, Malhotra, & Murnighan, 2005), or of a pseudo-endowment effect 
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(Dodonova & Khoroshilov, 2004; Heyman, Orhun, & Ariely, 2004).  We refer to this general explanation 

as attachment. 

  To assess how much of the increased preference for low starting price auctions can be explained 

by attachment, we estimated the regression used for testing prediction 1 (i.e. bidder’s tendency to prefer 

low starting price auctions, conditional on current price) excluding repeat bidders, i.e. not counting bids 

by bidders who had already placed a bid on the auction as a new bid.  If the impact of starting price was 

solely due to attachment, the coefficient for starting price should no longer be significant once repeat 

bidders are excluded, while –on the other extreme- if attachment plays no role at all, the point estimate 

should remain unchanged.  The relative drop in the coefficient of starting price, therefore, provides an 

estimate of the relative importance of attachment (in our data).   

The results from this regression are presented in the column 6 in Table 1; the point estimate for 

starting price in this column, where repeat bidders are excluded, is virtually identical to the point estimate 

in column 4, where they are included (β(column 4)=-1.54 and β(column 6)=-1.56).  Although this does not 

necessarily rule out attachment as a real phenomenon, it suggests it is not behind the reported tendency 

for preferring low starting price auctions.  

Distracted Snipers 

Various studies have shown that bidders tend to place their bids during the last few minutes of an 

auction (for a review see section 3 in Bajari and Hortacsu, 2004) .  If last minute bidders (often referred to 

as snipers) choose early-on which auctions to snipe on, perhaps based on the current price at that time, 

and they do not update their decisions as prices increase, low starting price auctions may be preferred by 

bidders because their low starting prices act as bait for snipers.  Under the distracted sniper explanation, 

winners of low starting price auctions are not being attracted by the high number of bids that the auction 

accumulates through time, but rather, they made up their minds even before these bids arrived.  One 

might argue, however, that if snipers are strategic in their bidding behavior, it is unlikely that they will not 

be strategic also in their decisions of which auction to participate in.  Furthermore, when placing a bid on 
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eBay, a bidder is shown the current price, and hence it would be technically difficult to place a bid 

without being aware of the current price. 

Nevertheless, it is worthwhile considering this explanation because of how prevalent sniping is in 

online bidding.  A logical consequence of this account of the results is that low starting price auctions 

should receive more last minute bids.  Figure 7 plots the proportion of last bids arriving within 5, 60 and 

180 minutes of the end of the auction.  Although there is plenty of last minute bidding in DVD movies, 

there is no evidence of a higher rate of last minute bidding in low starting price auctions.   

***Figure 7 *** 

6. Conclusions 

In this paper we show that online bidders have a biased preference for auctions with more bids 

even if these bids are non-diagnostic of quality, that such bias creates an incentive for sellers to lower the 

starting price of their auctions, that enough sellers do so that their side of the market is in equilibrium but 

that despite such market forces bidders continue engaging in non-rational herding, being less likely to win 

auctions and having a higher expected final price if they do win.  These findings contribute to various 

literatures, including herding, auctions and industrial organization in general.   

In terms of the auctions literature, our findings provide an explanation for sellers’ marked 

tendency to start their auction well below the opportunity cost of the items they offer, contrary to standard 

auction models.  Also, this paper improves our understanding of how bidders choose where to place their 

bids when they have many parallel auctions offering similar or identical products, contributing to the 

recent interest in auctions where bidders endogenously decide whether to participate (see e.g. Bajari & 

Hortacsu, 2003; Reiley, 2005; Zeithammer, Forthcoming). 

With regards to the herding literature, ours is among the first papers to study herding utilizing 

individual level data from the field.  More importantly, it is the first to propose a specific testable (and 

tested) alternative to rational information-based herding models that assume perfect Bayesian updating 

based on observed behaviors.  Standard herding models assume that observers make unbiased inferences 

from the actions they observe.       
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The fact that people misattribute causality behind the observed actions of others, however, is such 

a robust finding in social psychology that it has been termed the “fundamental attribution error.”  It seems 

likely that herding models which take such robust and systematic deviations into account would be able to 

make more accurate predictions of herding in the real world, as we do in this paper. 

We believe that non-rational herding as a consequence of overattributing causality to focal causes 

is likely to occur in other domains where decisions are based, at least partially, upon inferences agents 

make from observed behavior.  When hiring, for example, employers assessing the ability of an applicant 

may overattribute to the focal target of their evaluation (the applicant) the quality of the previous position 

held by her, and underweight the role played by non-focal causes, such as job market conditions when the 

previous job was obtained, leading workers who happen to obtain their first job under favorable job 

market conditions to continue receiving the benefits of such conditions, long after they cease to be 

present. Devereux (2002) and Oyer (2006) provide evidence consistent with this prediction 

Another example consists of the inference problem firms face when attempting to understand the 

driver of price changes in the markets where they participate. Lucas (1973) seminal paper proposed that 

inflation can affect real output if producers confuse changes in the aggregate level of prices with changes 

in relative prices.  One possible mechanism for this type of error is that producers over-attribute to focal 

targets (their own business) the increase in the prices of their product, rather than to the true yet non-

salient cause (excessive printing of money).   

Finally, in terms of industrial organization, our results highlight that market forces can eliminate 

rents associated with exploiting biases without eliminating the biases themselves.  This means that (i) 

behavioral biases can be observed even after market forces have played their part, and that (ii) in order to 

understand the rational behavior of firms one must first understand the not necessarily rational behavior 

of consumers they are responding to.   
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(1) (2) (3) (4) (5) (6)
Number of Controls adds movie adds seller Only bids Same as (4)

existing bids for auction controls controls placed once excluding
as key predictor variables only price>=$10 repeat bidders

Intercept -4.027*** 0.121  1.054  0.385  -2.293  -0.145  
(0.865)   (0.671)   (1.036)   (0.997)   (6.712)   (1.477)   

Starting Price -- -0.155*** -0.165*** -0.154*** -0.107*** -0.156***
-- (0.006)   (0.007)   (0.007)   (0.007)   (0.009)   

log(Minutes left on the auction) 0.392*** 0.303*** 0.278*** 0.273*** 0.240*** -0.160***
(0.010)   (0.008)   (0.009)   (0.009)   (0.010)   (0.031)   

Shipping Charges -0.113*** 0.044** -0.076*** -0.085*** 0.009  0.346***
(0.027)   (0.022)   (0.026)   (0.027)   (0.026)   (0.011)   

"New" Movie Dummy 0.235*** -- 0.176*** 0.138*** 0.069  0.239***
(0.051)   -- (0.050)   (0.052)   (0.054)   (0.064)   

log(Seller Rating) 0.066*** -- -- 0.138*** 0.130*** 0.193***
(0.020)   -- -- (0.021)   (0.024)   (0.025)   

log(Seller Experience) 0.007  -- -- -0.027** -0.027* -0.033**
(0.013)   -- -- (0.013)   (0.016)   (0.016)   

eBay Store Dummy -0.158  -- -- -0.221** -0.313*** -0.290**
(0.101)   -- -- (0.102)   (0.096)   (0.117)   

Log(Number of existing bids) 1.515*** -- -- -- -- --
(0.039)   -- -- -- -- --

Movie title fixed-effects (df=53) YES NO YES YES YES YES

Current price dummies (df=21)a YES YES YES YES YES YES
Pseudo R-Square 0.246 0.316 0.320 0.175 0.360
Number of observations 26,580 26,580 26,580 26,580 10,127 13,826
Notes: Standard errors, clustered by auction, reported in parenthesis below parameter estimates. 

Column 5's standard errors are not clustered due to the reduced number of observations per auction

*,**,*** significant at 10%, 5% and 1% respectively
a Current price is controlled for with dummies for rounded dollar amounts (between $0 and $20), avoiding functional form assumptions.  

Table 1. The Effect of Starting Price on Probability of Receiving Additional Bids (Logistic Regression with clustered standard errors)
Dependent Variable: 1 if at least one more bid was placed, 0 if last bid. 
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Dependent Variable: 1 if bid won the auction, 0 otherwise

(1) (2) (3) (4)
With Movie With Seller Only bids

No controls Controls Controls for $10 or
more

Intercept 2.003* 2.510** 3.107** 3.464**
(1.046)   (0.892)   (0.891)   (1.277)   

Starting Price 0.083** 0.104** 0.097** 0.077**
(0.006)   (0.007)   (0.007)   (0.007)   

log(minutes left in auction when bid is placed) -0.337** -0.298** -0.293** -0.105*
(0.008)   (0.009)   (0.009)   (0.055)   

Shipping Charges 0.006  0.111** 0.105** -0.243**
(0.022)   (0.026)   (0.027)   (0.010)   

"New" Movie Dummy -- -0.236** -0.197** 0.038  
-- (0.051)   (0.052)   (0.027)   

log(Seller Rating) -- -- -0.046** -0.032  
-- -- (0.020)   (0.024)   

log(Seller Experience) -- -- -0.037** -0.038**
-- -- (0.013)   (0.015)   

eBay Store Dummy -- -- 0.079  0.170*
-- -- (0.095)   (0.100)   

Dollar amount of bid dummies (df=21) a YES YES YES YES
Movie Title Fixed Effects (df=53) NO YES YES YES
Pseudo R-Square 0.257 0.304 0.306 0.157
Number of observations 25,368 25,368 25,368 9,883
Clustered (by auction) standard errors reported below parameter estimates.

Column 4's standard errors are not clustered due to the reduced number of observations per auction

*,** significant at the 5% and 1% respectively
a Bid Amount is controlled for with dummies for rounded dollar amounts (between $0 and $20), avoiding functional form   

   assumptions.  Results with linear controls are repoted in footnotes.
b Sample size is reduced when controlling for shipping because not all sellers report their shipping charges to eBay.

Table 2.  Effects of starting price on probability that bid of given $ amount wins the auction (logistic regression)
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(1) (2) (3) (4)
Only Adds movie Adds Seller Adds

bid controls controls controls shipping

chargesa

Intercept 0.053  0.561** 0.490** 0.638**
(0.049)   (0.079)   (0.087)   (0.115)   

Starting Price -0.025** -0.029** -0.028** -0.029**
(0.003)   (0.003)   (0.003)   (0.004)   

Dollar amount of  bid 0.519** 0.500** 0.498** 0.497**
(0.006)   (0.006)   (0.006)   (0.007)   

log (minutes left in auction when bid was placed) 0.096** 0.090** 0.089** 0.087**
(0.005)   (0.005)   (0.005)   (0.006)   

Current price when bid was placed 0.445** 0.417** 0.414** 0.412**
(0.007)   (0.007)   (0.007)   (0.008)   

"New" Movie Dummy -- 0.093** 0.092** 0.083**
-- (0.025)   (0.025)   (0.030)   

log(Seller Experience) -- -- 0.011  -0.001  
-- -- (0.010)   (0.012)   

log(Seller Rating) -- -- 0.011  0.026**
-- -- (0.007)   (0.008)   

eBay Store Dummy -- -- 0.049** 0.054**
-- -- (0.051)   (0.056)   

Shipping Charges -- -- -- -0.040**
-- -- -- (0.014)   

Movie Title Fixed Effects (df=53) NO YES YES YES
R-Square 0.899 0.903 0.903 0.903
Number of observations 6,333 6,333 6,333 4,572
Standard errors reported below parameter estimates.

*,** significant at 5% and 1% respectively
a Sample size is reduced when controlling for shipping because not all sellers report their shipping charges to eBay.

Table 3.  Effects of starting price on price paid by winner (OLS)
Dependent variable: final price price paid (in $)
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Figure 1a. Distribution of starting prices. 
Figure 1b. Probability of sale and starting price. 
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Figure 3a Figure 3b.  
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Figure 3b. Number of hours left and bid amount of first bid 
Figure 3b. Number of existing bids when auction reaches $10 
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Figure 6.  
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Relationship between bidder experience and the starting price of auctions where bidders place bids, 
among auctions currently at $10.  
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