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When Robots are Late:

Configuration Planning for Multiple Robots with Dynamic Goals

Maurizio Di Rocco1 and Federico Pecora1 and Alessandro Saffiotti1

Abstract— Unexpected contingencies in robot execution may
induce a cascade of effects, especially when multiple robots
are involved. In order to effectively adapt to this, robots need
the ability to reason along multiple dimensions at execution
time. We propose an approach to closed-loop planning capable
of generating configuration plans, i.e., action plans for multi-
robot systems which specify the causal, temporal, resource
and information dependencies between individual sensing, com-
putation, and actuation components. The key feature which
enables closed loop performance is that configuration plans are
represented as constraint networks, which are shared between
the planner and the executor and are continuously updated
during execution. We report experiments run both in simulation
and on real robots, in which a fault in one robot is compensated
through different types of plan modifications at run time.

I. INTRODUCTION

A routine robot delivery is ongoing at Ängen, a

senior residential facility in central Sweden. Rout,

an outdoor robot, is bringing some groceries to

the door of Sven’s apartment, where the indoor

robot Rin will take them. While Rout is en route,

its GPS fails; the navigation system of Rout is then

reconfigured to use laser-based localization. This

requires that speed be considerably reduced, which

will cause Rout to arrive at Sven’s apartment ten

minutes later. Correspondingly, Rin, which had

planned to pick up the groceries and then attend

to another domestic chore, reschedules its activities

to first perform that chore and then meet Rout.

This vignette illustrates two interesting points. First, when

facing an unexpected contingency, a robot needs to perform

reasoning – e.g., to understand the causal consequences of

the contingency, to project these consequences forward in

time, and to replan its activities accordingly. Reasoning is

needed since not all possible situations can be coded in

precompiled responses. Second, a single contingency may

have complex ramifications, which require reasoning on

different types of knowledge. In our example, the GPS failure

calls for reasoning about information requirements: how to

obtain the self-localization estimate needed by the navigation

system. The change in the information source results in a

delay, which in turns calls for reasoning about time and time

dependencies. When propagated to Rin, this delay induces a

rescheduling. In other situations this delay may have different

consequences: if Rin needed the groceries to perform its

chore, then this task would not have been anticipated (causal

reasoning); if another robot were required at the entrance
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of Sven’s apartment, which can only host one robot, then

that robot would have to wait until Rout has left (resource

reasoning); and so on.

The types of reasoning mentioned above have been widely

studied in the field of Artificial Intelligence (AI), namely

in the area of planning. In fact, planning in AI was born

as an exploration of logical reasoning for robots [1]. In

order to help a robot to accomplish tasks in unstructured,

everyday environments, an AI planner should possess capa-

bilities that go beyond the ones most commonly addressed

in the AI planning community. Namely, it should: (1) pos-

sess knowledge and reason about the physical aspects of

the domain, like time, space, information requirements and

resources; (2) generate plans that enable a sufficient degree

of flexibility to accommodate unexpected contingencies and

dynamic goals during execution whenever possible; and

(3) deal with multiple robots and devices, as well as multiple

devices inside each robot, and with their physical and logical

dependencies. Some planners exist today that exhibit some

of the above features, and we discuss them section VI, but

no single system provides all of them. This paper is a first

step toward the construction of such a system.

We present a configuration planner: a system that gen-

erates configuration plans for robotic systems that consist

of mixed ecologies of robots and devices [2]. Configura-

tion plans are fine-grained plans for robotic systems which

specify the causal, temporal, resource and information de-

pendencies between the sensing, computation, and actuation

components in one or multiple robots. Configuration planners

have been proposed before [3], [4], but they cannot deal

with multiple dynamic goals, and lack explicit treatment

of time and resources. By contrast, our planner can ac-

commodate time, resources, multiple dynamic goals, and

flexible execution. Moreover, our planner reacts to new goals

and contingencies by making only minor adjustments to the

current plan, when this is possible. This is achieved by: (1)

representing a (configuration) plan as a constraint network;

(2) defining the configuration planning process as a search

in the space of such networks; and (3) sharing the constraint

network between the planner and the executor. The first

two steps allow for the integration of multiple facets in

the planning problem, e.g., time, resources, and information

dependencies; the third one allows for flexible execution,

plan adjustment and dynamic goal posting.

In the next section we present our representation of plans

and plan operators. We then describe the algorithms for plan

generation and update, illustrate them on a few examples,

compare our planner to related works, and conclude.



II. REPRESENTATION

Our approach is grounded on the notion of state variable,

which models elements of the domain whose state in time is

represented by a symbol. State variables, whose domains are

discrete sets, represent parts of the real world that are relevant

for the configuration planner’s decision processes. These

include the actuation and sensing capabilities of the robotic

systems, and the various aspects of the environment that are

meaningful. For instance, a state variable can represent the

capabilities of a physical device such as a robot, whose

meaningful states might be “navigating”, “grasping” and

“idle”. Similarly, a state variable can represent the interesting

states of the environment, e.g., the state of a light which can

be “on”, “off” or “broken”. Let S be the set of state variables

in a given application scenario.

Some devices require resources when they are in given

states. We employ the concept of reusable resource, i.e.,

a resource with a limited capacity which is fully available

when not required by a device. An example of reusable

resource is power: a maximum wattage is available, and

devices can simultaneously require power so long as the sum

of requirements is less than the maximum power. We denote

with R the set of all resource identifiers. Given a resource

R ∈ R, its capacity is a value Cap(R) ∈ N.

Finally, devices in our domain may serve the purpose

of providing or requiring certain information contents. For

instance, a software component may require range data from

a laser range finder, and provide localization information. Let

the set of all information contents be denoted IC.

A. Representing Configuration Plans and Goals

We employ activities to represent predicates on the possi-

ble evolution of state variables:

Definition 1: An activity a is a tuple (x,v, I, u, In,Out),
where

• x ∈ S is a state variable;

• v is a possible state of the state variable x;

• I = [Is, Ie] is a flexible temporal interval within

which the activity can occur, where Is = [ls, us], Ie =
[le, ue], ls/e, us/e ∈ N represent, respectively, an inter-

val of admissibility of the start and end times of the

activity;

• u : R → N specifies the resources used by the activity;

• In ⊆ IC is a set of required information contents;

• Out ⊆ IC is a set of provided information contents.

For example, the activity

a1 = (MoveFromTo,kitchen livingroom,

[[10, 10][30, 50]], ∅, {position}, ∅)

represents the temporal fact that the navigation functionality

MoveFromTo is in the state of being moving from kitchen

to living room in a time interval starting at 10 and ending

anytime between 30 and 50. This functionality does not use

any resource, it needs position information, and it does not

produce any information. The activity

a2 = (RobotLocation,kitchen, [[0, 0], [10, 10]], ∅, ∅, ∅)

represents a temporal fact about the robot’s location.

Henceforth, we indicate with (·)(a) an element of the five-

tuple pertaining to activity a. The pair (x(a),v(a)) of an ac-

tivity a asserts a particular state v of the state variable x; the

flexible temporal interval I(a) represents possible temporal

intervals of occurrence of the state v(a) of state variable x(a).
Note also that a pair of activities (a, b) is possibly concurrent

if I(a) ∩ I(b) 6= ∅. A pair (a, b) of possibly concurrent

activities thus indicates that state variables x(a) and x(b) can

be, respectively, in states v(a) and v(b) at the same time.

Unspecified parameters of an activity are indicated with

(·) — e.g., (x, ·, I, u, In,Out) indicates a predicate asserting

that state variable x can be in any state during interval I ,

using resources as indicated by u, etc.

Activities can be bound by temporal constraints, which

restrict the occurrence in time of the predicates. Temporal

constraints can be of two types:

• Binary temporal constraints in the form aC b prescribe

the relative placement in time of activities a, b — these

constraints are relations in Allen’s Interval Algebra [5],

and restrict the possible bounds for the activities’ flex-

ible temporal intervals I(a) and I(b);

• Unary temporal constraints in the form C a prescribe

bounds on the start or end time of an activity a —

these constraints are commonly referred to as release

time constraints and deadlines.

Allen’s interval relations are the thirteen possible temporal

relations between intervals, namely “precedes” (p), “meets”

(m), “overlaps” (o), “during” (d), “starts” (s), “finishes” (f),

their inverses (e.g., p−1), and “equals” (≡). For example, the

relation a2ma1 represents that the above activity a2 ends as

soon as activity a1 starts.

When state variables are used to represent a system, the

overall temporal evolution of such system is described by a

constraint network:

Definition 2: A constraint network is a pair (A, C), where

A is a set of activities and C is a set of constraints among

activities in A.

A constraint network can be used to represent a config-

uration plan. Configuration plans are said to be feasible if

they are consistent with respect to the resource, state, and

temporal requirements. Specifically,

Definition 3: A configuration plan (A, C) is feasible iff:

• the constraint network is temporally consistent, i.e.,

there exists at least one allocation of fixed bounds to

intervals such that all temporal constraints are satisfied;

• activities do not over-consume resources, i.e.,∑
a∈A u(a)(R) ≤ Cap(R), ∀R ∈ R, where A ⊆ A is

a set of possibly concurrent activities;

• activities do not prescribe that state variables assume

different states in overlapping temporal intervals, i.e.,

v(a) 6= v(b), ∀(a, b) ∈ A × A : x(a) = x(b), where

A ⊆ A is a set of possibly concurrent activities.

A goal for a configuration planning problem is also

represented as a constraint network, therefore expressing



temporal, resource, state and information requirements. Typ-

ically, a goal (Ag, Cg) is an under-specified configuration

plan. Initial conditions are feasible sub-networks of a goal.

Maintaining constraints on the configuration plan rather than

committing to a specific configuration plan directly enables

dynamic goal posting, execution monitoring, and incremental

adaptation to contingent events, as we show in Section III.

B. Domain

Given a goal (Ag, Cg) and a configuration plan (A, C)
which contains the goal, the feasibility of the configuration

plan is not a sufficient condition for achieving the goal. This

is because feasibility does not enforce information and causal

requirements. The way these requirements are to be enforced

depends on a domain:

Definition 4: A configuration planning problem is a pair

((Ag, Cg),D), where (Ag, Cg) is a goal constraint network,

and D is a domain. The domain is a collection of operators,

which describe the information and causal dependencies

between activities.

Definition 5: An operator is a pair (a, (A,C)) where

• a = (x,v, ·, ·, ·,Out) is the head of the operator;

• A = Ap ∪Ae ∪ {a} is a set of activities, where

– Ap is a set of preconditions, i.e., requirements, in

terms of state variable values, information input,

and resource usage, needed to achieve the state v(a)

of state variable x(a) and to produce Out(a);
– Ae is a set of effects, i.e., state variable values

entailed by the achievement of state v(a) of state

variable x(a);

• C is a set of temporal constraints among activities in

A.

Computing a configuration plan consists in selecting and in-

stantiating operators from the domain into the goal constraint

network. Unlike in classical planning [6], the relevance of

an operator (γ−1) is not determined by unifying effects with

sub-goals, rather by the unification of an operator’s head

with a sub-goal. The head of an operator is a non-ground

activity which describes the value of a state variable and the

information provided as a result of applying the operator.

Preconditions and effects are nevertheless modeled, as their

presence in the constraint network is dealt with differently

at execution time (see Section IV).

An operator can be used to specify the information re-

quirements needed for achieving a given functionality. For

instance, the MoveFromTo operator, which does not provide

any information content, requires the current position of the

robot:

a = (MoveFromTo,kitchen livingroom, ·, ·, ·, ∅)

Ap = {a1, a2}, Ae = {a3},where

a1 = (·, ·, ·, ·, ·, {position})

a2 = (RobotLocation,kitchen, ·, ·, ·, ·)

a3 = (RobotLocation, livingroom, ·, ·, ·, ·)

C = {a d a1, am−1 a2, am a3}

The head of the operator is a predicate on the func-

tionality MoveFromTo. The operator is considered rel-

evant when the constraint network contains an activity

(MoveFromTo,kitchen livingroom, ·, ·, ·, ·), i.e., when a

(sub-)goal stating that the robot must move from the kitchen

to the living room is present in the network. The operator also

prescribes the temporal relations that must exist between the

activities, namely that the MoveFromTo functionality should

occur during the availability of the position data (a d a1), that

it should be met by the precondition of the robot being in

the kitchen (am−1 a2), and that it meets the effect of the

robot being in the living room (am a3).

An operator can also be used to represent a means to

achieve certain information requirements. For example, the

operator

a = (VisualSLAM, running, ·, u(CPU) = 10, ·, {position})

Ap = {a1, a2}, Ae = ∅,where

a1 = (·, ·, ·, ·, ·, {range data})

a2 = (·, ·, ·, ·, ·, {ref frame})

C = {a d a1, am−1 a2}

specifies one way to achieve the necessary information re-

quirement (position) for the MoveFromTo operator, namely

through visual SLAM. This localization functionality re-

quires (1) a functionality which provides range data, (2) a

reference frame for the computation of the position estimate,

and (3) 10% of the CPU resource. Also, the operator states

that range data should be available during the entire duration

of the localization process, and that the reference frame is

needed at the beginning of the process.

The above operator does not specify how to obtain the

needed information inputs. For instance, the range data might

be provided through the following operator:

a = (StereoCamDriver,on, ·, u(Cam1) = 1, ·, {range data})

Ap = {a1}, Ae = ∅,where a1 = (Light,on, ·, ·, ·, ·)

C = {a d a1}

An operator may also specify that the reference frame is

obtainable by invoking a functionality of the stereo camera’s

pan-tilt unit:

a = (PanTilt, return ref frame, ·, ·, ·, {ref frame})

Ap = ∅, Ae = ∅, C = ∅

The above operators can be applied to obtain a configura-

tion plan from the following goal constraint network:

A = {a0 = (MoveFromTo,kitchen livingroom, I0, ·, ·, ·)},

C = ∅

Specifically, a particular application of the above operators

may refine the given constraint network to the following:

A = {a0 = (MoveFromTo,kitchen livingroom, I0, ∅, ∅, ∅)

a1 = (VisualSLAM, running, I1, u(CPU) = 10,

{ref frame, range data}, {position})

a2 = (RobotLocation,kitchen, I2, ∅, ∅, ∅)

a3 = (RobotLocation, livingroom, I3, ∅, ∅, ∅)

a4 = (StereoCamDriver,on, I4,

u(Cam1) = 1, ∅, {range data})

a5 = (PanTilt, return ref frame, I5, ∅,

∅, {ref frame})

a6 = (Light,on, I6, ∅, ∅, ∅)},

C = {a0 d a1, a0 m−1 a2, a0 m a3, a1 d a4, a1 m a5, a4 d a6}



This network represents a temporally consistent configura-

tion plan in which resources are never used beyond their

capacity, and state variables are never required to assume

different values in overlapping temporal intervals. The plan

is therefore feasible. Furthermore, the plan contains activities

providing the required information contents as determined

by the operators in the domain. However, not all causal

dependencies are necessarily achieved by construction. If,

e.g., the initial condition does not state that the light is on,

the configuration planner would regard the activity a6 as yet

another sub-goal to satisfy, and might do so by applying the

following operator:

a = (Light,on, ·, ·, ·, ·)

Ap = ∅, Ae = {a1},where a1 = (LightController,on, ·, ∅, ·, ·)

C = {a p−1 a1}

This operator models an actuation process (Light rep-

resents an environment variable), and its application

would refine the configuration plan by adding an activ-

ity a7 = (LightController,on, I7, ∅, ∅, ∅) to the network,

along with the constraint a6 p−1 a7, prescribing that the

LightController be in state on before the light is required

to be on. Note that the light control functionality has no

information requirements (In(a1) = ∅).

III. CONSTRAINT-BASED SEARCH

The planning process used in our approach is incremental

in nature, and yields a refined constraint network, which

itself represents a feasible configuration plan which achieves

the given goal. The resulting constraint network represents

one or more temporal evolutions of the state variables

that guarantee the achievement of the goal under nominal

conditions. Feasible and goal-achieving configuration plans

are obtained in our approach by means of four interacting

solvers:

Temporal solver. The temporal consistency of the constraint

network is checked through temporal constraint propagation

by means of a Simple Temporal Problem (STP) [7] solver.

The solver propagates temporal constraints to refine the

bounds [ls, us], [le, ue] of the activities in the network, and

returns failure if and only if temporally consistent bounds

cannot be found.

Resource scheduler. This solver enforces that resources

are never over-consumed. The maximum capacities of re-

sources restrict which activities can occur concurrently, and

this solver posts temporal constraints to the constraint net-

work enforcing that over-consuming peaks of activities are

avoided [8].

State variable scheduler. State variable scheduling ensures

that activities do not prescribe conflicting states in over-

lapping intervals. Similarly to the resource scheduler, this

solver posts temporal constraints which impose a temporal

separation between conflicting activities.

Information dependency reasoner. Operators model the in-

formation dependencies between functionalities1. This solver

1In our approach, the domain is such that information dependencies
constitute an acyclic propositional Horn theory.

instantiates into the constraint network relevant operators

(in the form of activities and temporal constraints) so as to

enforce the information dependencies.

Causal reasoner. Operators in the domain also model causal

dependencies between states. This solver instantiates into

the constraint network relevant operators (in the form of

activities and temporal constraints) so as to enforce the causal

dependencies of the configuration plan.

As noted, resource over-consumption and multiple con-

current states are averted by imposing temporal constraints

which sequence potentially concurrent activities; trivially,

there are alternative sequencing decisions that can be made to

resolve such a conflict, e.g., enforcing a p b or a p−1 b. Also

operator selection is subject to alternative choices, as more

than one operator may provide the necessary information

output and/or support the necessary causal dependency (e.g.,

the presence of light in the environment may be obtained as

a result of invoking the light controller or by opening the

blinds.) Note that only temporal feasibility enforcement is

not subject to multiple choices, as the problem is tractable.

In our approach, all requirements which may entail alter-

native courses of action are seen as decision variables in

a high-level Constraint Satisfaction Problem (CSP). Given

a decision variable d, its possible values constitute a finite

domain δd = {(Ad
r , C

d
r )1, . . . , (A

d
r , C

d
r )n}, whose values are

alternative constraint networks, called resolving constraint

networks. The individual solvers are used to determine re-

solving constraint networks (Ad
r , C

d
r )i, which are iteratively

added to the goal constraint network (Ag, Cg).

Function Backtrack(Ag , Cg): success or failure

d← Choose((Ag , Cg), hvar)1

if d 6= ∅ then2

δd = {(Ad
r , C

d
r )1, . . . , (A

d
r , C

d
r )n}3

while δd 6= ∅ do4

(Ad
r , C

d
r )i ← Choose(d, hval)5

if (Ag ∪Ad
r , Cg ∪ Cd

r ) is temporally consistent then6

return Backtrack(Ag ∪Ad
r , Cg ∪ Cd

r )7

δd ← δd \ {(Ad
r , C

d
r )i}8

return failure9

return success10

In order to search for resolving constraint networks, we

employ a systematic search (see Algorithm Backtrack),

which occurs through standard CSP-style backtracking. The

decision variables are chosen according to a variable ordering

heuristic hvar (line 1); the alternative resolving constraint

networks are chosen according to a value ordering heuristic

hval (line 5). The former decides which (sub-)goals to attempt

to satisfy first, e.g., to support a functionality by applying

another operator, or to resolve a scheduling conflict. The

latter decides which value to attempt first, e.g., whether to

prefer one operator over another. Note that adding resolving

constraint networks may entail the presence of new decision

variables to be considered.

The possible values for resource contention or unique state

decision variables are temporal precedences among activi-

ties. Values for information decision variables are ground



operators, as shown in the previous Section. Lastly, values

for causal decision variables are either ground operators,

or unifications with activities that already exist in the con-

straint network. Two activities a and b can be unified if

x(a) = x(b) ∧ v(a) = v(a). Unifications are enforced by

imposing a temporal equality constraint a ≡ b among the

activities. Supporting unification is obviously necessary to

allow the search to build on previously added activities

— e.g., leveraging that the light has already been turned

on to support a previously branched-upon causal depen-

dency. More importantly, unification also allows to accom-

modate on-going sensing and execution monitoring processes

during configuration planning. For instance, activity a =
(Light,on, I(a), ∅, ∅, ∅) could be supported by unification

with an activity asensed = (Light,on, [[0, 0][13, 13]], ∅, ∅, ∅)
which models the temporal interval within which a light

source was sensed by a sensor in the environment.

IV. PLAN EXECUTION AND DYNAMIC PLAN UPDATE

The ability to support on-line sensing is directly enabled

by the constraint-based representation: sensing is reduced

to dynamically updating the constraint network with new

activities and constraints representing the sensed state of the

environment; the same mechanism also supports prediction

(i.e., “sensing in the future”) and other on-line plan mod-

ifications, such as temporal delays and dynamically posted

goal constraint networks.

Our approach is based on the alternation of planning

and plan execution monitoring. The former consists of the

planning procedure shown above. The latter consists of two

processes: sensing and plan update. The sensing process

adds to the constraint network activities and temporal con-

straints representing the current view of the environment

as provided by sensors. The plan update process maintains

and updates temporal constraints which bound on-going

activities (sensed states or functionalities in execution) with

the current time. This is done in O(n2) through incremental

temporal constraint propagation [7], where n is the number

of activities in the constraint network. Also, this process

imposes constraints that verify the existence of preconditions

and trigger the manifestation of effects contained in the plan.

Specifically, the presence of a precondition is verified by

attempting to unify the activity representing the precondition

with a sensed activity. If the unification is not possible, the

precondition is delayed by inserting a temporal constraint,

and is re-evaluated at the next iteration. The process enforces

the occurrence of activities representing effects by posting

temporal constraints which fix their start time to the current

time. The effect of the constraints posted by these processes

is that functionalities start when possible, are delayed until

the preconditions hold, and their effects are imposed when

necessary. This step also requires polynomial computation.

In our current implementation, all solvers monitor the net-

work for new decision variables. Thus “re-planning” occurs

by temporal propagation, resource or state variable schedul-

ing, or operator application, depending on the situation.

Note that this allows to keep the computational impact

of replanning at a minimum (e.g. operator application need

not occur if scheduling is sufficient, scheduling need not

occur if temporal propagation is sufficient). This mechanism

is what enables dynamically posted goals, as in other tempo-

ral constraint-based continuous planners [9], [10], but here

we also deal with resources, sensor data and information

constraints.

All the components so far described post activities and/or

constraints into the temporal network and their relations

can be compared to the ones existing between components

of a classical control system. The dynamic goal posting

corresponds to the desired state for the system to control;

in order to achieve this state, that can possibly change

over time, several solvers try to manipulate, i.e. formulate

control signals, the temporal network. Once decisions are

taken, control signals are injected into the state if they did

not lead to temporal inconsistencies (validation performed

by the temporal solver). Finally the state of the world is

continuously fed-back to the system through the observer.

A schematic representation of this comparison is depicted

in Fig.1. We show an example of this behavior in the next

Section.

Fig. 1. High level reasoners (causal reasoner, information de-
pendency reasoner, schedulers) modify the constraint network so
as to achieve the dynamically changing desired state (dynamic
goal posting). Their decisions are temporally validated (temporal
reasoning) and sent to the system as control signals. Reasoning
accounts for the current state of the system, which is continuously
maintained in the constraint network (observer).

V. EXPERIMENTS

In this section we show experiments inspired by the

introductory scenario. It is time for lunch, and the outdoor

robot, Rout, delivers groceries to Sven’s domestic robot Rin,

which is waiting at the door. Sven is in the kitchen; this is a

small environment, and at most one robot can be there at any

point in time, i.e., the kitchen is modelled as a resource with

capacity one which is used by all activities which bring a

robot to the kitchen. We show two variants of the scenario:

in the first, Sven’s apartment is equipped with one robot

which, upon receiving the goods, delivers them to Sven;

in the second, Sven possesses two indoor robots, Rin1 and

Rin2, with similar capabilities. All robots are equipped with



software modules for localization and navigation: Rout can

employ either a GPS module or a laser range finder, while the

indoor units are equipped with Kinects. The first variant was

executed with real robots, experiments in the second variant

were performed on the Gazebo simulator [11]. All robots

run ROS [12], and the communication with the planner is

realized through the light-weight PEIS middleware [2].

A. Variant 1: Reacting to Information Requirement Failures

Fig. 2. Experimental setup: a) map of the environment with the
related waypoints; b) outdoor robot; c) indoor robot.

In the first scenario, we employ two robotic platforms: an

ATRV-Jr for Rout, and a Turtlebot-1 for Rin. Fig. 2 shows a

map of the environment and the two robots used.

The plan generated for delivering groceries to Sven, who

is in the kitchen, is shown in Fig. 2-a: under nominal

conditions, Rout is expected to navigate towards the meeting

point, MP, relying on the GPS signal for localization. Rin

is expected to reach MP as soon as Rout has reached an

intermediate point E. Once both robots are in MP, Rin and

Rout exchange the groceries through the actions unload

and grab, respectively. Note that this plan contains required

concurrency. This is achieved through temporal constraints

which model the fact that both robots cannot terminate the

respective operations before the exchange has happened. In

addition to delivering the groceries, Rin must also accomplish

another task, OTHER, within a certain deadline d.

Shortly after execution begins, Rout’s GPS fails. This

leads the configuration planner to support the information

requirement of Rout’s navigation module with the laser-

based localization module. However, navigation speed must

be reduced to collect reliable readings from the laser. As

a consequence, the expected time at which Rout will reach

MP increases compared to the nominal plan. This violates

the deadline d for the OTHER task, hence the planner re-

schedules the execution of this taks to occur while Rout is

reaching the meeting point. A video showing a real execution

of the above scenario is available at http://aass.oru.

se/˜modo/IROS2013/iros2013.html.

B. Variant 2: The Consequences of Being Late

In this variant we assume that the overall task consists

of two goals. The first is to deliver the groceries to Sven

using one of the two indoor robots. This goal is posted to

the configuration planner, which allocates the task to Rin1.

The timelines showing how the plan was executed up to time

t = 20 is shown in Fig. 4-a. At this time, a second goal is

dynamically posted, namely to deliver pills to Sven within

a certain deadline d; both Rin1 and Rin2 are equipped with

a pill dispenser. The planner synthesizes a plan which is

seamlessly merged with the existing constraint network. The

planner allocates Rin1 for accomplishing the pill delivery,

thus exploiting the path that Rin1 is going to traverse to

deliver the groceries. During execution, at time t = 70, the

planner is informed that Rout is delayed (see Fig. 4-b). This

leads to a temporal failure, as the extent of the delay makes

delivering the pills within time d impossible. This failure

cannot be adjusted through temporal propagation alone, and

the planner is faced with the following three options:

1) Multi robot execution. The planner allocates to Rin2,

which is so far idle and also equipped with a pill

dispenser, the task of reaching Sven in the kitchen

while Rin1 is waiting for the groceries (see Fig. 4-c).

Note that this solution requires scheduling to manage

the possible concurrent access of Rin1 and Rin2 to

the kitchen: due to the one-robot requirement in the

kitchen, Rin1 will wait for Rin2 to return to its base

station before proceeding to the kitchen.

2) Task rescheduling. In order make the deadline, the

planner can first send Rin1 to deliver the pills, and

successively come back to fetch the groceries once

Rout is at the door. This procedure, although more

expensive in terms of makespan, allows the planner

to still use one robot (see Fig. 4-d).

3) Causal dependency change. Another way to fulfill

the goal of getting Sven to eat lunch is to send an

indoor robot to the senior living facility’s canteen to

fetch a prepared meal. Thus another option for the

planner is to find an alternative way to fulfill the

causal dependency: to dispatch Rin1 to achieve both

meal acquisition and pill delivery (see Fig. 4-e), thus

adapting on-line the fulfillment of a causal dependency

due to a temporal contingency.

Which option is chosen by the planner depends on which

guiding heuristic has been implemented. A video showing a

Gazebo execution in which case 1 was selected is available

at http://youtu.be/adiwuywxEiM.

VI. DISCUSSION AND CONCLUSIONS

Much research in robotics aims to deploy robots in dy-

namic, uncontrolled environments which require systems to

be very adaptive. The work presented in this paper enables

the generation and run-time adaptation of configuration

plans, yielding robust closed loop performance in the face

of perturbations such as delays, resource collapse, exogenous

events, and new goals. An important tenet of our approach

is that plans are only modified to the extent which is neces-

sary. For example, a new goal can often be accommodated

by simply adding actions to the current plan; and delays

or resources unavailability can often be remedied by re-

scheduling. Indeed, full re-planning is most often necessary

when assumed causal requirements fail to materialize, e.g.,

an object is not where it was expected to be.



Fig. 3. Plan execution for the grocery delivery scenario with real robots (variant 1): a) plan exploiting the navigation with GPS before the failure at tf ;
b) navigation with laser that respects the deadline d.

Fig. 4. Plan execution for the grocery delivery scenario with real robots (variant 2): a) execution of the initial plan — at time t = 0 the first goal is
posted and the plan is further enriched at time t = 20; b) the delay induced by the delivery makes the plan fail due to the failure of the deadline; c) after
plan failure another robot joins the plan execution d) the delay is absorbed detouring the robot to execute first the delivery of the pills and then sending it
back to fetch the package; e) the fetching of the package is substituted by an equivalent causal action which allows to complete the plan.

Several approaches have been proposed in the AI planning

literature to cope with temporal contingencies [13], [14],

[10], most of which rely on temporally flexible plans which

can be adapted in low-order polynomial time to temporal

uncertainty. In [9], temporal planning has been coupled with

execution monitoring, and the approach has been success-

fully employed with real robotic systems. In [15], execution

monitoring takes into account resource usage, and the tech-

nique is exemplified on single robot navigation tasks. These

systems have proved the effectiveness of constraint reasoning



in robotic domains. Our work builds upon and extends this

tradition, by proposing a framework that integrates seam-

lessly planning and execution monitoring, while taking into

account information dependencies and resource constraints.

All aspects of plan generation and execution are com-

plicated in the case of multi robot systems and robot

ecologies [2], like the ones that we address here, due to

the multiple causal and information dependencies among

different robots, sensors and actuators [16]. Some of these

aspects are considered in [17], which proposes constraint-

based reasoning techniques for assembling coalitions of

robots that perform a common task using shared resources.

However, that work considers only binary resources (i.e.,

resources that can be used by one robot at a time) and does

not deal with time.

A more fine-grained approach is the AsymTre architec-

ture [3], [18]: each robot is equipped with a set of software

modules, called schemas, able to sense and modify the en-

vironment. Schemas are interconnected through information

channels which are decided by a planning process. AsymTre

did not consider resource and temporal requirements, but

later extensions [19] support a limited form of resource

reasoning. However, the method does not provide closed-

loop execution monitoring; also, dealing with the removal of

a shared action may lead to problems that are not addressed

by the proposed techniques.

Lundh and colleagues [4] propose a configuration planner

that uses an explicit representation of the world. Differently

from AsymTre, Lundh’s system leverages a propositional

logic description of the world based on standard planning

techniques. Reasoning is performed by coupling an action

planner with a configuration planner: the former provides

a sequence of actions that have to be further refined by

the latter, by deciding the relevant software modules and

their communication linkage. This system allows a detailed

representation of the evolution of the world — however, it is

decoupled from execution, and therefore suffers from many

of the aforementioned problems. An improved version of

this work [20] takes into account multiple goals through a

merging sequence. Similarly to AsymTre, Lundh’s approach

lacks the ability to perform integrated plan monitoring and

execution, and on-line plan adaptation.

Compared to the works above, our approach is unique in

its combining reasoning about information, causal, temporal

and resource requirements, as well as providing closed-loop

behavior in which new goals and unexpected contingencies

can be accommodated during execution. We claim that these

features are pivotal to the development and deployment of

real autonomous multi-robot systems.

The system presented in this paper is currently being used

for planning and flexible execution of a robot ecology in

the context of the EU project Rubicon. Future improve-

ments concern: the scalability of the system with respect

to larger ecologies (in particular 3 robots and a dozen of

sensors/actuators spread out in a building); the introduction

of costs and quality criteria that will allow for the generation

of optimal plans; introduction of other types of knowledge

such as spatial constraints and expectation about human

actions.
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